Search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory

(The Pierre Auger Collaboration)

1 Universität Siegen, Fachbereich 7 Physik – Experimentelle Teilchenphysik, Germany
2 Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Portugal
3 Osservatorio Astrofisico di Torino (INAF), Torino, Italy
4 INFN, Sezione di Torino, Italy
5 Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Université Paris 6 et Paris 7, CNRS-IN2P3, France
6 Universidade de São Paulo, Inst. de Física, São Paulo, Brazil
7 Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), Argentina
8 Instituto de Tecnologías en Detección y Astroparticulas (CNEA, CONICET, UNSAM), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Argentina
9 Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Argentina
10 Universidad Nacional Autónoma de México, México
11 Universidad de Santiago de Compostela, Spain
12 INFN, Sezione di Napoli, Italy
13 Gran Sasso Science Institute (INFN), L’Aquila, Italy
14 Department of Physics and Astronomy, Lehman College, City University of New York, USA
15 Universidad Complutense de Madrid, Spain
16 University of Bucharest, Physics Department, Romania
17 Universidad Industrial de Santander, Colombia
18 Observatorio Pierre Auger, Argentina
19 Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Argentina
20 University Politecnica of Bucharest, Romania
21 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Romania
22 Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik (IKP), Germany
23 Ohio State University, USA
24 Bergische Universität Wuppertal, Department of Physics, Germany
25 University of Adelaide, Australia
26 Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Grenoble-Alpes, CNRS/IN2P3, France
27 Università Torino, Dipartimento di Fisica, Italy
28 Max-Planck-Institut für Radioastronomie, Bonn, Germany
29 Institut de Physique Nucléaire d’Orsay (IPNO), Université Paris 11, CNRS-IN2P3, France
30 Institute of Physics (FZU) of the Academy of Sciences of the Czech Republic, Czech Republic
31 Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Italy
32 INFN, Sezione di Lecce, Italy
33 INFN Laboratori Nazionali del Gran Sasso, Italy
34 now at Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany
35 Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Física, Brazil
36 Institute of Nuclear Physics PAN, Poland
37 Karlsruhe Institute of Technology, Institut für Kernphysik (IKP), Germany
38 Colorado State University, USA
39 RWTH Aachen University, III. Physikalisches Institut A, Germany
40 Universidad de Granada and C.A.F.P.E., Spain
41 Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, Nijmegen, Netherlands
42 Universitá di Catania, Dipartimento di Fisica e Astronomia, Italy
43 INFN, Sezione di Catania, Italy
44 Universidad Autónoma de Chiapas, México
45 Institute of Space Science, Romania
46 Universidad Michoacana de San Nicolás de Hidalgo, México
47 Universidade Estadual de Campinas (UNICAMP), Brazil
48 Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Italy
49 Pennsylvania State University, USA
We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultrarelativistic magnetic
monopoles range from 10^{-19} (cm2 sr s)$^{-1}$ for a Lorentz factor $\gamma = 10^0$ to 2.5×10^{-21} (cm2 sr s)$^{-1}$ for $\gamma = 10^{12}$. These results - the first obtained with a UHECR detector - improve previously published limits by up to an order of magnitude.

PACS numbers: 14.80.Hv, 96.50.sd, 98.70.Sa

I. INTRODUCTION

Maxwell’s unified description of electric and magnetic phenomena is one of the greatest achievements of 19th century physics. Free magnetic charges and currents are not allowed in Maxwell’s equations, a consequence of their apparent absence in Nature. On the other hand, there are essential theoretical motivations for magnetic monopoles. Their existence would naturally explain the quantization of electric charge, as first noted by Dirac [1] in 1931. Also, magnetic monopoles are required in Grand Unified Theories (GUTs), where they appear as intrinsically stable topological defects when a symmetry breaking results in a U(1) subgroup [2–4].

