The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/16285

Please be advised that this information was generated on 2018-02-10 and may be subject to change.
Novel Concave Building Block for the Synthesis of Organic Hosts

Laboratory of Organic Chemistry and Vakgroep Algemene Chemie, Afdeling Kristal en Structuurchemie, University at Utrecht, 3584 CH Utrecht, The Netherlands

Received September 29, 1986

Natural hosts frequently contain a cavity or cleft whose inner concave surface matches the convex surface of a guest. Recently, synthetic hosts that mimic this feature (cavitands) have been designed. If new and more elaborate host–guest systems are to be developed, versatile and readily accessible building blocks must be available. Here, we describe a novel building block, 2, that meets these requirements. Compound 2 contains two fused 2-imidazolidinone rings, which are flanked by two o-xylene units. Its overall shape is concave and its convex side is shielded by two phenyl substituents. The use of 2 in the synthesis of three new cavitands is demonstrated.

Diphenylglycoluril (1a) is treated with paraformaldehyde and NaOH in Me2SO to yield the tetradehydroxymethyl derivative 1b (85%), and Refluxing 1b in benzene with 4 equiv of p-toluenesulfonic acid gave 2a in 35% yield. Similarly, treatment of 1b with an excess of hydroquinone or 1,4-dimethoxybenzene in 1,2-dichloroethane gave 2b (75%) and 2c (50%), respectively. Molecular models indicate that the o-xylene units of 2 can have upward (u) or downward (d) orientations, leading to three possible conformers: uu, ud, or dd. Molecular mechanics calculations reveal that conformer uu has the lowest energy. For compound 2a an X-ray structure determination was performed. This structure determination (3) confirms the uu conformation of 2 in the solid state.

The 1H NMR spectrum of fully acetylated 2b in CD3C13 and in Me2SO-d6 displays one pair of well-defined doublets for the CH2 protons at δ 5.05 and 3.85 (J = 16 Hz). The position and splitting pattern of the doublets did not change over a temperature range as large as −95 to 150 °C. This led us to believe that either one conformer (uu or dd) is present or that all three conformers interconvert rapidly. To solve this question we synthesized compound 2d. The (CH3)2 bridges of this compound do not allow for any other conformation than uu. As the 1H NMR spectra of 2d and its nonbridged analogue 2e show identical pairs of doublets for the CH2,N protons (±0.05 ppm), we conclude that compounds 2a also adopt the uu conformation in solution.

Basket-shaped cavitand 4 was prepared (75%) by treating 2b with 2 equiv of 1,11-dichloro-3,6,9-trioxaoxadecane and K2CO3 in Me2SO. The oxygen atoms of the urea units and the oxyethylene bridges form two receptor sites at the far ends of the molecule. These receptor sites bind alkali metal ions with affinities peaking for K+. In these complexes the guest is wedged in between the o-xylylene rings as is concluded from the observed upfield shifts (up to 1.5 ppm) of the protons at δ 6.50. In these complexes the guest is wedged in between the o-xylylene rings as is concluded from the observed upfield shifts (up to 1.5 ppm) of the protons at δ 6.50.

(6) (a) Crystal data for 2b: C64H48N8O8S2. PI, Z = 2, a = 9.129 (1) Å, b = 16.097 (1) Å, c = 16.218 (1) Å, a = 101.52 (10)°, β = 96.85 (10)°, γ = 90.57 (10)°, current R = 0.16. Details will be published elsewhere.
(7) Compound 2b: IR (KBr) 3605 and 3555 (bound H,0), 3940, 1760, 1730, 1645, 1465, 1430 cm−1; 1H NMR (Me2SO-d6) δ 8.67 (s, 4 H, CH), 7.10 (s, 10 H, Ar H), 6.47 (s, 4 H, Ar H), 5.37 and 5.37 (2 d, 8 H, CH, J = 16 Hz); FAB MS (glycercyl, thiglycerol, acetic acid), m/z 563 (M + H)+. Fully acetylated 2b: 1H NMR (CDCl3) δ 7.09 (s, 10 H, Ar H), 6.92 (s, 4 H, Ar H), 5.05 and 3.85 (2 d, 8 H, CH, J = 16 Hz), 2.34 (s, 12 H, CH2CO); FAB MS (thiglycerol, citric acid, citric acid), m/z 731 (M + H)+. Compound 3: 1H NMR (DCl3) δ 7.60 (s, 10 H, Ar H), 6.65 (s, 4 H, Ar H), 5.65 (d, 4 H, NCH2Ar, J = 16 Hz), 3.50–4.35 (m, 36 H, NCH2Ar and OCH2CH2); FAB MS (thiglycerol, citric acid, citric acid), m/z 731 (M + H)+. Compound 4: 1H NMR (DCl3) 2800, 2660, 1715, 1450, 1450, 1130, 1070 cm−1; 1H NMR (CDCl3) δ 7.05 (s, 10 H, Ar H), 6.65 (s, 4 H, Ar H), 5.65 (d, 4 H, NCH2Ar, J = 16 Hz), 3.50–4.35 (m, 36 H, NCH2Ar and OCH2CH2); FAB MS (thiglycerol, citric acid, citric acid), m/z 573 (M + H)+. Compound 5: 1H NMR (glycercyl, H2SO3), m/z 905 (M + H)+. Fully acetylated 5: 1H NMR (DCl3) 3605 and 3555 (bound H,0), 3490, 1760, 1735, 1645, 1465, 1430 cm−1; 1H NMR (CDCl3) δ 7.13 (s, 20 H, Ar H), 4.93 and 3.82 (2 d, 16 H, CH, J = 16 Hz), 2.54 (s, 12 H, CH2CO); FAB MS (thiglycerol, citric acid, citric acid), m/z 1073 (M + H)+. Compound 6: 1H NMR (Me2SO-d6) δ 8.45 (s, 4 H, NCH2), 7.65 and 7.10 (2 m, 26 H, Ar H), 6.60 (s, 4 H, Ar H), 5.40 (d, 4 H, NCH2Ar, J = 16 Hz), 4.40 (m, 8 H, CH2CO), 3.50–4.00 (m, 30 H, NCH2Ar and OCH2CH2); FAB MS (glycercyl, thiglycerol, citric acid, citric acid), m/z 1522 M+, 1487 (M−Cl)+, 1452 (M−3CI)+, 1418 (M−3CI−H)+, 1316 (M−RCH+H)+, conductivity measurements (Me2SO, 10−3 M): 11 electrolyte, A 34 Ω cm2 mol−1. All compounds give C, H, and N analyses within 0.3% of theory.
contains two diphenylglycolluril and two hydroquinone rings linked through eight methylene bridges. The void in 5 (2.5 x 2.0 Å) is not large enough to hold an organic guest. However, higher homologues of 5, e.g., those containing additional diphenylglycolluril and hydroquinone rings, do have large enough voids.\(^1\)

