Full Papers

Rhodium(I)-centered cyclotriveratrylene

H.K.A.C. Coolen, # J.N.H. Reek, * J.M Ernsting, ª P.W.N.M. van Leeuwen $ and R.J.M. Nolte *, *

* Nijmegen SON- Research Center, Department of Organic Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
J.H. van 't Hoff Research Institute, Department of Inorganic Chemistry, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
(Received November 11, 1994)

Abstract. The rigid bowl-shaped molecule cyclotriveratrylene (CTV,1) was provided with short and long spacer arms terminating in triphenyl phosphite functions. These CTV ligands were used to immobilize a rhodium(I)-carbonyl-hydride complex. The ligand with short spacers gave a rigid, strained complex with a trigonal-coordination sphere around the rhodium. The ligand with long flexible spacers allowed the formation of a large cavity after the complexation to the rhodium center. This cavity, however, is filled up by the spacer arms, as was indicated by NMR studies. Variable-temperature NMR experiments suggested that the H-Rh-CO dipole in the rhodium-CTV complex can adopt two orientations: one with the hydride group pointing away from the CTV cavity (low-temperature conformation) and one in which this orientation is inverted (high-temperature conformation).

Introduction

Concave molecules are currently receiving interest as construction units for molecular and supramolecular architectures with unique properties. These molecules may also serve as a starting point for rigid ligand systems with specific bite angles, which maintain a certain coordination sphere around a metal center. Such a fixed-coordination environment can influence the properties of the remaining ligands on the metal and hence the catalytic activity of the complex. Concave molecules can furthermore function as a base for the construction of larger molecular systems with distinct cavities or clefts. Combining these systems with a catalytically active center is of great interest for the development of synthetic systems that mimic enzymatic activity.

Cyclotriveratrylene (I, CTV) * is a bowl-shaped molecule, which has a rigid conformation as a result of restricted pseudo-rotation around the methylene groups in its nine-membered ring. CTV has been provided with long chains and crown ethers, and has been coupled to a triaza-crown ether and a diphenylglycoluril unit. Collet et al. have linked two CTV units in such a way that the concave sides of these molecules face one another, resulting in a new class of compounds, the so-called "cryptophanes".

In this paper we present two new ligand systems (2 and 3), which are derived from a CTV unit to which three triphenyl phosphite ligands have been attached. Ligand 2 has short spacers between the CTV unit and the phosphite groups, and is designed for binding a metal in such a way that the phosphite groups are forced to adapt equatorial positions at the metal center. The other ligand, 3, has long flexible spacers allowing the formation of a cavity after coordination of the phosphites to the metal center. Ligands 2 and 3 have been used to synthesize rhodium(I) complexes. The properties of these complexes are described.

Results and discussion

Synthesis

The synthetic routes to ligands 2 and 3 are depicted in Schemes 1 and 2, respectively. In 2, the phosphite ligands are linked to the CTV unit by a short methylene spacer. In 3, the connection is achieved with a long and more flexible 3-CH2-C6H4-CH2-O- group. For ligand system 2, the phenolic hydroxyl group of 4-hydroxybenzyl alcohol was first protected with an allyl function, after which the benzylic alcohol group was quantitatively converted into a benzylic chloride with thionyl chloride. This product was coupled to cyclotriguaiacylene (4) with K2CO3 in acetone, to give compound 5 in 28% yield. Deprotection of the hydroxyl group yielded the trihydroxy compound 6 (33%). After reacting 6 with diphenyl phosphochloridite and Et3N in CH2Cl2, compound 2 was obtained (76%). Compounds 5 and 6 appeared to be unstable due to the acid lability of the benzyl-aryl-ether moieties, which were readily hydrolyzed. The relatively low yield of 5 and 6 is the result of hydrolysis during the column-chromato-
graphic purification of these compounds on silica. Other purification methods were investigated but failed. Compound 3 was built up from 4 directly (Scheme 2). Reaction of the latter compound with an excess of 1,3-bis(bromomethyl)benzene in acetone with K₂CO₃ as a base gave the tris(benzyl bromide) 7 (38%). Under the same conditions benzene-1,4-diol was coupled to 7 leading to the tris(hydroxy) compound 8 in 47% yield. Reaction of the latter product with diphenyl phosphochloridite and Et₃N in dichloromethane gave ligand system 3 (79%). Compounds 2 and 3 were fully characterized (see Experimental section).