In typical GUT models, supermassive magnetic monopoles ($M \approx 10^{26}$ eV/c2) are produced in the early Universe at the phase transition corresponding to the spontaneous symmetry breaking of the unified fundamental interactions. When the original unified group undergoes secondary symmetry breaking at lower energy scales, so-called intermediate-mass monopoles (IMMs, $M \sim 10^{11} - 10^{20}$ eV/c2) may be generated. These particles, too massive to be produced at accelerators, may be present today as a cosmic-radiation relic of such early Universe transitions.

Supermassive magnetic monopoles should be gravitationally bound to the Galaxy (or to the Sun or Earth) with non-relativistic virial velocities [2, 3]. Lighter magnetic monopoles can reach relativistic velocities through acceleration in coherent domains of the Galactic and intergalactic magnetic fields, as well as in astrophysical objects (e.g., neutron stars) [3, 4]. Kinetic energies of the order of 10^{25} eV have been predicted [4], which result in ultrarelativistic velocities for IMMs. Large-exposure experimental searches for magnetic monopoles are based on their velocity-dependent interactions with matter, with a wide range of velocities allowed for GUT monopoles.

There is a long history of experimental searches for magnetic monopoles with a variety of experiments such as MACRO [5], AMANDA [6], Baikal [7], SLIM [8], ANITA [9] and IceCube [10]. The strongest upper limit on the flux of non-relativistic magnetic monopoles ($4 \times 10^{-5} < \beta = v/c < 0.5$) comes from the MACRO experiment at $\approx 1.5 \times 10^{-16}$ (cm2 sr s)$^{-1}$ (90% C.L.) [5]. At relativistic velocities ($\beta \approx 0.9$), the IceCube Observatory has placed the best limit at $\approx 4 \times 10^{-18}$ (cm2 sr s)$^{-1}$ [10]. The best limit on the flux of ultrarelativistic IMMs (Lorentz factor $\gamma \approx 10^{11}$) is reported by the ANITA-II experiment at $\approx 10^{-19}$ (cm2 sr s)$^{-1}$ [13].

These upper limits are below the Parker bound [15] of $\approx 10^{-15}$ (cm2 sr s)$^{-1}$, which represents the largest possible magnetic-monopole flux consistent with survival of the Galactic magnetic field. However, the original Parker bound does not take into account the current knowledge of the Galactic magnetic field and its almost chaotic nature, with domain lengths in the range 1 – 10 kpc. The so-called “extended Parker bound” [16] becomes mass-dependent with $\Phi \sim 10^{-16} M/(10^{26}$ eV) (cm2 sr s)$^{-1}$ with M the monopole mass, and is well below current experimental sensitivities (for relativistic and ultrarelativistic monopoles).

In this paper, we report a search for ultrarelativistic IMMs with data collected with the Pierre Auger Observatory between 1 December 2004 and 31 December 2012. Details of the Observatory are given in Section III. The search is motivated by the large energy deposited by ultrarelativistic IMMs along their path in the atmosphere, comparable to that of UHECRs, with a distinctive longitudinal development well-suited for detection by the fluorescence detector. The characteristics of air showers induced by IMMs are described in Section III. Simulations and event reconstruction procedures are presented in Section IV. The event selection criteria are described in Section V. The exposure, i.e., the time-integrated aperture, for the IMM search is evaluated in Section VI. Details of the data analysis and results are presented in Section VII. Conclusions are drawn in Section VIII.

II. PIERRE AUGER OBSERVATORY

The Pierre Auger Observatory [17] is the largest UHECR detector currently in operation. Located in the southern hemisphere in western Argentina, just northeast of the town of Malargüe (69°W, 35°S, 1400 m a.s.l.), it covers an area of 3000 km2 with a surface-detector array (SD) [18] overlooked by a fluorescence detector (FD) [19].

