Highly polar molecules in a polymer matrix are suitable for second harmonics generation devices since they orient on high voltage poling above T_g. Silicon-based donor-acceptor (DA-) compounds have potential since they are transparent in the visible spectrum, and have large dipoles and moderate values of the first hyperpolarizability β. Our study (synthesis, optical characterization and calculations) focuses on DA-diphenyldisilanes, and their incorporation into polymer. The quantum chemical calculations (semi-empirical and ab initio, finite-field and sum-over-states (SOS)), are compared mutually and with experimental results. The SOS method yields useful predictions for β. Acceptors containing the sulfonyl group prove to be efficient and retain transparency for the DA-compound. Charge distributions of ground and excited states show that the silicon chain is a charge buffer and a weak transmitter.

Second order non-linear optical effects might lead to novel applications as integrated electro-optic devices. Polymers functionalised with NLO-active groups seem to have good properties for these applications. We have synthesized a polystyrene based NLO-material that can be poled by corona discharge or contact poling to give a very good ordering ($\theta=0.45$). The r_{33} value directly after poling was 12.9 pm/V. The bleachability of the material gives the possibility to make channel waveguides by exposing the material to UV-light through photomasks. Another way to order macroscopic systems is the Langmuir-Blodgett (LB) technique. We have synthesized an amylose derivative with covalently bound NLO-active groups. This material forms stable monolayers.