Rhodium(I) complexes

The rhodium complexes 9 and 10 were prepared by addition of an equimolar amount of (acac)Rh(CO)₂ (Hacac = acetylacetone = pentane-2,4-dione) to a solution of the corresponding ligands in chloroform and subsequent stirring for 10 hours under an H₂/CO atmosphere [P(H₂/CO) = 10 atm., H₂/CO = 3/1 v/v]. Isolation of the complexes was possible by precipitation in hexane, but was accompanied by partial loss of CO (approximately 20%). As a result no reproducible elemental analyses could be obtained. However, when the precipitates were redissolved and CO was bubbled through the solutions, complexes with the same properties as before were again formed. The spectroscopic properties of the complexes are summarized in Table I. For comparison, data for the reference compound HRhCO[P(OPh)₃]₃ are also included in this table. The Rh center in this complex has a trigonal bipyramidal coordination sphere, with the phosphite ligands lying in the equatorial plane. The ³¹P–NMR spectrum of HRhCO[P(OPh)₃]₃ in CDCl₃ displays a single doublet at δ 138.7 (Jₐ₁₃Rh₂ 239 Hz). In the high-field region of the ¹H–NMR spectrum, hydride signal in the form of a doublet at δ −10.59 (Jₐ₁₃Rh₃ 3 Hz) is present, indicating that the cis-P–H couplings are very small.⁶ The ³¹P(¹H)–NMR spectrum of complex 9 in CDCl₃ (Figure 1a) is similar to that of HRhCO[P(OPh)₃]₃ and shows a single, broadened doublet. The signal of the hydride in the high-field region of the ¹H–NMR spectrum is also broadened (Figure 1b). This broadening can be explained by the fact that the spacers in 9 are short, which prevents the phosphite ligands adopting a purely planar arrangement around the Rh atom. Since the ligands are slightly pulled out of the trigonal plane, some P–H coupling occurs. This distortion of the trigonal bipyrimidal conformation is also expressed by the weakening of the Rh–H bond (IR: ν 2001 cm⁻¹). The similarities

<table>
<thead>
<tr>
<th></th>
<th>HRhCO[P(OPh)₃]₃</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>³¹PNMR ⁷</td>
<td>δ (ppm), [Jₐ₁₃Rh₂, (Hz)]:</td>
<td>138.7 [239]</td>
<td>138.6 [239]</td>
</tr>
<tr>
<td>¹³²Rh–NMR ⁷</td>
<td>δ (ppm), [Jₐ₁₃Rh₃, (Hz)]:</td>
<td>−1258 [239]</td>
<td></td>
</tr>
<tr>
<td>IR ⁸</td>
<td>ν [Rh–CO (cm⁻¹)]:</td>
<td>2050</td>
<td>2051</td>
</tr>
</tbody>
</table>

382

Table 1 Spectroscopic data of the rhodium complexes.

ᵃ From Ref. 4. ᵇ At 298K, in CDCl₃, referenced to external OP(OMe)₃. ᶜ Hydride signal at 298K, in CDCl₃, referenced to TMS. ᵈ At 298K, in CDCl₃, referenced to Σ(¹⁰₃Rh) 3.16 MHz, adopting the sign convention that shifts to high frequency are positive. ⁵ In KBr.
between the spectra, however, indicates that 9 and the reference compound have similar geometries. The 31P-1H-NMR spectrum of the rhodium-carbonyl-hydride complex of 3 in CDCl$_3$ displays a set of resonances, in which the intensity ratio changes with concentration (Figure 2). At low concentrations (approximately 0.5 mM), only doublets at 140.0 ppm and 140.2 ppm remain, which we attribute to complex 10. In 10, the spacer groups are sufficiently long to allow a crossed arrangement of the chains connecting the rhodium center and the CTV unit. Space-filling models show that an excellent fit of the spacer parts is possible in this folded conformation. The twist induces an additional dyssymmetry in the molecule. As we started from a racemic mixture of CTV molecules, the formation of 10 leads to two pairs of enantiomers (10a and 10b, see Figure 3) and, as a result, to two doublets in the 31P-NMR spectrum. Another indication of the occurrence of diastereomers is found in the 1H-NMR spectrum of the complex, viz. an asymmetric pattern for the signal of the methoxy groups and complex signals for the benzylic protons.