The SD consists of 1660 water-Cherenkov detectors arranged in a triangular grid of 1500 m spacing, operating with a duty cycle of nearly 100%. The SD stations detect at ground level the secondary particles of the extensive air shower (EAS) produced by the UHECR primary interaction in the atmosphere. The FD detects the UV fluorescence light from nitrogen molecules excited by the EAS particles along their path in the atmosphere. Its operation is limited to clear moonless nights, resulting in a duty cycle of $\sim 15\%$ [18]. The FD consists of 24 telescopes, arranged in groups of six at four sites overlooking the SD. Each telescope has a field of view of $30° \times 30°$ in

\[\text{http://www.auger.org} \]

*Electronic address: auger.spokespersons@fnal.gov
azimuth and elevation, with a 13 m² spherical segmented mirror collecting fluorescence light onto a 440 photomultiplier (PMT) camera. The telescope’s 3.8 m² aperture optics are of the Schmidt design and are equipped with an annular corrector lens to minimize spherical aberration. The FD measures the longitudinal development of the UHECR shower in the atmosphere, since the fluorescence light is proportional to the energy deposited by the EAS particles [20–22]. The depth corresponding to the maximum energy deposit, \(X_{\text{max}} \), and a calorimetric estimate of the shower energy are obtained from a fit of the shower profile. For the present analysis, we will use “hybrid” events - showers simultaneously detected by the FD and SD - which are reconstructed with superior resolution: \(\sim 0.6^\circ \) in arrival direction, \(\sim 6\% \) in energy and \(\leq 20 \text{ g/cm}^2 \) in \(X_{\text{max}} \), respectively. Systematic uncertainties on the energy and \(X_{\text{max}} \) are 14% [17, 24] and \(\leq 10 \text{ g/cm}^2 [23] \), respectively.

III. ULTRARELATIVISTIC MONOPOLE-INDUCED AIR SHOWERS

Electromagnetic interactions of magnetic monopoles have been extensively investigated [7, 25]. The electromagnetic energy loss of a magnetic monopole in air is shown in Figure 1 as a function of its Lorentz factor \(\gamma = E_{\text{mon}}/M \). Collisionsal energy loss is the dominant contribution for \(\gamma \leq 10^4 \). At higher Lorentz factors, pair production and photo-nuclear interactions become the main cause of energy loss. Bremsstrahlung is highly suppressed by the large monopole mass. An ultrarelativistic IMM would deposit a large amount of energy in its passage through the Earth’s atmosphere, comparable to that of a UHECR. For example, a singly-charged IMM with \(\gamma = 10^{11} \) loses \(\approx 700 \text{ PeV/(g/cm}^2 \) (cf. Figure 1), which sums up to \(\approx 10^{20.8} \text{ eV} \) when integrated over an atmospheric depth of \(\approx 1000 \text{ g/cm}^2 \). This energy will be dissipated by the IMM through production of secondary showers initiated by photo-nuclear effects and pair productions along its path.

In order to study the characteristics of IMM-induced showers, we implemented magnetic-monopole interactions in the CORSIKA air-shower simulation software [20]. Specifically, existing subroutines for muonic collisional loss, \(e^+e^- \)-pair production and photo-nuclear interaction were appropriately modified in CONEX [27], which can be used within CORSIKA to perform a combination of stochastic particle production and numeric integration of particle cascades. We used [28, 29] to parameterize the differential cross section for \(e^+e^- \)-pair production and the Bezrukov-Bugaev parameterization [30, 31] for the photo-nuclear interaction model. To describe magnetic monopole interactions, the cross sections were scaled up by a factor \(z_M^2 [1, 22] \), where \(z_M = 1/(2\alpha) \) is the singly-charged monopole charge and \(\alpha \) is the fine-structure constant. Pair production and photo-nuclear interactions were treated explicitly as stochastic processes resulting in secondary particles produced along the monopole path in the atmosphere. Standard CONEX routines were used to simulate showers originating from these secondary particles. Collisional losses were implemented as continuous energy losses.

The longitudinal profile of the energy deposited by an ultrarelativistic IMM of \(E_{\text{mon}} = 10^{25} \text{ eV} \), \(\gamma = 10^{11} \) and zenith angle of 70° is shown in Figure 2. When compared with a standard UHECR proton shower of energy \(10^{20} \text{ eV} \) (black solid line in Figure 2), the IMM shower presents a much larger energy deposit and deeper development, due to the superposition of many showers uniformly produced by the IMM along its path in the atmosphere. This distinctive feature will be used in our analysis, which is based on the shower development measured in the hybrid events. Also, we have confirmed this feature in case if we use other parameterizations (e.g., ALLM [32]), meaning the difference between cross sections is a second order effect for the shower profile of IMM. Depending on their energy, ultrarelativistic IMMs may traverse the Earth [13, 14] and emerge from the ground producing upward-going showers. We have not searched for this kind of candidate, which would not guarantee a high-quality reconstruction of the shower development.

