Parallel Engagement of Regions Associated with Encoding and Later Retrieval Forms Durable Memories

Isabella C. Wagner, Mariët van Buuren, Leonore Bovy, and Guillén Fernández
Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EZ, Nijmegen, The Netherlands

The fate of a memory is partly determined at initial encoding. However, the behavioral consequences of memory formation are often tested only once and shortly after learning, which leaves the neuronal predictors for the formation of durable memories largely unknown. Here, we hypothesized that durable memory formation (as opposed to weak or no memory formation) is reflected through increased activation in the medial temporal lobes and prefrontal cortex, and more consistent processing (i.e., stronger pattern similarity) across encoding material. Thirty-four human subjects studied unique picture–location associations while undergoing fMRI and performed a cued recall test immediately after study as well as 48 h later. Associative memories were defined as “weak” if they were retrieved during the immediate test only. Conversely, “durable” memories persisted also after 48 h. The posterior cingulate cortex showed increased pattern similarity during successful memory formation, independent of the eventual durability. For durable memory encoding, we found increased activation in medial and inferior temporal, prefrontal, and parietal regions. This was accompanied by stronger pattern similarity in lateral prefrontal and parietal regions, as well as in anterior and posterior midline structures that were also engaged during later memory retrieval. Thus, we show that pattern similarity, or consistent processing, in the posterior cingulate cortex predicts associative memory formation at encoding. If this is paralleled by additional activation increases in regions typically related to encoding, and by consistent processing in regions involved in later retrieval, formed memories appear durable for at least 48 h.

Key words: fMRI; memory durability; posterior cingulate cortex; representational similarity analysis; subsequent memory

Significance Statement
Successful memory formation is typically associated with increased neuronal activation in medial temporal and prefrontal regions at encoding, but memory is often assessed only once and shortly after study. Here, we addressed memory durability, and investigated the neuronal underpinnings of encoding for associations remembered over a longer period of time, less long, or immediately forgotten. We showed that durable memory formation is dependent on increased activation in the hippocampus and neocortical regions related to encoding, and on consistent processing of associative memory traces in midline structures that are involved in later memory retrieval. These findings highlight how durable memories are formed.
the PCC is commonly deactivated during successful memory encoding (Daselaar et al., 2004, 2009), possibly reflecting internal orientation and self-referential processing (Huijbers et al., 2012). Together, these studies provide first evidence of how levels of activation and functional connectivity might foster durable memory formation.

Complementary to levels of activation and connectivity, durable memory might rely on the spatial organization of distributed activation patterns at encoding, which can be assessed using representational similarity analysis (RSA; Kriegeskorte et al., 2008). RSA quantifies the spatial correspondence of activation patterns, whereby similar patterns are thought to share information content. For example, the pattern similarity of representations across item repetitions (i.e., “self-similarity”; Xue et al., 2010, 2013) or different stimuli (i.e., “global similarity”; Visser et al., 2013) at encoding was associated with better memory. These representations could further be stabilized through attention (Aly and Turk-Browne, 2016a,b) and reward (Wolosin et al., 2013). Moreover, pattern similarity in the PCC was advocated to promote memory encoding (Xue et al., 2013) and consolidation (Bird et al., 2015). These findings suggest that associative memory formation (i.e., the linking of multiple stimulus features) is facilitated by means of increased similarity, or “consistency,” across encoding patterns. How consistent encoding representations modulate memory durability is, however, unknown.

Here, we asked not only how durable memory formation is related to the level of activation, but to the consistency of processing across encoding trials. We chose a design that allowed us to delineate durable memory formation by testing all stimulus material twice. Subjects studied unique picture–location associations, and performed a cued recall test immediately after study (both inside the MR scanner), as well as 48 h later (in the behavioral laboratory; Fig. 1A). We defined associative memories as “weak” if they were preserved during immediate retrieval only. “Durable” memories also persisted 48 h later.

First, we hypothesized that the encoding of durable compared to weak (and forgotten) associations would produce enhanced activation within the hippocampus, surrounding MTL, and LPFC. Second, and most critically, we proposed that consistent processing across different stimulus content might mirror the buildup of associative traces. We expected that durable memory formation would particularly benefit from consistent processing. This consistency was quantified by deriving the multivoxel pattern similarity of unique picture–location associations, embedded within a whole-brain, single-trial RSA framework. We predicted increased pattern similarity for durable associations relative to weak and forgotten associations within the hippocampus and surrounding MTL, LPFC, and PCC.

Materials and Methods

Subjects. Thirty-five subjects participated in this experiment (23 female; age range, 18–29 years; mean age, 23 years). All subjects were right handed, healthy, had normal or corrected-to-normal vision, and gave written informed consent before participation. One subject was excluded due to technical problems with the MR gradient coil. Final analyses were thus completed including 34 subjects (23 female; age range, 18–29 years; mean age, 23 years). The study was approved by the institutional review board (Commissie Mensgebonden Onderzoek, region Arnhem-Nijmegen, The Netherlands).

Task and procedure. Subjects were instructed to memorize 192 picture–location associations that were distributed over two experimental runs. Each run consisted of a study (15 min) and a test phase (15 min; Fig. 1A). In between, subjects remained in the scanner for a short rest period (6 min) while a white fixation cross was presented on the computer screen, and subjects were instructed to remain awake with their eyes open (not depicted). During each study phase, subjects memorized 96 color pictures (i.e., 192 across two runs; see Materials and Methods, Stimulus material and randomization) that were randomly associated with one of four locations presented on the computer screen (lower left, upper left, lower right, upper right; similar to Takashima et al., 2009; van Dongen et al., 2011, 2012). We chose this paradigm since the binding of different pictures with a location robustly engages the hippocampus, leading to a hippocampal-dependent spatial associative memory trace (Brown and Aggleton, 2001; Mayes et al., 2007). Additionally, we incorporated different stimulus categories and locations to induce activation (patterns) in...
clearly separable neuronal regions. A trial started with the presentation of the picture in the center of the screen (1 s) together with the four surrounding screen locations as filled white circles. After 500 ms, one of the filled circles turned green indicating the target location of the respective picture. The picture then moved to that target location (400 ms) and remained there for 2 s. Intertrial intervals varied randomly between 3 and 7 s (mean, 5 s), during which time a fixation cross was presented (Fig. 1B). Subjects were provided with a break of 25 s every 32 trials, indicated by asterisks on the computer screen.

