COMMUNICATIONS

quenched with a solution of citric acid. The mixture was diluted with DCM (100 mL) and washed with sodium bicarbonate (sat.), water, and brine (25 mL each). The organic layer was dried (Na$_2$SO$_4$), evaporated, and the residue was dissolved in DCM/MeOH (98:2) and filtered through a plug of silica gel. Evaporation gave the crude precursor of 2 (773 mg). To this crude product (746 mg) in dry THF (40 mL) was added methanesulfonyl acid (300 μL). After stirring the mixture at RT for 72 h under nitrogen, pyridine (400 μL), DIPEA (1.5 mL), and acetic anhydride were added at 0 °C. After 2 h the solution was diluted with DCM (100 mL), washed with sodium bicarbonate (1 M), water, sodium bicarbonate (sat.), water, and brine (25 mL each). The organic layer was dried (Na$_2$SO$_4$), filtered, evaporated, and chromatographed (silica gel, DCM/MeOH (98:2)) to afford 2 (360 mg, 40 % based on 1).

3: To 2 (60 mg, 0.051 mmol) in DCM (1 mL), TFA (0.5 mL) was added dropwise and stirred for 1 h at 0 °C. The reaction mixture was diluted with DCM (50 mL) and washed three times with sodium bicarbonate (sat.) then water and brine (10 mL each). The organic layer was dried (Na$_2$SO$_4$), evaporated, and redissolved in DCM (0.5 mL). Boc-(25,2R,4R,6S)-3-hydroxy-4-methyl-2-(methylamino)-6-octenoic acid (Boc-MeBmt) [23] (18.7 mg, 0.062 mmol) and DIFPE (27 μL) were added at 0 °C under nitrogen. After 2 h at 0 °C the reaction was allowed to warm to RT, diluted with DCM (50 mL), washed with sodium bicarbonate (1 M), water, sodium bicarbonate (sat.), water, and brine (20 mL each). The organic layer was dried (Na$_2$SO$_4$), filtered, evaporated, and chromatographed (flash silica gel, Biocat/Diazomet 9:1) to afford 3 (50 μg, 81%).

4: To 3 (27 mg, 0.022 mmol) in DCM (1 mL), TFA (0.5 mL) was added dropwise and stirred for 1 h at 0 °C, diluted with DCM (50 mL) and washed three times with sodium bicarbonate (sat.), water, and brine (10 mL each). The organic layer was dried (Na$_2$SO$_4$), filtered and evaporated. In the residue in DCM (30 μL), PhNcO-N-Melle (12 mg, 0.032 mmol), PyBroP (14 mg, 0.032 mmol) and DIPEA (4 μL) were added and the mixture was stirred for 6 h at 0°C and 30 min at RT. After 2 h, the reaction mixture was diluted with DCM (50 mL), washed with sodium bicarbonate (1 M), water, sodium bicarbonate (sat.), water, and brine (20 mL each). The organic layer was dried (Na$_2$SO$_4$), evaporated, and chromatographed (silica gel, Biocat/Diazomet 9:1) to afford 4 (19 mg, 97 %).

5: To 4 (4.6 mg, 0.0022 mmol) in THF/water (10:1; 200 μL), DBU (3 μL) and lithium bromide (2 μg) were added. After stirring overnight at RT, DBU (4 μL) and lithium bromide (3 μg) were added. After 5 h, the reaction mixture was diluted with DCM (200 μL) and washed with water and sodium bicarbonate (sat.), water, and sodium bicarbonate (20 μL each). The organic layer was dried (Na$_2$SO$_4$), evaporated, and chromatographed (silica gel, Biocat/Diazomet 9:1) to afford 5 (0.65 mg, 55%).

6: To 5 (0.65 mg, 55 %), DCM (0.65 mg, 55%)

$\text{MeO}\begin{array}{c}\text{Ph} \\ \text{Ph} \end{array}$

$\text{MeO}\begin{array}{c}\text{Ph} \\ \text{Ph} \end{array}$

$\text{MeN}\begin{array}{c}\text{Ph} \\ \text{Ph} \end{array}$

$\text{MeN}\begin{array}{c}\text{Ph} \\ \text{Ph} \end{array}$

5. There is currently a great deal of interest in parquet-binding, which has resulted in the design and construction of new molecular structures, as exemplified by the elegant work by Stoddart et al. on catenands and rotaxanes.[1] We describe here that concept.