IV. MONTE CARLO SIMULATIONS AND EVENT RECONSTRUCTION

Monte Carlo samples of ultrarelativistic IMMs were simulated for Lorentz factors in the range \(\gamma = 10^8 - 10^{12} \) at a fixed monopole energy of \(E_{\text{mon}} = 10^{25} \text{ eV} \), because the monopole energy loss does not depend on \(E_{\text{mon}} \) but rather on \(\gamma \) in the ultrarelativistic regime of this search. While we used a fixed \(E_{\text{mon}} \) in the simulations, the results can be readily applied to a much larger range of monopole energies.

FIG. 1: Energy loss of a magnetic monopole in air as a function of its Lorentz factor \(\gamma \).
To estimate the background from UHECRs, we simulated proton showers with energy E_p between 10^{18} eV and 10^{21} eV. Proton primaries are chosen to obtain a conservative estimate of the cosmic-ray background (cf. Sec. VII). We used three different models - QGSJetII-04, Sibyll 2.1 and EPOS-LHC - to account for uncertainties in the hadronic interactions. Events were simulated according to an E_p^{-1} energy spectrum, to ensure sufficient Monte Carlo statistics at the highest energy, and then appropriately weighted to reproduce the energy spectrum measured by the Pierre Auger Observatory [33].

For both the IMM and UHECR simulations, we used the CORSIKA package [26] to generate an isotropic distribution of showers above the horizon, and the Auger Offline software [34] to produce the corresponding FD and SD events. We found that the standard event reconstruction, which is optimized for UHECRs, provides equally accurate direction and longitudinal profile for ultrarelativistic IMM showers. An example of reconstructed longitudinal profile for a simulated magnetic monopole of energy 10^{25} eV and $\gamma = 10^{11}$ is shown in Figure 3 indicating the profile of the generated CORSIKA shower (blue line) and the result of a fit of the reconstructed profile with a Gaisser-Hillas function [35] (red line). For standard UHECRs, the energy, E_{sh}, and the depth of maximum development, X_{max}, of the shower are estimated by the integral of the fitted profile and by the position of its maximum, respectively. When applied to an ultrarelativistic IMM shower profile, the Gaisser-Hillas parameterization provides a very good fit of the portion of the profile detected in the FD field of view (cf. red and blue lines in Figure 3 in the relevant range). Also, due to the steep rising of the ultrarelativistic IMM profile, the fit systematically converges to a value of X_{max} beyond the lower edge of the FD field of view, corresponding to the largest visible slant depth, X_{up}. We will use this characteristic to reject most of the standard UHECR showers, which constitute the background for this search. Since X_{max} of standard UHECR showers are located in FD field of view, a specific selection is required to search for the IMM profile.

V. EVENT SELECTION

We restricted our event selection to time periods with good operating conditions of the FD telescopes and well-defined calibration constants. Additional requirements were imposed on the quality of the atmosphere (aerosols and cloud coverage). Details on these data-quality criteria can be found in [28]. A total of 376,084 hybrid shower
candidates were selected.