During the immediate test, subjects were prompted for their memory of all picture–location associations that were shown during the preceding study phase (i.e., 96 trials/run). Again, pictures were presented in the center of the screen surrounded by the four filled circles indicating the four alternative screen locations (3.4 s; Fig. 1C). Subjects were required to press one of four buttons (each assigned to a specific location) using the middle and index fingers of both hands. Trials were separated by a fixation period ranging between 3 and 7 s (mean, 5 s), and a break of 25 s was given every 32 trials.

The delayed test was performed in front of a computer screen in a behavioral laboratory on day 3 (day 1–day 3 difference: mean, 47 h; range, 45–50 h). Timing and structure were identical to the immediate test (day 1), but with a new pseudorandom order of all 192 items (see Materials and methods, Stimulus material and randomization). The experiment was programmed and presented with Presentation (version 16.4, Neurobehavioral Systems, www.neurobs.com).

Stimulus material and randomization. Stimulus material consisted of 192 color photographs (e.g., animals, plants, objects, buildings; 48 pictures each), derived from the Hemera Photo-Object database (Hemera Technologies) and the Internet. All were unique and easy to name. Pictures were resized to 400 × 300 pixels and presented on a gray background. For each run, the pictures of two categories were presented (always one animate with one inanimate picture category). This resulted in four presentation sequences that were randomized in groups of four subjects (run1, run2; sequence 1: animals and objects, plants and buildings; sequence 2: animals and buildings, plants and objects; sequence 3: plants and buildings, animals and objects; sequence 4: plants and objects, animals and buildings).

During the immediate test on day 1, all picture–location associations from the preceding study phase were tested. The presentation order from the study phase was split into quarters (24 trials each) to control for temporal distance between study and test presentations of a specific picture. Within these quarters, trial presentation was shuffled randomly. Hence, trials presented in the first quarter during the study appeared in the first quarter during the immediate test, but in a different order.

For the delayed test (day 3), all associations that were learned on day 1 were tested again. Pictures were presented in a pseudorandom order without controlling for temporal distance to the respective study presentation. During all study and test phases of the experiment (day 1 and 3), presentation orders were restricted such that no more than three pictures of the same category (e.g., animals, plants, objects, buildings) were presented in succession. Additionally, no more than three successive pictures were associated with the same location. The pairing of picture–

Table 1. Activation during encoding

<table>
<thead>
<tr>
<th>Contrast and brain region</th>
<th>MNI coordinates</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>z-value</th>
<th>Cluster size</th>
</tr>
</thead>
<tbody>
<tr>
<td>L fusiform gyrus</td>
<td>−27</td>
<td>−51</td>
<td>−15</td>
<td></td>
<td></td>
<td>22,880</td>
</tr>
<tr>
<td>R angular gyrus</td>
<td>63</td>
<td>−51</td>
<td>36</td>
<td></td>
<td></td>
<td>447</td>
</tr>
<tr>
<td>L middle frontal gyrus</td>
<td>45</td>
<td>12</td>
<td>30</td>
<td>7.82</td>
<td>1021</td>
<td></td>
</tr>
<tr>
<td>L supramarginal gyrus</td>
<td>−60</td>
<td>−48</td>
<td>45</td>
<td>6.84</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>R cingulate gyrus</td>
<td>3</td>
<td>−21</td>
<td>39</td>
<td>6.78</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>L cingulate gyrus</td>
<td>−6</td>
<td>36</td>
<td>0</td>
<td>6.77</td>
<td>1187</td>
<td></td>
</tr>
<tr>
<td>R cingulate gyrus</td>
<td>−3</td>
<td>3</td>
<td>30</td>
<td>6.77</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>L middle frontal gyrus</td>
<td>−30</td>
<td>33</td>
<td>33</td>
<td>5.71</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>Cerebellum</td>
<td>−36</td>
<td>−87</td>
<td>−33</td>
<td>5.67</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>R superior temporal gyrus</td>
<td>63</td>
<td>−18</td>
<td>−3</td>
<td>4.44</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

Durable > forgotten

L inferior temporal gyrus	−48	−51	−12	6.86	12,747
Cerebellum	21	−39	−45	5.94	230
R middle frontal gyrus	45	9	30	5.12	261
R lateral orbitofrontal gyrus	36	−36	−15	4.33	92

Durable > weak

L lingual gyrus	−33	−42	−9	5.67	8508
L lateral orbitofrontal gyrus	−39	−30	−15	5.30	192
Cerebellum	−24	−36	−45	5.20	153
L precentral gyrus	−42	3	27	4.90	525
L caudate	−15	6	12	4.88	102
L superior frontal gyrus	−3	12	57	4.75	290
L gyrus rectus	−3	39	−21	4.57	193

MNI coordinates represent the location of peak voxels. We report the first local maximum within each cluster. Effects were tested for significance using cluster inference with a cluster-defining threshold of p < 0.001 and a cluster probability of p < 0.05, FWE-corrected for multiple comparisons (critical cluster size: 65 voxels). L, Left; R, right. Anatomical nomenclature for all tables was obtained from the Laboratory for Neuro Imaging (LONI) Brain Atlas (LPBA40; http://www.loni.usc.edu/atlases/).

