Synthesis of Copolymers of Isocyanides Derived from Alanylserine and Alanylhistidine

H. G. J. Visser, R. J. M. Nolte,* J. W. Zwikker, and W. Drenth*

Laboratory for Organic Chemistry of the University, 3522 AD Utrecht, The Netherlands

Received July 16, 1984

Three optically active isocyanides were synthesized from the dipeptides L-Ala-L-Ser, L-Ala-D-Ser, and L-Ala-L-His by converting the amino group of these compounds into an isocyanate function. These isocyanides, as well as n-dodecyl isocyanide, were mixed in various monomeric ratios and polymerized with catalytic amounts of nickel(II) chloride. The resulting optically active copolymers have left-handed helical configurations. Their molecular weights are in the M_n range 70,000-250,000. The number of imidazolyl, carboxyl, and hydroxymethyl functions in the copolymers were determined by potentiometric titration. Two types of imidazolyl functions are present in the copolymers:

The parts concerning the esterolytic activity and enantioselectivity will be published separately.

Results and Discussion

Two types of protected isocyanide monomers were synthesized, one containing a carboxylic acid and an imidazole residue, 5c, the other containing a carboxylic acid and a hydroxymethyl residue. The latter monomer was prepared in two diastereomeric forms, 5a and 5b. The isocyanides 5a and 5b were obtained by the phosphorus oxychloride/triethylamine procedure at low temperature from the corresponding alanylserine tripeptides.

The synthesis of isocyanide 5c has been described before by Van der Eijk and the hydroxyl group was replaced by the tosyl group ($\text{Tos} = \text{CH}_3\text{C}_6\text{H}_4\text{OS}^-$). The synthesis of isocyanides 5 was also reported in a previous study made by Van der Eijk and coworkers.

In the preceding paper, we reported on the advantages of synthesizing polymers of isocyanides that combine imidazolyl, carboxyl, and hydroxymethyl groups in one molecule. In that paper the synthesis of three isocyanides derived from diastereomeric alanylhistidinylserine tripeptides is described. Homopolymerization afforded the corresponding polymers.

The work described in the present paper, the desired combination of functional groups is obtained by copolymerization of isocyanides derived from dipeptides. The parts concerning the esterolytic activity and enantioselectivity will be published separately. The surprising effect of surfactants on these properties has been described in preliminary communications.

procedure by using phosphorus oxychloride and triethylamine instead of trichloroformate and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the dehydrating agent and base.

The structures of the formamides 4 and the isocyanides 5 were confirmed by spectroscopic techniques. From 1H NMR it appeared that no racemization had occurred within the limits of detection. The infrared absorption spectra of the various isocyanides showed characteristic isocyanide vibrations at 2145 cm$^{-1}$ (5a, 5b) and 2148 cm$^{-1}$ (5c).

Copolymerization was achieved by mixing appropriate amounts of various isocyanides 5 and dodecyl isocyanide 6, dissolved in chloroform and subsequently adding 0.1 mol% of nickel(II) chloride dissolved in methanol. The molar ratios of the monomers in the starting mixtures are listed in Table I. For comparison, isocyanides 5 were also homopolymerized.

The polymerizations were followed by observing the infrared absorption spectra of the reaction mixtures. The isocyanide absorptions in the infrared spectra were suf-

Synthesis of Copolymers of Isocyanides

Scheme I

\[
\begin{align*}
\text{H}_2\text{N}-\text{CH-COOH} & \rightarrow \text{OCH-NH-CH-COOH} \\
\text{H}_2\text{N}-\text{CH-COOH} \rightarrow \text{H}_2\text{N}-\text{CH}_2\text{X} \\
\end{align*}
\]

Table I. Homopolymerization and Copolymerization of Isocyanides 5 and 6

<table>
<thead>
<tr>
<th>monomer ratio in starting mixture</th>
<th>reactn time, h</th>
<th>product yield</th>
<th>polymer composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5a</td>
<td>5b</td>
<td>5c</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.5</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

*Reaction conditions: 0.1 mol % of NiCl₂·6H₂O in chloroform–methanol, 4:3:1 v/v, 25 °C. Reaction time for complete conversion of isocyanide. Ratio of repeating units derived from 5 and 6 in the deprotected polymers as determined by both elemental analysis and potentiometric titration. See ref 10.

