Novel Concave Building Block for the Synthesis of Organic Hosts

Jan W. H. Smeets, a Rint P. Sijbesma, a Frank G. M. Niele, a Anthony L. Spek, b Wilibert J. J. Smeets, a and Roeland J. M. Nolte* a

Laboratory of Organic Chemistry and Vakgroep Algemene Chemie, Afdeling Kristal en Structuurchemie, University at Utrecht
3584 CH Utrecht, The Netherlands
Received September 29, 1986

Natural hosts frequently contain a cavity or cleft whose inner concave surface matches the convex surface of a guest. Recently, synthetic hosts that mimic this feature (cavitands) have been designed. If new and more elaborate host-guest systems are to be developed, versatile and readily accessible building blocks must be available. Here, we describe a novel building block, 2, that meets these requirements. Compound 2 contains two fused 2-imidazolidine rings, which are flanked by two o-xylene units. Its overall shape is concave and its convex side is shielded by two phenyl substituents. The use of 2 in the synthesis of three new cavitands is demonstrated. Diphenylglycoluril (1a) was treated with paraformaldehyde and NaOH in Me2SO to yield the tetrakis(hydroxymethyl) derivative (1b) (85%). Refluxing 1b in benzene with 4 equiv of p-toluene sulphonic acid gave 2a in 35% yield. Similarly, treatment of 1b with an excess of hydroquinone or 1,4-dimethoxybenzene in 1,2-dichloroethane gave 2b (75%) and 2c (50%), respectively. Molecular models indicate that the o-xylene units of 2 can have upward (u) or downward (d) orientations, leading to three possible conformers: uu, ud, or dd. Molecular mechanics calculations reveal that conformer uu has the lowest energy. For compound 2b an X-ray structure determination was performed. This structure determination (3) confirms the uu conformation of 2 in the solid state.

(1) (a) Laboratory of Organic Chemistry. (b) Vakgroep Algemene Chemie.
(9) Crystal data for 2b: C73H58N8O6, m/e 1031 (M + H)+. Compound 5: IR (KBr) 3350, 2900, 1720, 1690, 1475, 1450 cm-1; 'H NMR (CDCl3) δ 7.05 (s, 10 H, Ar H), 6.65 (s, 4 H, Ar CH), 6.37 and 5.37 (2 d, 28 H, CH2), 3.5-4.0 (m, 28 H, CH2), 7.65 and 7.10 (2 m, 26 H, Ar H), 6.60 (s, 4 H, Ar CH). Fully acetylated 5: IR (KBr) 1715, 1450, 1400 cm-1; 'H NMR (CDCl3) δ 7.09 (s, 10 H, Ar H), 6.92 (s, 4 H, Ar H), 5.05 and 3.85 (2 d, 8 H, CH, CH), 4.24 (s, 10 H, CH2CO), FAB MS (triethyl citrate), m/e 571 (M+H)+. Compounds 4 and 5 (IR (KBr) 2960, 1780, 1715, 1450, 1450, 1130, 1070 cm-1; 'H NMR (CDCl3) δ 7.05, (10 H, Ar H), 6.65, (4 H, Ar H), 5.65 (d, 4 H, NCH2Ar, J = 16 Hz), 3.50-4.35 (m, 36 H, NCH2Ar and OCH2CH2), FAB MS (triethyl citrate), m/e 879 (M+H)+. Compound 5: FAB MS (glycoluril, H2SO4), m/e 905 (M+H)+. Fully acetylated 5: IR (KBr) 3605 and 3555 (bound H2O), 3940, 1760, 1630, 1465, 1465, 1430 cm-1; 'H NMR (CDCl3) δ 7.13 (20 H, Ar H), 4.93 and 3.82 (2 d, 16 H, CH, CH), 3.49 and 3.24 (2 d, 16 H, CH, CH), J = 2.54 (2 H, CH2CO), FAB MS (triethyl citrate), m/e 1073 (M+H)+. Compound 6: UV-vis (Me2SO) 413 nm (ε 223); 'H NMR (Me2SO-d6) δ 8.45 (4 H, NCH2CH2), 7.65 and 7.10 (2 m, 26 H, Ar H), 6.60 (4 H, Ar H), 3.40 (d, 4 H, NCH2Ar, J = 16 Hz), 4.40 (m, 8 H, NCH2Ar and OCH2CH2), FAB MS (glycoluril, H2SO4), m/e 1522 M+ (487 - M+H)+, 1452 (M+2Cl-H)+, 1418 (M - 3Cl-H)+, 1316 (M - RHCl + H)+, conductivity measurements (Me2SO, 10 M): 1:1 electrolyte, A 34 ft cm² mol⁻¹. All compounds gave C, H, and N analyses within 0.3% of theory.
contains two diphenylglycoluril and two hydroquinone rings linked through eight methylene bridges. The void in 5 (2.5 × 2.0 Å) is not large enough to hold an organic guest. However, higher homologues of 5, e.g., those containing additional diphenylglycoluril and hydroquinone rings, do have large enough voids.\(^2\)