*Results for the main effect were thresholded at p < 0.05 FWE-corrected for multiple comparisons.
A durable > forgotten

B durable > weak

t-value

C weak > forgotten

D durable > forgotten

Figure 3. Pattern similarity during encoding, and overlap with univariate levels of activation. A–C, increased pattern similarity during encoding of durable > forgotten (A), durable > weak (B), and weak > forgotten (C) associations. Results are shown at p < 0.001 (p < 0.05, FWE-corrected at cluster level; see also Table 2). *Slice is shown at p < 0.001, uncorrected. The parahippocampal result survived small volume correction with an a priori anatomical ROI. D, Overlay of univariate activation (durable > forgotten; Fig. 2A) and pattern similarity results (same contrast; A), L, Left.

Table 2. Pattern similarity during encoding

<table>
<thead>
<tr>
<th>Contrast and brain region</th>
<th>MNI coordinates</th>
<th>z-value</th>
<th>Cluster size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R middle occipital gyrus</td>
<td>27 -90 6</td>
<td>33,905</td>
<td></td>
</tr>
<tr>
<td>Durable > forgotten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R posterior cingulate cortex†</td>
<td>6 -36 39</td>
<td>1684</td>
<td></td>
</tr>
<tr>
<td>L middle temporal gyrus†</td>
<td>-51 -27 -15</td>
<td>5.46 302</td>
<td></td>
</tr>
<tr>
<td>L middle frontal gyrus†</td>
<td>21 45 18</td>
<td>4.84 749</td>
<td></td>
</tr>
<tr>
<td>L middle frontal gyrus†</td>
<td>-27 30 51</td>
<td>4.71 144</td>
<td></td>
</tr>
<tr>
<td>L inferior frontal gyrus†</td>
<td>-48 18 24</td>
<td>4.66 929</td>
<td></td>
</tr>
<tr>
<td>R angular gyrus†</td>
<td>-48 -45 36</td>
<td>4.54 324</td>
<td></td>
</tr>
<tr>
<td>R middle frontal gyrus†</td>
<td>54 15 39</td>
<td>4.40 120</td>
<td></td>
</tr>
<tr>
<td>R inferior temporal gyrus†</td>
<td>57 -39 -15</td>
<td>3.80 105</td>
<td></td>
</tr>
<tr>
<td>Durable > weak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R precentral gyrus</td>
<td>39 -15 39</td>
<td>4.43 109</td>
<td></td>
</tr>
<tr>
<td>Weak > forgotten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L posterior cingulate cortex</td>
<td>-6 -51 30</td>
<td>3.59 85</td>
<td></td>
</tr>
</tbody>
</table>

MNI coordinates represent the location of peak voxels. We report the first local maximum within each cluster. Effects were tested for significance using cluster inference with a cluster-defining threshold of p < 0.001 and a cluster probability of p < 0.05 FWE-corrected for multiple comparisons (critical cluster size, 72 voxels). L, Left; R, Right.

*Results for the main effect were thresholded at p < 0.05 FWE-corrected for multiple comparisons.

†Significant clusters after exclusively masking pattern similarity (durable > forgotten) with combined effects from picture category and location RSA analyses (see Results, Pattern similarity of picture categories and locations; Fig. 4D–F, Table 3).

Behavioral data analysis. We derived a measure of memory durability by sorting trials based on the subjects’ performance at the immediate test (day 1) and the delayed test (day 3). This resulted in three types of responses: picture–location associations that were (1) already forgotten on day 1 (“forgotten”); (2) remembered on day 1 but forgotten on day 3 (“weak”); or (3) remembered at both tests (“durable”). Picture–location associations that were forgotten at the immediate test (day 1) but were recalled correctly at the delayed test (day 3; mean ± SEM: 16.1 ± 1.3 trials) reflected correct guesses (forgotten ∩ forgotten-remembered: 61.3 ± 5.5 trials; 61/4 locations, chance level, 15%; p = 0.423) and were grouped together with associations that were forgotten at both tests (day 1 and 3). Subjects only displayed very few trials with no responses (“misses”; 3 ± 1 trials across both days), which were excluded from behavioral and multivariate fMRI data analyses. For univariate fMRI analysis, missed trials were collapsed together with forgotten associations. To test whether memory performance (weak, durable) was significantly above chance level that could be reached by guessing, we applied one-sample t tests. Chance level was calculated based on the average number of remembered associations (weak ∩ durable: 127.6 ± 5.7 trials; 128/4 locations, chance level, 32). α was set to 0.05 throughout.

MRI data acquisition. Imaging data were acquired using a 3.0-tesla MRI scanner (Skyra, Siemens) equipped with a 32-channel head coil. We obtained 405 T2*-weighted blood oxygenation level-dependent (BOLD) images for each study and immediate test phase, using a gradient multi-echo EPI sequence. The application of multiple echo times (TEs) was shown to increase the signal-to-noise ratio because it allows region-specific TEs (Posner et al., 2006). For instance, signal from the MTL and the ventromedial prefrontal cortex benefits from shorter TEs, given the neighboring air-filled cavities. Signals from other brain regions, like areas at the convexity, yields an optimal BOLD contrast at longer TEs. Parameters were as follows: repetition time (TR), 2180 ms; TEs, 7.5, 18.3, 29, 40 ms; flip angle, 90°; field of view (FOV), 224 × 224 mm; matrix, 74 × 74; 34 ascending axial slices; 21% slice gap; voxel size, 3 mm. Structural scans were acquired using a magnetization-prepared rapid acquisition gradient-echo sequence with the following parameters: TR, 2300 ms; TE, 3.03 ms; flip angle, 8°; FOV, 256 × 256 mm; voxel size, 1 mm isotropic.