The N(Im)-tosyl group in compounds 9p–14p was removed by treatment with acetic anhydride and pyridine. In order to remove the remaining protective groups, these polymers as well as 7p and 8p were subsequently treated for 2 days with 0.5 M aqueous NaOH or KOH at 40 °C. During this reaction no hydrolysis of the polymer imino functions occurred, as we checked separately. After ultrafiltration and freeze-drying, polymers 7dp and 8dp (dp stands for deprotected) were obtained as sodium salts and polymers 11dp–14dp as potassium salts. Polymers 9dp and 10dp were isolated as hydrochloric acid salts from their acidified aqueous solutions. Compounds 7dp, 9dp, and 11dp are spongy solids, varying in color from light-brown to brown; the other compounds are dark-brown powdery solids. From elemental analyses and potentiometric titrations the ratios of the various repeating units in the copolymers were calculated. These ratios are presented in Table I. All deprotected polymers contained crystal water in varying amounts. In addition, 8dp contained small amounts of acetyl groups. Polymers 7dp and 8dp are completely soluble in water at pH's >6. Below pH 6 precipitation occurs. In the pH range 3–11, homopolymer 9dp and the copolymers 10dp–14dp are soluble in water.

In Table II the intrinsic viscosities of the protected and deprotected polymers are given. The intrinsic viscosity is the intercept at c = 0 of the reduced viscosity vs. concentration plot. For all protected polymers except 11p these plots are linear.

By applying the Mark–Houwink equation as determined for poly(1-methylheptyliminomethylene), the molecular weights of the polymers are estimated to be in the range of 60,000–250,000 (Table II). It is noteworthy, that in the series of the protected compounds 7p–14p, there seems to

Table II. Viscosity and Optical Rotation Data of Polymers and Copolymers of Isocyanides 5 and 6

<table>
<thead>
<tr>
<th>no.</th>
<th>[η], dl/g²</th>
<th>10⁻⁵ M, b</th>
<th>[α]D,° deg</th>
<th>screw sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4.1</td>
<td>0.15</td>
<td>2.5</td>
<td>+205</td>
</tr>
<tr>
<td>8</td>
<td>0.35</td>
<td>0.63</td>
<td>-33</td>
<td>-57</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>0.05</td>
<td>1.15</td>
<td>+139</td>
</tr>
<tr>
<td>10</td>
<td>3.1</td>
<td>0.60</td>
<td>2.2</td>
<td>+134</td>
</tr>
<tr>
<td>11</td>
<td>3.9</td>
<td>0.42</td>
<td>2.5</td>
<td>+174</td>
</tr>
<tr>
<td>12</td>
<td>3.1</td>
<td>0.55</td>
<td>2.2</td>
<td>+115</td>
</tr>
<tr>
<td>13</td>
<td>1.0</td>
<td>0.20</td>
<td>1.15</td>
<td>+59</td>
</tr>
<tr>
<td>14</td>
<td>0.45</td>
<td>0.08</td>
<td>0.73</td>
<td>+28</td>
</tr>
</tbody>
</table>

M Measured at 30.00 °C in CHCl₃-MeOH 5:2 v/v (p) or in 0.02 M Tris buffer pH 8.0 (dp). *b* Calculated from viscosity data of protected polymers.

Figure 2. (A). CD spectra of homopolymer 8p and copolymer 14p in chloroform-methanol, 5:2 v/v. (B). CD spectra of homopolymer 7p and copolymers 10p–13p in chloroform-methanol, 5:2 v/v.