In more concentrated solutions (2 mM, see Figure 2c) a broad band at 139.5 ppm dominates the 31P-NMR spectrum, accompanied by a sharp doublet at 139.7 ppm. The broad band probably originates from a polymeric form, as proposed in Figure 4a. The sharp additional signal possibly comes from a specific oligomeric species, e.g. a dimeric complex (Figure 4b).

To support the existence of two diastereomers of complex 10 we carried out 103Rh-NMR measurements. The data were obtained by REVERSE 2D, 1H-103Rh spectroscopy. The concentration was such that only compound 10 was present (ca. 0.4 mM). The 103Rh-NMR spectrum of the reference compound HRhCO$_2$[P(OPh)$_3$] showed a quartet at δ = 1258 (J$_{Rh-P}$ 239 Hz). The 1H-103Rh 2D spectrum of 10 revealed two partially overlapping quartets for the Rh-signal (Figure 5, outer parts not shown), indicating the presence of two different complexes. The distribution of the intensity of the cross peaks possibly implies that the signs of the Rh–H couplings in the two pairs of enantiomers are opposite. As the signal pattern in the 31P-NMR spectrum is very simple (vide supra), the splitting of the Rh signal cannot be a consequence of an additional Rh–P coupling due to the inequivalence of the phosphorus atoms in the twisted molecules. Moreover, the Rh–P coupling constants of the two diastereomers 10a and 10b are slightly, but significantly different (Table I). The energy of activation required to interconvert the two twisted forms of 10 is expected to be considerable because an extensive conformational change is required, as shown by CPK models.
Variable-temperature NMR experiments

The 31P-NMR signals of both 9 and 10 shift when the temperature is varied (Figure 6), suggesting that in solution two additional forms of complexes exist which are in rapid equilibrium. One form, characterized by δ_{max}, is in excess at low temperature while the other (δ_{min}) is dominant at high temperature. We propose that these two forms differ in the way the H-Rh-CO dipole is oriented with respect to the CTV framework (shown for 10 in Figure 7). Both the metal complex part and the CTV unit are strongly polarized. Consequently, their dipoles can align or oppose. The equilibrium constant for the process of interconversion at a certain temperature is given by the expression:

$$K_{eq} = \frac{\delta_{\text{obs}} - \delta_{\text{min}}}{\delta_{\text{max}} - \delta_{\text{obs}}}$$

Evaluation of the temperature dependence of this equilibrium constant by fitting the data to the Arrhenius equation, yielded the thermodynamic parameters listed in Table II. We explain these results as follows. At low temperatures the dipoles of the CTV unit and the Rh complex align, with the hydride ligand pointing away from the cavity (Figure 7). The total dipole moment causes a high degree of organization of the solvent molecules. At high temperatures, the H-Rh-CO dipole inverts, the total dipole moment becomes smaller, and, as a result, solvent molecules are released, explaining the high positive value of ΔS. To check this explanation we determined the dipole moments of $\text{RhCl}([P(OH)_{3}]$, and CTV (1) separately. They amounted to 2.42 (± 0.12) D (tetrachloromethane) and 2.80 (± 0.20) D (benzene), respectively. The dipole moment of 1 was also calculated, giving $\mu = 3.2$ D. The fact that the experimentally determined value is smaller than the calculated one may be ascribed to interactions with the benzene solvent molecules.