MRI data preprocessing. All imaging data were analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) in combination with Matlab (MathWorks). As a first step, echoes from the four different echo times were combined into single volumes. We used 56 scans that were acquired during a short resting-state scan (2 min) before the start of the first study phase to determine the optimal weighting of echo times for each voxel. This was performed by calculating the contrast-to-noise ratio for each echo per scan. Images from multiple echo times were then combined by performing motion correction on the first echo, estimating iterative rigid-body realignment to minimize the residual sum of squares between the first echo of the first scan and all remaining scans. The estimated parameters were then applied to all other echoes, realigning all echoes to the first echo of the first scan. Finally, the calculated optimal echo time weightings were used to combine the four echo images into a single
image. These combined images were used for all further preprocessing and analyses.

The first six volumes were discarded to allow for T1 equilibration. The combined EPI volumes were then slice time corrected to the middle slice and realigned to the mean image of both runs. The structural scan was coregistered to the mean functional scan and segmented into gray matter, white matter, and cerebrospinal fluid using the “New Segmentation” algorithm. Multivariate RSA was performed in each subjects’ native space. For univariate analyses, all images (functional and structural) were spatially normalized to the Montreal Neurological Institute (MNI) EPI template using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL; Ashburner, 2007), and functional images were further smoothed with a 3D Gaussian kernel (8 mm full-width at half maximum, FWHM).

Univariate activation analysis. To investigate subsequent memory effects during encoding, all trials were sorted based on individual memory performance (forgotten, weak, durable; see above). The BOLD response for all trials was modeled with separate task regressors time-locked to the onset of the trials. Trials that were forgotten at the immediate test (day 1) but were correctly recalled at the delayed test (day 3), as well as missed responses were included in the task regressor for forgotten trials (see above). All events were estimated as a boxcar function with the duration of one trial (3.4 s) and were convolved with a canonical hemodynamic response function. In addition, the six realignment parameters, their first derivatives, and the squared first derivatives were included in the design matrix. This resulted in 18 additional regressors that accounted for noise due to head movement. Finally, a high-pass filter with a cutoff at 128 s was applied. Both runs were combined in a first-level model, and task regressors were contrasted against the implicit baseline.

For group analysis, contrast images were entered into a second-level random-effects one-way ANOVA with memory durability (forgotten, weak, durable) as a within-subject factor. Conditions were compared using post hoc paired-sample t tests. Unless stated otherwise, activation was tested for significance using cluster inference with a cluster-defining threshold of p < 0.001 and a cluster probability of p < 0.05 familywise error (FWE) corrected for multiple comparisons. For all analyses, the corrected cluster size threshold (i.e., the spatial extent of a cluster that is required to be labeled significant) was calculated using the SPM extension “CorrClusTh.m,” together with the Newton–Raphson search method (script provided by Thomas Nichols, University of Warwick, United Kingdom, and Marko Wilke, University of Tübingen, Germany; http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/).

Representational similarity analysis. RSA (Kriegeskorte et al., 2008) was used to determine the neural pattern similarity across the unique picture–location associations during encoding. Single-trial estimates were obtained by modeling each encoding trial with a separate regressor (i.e., the voxel that was activated at a given time delay). These trials were then compared with the pattern similarity during encoding). First, we grouped picture–location associations based on their picture category and computed the single-trial similarities of animals × plants (“animate”) and objects × buildings (“inanimate”). Each run contained pictures of one animate and one inanimate category (see Materials and methods, Stimulus material and randomization; and Fig. 1E). Thus, we again considered only similarities between runs. Searchlight maps for animate and inanimate pattern similarities were postprocessed as described above and were compared with a paired-sample t test.

Second, we grouped encoding trials based on their locations (Fig. 1F) and calculated the similarities across trials with the same location (lower left vs. upper left; upper left vs. upper right; upper right vs. upper right). As well as between locations (all six possible combinations, not listed here). Again, we tested only similarities between runs. We then calculated average within- and between-location pattern similarity searchlight images and tested them with a paired-sample t test. We reasoned that if specific neuronal representation for each location were held by, for example, occipital regions, this should be reflected in stronger within- than between-location similarities. Further, we examined representations for the different locations during the immediate test (day 1). Single trials were modeled from trial onset until a button press occurred. Further analysis was conducted as described above.

Activation and pattern similarity during memory retrieval. To investigate whether our subsequent memory effects were spatially overlapping with processes occurring at retrieval, we also analyzed the fMRI data obtained during the immediate test (day 1) in a separate analysis step. For univariate activation analysis, retrieval data were modeled from trial onset until a button press occurred (thus, the duration was equal to the reaction time) but was otherwise performed identically to the analysis of the encoding data (see Materials and methods, Univariate activation analysis). Again, unless stated otherwise, group effects were tested using paired-sample t tests. For univariate analysis, retrieval data were modeled from trial onset until a button press occurred (thus, the duration was equal to the reaction time) but was otherwise performed identically to the analysis of the encoding data (see Materials and methods, Univariate activation analysis). Again, unless stated otherwise, group effects were tested using paired-sample t tests. For univariate analysis, retrieval data were modeled from trial onset until a button press occurred (thus, the duration was equal to the reaction time) but was otherwise performed identically to the analysis of the encoding data (see Materials and methods, Univariate activation analysis). Again, unless stated otherwise, group effects were tested using paired-sample t tests.
modeled from trial onset until a button press occurred. The remaining analysis was identical to the RSA for the encoding data (see Materials and methods, Representational similarity analysis).

Results

Memory performance

Memory performance for both weak and durable associations was significantly above chance level (number of associations, mean ± SEM: weak: 41.4 ± 2.2, t(33) = 4.3, p < 0.0005; durable: 86.2 ± 6.5, t(33) = 8.3, p < 0.0005; chance level, 32). Approximately one-third of the associations were forgotten (61.3 ± 5.5).