There is a correlation between the intrinsic viscosity and the rate of polymerization. The most striking examples of this are 7p and 8p and 11p and 14p. Apparently, the side chains of the monomers leading to 7p and 11p fit more easily into the developing polymer helix than those leading to 8p and 14p.

The intrinsic viscosities of aqueous solutions of the unprotected polymers are considerably lower than those of the protected ones (Table II). Apparently, the viscosity behavior in water is quite different from that in chloroform-methanol, 5:2 v/v.

The optical rotation data (Table II) support the view that we are dealing with copolymers. With block polymers or a mixture of homopolymers a proportional behavior between specific rotation and molar ratio would be expected. The polymers 10p–12p did not show such a behavior, whereas the corresponding mixtures of homopolymers did, as we separately checked (Figure 1, part A).

On deprotection, all polymers in Table II show a shift in their [α]D°’s in a negative direction. Although sometimes optical rotation data can be used to answer the question which screw sense is in excess, it is more reliable to consider the circular dichroism (CD) spectra.

The ultraviolet (UV) spectra of each of the protected polymers 7p–14p in chloroform-methanol 5:2 v/v showed a shoulder at about 310 nm on the onset of a much larger band in the far UV region. This shoulder can be attributed to the n–π* transition of the N=C chromophore of the polymer main chain. Except for 14dp an n–π* transition of the N=C chromophore is not clearly visible in the UV spectra of the unprotected polymers. The spectra of all the deprotected polymers, except for 14u, look alike and do not show pronounced peaks or shoulders.

CD spectra of poly(aminomethylenes) often reveal which screw sense is in excess. In many cases, so-called exciton couplets can be detected which give information about the screw sense. These exciton couplets are often partly or completely masked by bands due to the chiral side chains of the polymers. The CD spectra of polymers 8p and 14p are depicted in Figure 2, part A. In both spectra a positive couplet is visible, indicative of a predominantly left-handed (M) helical configuration. In the CD spectrum of 14p the couplet is partly masked by the band due to the side chain contribution to the n–π* transition. The CD spectra of the polymers 7p, 10p–13p (Figure 2, part B) show a great similarity in shape. The couplet is not visible at all. On first sight, the high intensity in Δε at approximately 310 nm might be ascribed to the tosyl group. However, this cannot be true since this peak is also present in the spectrum of 7p. The latter compound does not have a tosyl group. We assume that the side chain contributions to the n–π* transition of the C=N chromophore are responsible for the observed CD bands. Apparently, these side chain contributions are much larger than the contribution of the helical main chain. The Δε values of copolymers 10p–12p are lower than those of homopolymer 7p. Noteworthy is the increase in Δε of copolymer 13p compared to the closely related 11p from which it only differs by the presence of the dodecyl moiety. This phenomenon is not yet understood. In Figure 1, part B the Δε values at 307 nm of the polymers 10p, 11p, and 12p are compared with those of the homopolymers 7p and 9p and their mixtures. The figure clearly shows that the polymers are real copolymers.

The CD spectra of the deprotected polymers are given in Figure 3. There is a qualitative similarity regarding the CD spectral shape of the deprotected polymers 7dp, 8dp, 10dp–14dp. This similarity suggests the same screw sense in these polymers, i.e., an M screw based on the presence of a positive couplet at ~300 nm. The CD

Table III. \(pK_a \) and \(n \) Values of Carboxylic Acid and Imidazole Functions of Polymers 7dp–14dp