A further set of selection criteria was applied to ensure good-quality showers. We required the zenith angle of the shower to be < 60°, and the distance of the shower core to the SD station with the highest signal to be less than 1500 m. The shower must be seen by at least five FD pixels over a slant depth interval of at least 200 g/cm². We rejected events with gaps in their profile of more than 20% of the profile length, which could be due to telescope-border effects. The Gaisser-Hillas fit of the shower profile was required to have a \(\chi^2 \)-statistic of less than 1500 m. The shower must be seen by at least five FD pixels over a slant depth interval of at least 200 g/cm². To guarantee full SD-trigger efficiency, the shower must have a minimum energy. Rather than using \(E_{\text{sh}} \), which is ill-defined for an ultrarelativistic IMM shower, we employed the energy deposited at the largest visible slant depth \(\Delta E \), as a discriminating variable related to the shower energy (Figure 3). The \(\Delta E \) is calculated by the result of the Gaisser-Hillas fit. The requirement \(\Delta E > 3.0 \text{ PeV/(g/cm}^2\text{)} \) is equivalent to an energy threshold of \(\approx 10^{18.5} \text{ eV} \), where the SD is fully efficient. These shower-quality criteria selected a sample of well-reconstructed events, and are efficient for UHECRs as well as ultrarelativistic IMM showers.

Additional criteria for IMM selection were established from Monte Carlo simulations described in Section IV. We required \(\gamma \) to be larger than \(X_{\text{up}} \), which is almost always fulfilled by ultrarelativistic IMM showers. Only 6% of the UHECR proton showers of \(10^{18.5} \text{ eV} \) survived this cut, the fraction increasing to 32% for \(10^{21} \text{ eV} \) showers. A further reduction was obtained by appropriate constraints on the penetration of the shower and its energy deposit. To illustrate this second requirement, we show in Figure 4(a) the correlation of \(\Delta E/dX \mid_{X_{\text{up}}} \) with \(X_{\text{up}} \) for UHECR background events passing the shower-quality criteria. When \(\gamma \) is required, the number of events is drastically reduced and the population becomes constrained in a much smaller region, as shown in Figure 4(b). The maximum value of \(\gamma \) found in the UHECR proton simulated events is \(\approx 1100 \text{ g/cm}^2 \), which results in the \(X_{\text{up}} \) upper boundary of Figure 4(b): \(X_{\text{max}} \) is always in the FD field of view when \(X_{\text{up}} \geq 1100 \text{ g/cm}^2 \). On the other hand, the reconstructed \(X_{\text{max}} \) will always be outside the FD field of view for ultrarelativistic IMM showers, independently of the shower’s \(X_{\text{up}} \).

This is apparent in Figure 5 where the correlation of \(\Delta E/dX \mid_{X_{\text{up}}} \) with \(X_{\text{up}} \) is shown for ultrarelativistic IMM simulated events. The background from UHECRs is almost eliminated by excluding an appropriate region of the \((X_{\text{up}}, \Delta E/dX \mid_{X_{\text{up}}})\) plane. We optimized the selection to achieve less than 0.1 background event expected in the data set of this search. The final requirement, \(X_{\text{up}} > 1080 \text{ g/cm}^2 \) or \(\Delta E/dX \mid_{X_{\text{up}}} > 150 \text{ PeV/(g/cm}^2\text{)} \), is shown in Figure 4(b) and Figure 5 as dashed boxes, and results in an expected background of 0.07 event in the search-period data set.

The selection criteria used for this search are summarized in Table I. The corresponding selection efficiency for ultrarelativistic IMMs ranges from 3% for \(\gamma = 10^9 \) to 91% for \(\gamma = 10^{12} \) (see Table I).

VI. EXPOSURE

The flux \(\Phi \) of ultrarelativistic IMMs of Lorentz factor \(\gamma \) is given by

\[
\Phi(\gamma) = \frac{k}{E(\gamma)}.
\]

where \(k \) is the number of events surviving the selection criteria of Table I (or an appropriate upper limit if no candidate is found), and \(E(\gamma) \) is the exposure, i.e., the time-integrated aperture for the hybrid detection of ul-
TABLE I: Event-selection criteria and data-selection results.