Activation during encoding

Next, we turned to the fMRI data and investigated brain activation during the encoding of durable relative to forgotten associations. This contrast showed increased activation in bilateral hippocampus, parahippocampal cortex, ventromedial and lateral prefrontal cortex, as well as bilateral fusiform gyrus, angular gyrus, and occipital cortex (durable > forgotten; Fig. 2A, Table 1; see Table 1 also for main effect of memory durability). A comparison of durable and weak associations exhibited a similar activation profile (durable > weak; Fig. 2B, Table 1). No region, however, showed more activation for weak relative to forgotten associations during encoding (weak > forgotten). Thus, as expected, the formation of durable memories (as opposed to weak or no memory formation) involved activation increases within the MTL and the prefrontal cortex, as well as inferior temporal, parietal, and occipital regions.

Pattern similarity during encoding

We hypothesized that durable memory formation, relative to weak or no memory formation, would depend on increased pattern similarity of unique picture–location associations in the hippocampus, surrounding MTL structures, LPFC, and the PCC. To test this, we performed single-trial RSA using a whole-brain searchlight approach (see Materials and methods, Representational similarity analysis).

Results revealed increased pattern similarity for durable relative to forgotten associations in the PCC, medial and lateral prefrontal cortex, fusiform gyrus, and angular gyrus (durable > forgotten; Fig. 3A, Table 2; see Table 2 also for main effect of memory durability). Moreover, we found increased pattern similarity in the left parahippocampal cortex when applying SVC (p < 0.05, FWE-corrected at cluster level; peak MNI coordinates of local maximum: x = −27, y = −18, z = −18; z-value, 3.3, 3 voxels; Fig. 3A). We did not find any significant effects in the hippocampus.

Relative to the weak associations, we found increased pattern similarity in the right precentral gyrus (durable > weak; Fig. 3B, Table 2), possibly reflecting the association with a later motor response (note that subjects did not provide button presses during encoding). Finally, we compared the pattern similarities of weak and forgotten associations. The only region that showed increased pattern similarity during weak memory encoding was the PCC (weak > forgotten; Fig. 3C, Table 2).

In summary, results showed that the multivoxel patterns related to durable memory formation were more similar than later forgotten material within neocortical regions, including the PCC, medial and lateral prefrontal cortex, fusiform gyrus, parahippocampal cortex, and angular gyrus. These findings are largely different from results of the univariate activation analysis (Fig. 3D, both results are overlaid). Notably, the PCC showed increased pattern similarity during the encoding of both weak and durable associations, suggesting that this region promotes mem-

![Figure 4](image-url)
ory formation during encoding, irrespective of the eventual dur-
ability of a memory trace.

Activation and pattern similarity in the PCC

The results above suggest that the PCC facilitates memory forma-
tion through enhanced pattern similarity, regardless of the sub-
sequent memory durability. Pattern similarity, however, might
be increased together with univariate activation levels, assuming
that enhanced (or decreased) activation amplifies the measured
signal. To test this, we examined the relationships of general activ-
ations and deactivations with the reported pattern similarity
during durable relative to forgotten memory encoding (durable > forgotten). We focused on the peak coordinate that was
located within the PCC (see above; MNI coordinates: x = −3, y = −48, z = 33; see Materials and methods, Representational similarity
analysis, Activation and pattern similarity). The PCC ROI
did not overlap with regions that showed a general increase dur-
ing encoding, and only partly overlapped with voxels that showed
decreased activation compared with the fixation baseline (Fig.
4A). Activation and similarity signals extracted from the PCC
ROI (Fig. 4B) were not significantly correlated, and these results
remained stable after the exclusion of three outliers (Fig. 4C).
Therefore, we argue that pattern similarity (in the PCC) reflects a
measure of processing during encoding that is complementary to
processes revealed by univariate analyses.

Pattern similarity of picture categories and locations

Potentially, perceptual features of the stimulus material rather
than mnemonic processing might drive the reported pattern simi-
liarity effects. If this was the case, brain regions that coded for
specific picture categories or locations should spatially overlap
with regions that showed increased similarity for associations
with the same memory durability. Therefore, we repeated the
searchlight RSA procedure but grouped picture–location associ-
ations with respect to (1) their picture categories and (2) their
locations in order to identify the specific representations (see
Materials and methods, Representational similarity analysis and
Picture categories and locations; Fig. 1E,F).

Results of the “picture category” RSA revealed that animate stim-
uli, compared to inanimate stimuli, showed stronger pattern simi-
larity within left and right lateral occipital cortices, and left superi-
or parietal cortex during encoding (animate > inanimate; Fig. 4D,
Table 3). Inanimate stimuli elicited increased pattern similarity in
bilateral fusiform gyrus and parahippocampal gyrus, extending into
the posterior hippocampus and occipital cortex, compared with an-
imate stimuli (inanimate > animate; Fig. 4E, Table 3). The “loca-
tion” RSA showed that the four different locations were represented
in occipital cortex during encoding (Table 3).

Above, we demonstrated increased similarity for durable
associations in the right precentral gyrus (durable > weak; Fig.
3B, Table 2) and speculated that this might reflect the associ-
ation with a later button press (button presses were only re-
quired during the test phases, not during encoding). To see
whether this was the case, we repeated the location RSA for fMRI data from the immediate test (day 1). Pictures that were
associated with the same location were more similar than pic-
tures associated with different locations in bilateral precen-
tral gyrus and the hippocampus during retrieval (Fig. 4F,
Table 3).

In conclusion, pattern similarity effects in the posterior MTL,
inferior temporal, and occipital regions were likely driven by per-
ceptual features of the different picture categories. Additionally,
results indicated that increased pattern similarity in the precen-
tral gyrus (durable > weak; Fig. 3B) reflected the association with
a motor response that was required only during later retrieval.
To identify brain regions that facilitated memory durability but that
were not solely driven by the category- or location-specific fea-
tures of the task, we plotted our RSA effects for durable > forgotten
again, but exclusively masked them with the results of both the
picture category and location RSA. Results suggest that the
PCC, as well as medial and lateral prefrontal cortex (Table 2)
promoted memory durability at encoding rather than solely rep-
resenting the specific perceptual features of the task.