<table>
<thead>
<tr>
<th>no.</th>
<th>COOH (pK_a)</th>
<th>ImH(^+) (pK_a)</th>
<th>ImH(^+) (n)</th>
<th>fraction(^a)</th>
<th>fraction(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7dp</td>
<td>5.2</td>
<td>2.0</td>
<td>2.1</td>
<td>5.4</td>
<td>0.00</td>
</tr>
<tr>
<td>8dp</td>
<td>4.9</td>
<td>1.0</td>
<td>0.6</td>
<td>5.2</td>
<td>1.00</td>
</tr>
<tr>
<td>9dp</td>
<td>3.1</td>
<td>1.4</td>
<td>0.5</td>
<td>3.8</td>
<td>0.65</td>
</tr>
<tr>
<td>10dp</td>
<td>4.6</td>
<td>1.8</td>
<td>0.7</td>
<td>5.2</td>
<td>0.32</td>
</tr>
<tr>
<td>11dp</td>
<td>3.8</td>
<td>2.3</td>
<td>1.3</td>
<td>5.6</td>
<td>0.33</td>
</tr>
<tr>
<td>12dp</td>
<td>4.7</td>
<td>1.3</td>
<td>1.2</td>
<td>5.6</td>
<td>0.43</td>
</tr>
<tr>
<td>13dp</td>
<td>5.4</td>
<td>1.8</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14dp</td>
<td>5.3</td>
<td>1.7</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Isoelectric point. \(^b\)Calculated from elemental analysis and titration data. \(^c\)Calculated from titration data.

Figure 3. CD spectra of deprotected polymers 7dp, 8dp, and 10dp–14dp in Tris buffer.

spectra of 9p and 9dp have been discussed by van der Eijk.\(^10\) From optical rotation data it was concluded that polymers 9 predominantly have an M helical configuration, i.e., the same configuration as the other polymers mentioned above.

The ionization state of polymers 7dp–14dp as a function of pH was determined by potentiometric titration. These titration experiments revealed that the imino functions of the polymer main chain have a low basicity and remain unprotonated even at pH's <2. From the titration curves the fractions of unprotonated imidazole, \(\alpha_{\text{Im}} \), and of carboxylate ions, \(\alpha_{\text{COO}^-} \), were calculated by using the modified Henderson–Hasselbach equation: \(\text{pH} = pK_a - \log \frac{(1 - \alpha)}{\alpha} \). The values calculated for \(\alpha \), \(pK_a(\text{ImH}^+) \) and \(pK_a(\text{COOH}) \) are presented in Table III. The titration curves give the impression that copolymers 10dp, 11dp, and 12dp have two different imidazole groups, A and B. Imidazole groups A have a normal \(pK_a(\text{ImH}^+) \) value of about 9.5. An example of such a titration is given in Figure 4.

The fraction of imidazole groups B increases with decreasing amounts of L-Ala-L-Ser residues in the polymers, as can be seen from Table III. The high value of \(pK_a(\text{ImH}^+) \) of imidazole groups B suggests that these groups strongly interact with neighboring carboxylate ions, for instance along the stacks of the side chains, as indicated below. When L-Ala-L-Ser residues (Table III) are inserted in these stacks the regular packing of imidazolyl and carboxylate functions is destroyed, giving rise to new sites of imidazole groups A with a lower \(pK_a(\text{ImH}^+) \) value. In line with this theory, homopolymer 9dp should only possess type B imidazole groups, which is indeed the case as can be concluded from Table III. The titration data for polymers 13dp and 14dp suggest that in these copolymers two types of imidazole groups are also present, which are, however, not clearly separated in the titration curves. Thus, apparent values of \(pK_a(\text{ImH}^+) \) 8.4 are calculated from these curves, intermediate to those of imidazole groups A and B.