<table>
<thead>
<tr>
<th>Shower-quality selection criteria</th>
<th>#events</th>
<th>f(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstructed events</td>
<td>376,084</td>
<td></td>
</tr>
<tr>
<td>Zenith angle < 60°</td>
<td>360,159</td>
<td>95.8</td>
</tr>
<tr>
<td>Distance from nearest SD < 1500 m</td>
<td>359,467</td>
<td>99.8</td>
</tr>
<tr>
<td>Number of FD pixels > 5</td>
<td>321,293</td>
<td>89.4</td>
</tr>
<tr>
<td>Slant-depth interval > 200 g/cm²</td>
<td>205,165</td>
<td>63.9</td>
</tr>
<tr>
<td>Gaps in profile < 20%</td>
<td>199,625</td>
<td>97.3</td>
</tr>
<tr>
<td>profile fit χ^2/ndf < 2.5</td>
<td>197,293</td>
<td>98.8</td>
</tr>
<tr>
<td>$dE/dX</td>
<td>{X{up}} > 3.0$ PeV/(g/cm2)</td>
<td>6812</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic-monopole selection criteria</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{max} > X_{up}$</td>
<td>352</td>
<td>5.2</td>
</tr>
<tr>
<td>$X_{up} > 1080$ g/cm2 or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$dE/dX</td>
<td>{X{up}} > 150$ PeV/(g/cm2)</td>
<td>0</td>
</tr>
</tbody>
</table>

FIG. 5: Correlation of $dE/dX|_{X_{up}}$ with X_{up} for simulated ultrarelativistic IMM of energy 10^{25} eV and Lorentz factors $\gamma = 10^{10}$ (a) and 10^{11} (b). The color-coded scale indicates the number of events expected in the search-period data set assuming a flux of 10^{-20} (cm2 sr s)$^{-1}$. Only events outside the dashed boxes are kept in the final selection for ultrarelativistic IMMs.

The number of events passing each selection criterion is reported, together with the corresponding fraction of events remaining, f. The number of selected IMM events changed by 9%, which was taken as an estimate of the uncertainty on the exposure. From the uncertainty on two selection variables, X_{up} was changed by ± 10 g/cm2 or 150 PeV/(g/cm2) and, therefore, X_{up} was changed by the uncertainty on the FD energy scale.

trarelativistic IMMs. The exposure is defined as [36]:

$$E(\gamma) = \int_{S_{gen}} \int_{\Omega} \int_{T} \epsilon(\gamma, t, \theta, \phi, x, y) \cos \theta d\Omega dt,$$ \hspace{1cm} (2)

where ϵ is the detection efficiency for an ultrarelativistic IMM of zenith angle θ and azimuth angle ϕ intersecting the ground at a position (x, y), Ω is the solid angle, S_{gen} is the area over which events are detectable, and T is the time period of the search data set.

In general, the detection efficiency ϵ changes over time, which must be taken into account in the calculation of the exposure. In fact, the effective area of the SD array and the number of operating FD telescopes grew during the Observatory installation from 2004 to 2008, and then varied due to occasional failures of the SD stations or FD telescopes. Sometimes weather conditions (e.g., wind, rain) introduced down-time in the operation of the FD. Also, the night-sky background and atmospheric conditions, such as aerosol concentration and cloud coverage, changed during data taking, which affected the sensitivity of the FD telescopes.

These effects were properly taken into account with a time-dependent detector simulation [36], which makes use of slow-control information and atmospheric measurements recorded during data taking. The detector configuration and atmospheric characteristics were changed in the simulation according to the time period T. For each Lorentz factor γ, we generated a number $N(\gamma, \cos \theta)$ of ultrarelativistic IMM showers over an area S_{gen}, with $n(\gamma, \cos \theta)$ of them fulfilling the event-selection criteria of Table I. Then the exposure given by Equation (2) was numerically evaluated:

$$E(\gamma) = 2\pi S_{gen} T \sum_{i} \frac{n(\gamma, \cos \theta_i)}{N(\gamma, \cos \theta_i)} \cos \theta_i \Delta \cos \theta_i.$$ \hspace{1cm} (3)