Memory retrieval

It is possible that a comparable pattern similarity profile is also
present during retrieval. In this case, our effects would not be
specific for (durable) memory formation at encoding. Therefore,
we investigated pattern similarity during the immediate test
(day 1) where subjects were asked to retrieve previously studied
picture–location associations (Fig. 1C; see also Materials and
methods, Activation and pattern similarity during retrieval).
Additionally, we analyzed univariate activation to test how activity
during retrieval varied with memory durability.

Reaction times for incorrect responses (forgotten associations,
mean ± SEM, 1739.6 ± 58 s) were significantly prolonged com-
pared to correctly retrieved associations that were weak (1504.4 ±
49.7 s) or durable (1291.5 ± 44 s; main effect of memory durability:
F(1,44,2) = 66.7, p < 0.0005; post hoc paired-sample t-tests: forgotten
vs weak, t(33) = 6.2, p < 0.0005; forgotten vs durable, t(33) = 9.2, p <
0.0005; weak vs durable, t(33) = 7.9, p < 0.0005).

In terms of pattern similarity, we did not find any significant
increases during retrieval, also not at a more lenient threshold
(p < 0.005, uncorrected; no positive effect of memory durability:
contrasts durable > forgotten, durable > weak, or weak > for-
gotten; for main effect, see Table 4). We next tested univariate
levels of activation during retrieval and found increased activity
in the hippocampus and surrounding MTL, medial and lateral
prefrontal cortex, fusiform gyrus, angular gyrus, and PCC during
the retrieval of durable compared to forgotten (incorrect) associ-
ations (durable > forgotten; Fig. 5A, Table 4, see Table 4 also
for main effect of memory durability). Furthermore, durable

| Table 3. Pattern similarity of picture categories and locations |
|------------------|------------------|------------------|------------------|
| | | | |
| Contrast and brain region | MNI coordinates | | |
| | | | |
| Picture category RSA: animate > inanimate | | | |
| R middle occipital gyrus | 57 - 69 | 3 | 5.86 | 395 |
| L middle temporal gyrus | -51 - 69 | 6 | 4.47 | 249 |
| L superior parietal gyrus | -39 - 42 | 51 | 4.40 | 205 |
| Picture category RSA: inanimate > animate | | | |
| R fusiform gyrus | 24 - 36 | -21 | 6.17 | 3631 |

MNI coordinates represent the location of peak voxels. We report the first local maximum within each cluster. Effects were tested for significance using cluster inference with a cluster-defining threshold of p < 0.001 and a cluster probability of p < 0.05 FWE-corrected for multiple comparisons (critical cluster sizes: picture categories, 69 voxels; locations during encoding, 100 voxels; locations during retrieval, 90 voxels). L, Left; R, right.
memories showed stronger activation in the fusiform gyrus, occipital regions, and PCC relative to weak associations (durable > weak; Fig. 5B, Table 4). Lastly, weak associations were related to increased activation in the hippocampus and surrounding MTL, medial prefrontal cortex, fusiform gyrus, and in the PCC during retrieval (weak > forgotten; Fig. 5C, Table 4), and this was comparable to the contrast durable > forgotten.

In summary, we did not find any increases in pattern similarity for durable or weak memories during retrieval, suggesting that the observed pattern similarity effects during encoding (see above) were specific for memory formation. In terms of univariate levels of activation, we found stronger activity during correct (durable and weak) retrieval in the MTL, medial prefrontal cortex, angular gyrus, and in the PCC. Durable relative to weak memories were characterized by additional retrieval-related activation increases in the fusiform gyrus and in the PCC. Interestingly, these regions largely overlapped with the regions that showed increased pattern similarity during encoding (Fig. 5D).

Discussion

Here, we investigated the neuronal correlates of durable memory formation at encoding. We found that the PCC processed both durable and weak associations similarly, regardless of the eventual durability. Durable memories, as opposed to weak or forgotten material, were associated with increased activation in medial temporal and prefrontal regions. This was paralleled by heightened pattern similarity in prefrontal and parietal regions, but also anterior and posterior midline structures—regions that were engaged during subsequent retrieval (Fig. 6). Furthermore, pattern similarity effects were not influenced by general levels of activation and deactivation, category-, or location-specific features of the task, and were specific to memory encoding, not memory retrieval. Altogether, these results corroborate our hypothesis that consistent processing at encoding underlies associative memory formation.

We hypothesized that the encoding of durable associations compared to weak and forgotten associations would be related to enhanced activation in the MTL and LPFC. Indeed, we observed increased activation in the hippocampus and surrounding MTL, inferior temporal regions, as well as in prefrontal and parietal cortex (durable > forgotten, similar to durable > weak; Fig. 2). This is partly converging with previous reports. Uncapher and Rugg (2005), for example, found increased LPFC activation during durable memory formation. In their study, however, weak memory formation was associated with stronger activation in the fusiform gyrus. This difference in findings is likely due to the visual nature of our design, leading to extensive fusiform and visual cortex activation at durable memory encoding compared with the semantic stimulus material used by Uncapher and Rugg.