Experimental Section

Melting points were determined on a Mettler FP5/FP51 photographic melting point apparatus. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Infrared (IR) spectra were recorded on Perkin-Elmer 297 and 284 spectrophotometers. Ultraviolet spectra were recorded on a Varian EM 390 instrument. Chemical shifts \((\delta) \) are given in ppm downfield from internal tetramethylsilane or sodium 2,2,3,3-tetradeutero-3-(trimethylsilyl)propionate. Abbreviations used: s = singlet, d = doublet, q = quartet, m = multiplet, b = broad. Elemental analyses were carried out by the Elemental Analytical Section of the Institute of Chemistry TNO, Utrecht, The Netherlands. TLC was performed on silica (Schleicher and Schüll TLC Ready Plastic Foil FR-1500) and detection was effected by UV and/or iodide vapor. Column chromatography was performed on silica (Merck Kieselgel 60, 230–400 mesh). CD spectra were recorded on a home built apparatus. This instrument measures the differential absorbance \((\Delta A) \) with a sensitivity better than \(1 \times 10^{-6} \). Solution viscosities were obtained with a Cannon-Umbelohde viscometer. Intrinsic viscosities, optical rotation, and CD data for solutions of the deprotected polymers were obtained in 0.023 M Tris buffer, pH 8.0–8.1. Titrations were performed on Mettler automatic titrator devices types DV 10, DK 12, DK 14, and DK 25.

1-L-Histidine monohydrochloride, \([\delta]_{D}^{20} +9.2^\circ \) (c 5, 5 M HCl), was purchased from Fluka; L-alanine, \([\delta]_{D}^{20} +9.7^\circ \), and D-alanine, \([\delta]_{D}^{20} -9.4^\circ \) (c 2, 1 M HCl) were purchased from BDH; L-serine, \([\delta]_{D}^{20} -6.8^\circ \), and D-serine \([\delta]_{D}^{20} +6.6^\circ \) (c 2, water), were purchased from Aldrich.

N-Formyl-L-alanine (1) was prepared by formylating L-alanine with a mixture of formic acid and acetic anhydride as described previously.\(^10\)

L-Serine methyl ester hydrochloride (2a) and D-serine methyl ester hydrochloride (2b) were synthesized from L-serine and D-serine through esterification with thionyl chloride in the presence of TEA.

Visser et al.

The synthesis of this dipeptide was performed as described before. Recrystallization of the crude product from methanol–ether gave white crystals: yield 80%; mp 127–128 °C (lit. 107–128 °C); [α]D -38.9° (c 1, methanol).

N-Formyl-l-alanyl-l-histidine Methyl Ester (3c).

A solution of 3.7 g (9.6 mmol) of 3a in 20 mL of dichloromethane was stirred overnight at room temperature and concentrated at a temperature below 50 °C in an oil pump vacuum. The resulting oil was dissolved in 100 mL of chloroform and extracted three times with 50 mL of water. The organic layer was dried (Na2SO4) and concentrated in vacuum.

The product was obtained as a yellow oil: yield 1.55 g (63%); [α]D -33.1° (c 2, chloroform); IR (KBr) 3260 (NH), 1740 (OCOCH3, COOCH3), 1660 (NHCO), 1500, 1375 and 1180 cm⁻¹.

Copolymer 13p.

This polymer was synthesized as described previously. Recrystallization from chloroform–ethanol afforded white crystals of pure 4c: yield 74%; mp 110–111 °C; [α]D -33.1° (c 2, methanol); IR (KBr) 3320 (NH), 1740 (COOH2, COOCH3), 1650, 1680 cm⁻¹ (NHCO); 1H NMR (CDCl3) + a trace of CDCl3. The reaction mixture was subsequently stirred for 3 h at 0 °C. After standing overnight at room temperature, the diacylurea was filtered off and the remaining solution was concentrated in vacuum to yield a light-yellow oil (3a). This oil was added. The mixture was stirred overnight at room temperature and concentrated at a temperature below 50 °C in an oil pump vacuum. The resulting oil was dissolved in 100 mL of chloroform and extracted three times with 50 mL of water. The organic layer was dried (Na2SO4) and concentrated in vacuum.

Compound 3a was obtained by crystallization from methanol–ether as a white crystalline product: yield 7.8 g (75%); mp 110–111 °C; [α]D -33.1° (c 2, methanol); IR (KBr) 3320 (NH), 1740 (COOH2, COOCH3), 1650, 1680 cm⁻¹ (NHCO); 1H NMR (CDCl3) + a trace of CDCl3. The reaction mixture was subsequently stirred for 3 h at 0 °C. After standing overnight at room temperature, the diacylurea was filtered off and the remaining solution was concentrated in vacuum to yield a light-yellow oil (3a). This oil was added. The mixture was stirred overnight at room temperature and concentrated at a temperature below 50 °C in an oil pump vacuum. The resulting oil was dissolved in 100 mL of chloroform and extracted three times with 50 mL of water. The organic layer was dried (Na2SO4) and concentrated in vacuum.