Strong Binding of Parquet and Polymeric Parquet Derivatives by Basket-Shaped Hosts**

Albertus P. H. J. Schenning, Bas de Bruin, Alan E. Rowan,* Huub Kooijman, Anthony L. Spek, and Roeland J. M. Nolte

Clip-shaped host molecules of type 1 can bind uncharged aromatic guest molecules, for example resorcinol, by π-stacking and hydrogen bonding interactions.[1] Basket-shaped derivatives of 1 containing crown ether moieties (compounds of type 2) are, in addition, able to bind alkali metal ions and protonated amines.[2] We report here on the binding affinities of these host molecules towards charged aromatic compounds, such as parquet 3 and the polymeric parquet derivatives 4 and 5.

Keywords: cyclophillin • cyclosporin • immunophilins • protein dimerization

* Dr. A. E. Rowan, Dipl-Chem. A. P. H. J. Schenning, Dipl-Chem. B. de Bruin, Prof. Dr. R. J. M. Nolte

Department of Organic Chemistry, NSR Center University of Nijmegen Toernooiveld, NL-6525 ED Nijmegen (The Netherlands)

Telefax: Int. code +(80) 553605

Dr. H. Kooijman, Dr. A. L. Spek

Biophysics Center for Biopolymer Research, Crystal and Structural Chemistry Utrecht University (The Netherlands)

** This work was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for Scientific Research (NWO).

© VCH Würzburger Gesellschaft mbH, D-69451 Weinheim, 1995 0570-0883/95/13410-2123 $10.00+0.25/0

Compound 2 is an exceptionally good host for paraquat. This opens the possibility of clipping host molecules of type 2 to polymeric chains containing paraquat units. The X-ray structure and properties of the complex between 2 and paraquat are also presented.

Compounds 1 and 2 were synthesized as described previously.\(^1\)\(^2\) For the synthesis of 2b, 4,4'-dimethylbenzil was used as the starting material. Compounds 3 and 4 were prepared by using literature procedures.\(^3\)\(^4\)\(^5\) Compound 5 was prepared by the condensation of N,N'-bis(2-hydroxyethyl)-4,4'-bipyridinium hexafluorophosphate in acetonitrile with one equivalent of adipoyl chloride with triethylamine as the base,\(^6\)\(^7\)\(^8\) and purified by precipitation from ethyl acetate.

Addition of 3-CI\(_2\) to a solution of host 2b in for example methanol/chloroform led to an immediate color change from colorless to yellow-orange, indicative of the formation of a charge-transfer complex.\(^3\)\(^9\)\(^10\)\(^11\)\(^12\)\(^13\) NMR spectroscopic studies revealed that in this complex the paraquat guest is located in the left of the cavity.\(^10\) Fast atom bombardment mass spectrometry (FAB MS) showed a peak at m/z 1094 (matrix: nitrobenzyl alcohol), which corresponds to the mass of the host–guest complex. Crystals of the complex between 2b and 3-(PF\(_6\))\(_2\) suitable for X-ray analysis were grown from a mixture of 2b and tetra-butylammonium hexafluorophosphate dissolved in chloroform, which was layered with 3-CI\(_2\) dissolved in methanol. The X-ray structure of complex is shown in Figure 1 (top).\(^14\) It reveals a perfect complementarity between host and guest. The paraquat guest sits symmetrically within the walls of the basket; the methyl substituents are partially encapsulated by the crown ether rings. The crystal structure is different from that of the complex of paraquat with "bis(paraphenylene)-[34]crown-10" (the same macrocycle as compound 2a, but without the diphenylglycoluril unit), as published by Stoddart et al.\(^9\)\(^10\)\(^11\)\(^12\) In the case of the latter the bipyridinium guest is flat, whereas in the crystal structure described herein the two bipyridinium units are twisted by an angle of 22.5°. This is a consequence of being less sterically constrained by the aromatic side walls of the basket. In Stoddart's compound the bipyridinium is tilted at an angle of about 28° with respect to the O–O axis of the paraphenylene unit; in our case the bipyridinium guest in the basket is not tilted. The binding constant of the bis(paraphenylene)-[34]crown-10 macrocycle with 3-(PF\(_6\))\(_2\) in acetone is 730 m\(^{-1}\). The binding properties of 1 and 2 were evaluated by recording the intensity of the charge-transfer absorption band at approximately 425 nm at different host–guest ratios. The results for different solvents are presented in Table 1. The basket-shaped host molecules 2 bind paraquat approximately 25–75 times stronger than the bis(paraphenylene)-[34]crown-10 macrocycle.\(^3\) This result can be explained from the fact that compounds 2 are more preorganized for binding than Stoddart's compound.\(^9\) Only a very small K\(_b\) of 80 m\(^{-1}\) was found for the binding of 3 in the cavity of clip molecule 1. This clearly demonstrates the importance of the crown ether moieties in 2 for the complexation of paraquat.