Table 4. Activation and pattern similarity during memory retrieval

<table>
<thead>
<tr>
<th>Contrast and brain region</th>
<th>MNI coordinates</th>
<th>z-value</th>
<th>Cluster size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation, main effect*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L superior frontal gyrus</td>
<td>−3 15 48</td>
<td></td>
<td>42,614</td>
</tr>
<tr>
<td>Activation, durable > forgotten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R putamen</td>
<td>12 9 −12</td>
<td>6.25</td>
<td>17,018</td>
</tr>
<tr>
<td>L middle orbitofrontal gyrus</td>
<td>−24 36 −12</td>
<td>4.35</td>
<td>80</td>
</tr>
<tr>
<td>R inferior frontal gyrus</td>
<td>57 36 −3</td>
<td>4.23</td>
<td>69</td>
</tr>
<tr>
<td>Activation, durable > weak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R middle occipital gyrus</td>
<td>18 −96 0</td>
<td>4.78</td>
<td>1358</td>
</tr>
<tr>
<td>L insular cortex</td>
<td>−36 9 6</td>
<td>4.40</td>
<td>77</td>
</tr>
<tr>
<td>L fusiform gyrus</td>
<td>−30 −54 −12</td>
<td>4.31</td>
<td>1425</td>
</tr>
<tr>
<td>L posterior cingulate cortex</td>
<td>−3 −33 30</td>
<td>4.09</td>
<td>134</td>
</tr>
<tr>
<td>R superior parietal gyrus</td>
<td>33 −51 33</td>
<td>4.08</td>
<td>214</td>
</tr>
<tr>
<td>Thalamus</td>
<td>−9 −12 3</td>
<td>4.07</td>
<td>80</td>
</tr>
<tr>
<td>Precuneus</td>
<td>−3 −63 30</td>
<td>3.85</td>
<td>69</td>
</tr>
<tr>
<td>Activation, weak > forgotten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L putamen</td>
<td>−15 6 −15</td>
<td>6.53</td>
<td>3119</td>
</tr>
<tr>
<td>R putamen</td>
<td>15 9 −12</td>
<td>5.91</td>
<td>3353</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>−27 −78 −39</td>
<td>5.61</td>
<td>1762</td>
</tr>
<tr>
<td>R inferior frontal gyrus</td>
<td>57 36 −3</td>
<td>5.26</td>
<td>87</td>
</tr>
<tr>
<td>RSA, main effect*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L inferior occipital gyrus</td>
<td>−27 −84 −6</td>
<td></td>
<td>49,458</td>
</tr>
</tbody>
</table>

MNI coordinates represent the location of peak voxels. We report the first local maximum within each cluster. Effects were tested for significance using cluster inference with a cluster-defining threshold of \(p < 0.001 \) and a cluster probability of \(p < 0.05 \) FWE-corrected for multiple comparisons (critical cluster size: 65 voxels). L, Left; R, right.

*Results for main effects were thresholded at \(p < 0.05 \) FWE-corrected for multiple comparisons.

![Figure 5. Activation during memory retrieval, and overlap with pattern similarity during encoding](image-url)
(2005). Importantly, we did not find activation differences between weak and forgotten associations during encoding. Previous studies that used a single memory test, often administered shortly following study, were unable to separate memories with different durability. Therefore, a contrast of remembered over forgotten material likely included both durable and weak memories and produced the typical subsequent memory effects (Spaniol et al., 2009; Kim, 2011). Here, the comparison of weak and forgotten associations clearly excluded durable memories, which could explain our null result. Similarly, Carr et al. (2010) tested all stimulus material immediately and at a delayed test. The authors reported increased MTL activation only for durable recollection. Hence, increased hippocampal–neocortical activation appears necessary for durable memory formation, whereby weak memories might rely on other factors during encoding, such as consistent processing.

Next, we hypothesized that consistent processing at encoding would mirror the buildup of associative memory traces. We quantified consistency as pattern similarity of picture–location associations that shared the same memory durability, and expected increased pattern similarity for durable associations relative to weak and forgotten associations within the MTL, LPFC, and PCC. Results revealed heightened pattern similarity in the parahippocampal cortex, medial and lateral prefrontal cortices, inferior temporal regions, angular gyrus, and in the PCC during the formation of durable memories (durable > forgotten; Fig. 3A). For durable over weak encoding, increased pattern similarity was found in the right precentral gyrus (Fig. 3B), which also coded for specific picture locations, or the button press, during later retrieval (Fig. 4F). This is likely specific to the task material at hand, and other representational regions might be involved for different stimulus material. Altogether, we suggest that durable memories entailed a specific representation of the picture–location associations already at encoding. Potentially, along with increased activation in a medial temporal–neocortical set of regions, this is what makes spatial associative memories longer lasting.

Overall pattern similarity, or global similarity, was formerly related to subsequent recognition memory (LaRocque et al., 2013), confidence and categorization (Davis et al., 2014), as well as fear memory formation (Visser et al., 2013). Furthermore, Qin et al. (2014) revealed that consistent hippocampal processing indicated the transition from procedure- to memory-based problem solving in children, and recent reports showed that global pattern similarity can be influenced through attention (Aly and Turk-Browne, 2016a,b) and reward (Wolosin et al., 2013). The present findings thus corroborate our hypothesis that consistent processing mirrors associative memory formation. Moreover, the reported pattern similarity results (in the PCC) were not driven by general levels of activation or deactivation during encoding (Jimura and Poldrack, 2012; Xue et al., 2013; Bird et al., 2015), and did not merely represent the specific picture categories or locations (Fig. 4).

Regions that showed stronger pattern similarity were largely distinct from areas associated with increased activation during encoding, but both measures—activation and pattern similarity—spatially overlapped in frontoparietal regions. This included the lateral prefrontal and posterior parietal cortex. While the LPFC coordinates the selection and organization of memories via top-down projections (Blumenfeld and Ranganath, 2007), the posterior parietal cortex is thought to regulate attention to mnemonic content (Cabeza et al., 2008; Ciaramelli et al., 2008). Interactions between the two regions are considered relevant for the modulation of pattern similarity during encoding. Recently, frontoparietal activity (Xue et al., 2013) and LPFC stimulation (Lu et al., 2015) were directly associated with increased pattern similarity and its beneficial effects on memory formation. Moreover, these regions were speculated to suppress irrelevant information processing by coordinating spatial attention (Kastner et al., 1998; Lu et al., 2011; Rabinowitz et al., 2015) and by guiding task relevance (Jeehe et al., 2011; Poort et al., 2015). Although suppression has so far mainly been studied in the visual system, similar mechanisms might operate also here.