Polymerization.

The following stock solutions were prepared: A, 0.5 M of 5a in chloroform; B, 0.5 M of 5b in chloroform; C, 0.5 M of 5c in chloroform–methanol (9:1 v/v); D, 0.5 M of 6 in chloroform; E, 2 × 10⁻³ M of NiCl2·6H2O in methanol.

Homopolymer 7p. Isocyanide 5a was polymerized by adding 0.7 mL of stock solution E to 3 mL of stock solution A. The reaction was completed within 0.5 h. The solvent was removed in vacuum and the dark-yellow residue dissolved in 5 mL of hot chloroform. While stirring, the solution was added dropwise to a 50-fold excess of methanol–water 1:3 v/v. The precipitate was filtered off, washed with ether and water and dried in vacuum to yield 320 mg (87%) of 7p as a pale yellow solid: [α]D +205° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.1 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 1740 (COOCH3, COOCH2), 1660 cm⁻¹ (NHCO).

Homopolymer 8p. This polymer was synthesized as described for 7p by using 0.7 mL of stock solution E and 3 mL of stock solution B. The polymerization took 4 h and yielded 285 mg (78%) of 8p as a light-brown powder: [α]D +33° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.0 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 1740 (COOCH3, COOCH2), 1660 cm⁻¹ (NHCO).

Homopolymer 9p. The synthesis of this polymer was performed as described before. This polymer was obtained by mixing the following stock solutions: 1.5 mL of stock solution A, 1.0 mL of stock solution C, and 0.7 mL of stock solution E. The reaction was completed within 0.5 h. Isolation of the product was achieved as described for 7p: yield 340 mg (76%) of 10p as a light-yellow powder: [α]D +134° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.1 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3270 (NH), 1740 (COOCH3, COOCH2), 1660 (NHCO), 1600, 1375 and 1180 cm⁻¹ (tosyl).

Copolymer 10p. This polymer was obtained by mixing 2 mL of stock solution A and 1 mL of stock solution C and 1 mL of stock solution E. The reaction was completed within 0.5 h. The solvent was removed in vacuum and the material was washed with ether and water. The resulting white solid was dried in vacuum to yield 349 mg (72%) of 11p as a white solid: [α]D +115° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.1 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 1740 (COOCH3, COOCH2), 1660 (NHCO), 1600, 1375 and 1180 cm⁻¹ (tosyl).

Copolymer 11p. This polymer was synthesized as described for 7p and 10p by mixing the following stock solutions: 1.5 mL of stock solution A, 0.7 mL of stock solution C and 1 mL of stock solution E. The reaction was completed within 0.5 h and yielded 349 mg (72%) of 12p as a white solid: [α]D +115° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.1 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 1740 (COOCH3, COOCH2), 1660 (NHCO), 1500, 1375 and 1180 cm⁻¹ (tosyl).

Copolymer 12p. This polymer was synthesized as described for 7p and 10p by using 1 mL of stock solution A, 2 mL of C, and 0.7 mL of E. The reaction was completed within 0.5 h and yielded 340 mg (65%) of 13p as a white solid: [α]D +115° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.1 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 1740 (COOCH3, COOCH2), 1660 (NHCO), 1500, 1375 and 1180 cm⁻¹ (tosyl).

Copolymer 13p. This polymer was synthesized as described for 7p and 10p by using 2 mL of solution A, 2 mL of C, 1 mL of D, and 1.2 mL of E. The polymerization took 1.5 h and yielded 380 mg (53%) of 14p as a white solid: [α]D +28° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 3.1 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 2950 (CH4), 1740 (COOCH3, COOCH2), 1660 (NHCO), 1600, 1375 and 1180 cm⁻¹ (tosyl).