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
Host & Guest & K\(_b\) [m\(^{-1}\)] \tabularnewline \hline
1 & 3-CI\(_2\) & 60 [b] \tabularnewline 2a & 3-(PF\(_6\))\(_2\) & 75\(000\) [c] \tabularnewline 2a & 2-(PF\(_6\))\(_2\) & 20\(000\) [d] \tabularnewline 2b & 3-CI\(_2\) & 22\(000\) [f] \tabularnewline 2a & 4a [f] & 180\(00\) [e] \tabularnewline 2a & 4g [e] & 4\(500\) [e] \tabularnewline 2a & 5 [h] & 19\(000\) [e] \tabularnewline \hline
\end{tabular}
\end{table}

\(^{[a]}\) Association constants were calculated using the Benesi-Hildebrand equation \([13]\). Good correlations (R > 0.995) were obtained for all titration curves assuming a 1:1 host–guest complexation. Estimated error in K\(_b\) is 10%. For the K\(_b\), measured in acetonitrile, the error is 5% due to the poor solubility of the host molecule in this solvent. \([b]\) Methanol-chloroform (1:1, v/v), \([c]\) Acetonitrile. \([d]\) Acetone. \([e]\) Per polymer repeat unit. \([f]\) Intrinsic viscosity of polymer \([\eta] = 0.066 \text{ dL g}^{-1}\) (acetonitrile, 25°C), \([g]\) Intrinsic viscosity of polymer \([\eta] = 0.20 \text{ dL g}^{-1}\) (acetonitrile, 25°C). \([h]\) Average degree of polymerization \(= 4\) (NMR, endgroup analysis).

The electrochemical behavior of the complex between 3-(PF\(_6\))\(_2\) and compound 2a was studied in acetonitrile. In this solvent the guest showed two reversible one-electron transfers: \(E_{1/2}(2a/1+1) = -0.423 \text{ V}, E_{1/2}(1+/0) = -0.840 \text{ V}\) (vs. SCE, for both transitions \(\Delta E_p = 60 \text{ mV}\)). Upon the addition of one equivalent of 2a the first redox transfer shifted 100 mV to more negative potential, whereas the second electron transfer potential remained unaffected. These data indicate that 2a binds and stabilizes the doubly charged paraquat species, which results in a more negative redox potential for the first redox transfer. It is well known that in this type of host–guest system the guest reduced by one electron dissociates from the host, and this explains the unaltered second redox potential.\(^3\)

Polymeric paraquat derivatives have previously been investigated as redox-active films and more recently as optical data storage materials and show a wide variety of electrochromic and thermochromic behavior.\(^4\)\(^9\)\(^10\) The polymeric paraquat derivative with tosylate counterions has been shown to possess liquid crystalline properties.\(^14\)\(^11\)\(^12\) We felt that host–guest complexation might be an interesting way to modify and control the physical properties of this interesting class of polymers. The results of binding studies carried out in acetonitrile, showed that 2a can be clipped to polymeric paraquat derivatives 4a, 4b, and 5 with association constants of 1800 m\(^{-1}\), 4500 m\(^{-1}\), and 19000 m\(^{-1}\), respectively (per polymer repeat unit, see Table 1, Fig. 1). The binding constants of 4a and 4b are lower than those observed for paraquat itself. Molecular modeling studies have revealed that in the case of 4a and 4b, complexation of a basket to a paraquat unit in the polymer is sterically hindered by baskets complexed to adjacent paraquat units. The overall lower binding constants reflect this steric hindrance, which is less for