Starting from 2, hosts that have a metal center next to a cavity are readily accessible. As an example, we prepared 6 by reacting 2b successively with: excess of Tos(OCH\(_2\)CH\(_2\))\(_2\)Cl and base in Me\(_2\)SO, excess of benzimidazole (Bz) and NaH in DMF, and 1 equiv of RhCl\(_3\) in Me\(_2\)SO (overall yield 70%). Compound 6 has two trans-coordinated Cl ligands, one being inside the cavity, the other outside. The binding and catalytic properties of hosts 4–6 are currently being investigated and will be published in forthcoming papers.

Acknowledgment. We thank Prof. Wiendelt Drenth for stimulating discussions.

Observation of a Nonconcerted Double Proton Transfer in the Solid State by \(^{15}N\) CPMAS NMR

H. H. Limbach,*\(^{1b}\) B. Wehrle,*\(^{1b}\) H. Zimmermann,\(^{1d}\) R. D. Kendrick,*\(^{1c}\) and C. S. Yannoni*\(^{1d}\)

*IBM Almaden Research Center
San Jose, California 95120-6099
Institut für Physikalische Chemie
der Universität Freiburg i. Br., Albertstr. 21
D-7800-Freiberg, West Germany
Received February 18, 1986

We present here for the first time NMR spectroscopic evidence of a nonconcerted double proton transfer. The double proton motion studied occurs along slightly asymmetric double-minimum potentials in solid TTAA\(^2\) according to Scheme I. For H-chelates of the malonaldehyde type like TTAA, it has been very difficult to establish the double-minimum character of the proton potential using different spectroscopic techniques\(^3\) including NMR.\(^4\)

Goedken et al.\(^5\) have performed an X-ray crystallographic analysis of solid TTAA.\(^2\) They have postulated the "diagonal" tautomerism 1 — 3 shown in Scheme I, and have further suggested that the degeneracy of this process is lifted due to a rhombic distortion of the unit cell. However, the X-ray method cannot reveal details coming papers.\(^5\)

we have performed such experiments on 95% \(^{15}N\)-enriched TTAA.\(^8\) Figure 1 shows some of the \(^{15}N\) CPMAS spectra obtained with an apparatus described previously.\(^9\) We observe four lines, a–d, of equal intensity. Between 100 and 80 K, the lowest temperature where experiments were performed, no spectral changes occur, indicating that the chemical shifts are temperature independent within experimental error. Taking into account \(^{15}N\) solution NMR data,\(^10\) we assign the overlapping lines a and d to NH atoms and the two resolved lines b and c to two inequivalent =N— atoms in solid TTAA.\(^2\) As the temperature is increased, lines d and c move toward each other without coalescing, as do lines a and b. The low-field shift of line a from 96 to 288 K matches the high-field shift of line b over the same temperature range. The same is true for lines d and c. Since the intrinsic chemical shifts are temperature independent, these changes can only be explained by fast proton transfer from atom a to b and from atom d to c. In other words, the position of line n depends on the average proton density \(p_n\) on atom n. The observed chemical shift difference \(\delta_m - \delta_n\) is

\(^{1}\) In addition to 5 a compound is isolated which contains three diphenylglycolluril and three hydroquinone rings, linked through 12 methylene bridges (symmetry \(D_2h\)). The cavity of this cavatatin of \(\approx 5\) Å. Sijbesma, R. P.; Smeets, J. W. H.; Nolte, R. J. M., unpublished results.