Starting from 2, hosts that a metal center next to a cavity are readily accessible. As an example, we prepared 6 by reacting 2 with benzimidazole (Bz) to give: excess of Tos(OCH\(_2\)CH\(_2\))\(_2\)Cl and base in Me\(_2\)SO, excess of benzimidazole (Bz) and NaH in DMF, and 1 equiv of RhCl\(_3\) in Me\(_2\)SO (overall yield 70%). Compound 6 has two trans-coordinated Cl ligands, one being inside the cavity, the other outside. The binding and catalytic properties of hosts 4–6 are currently being investigated and will be published in forthcoming papers.

Acknowledgment. We thank Prof. Wiendelt Drenth for stimulating discussions.

Observation of a Nonconcerted Double Proton Transfer in the Solid State by \(^{15}\text{N} CPMAS NMR

H. H. Limbach,\(^a\) B. Wehrle,\(^b\) H. Zimmermann,\(^c\) R. D. Kendrick,\(^d\) and C. S. Yannoni\(^d\)

IBM Almaden Research Center
San Jose, California 95120-6099

Institut für Physikalische Chemie der Universität Freiburg i. Br., Albertstr. 21
D-7800 Freiberg, West Germany

Received February 18, 1986

We present here for the first time NMR spectroscopic evidence of a nonconcerted double proton transfer. The double proton motion studied occurs along slightly asymmetric double-minimum potentials in solid TTAA\(^2\) according to Scheme I. For H-chelates of the malonaldehyde type like TTAA, it has been very difficult to establish the double-minimum character of the proton potential using different spectroscopic techniques\(^3\) including NMR.\(^4\)

Goedken et al.\(^5\) have performed an X-ray crystallographic analysis of solid TTAA, have postulated the "diagonal" tautomeration\(^6\) shown in Scheme I, and have further suggested that the degeneracy of this process is lifted due to a rhombic distortion of the unit cell. However, the X-ray method cannot reveal details such as the nonconcerted character of the double proton potential in solid TTAA or if the tautomeration is static or dynamic.

Since solid-state proton transfers between nitrogen atoms are most directly probed by \(^{15}\text{N} CPMAS NMR,\(^6\) we have performed

(1) (a) IBM Almaden Research Center. Permanent address: Institut für Physikalische Chemie der Universität Freiburg i. Br. (b) Institut für Physikalische Chemie der Universität Freiburg i.Br. (c) Max Planck Institut für Medizinische Forschung, Heidelberg. (d) IBM Almaden Research Center, San Jose, CA.

(2) TTAA = 1,8-dihydrop-5,7,12,14-tetramethyldibenzo[a,d]-1,4,8,11-tetraazacyclotetradeca-4,6,11,13-tetraene-\(^{15}\text{N}\)\(_4\) (tetramethylbenzotetraaza[14]annulene).