Fig. 1. Top: Crystal structure of the complex between 2b and 3-(PF\(_6\))\(_2\). Left top view, right side view \([14]\). Bottom: Computer-generated model of the complex between 2b and 5.
the polymer with a longer spacer (4b) than for the one with the smaller spacer (4a).
Vicinity measurements showed that the specific viscosity of the polymers solubilized in acetonitrile increases upon the addition of 0.03 equivalents of the host molecule 2a per repeat unit: for example, 4a: \(\eta_n = 0.006 \), 4a + 2a \(\eta_n = 0.0068 \), 4b + 2a \(\eta_n = 0.070 \). These results indicate that the average molecular mass of the polymers increases on complexation with 2a. The redox potentials of the polymers were also influenced by the hosts. Polymer 4a displayed the following redox transitions in acetonitrile:
\[E_{1/2} \left(2+/+1 \right) = -0.387 \text{V}, \]
\[E_{1/2} \left(+1/+0 \right) = -0.840 \text{V} \text{ vs. SCE}, \]
for both transitions \(\Delta E \approx 60 \text{ mV} \). Upon the addition of one equivalent of 2a per repeat unit the first redox transfer shifted 20 mV to more negative potential, whereas the second redox transfer remained unchanged. Addition of three equivalents of 2a resulted in a 35 mV shift in the negative direction. These shift values are smaller than the 100 mV shift measured for paraquat 2a. These shift values are in agreement with the results of the lower binding affinity of 2a which may be the result of the lower binding affinity of 2a and the higher redox potentials of 4b. The redox potentials of the polymeric paraquat derivatives. These preliminary results indicate that the electrochemical behavior of polymeric paraquat derivatives can be easily tuned by the addition of basket molecules. This may be of interest for future application of these polymers as optical data storage systems or as molecular switches, etc.

In conclusion, we have shown that host molecules of the type 2 strongly bind paraquat 3 and that it is possible to clip these molecules to polymeric paraquat derivatives. Further studies are underway.

Received: March 14, 1995 [17 7792 IE]
German version: Angew. Chem. 1995, 33, 195.

Keywords: crown ethers • paraquat • supramolecular chemistry

COMMUNICATIONS

Formation of a "meso-Helicate" by Self-Assembly of Three Bis(catecholate) Ligands and Two Titanium(iv) Ions

Markus Albrecht* and Sirpa Kotila

Double- or triple-helical oligouemct coordination compounds that are formed spontaneously by self-assembly of two or three oligodentate ligands and several metal ions are called helicates. Due to their helicity, such molecules are chiral.** On the other hand, *meso*-helicates are analogous metal complexes with two differently configurated helical units and are thus achiral. In a topological sense, the *meso*-helicates are helices that inverse their helical twist.***

An octahedral complex formed by one metal center and two bidentate ligands is the most simple helical unit. It can have two configurations (\(\alpha \) or \(\beta \)).** Triple bridging between the ligands of two such octahedrons results in the formation of three different coordination compounds: the enantiomeric \(\alpha \alpha \)- and \(\alpha \beta \)-helicates, and the diastereomeric \(\beta \beta \)-form—the most simple triple-stranded *meso*-helicate (Fig. 1).

The coordination chemistry of linear oligouemct nitrogen donor ligands with soft metal ions has recently become the focus of a great deal of attention. To our knowledge, investigations towards the metal-directed self-assembly of helicates have resulted only in the characterization of double-** and triple-helicates and double-stranded non-helical metal complexes, which do not possess units with helical chirality.***

In this context, the triple-stranded *meso*-helicate is a missing structural motif. This stimulated our interest in self-assemble processes based on oxygen donor ligands in combination with hard metal ions.** The use of early transition metals should provide access to new supramolecular aggregates, whose properties should differ from those of the "traditional" compounds. Catechol ligands seem to be ideal bidentate chelating units for this purpose. Initially we chose the (CH\(_3\))\(_2\) group as a spacer.

**[a] Dr. M. Albrecht
Institut für Organische Chemie der Universität
Richard-Wagner-Allee, D-76311 Karlsruhe (Germany)
Tel.: Fax: Int. code + (721) 698529
Dr. S. Kotila
Organisch-Chemisches Institut der Universität München (Germany)

[] This work was supported by the Fonds der Chemischen Industrie (Löbsheid Stipendium), the Deutsche Forschungsgemeinschaft, and the Academy of Finland. Dr. H. Röttlé is thanked for the NMR measurements. Mrs. B. Wibbeling's and Dr. R. Feldt's help with the X-ray structure analysis is gratefully acknowledged.**