The PCC showed increased pattern similarity during successful memory formation, independent of the eventual memory durability (Fig. 3). Additionally, brain regions with enhanced pattern similarity at encoding overlapped with regions that showed activation increases during later retrieval (Fig. 5). Akin to our results, pattern similarity in the PCC was shown to promote memory during encoding (Xue et al., 2013) and consolidation (Bird et al., 2015). Typically, the PCC is regarded as central for memory retrieval (Rugg and Vilberg, 2013; Watrous et al., 2013; King et al., 2015; Wagner et al., 2015), and pattern similarity during encoding might thus represent retrieval processes to flexibly embed novel associations into pre-existing memories (Maguire et al., 1999; Bird et al., 2015). For instance, when studying picture–location associations, one may create stories with pictures that belong to the same location (indeed, some subjects reported the use of this strategy). The encoding of a novel picture–location association might thus trigger the retrieval of other pictures associated with the same location. Furthermore, our pattern similarity effects were present only during encoding, not during retrieval; hence, we concluded that consistent processing is necessary for associative memory formation. Accordingly, a recent study reported greater dissimilarity of associations during retrieval (Karlsson Wirebring et al., 2015). Better memory might
thus depend on consistent processing (similarity) at encoding, but on differentiated representations (dissimilarity) during retrieval. This could be seen as an “encoding/retrieval-flip” in the pattern similarity domain (in contrast to univariate activation; Daselaar et al., 2004, 2009; Huijbbers et al., 2012) and should be the subject of further research.

We found encoding-related increases in pattern similarity for durable over weak memories in the parahippocampal cortex, but not in the hippocampus (Fig. 3A). The formation of associations, especially of a spatial nature, is a central feature of hippocampal function (Brown and Aggleton, 2001; Burgess et al., 2001; Sperling et al., 2003; Kirwan and Stark, 2004; Mayes et al., 2007; Stares and Davachi, 2008), possibly achieved by pattern separation, or the orthogonalization of memory representations (Yassa and Stark, 2011). Specifically, LaRocque et al. (2013) reported that successful recognition memory was predicted by dissimilar hippocampal representations at encoding (pattern separation), while representations in surrounding MTL regions were found to be more similar (pattern completion; LaRocque et al., 2013). The latter finding resonates with our results.

Studies that have investigated memory durability (Uncapher and Rugg, 2005; Carr et al., 2010; Liu et al., 2013; Swayne et al., 2015) used the so-called “remember/know procedure” (Tulving, 1985; Yonelinas, 2002), since recollection (remember response) and familiarity (know response) display differential decay (Yonelinas and Levy, 2002). In contrast with this, we aimed at targeting associative, recollection-based memory rather than familiarity-based recognition. Furthermore, to preclude testing effects that could boost weak memories in their durability (Karpicke and Roediger, 2008; Carpenter, 2009; Pyc and Rawson, 2009; Roediger and Butler, 2011), most studies tested half of the stimulus material at a first test and the second half later (Uncapher and Rugg, 2005; Swayne et al., 2015). This comes at the expense of being able to explicitly define memory durability, as it is unclear whether material remembered at a first test (and defined as weak) will be forgotten at a second test. To our knowledge, only one study so far has tested all stimulus material twice (Carr et al., 2010; but see also Liu et al., 2013). We favored this latter approach since it allowed us to link encoding-related brain activity (patterns) with the prospective memory durability of each unique picture–location association, as determined from both tests. We acknowledge that retesting could have boosted some of the weak memories so that they were falsely classified as durable. This shortcoming could have affected only the trial sorting for the subsequent memory analysis, diminishing differences between durable compared to weak memory encoding. However, despite this potential limitation, we found reliable activation and pattern similarity effects for durable over weak memories at encoding (Figs. 2B, 3B).

Initially, we expected enhanced activation and pattern similarity in the hippocampus and in specific neocortical regions for durable relative to weak or no memory formation (durable > weak > forgotten). Our results only partly confirmed this hypothesis of a stepwise, linear relationship, and indicated that activation and pattern similarity did not follow the same model of signal increase with increasing memory durability. First, we suggest that pattern similarity in the PCC might represent an initial “threshold” for associative memory formation that needs to be overcome. Second, pattern similarity appears to linearly increase with memory durability, while activation seems mostly relevant for the formation of durable memories (Fig. 6). Thereafter, successful encoding is likely followed by synaptic (Redondo and Morris, 2011) and systems consolidation (Frankland and Bontempi, 2005), and we speculate that these consolidation processes are generally more pronounced for durable than for weak (or forgotten) associations. However, also in line with the testing effect (Karpicke and Roediger, 2008; Roediger and Butler, 2011), another possibility is that initially weak memories, compared with strong associative material, may benefit more from the additional effort and elaboration required to successfully retrieve those memories during the initial test (Carpenter, 2009; Pyc and Rawson, 2009), which could potentially promote them in their durability (see above).

To conclude, we showed that pattern similarity, or consistent processing, in the PCC predicts the formation of spatial associative memories at encoding. If this is augmented by additional activation increases in regions typically related to encoding, and by consistent processing in regions involved in later retrieval, formed memories appear durable for at least 48 h. Thus, consistent processing underlies the emergence of associative memory traces.

References
Uncapher et al. 2009; Roediger and Butler, 2011; Pyc and Rawson, 2009), which could potentially promote them in their durability (see above).

To conclude, we showed that pattern similarity, or consistent processing, in the PCC predicts the formation of spatial associative memories at encoding. If this is augmented by additional activation increases in regions typically related to encoding, and by consistent processing in regions involved in later retrieval, formed memories appear durable for at least 48 h. Thus, consistent processing underlies the emergence of associative memory traces.

Wagner et al. • Durable Memory Formation