Copolymer 14p. This polymer was synthesized as described for 7p and 10p by using 1.5 mL of stock solution B, 1.5 mL of C, and 0.7 mL of E. The polymerization took 3 h and yielded 340 mg (90%) of 14p: [α]D +28° (c 0.2, chloroform–methanol, 5:2 v/v); [γ]D 0.45 dL/g (chloroform–methanol, 5:2 v/v, 30.00 °C); IR (KBr) 3260 (NH), 1740 (COOCH3, COOCH2), 1660 (NHCO),
Manganese(III) γ-Lactone Annihilation with Substituted Acids

William E. Fristad,* John R. Peterson, and Andreas B. Ernst

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455

Received March 6, 1985

Manganese(III) acetate oxidation of several HOOCCH₂X, X = electron withdrawing group, in the presence of alkenes led to the formation of α-substituted γ-lactones. Chloroacetic acid gave α-chloro γ-lactones, which were converted in two steps to the corresponding α,β-unsaturated γ-lactones. 3-Chloropropanoic acid led to the α-methylene γ-lactone after base induced elimination of HCl. Cyanocetic acid produced α-cyano γ-lactones which could be hydrolytically decyanated or converted to the α-methylene γ-lactones in two steps. Potassium methyl malonate was oxidized and annulated onto alkenes to give α-carboxothioxy γ-lactones in reasonable yields. The method demonstrates a general route into several useful types of substituted γ-lactones.

The annihilation of a γ-lactone ring onto an alkene by manganese(III) acetate, [Mn(OAc)₃(OAc)(HOOAc)]⁻·5H₂O = [MnO], according to eq 1 has been examined by us² and others. In addition, limited studies of substituted acetic acid, XCH₂COOH, X = Me, N₂⁶, CN, have been reported

10 H₂O/3

Polymer 10dp was obtained as a voluminous, spongy, yellowish-brown solid: yield 194 mg (66%); [α]₂⁰D = -78° (c 0.2, Tris buffer); [γ] 0.50 dL/g (Tris buffer, 30.00 °C). Anal. Calcd for C₁₇H₁₃N₃O₇K₂(H₂O)₁₃: C, 44.4; H, 5.4; N, 18.3; O, 26.9; K, 5.7. Found: C, 44.6; H, 5.2; N, 18.0; O, 26.9; K, 2.1. IR (KBr) data as for 8dp within 5 cm⁻¹.

Polymer 13dp. 13p (350 mg) was treated as described for 11dp. Polymer 13dp was obtained as a dark-brown powder: yield 191 mg (59%); [α]₂⁰D = -28° (c 0.2, Tris buffer); [γ] 0.08 dL/g (Tris buffer, 30.00 °C). Anal. Calcd for C₁₅H₁₁N₃O₇K₂(H₂O)₁₃: C, 44.2; H, 5.7; N, 18.3; O, 26.9; K, 5.7. Found: C, 44.2; H, 5.2; N, 18.3; O, 26.4; K, 5.9. IR (KBr) data as for 8dp and 10dp within 5 cm⁻¹.

Acknowledgment. This research was supported by The Netherlands Foundation for Chemical Research (SON) with financial aid from The Netherlands Organization for the Advancement of Pure Research (ZWO).

Registry No. 1, 10512-86-4; 2a, 5690-80-8; 2b, 5874-57-7; 4a, 97171-35-2; 4b, 97171-36-3; 4c, 75382-89-7; 5a, 97171-40-9; 5b, 97171-37-4; 5c, 75345-20-9; 7p, 97190-26-8; 8p, 97181-38-5; 10p, 97171-41-0; 13p, 97233-23-3; 14p, 97233-24-4; Nicl₂, 7718-54-9; acetic anhydride, 108-24-7.