Complexation experiments

It is known that cryptophanes can strongly bind tetrahedral substrates such as chloroform, isobutane and tetramethylammonium ions. The binding is explained in terms of Van der Waals interactions and cation-anion interactions. Despite the structural analogy between the larger cryptophane-E and complex 9 no binding of chloroform or toluene molecules was observed by the latter compound, as confirmed by NMR experiments. Nor was any binding observed with complex 10. Apparently, the energy barrier to untwist the folded conformation of this metallohost to produce an open cavity is too high.

Conclusions

We have shown that CTV can act as a template to construct rigid chelating ligand systems with a trigonal coordination symmetry. The complex prepared from the ligand system with long flexible spacers does not bind substrate molecules, probably because it is entropically more favorable to fill up the cavity by twisting the spacer arms. The fixation of two relatively strong dipolar moieties in close proximity to one another as in 9 and 10 gives rise to molecules with interesting conformational properties.
A solution of 1 g (2.5 mmol) of cyclotriguaiacylene (4) in 50 ml of acetone was added to a solution of 6 g (23 mmol) of 1,3-bis(di-bromomethyl)benzene and 5 g of potassium carbonate in 100 ml of acetone. After stirring for 20 h and subsequently refluxing for 6 h the solvent was evaporated. The resulting solid was boiled in hexane for 5 min, filtered off under vacuum, and subsequently extracted with CHCl₃. After evaporation of the solvent the product was purified by column chromatography (silica, eluent: CHCl₃), giving 0.89 g (38%) of white 7. 1H-NMR (90 MHz, CDCl₃) δ: 7.42 (s, 3H, ArH), 7.33 (s, 9H, ArH), 6.82 (s, 3H, ArH CTV), 6.68 (s, 3H, ArH CTV), 5.65 (s, 3H, ArCH₂), 4.60 (s, 5H, CH₂). FAB-MS m/z: 1045 (M+H)+. Anal, calcd. for C₃₆H₂₅N₂O₁₂: C 71.57, H 5.24; found: C 71.55, H 5.21%.

Complex 9

A solution of 112 mg (0.019 μmol) of 8, 0.2 ml (4.3 mmol) of triethylamine, and 0.3 ml (4.3 mmol) of diphenyl phosphochloridite in 10 ml of CHCl₃; yield 0.25 g (79%) of 3 as a white foam.

1H-NMR (200 MHz, CDCl₃) δ: 7.46–6.66 (m, 60H, ArH), 5.09 (s, 6H, ArCH₂(OH)), 4.72 (d, 3H, Hax CTV, J 14 Hz), 3.64 (s, 9H, OCH₃), 3.44 (d, 3H, H̵ C̵ O̵ C̵ H̵ CO̵ TV̵, J 14 Hz). 13C-NMR (CDCl₃) δ: 125.9; FAB-MS m/z: 1693 (M+H)+. Anal. calcld. for C₃₀H₃₀P₂O₁₂·H₂O: C 71.57, H 5.24; found: C 71.55, H 5.21%.

Complex 10

Under an inert atmosphere, 0.3 ml (1.3 mmol) of diphenyl phospho-chloridite was added to a solution of 126 mg (0.17 mmol) of 6 and 0.2 ml (1.3 mmol) of triethylamine in 10 ml of CHCl₃. The mixture was refluxed for 1 h, after which its volume was reduced to 2 ml. This concentrated mixture was added slowly to 25 ml of dry hexane. This resulted in a precipitate which was filtered off, washed with hexane, dried under vacuum, and redissolved in 15 ml of chloroform. This solution was washed twice with water, dried (MgSO₄), and evaporated, yielding 180 mg (76%) of 2 as a white foam.

1H-NMR (200 MHz, CDCl₃) δ: 7.38–7.11 (m, 42H, ArH), 6.85 (s, 3H, ArCH₂), 3.69 (s, 9H, OCH₃), 3.42 (d, 3H, Hcq CTV, J 8 Hz). P-NMR (CDCl₃) δ: 5.72 (d, 3H, ArCH₂, J 14 Hz). 31P-NMR (80 MHz, CDCl₃) δ: 125.9; FAB-MS m/z: 1372 (M+H)+.

Analytical data for 5: C 70.74, H 5.06; found: C 70.76, H 5.04%.

10.15-Dihydro-2,7,12-trimethoxy-3,8,13-tris[(3-bromomethyl)benzyl]oxy-5H-tribenzo[a,d,g]cyclomenone (rac-7)

To a refluxing mixture of 250 ml of acetone containing 5 g (45 mmol) of benzene-1,4-diol, 3 g of KO₂ and a small amount of Na₂CO₃ to prevent oxidation, was added a solution of 0.8 g (0.048 mmol) of 7 in 50 ml of acetone. After refluxing for 15 h the solution was neutralized with aqueous 2N HCl and evaporated to dryness. Water (150 ml) was added and the resulting suspension was extracted twice with CHCl₃. The organic layer was washed with water (2x), dried (MgSO₄), and evaporated to dryness. The reaction mixture was concentrated to 2 ml and placed in a cold bath. A solution of 1 g (2.5 mmol) of cyclotriguaiacylene (4) in 50 ml of acetone was added and the resulting suspension was extracted with CHCl₃. The organic layer was washed with water (2x), dried (MgSO₄), and evaporated to dryness. The resulting oil was purified by column chromatography (silica, eluent: CHCl₃), giving 0.89 g (38%) of white 7. 1H-NMR (90 MHz, CDCl₃) δ: 7.42 (s, 3H, ArH), 7.33 (s, 9H, ArH), 6.82 (s, 3H, ArH CTV), 6.68 (s, 3H, ArH CTV), 5.65 (s, 3H, ArCH₂), 4.60 (s, 5H, CH₂). FAB-MS m/z: 786 (M+H)+. Anal, calcd. for C₃₁H₂₅N₂O₁₂: C 71.57, H 5.24; found: C 71.55, H 5.21%.
synthesizer provided with a 90° phase shifter, a B-SV 3 heteronucleus decoupling unit with a selective 103Rh amplifier, and a B-VT 1000 temperature control unit (\pm1 °C). The 103Rh-NMR signals were obtained indirectly by using the 2-D REVERSE-INEPT technique, giving the $\delta^{(13)}$Rh chemical shift and the coupling constant to phosphorus in the F1 dimension and the $J_{\text{Rh-H}}$ in the F2 dimension.

Dipole moment measurements

Dipole moments were determined by measuring the dielectric constant and refractive index of a series of diluted solutions containing varying concentrations of CTV or complex. From these data the dipole moment could be obtained following the procedure of Guggenheim and Smith. The dipole moment of HRh(CO)$_3$[P(OPh)$_3$]$_3$ was determined in tetrachloromethane and that of CTV in benzene.

Acknowledgements

This work was financially supported by Shell Research B.V.. We thank dr. C. J. Elsevier (University of Amsterdam) for helpful discussions.

References and notes

1a D.J. Cram, S. Karbach, Y.H. Kim, L. Baczynski and G.W. Kalkeymeyn, J. Am. Chem. Soc. 107, 2575 (1985);

c D.J. Cram, M.E. Tanner and R. Thomas, Angew. Chem. 110, 1048 (1991);

d Bing Xu and T.M. Swager, J. Am. Chem. Soc. 115, 1159 (1993);

e J. Rebek Jr., Angew. Chem. 102, 261 (1990);

2 A. Collet, Tetrahedron 43, 5725 (1987), and references therein.

3a J. A. Hyatt, J. Org.Chem. 43, 1808 (1978);

12 A very small cis-P-H coupling has also been observed in the case of HRh(CO)$_3$[P(o-C$_6$H$_4$-2-CMe$_3$)$_3$]: T. Jongsma, G. Challa and P.W.N.M. van Leeuwen, J. Organomet. Chem. 421, 121 (1991).