Table I shows the estimated hybrid exposure as a function of the IMM Lorentz factor. The exposure corresponding to the search period ranges from ≈ 100 km2 sr yr for $\gamma = 10^9$ to ≈ 3000 km2 sr yr for $\gamma \geq 10^{11}$. Several sources of systematic uncertainties were considered. The uncertainty of the on-time calculation resulted in an uncertainty of 4% on the exposure. The detection efficiency estimated through the time-dependent detector simulation depends on the fluorescence yield assumed in the simulation, on the FD shower-reconstruction methods and on the atmospheric parameters and FD calibration constants recorded during data taking. Following the procedures of [37], the corresponding uncertainty on the exposure was estimated to be 18%. To estimate the uncertainty associated with the event selection, we changed the size of the $(X_{up}, dE/dX|_{X_{up}})$ selection box according to the uncertainty on the two selection variables. X_{up} was changed by ± 10 g/cm2, corresponding to the uncertainty on X_{max}, and $dE/dX|_{X_{up}}$ was changed by the uncertainty on the FD energy scale. The number of selected IMM events changed by 9%, which was taken as an estimate of the uncertainty on the exposure. From the
The search for ultrarelativistic IMMs was performed following a blind procedure. The selection criteria described in Section VII were optimized using Monte Carlo simulations and a small fraction (10%) of the data. This training data set was excluded from the final search period. Then the selection was applied to the full sample of data collected between 1 December 2004 and 31 December 2012. The number of events passing each of the selection criteria is reported in Table I. The correlation of \(dE/dX \) with \(X_{\text{up}} \) for events passing the shower-quality selection criteria and \(X_{\text{max}} > X_{\text{up}} \) is shown in Figure 6. The corresponding distributions of \(dE/dX \) and \(X_{\text{up}} \) are compared in Figure 7 with Monte Carlo expectations for a pure UHECR proton background, showing a reasonable agreement between data and simulations. The partial difference indicates there are heavier nuclei than protons as well. No event passed the final requirement in the \((X_{\text{up}}, dE/dX) \) plane, and the search ended with no candidate for ultrarelativistic IMMs.

Given the null result of the search, a 90% C.L. upper limit on the flux of ultrarelativistic IMMs, \(\Phi^{90\%\text{C.L.}} \), was derived from Equation II with exposure \(\mathcal{E}(\gamma) \) as in Table I and \(k = 2.44 \). This value of \(k \) corresponds to the Feldman-Cousins upper limit for zero candidates and zero background events. We derived in Section VII a background level of 0.07 event which is likely to be overestimated, since a pure proton composition was assumed while heavier nuclei appear to be a dominant component at the highest energies. In fact, the fraction of deeply-penetrating showers produced by heavy nuclei is significantly smaller resulting in fewer background events for the IMM search. Given the uncertainty in the background, we have taken a conservative approach and assumed zero background events, which provides a slightly worse limit.

In Section VII we estimated a 21% systematic uncertainty on the exposure which must be taken into account in the upper limit. Rather than following the propagation of statistical and systematic uncertainties outlined in [38], which would worsen the upper limit by a factor of 1.05, we adopted a more conservative approach and multiplied \(\Phi^{90\%\text{C.L.}} \) by a factor of \(f = 1 + n \times 0.21 \), where \(n = 1.28 \) corresponds to the 90% C.L.

Our final 90% C.L. upper limits on the flux of ultrarelativistic IMMs are reported in Table II and shown in Figure 8 together with results from previous experiments. Following the treatment of [13], the MACRO and SLIM limits extrapolated to \(\gamma \geq 10^9 \) were weakened by a factor of two to account for the IMM attenuation when passing through the Earth.

Several checks of the analysis were performed. Variation of the selection criteria within reasonable ranges still resulted in no candidate. The UHECR energy spectrum was varied within its uncertainties, with negligible effect on the background estimation. The background for the IMM search is dominated by deeply-penetrating UHECR showers, which are found in the tail of the \(X_{\text{max}} \)
distribution and depend on the characteristics of the hadronic interactions. We used three different hadronic-interaction models (Section VIII) to simulate UHECR protons for background estimation. Ultrahigh-energy photons are also expected to produce deeply-penetrating showers, which may mimic an IMM event. The photon hypothesis should be carefully evaluated in case a candidate IMM is found. Since this search ended with a null result, the zero background assumption produces the most conservative limit also including the possibility of ultrahigh-energy photons. Lastly, we compared the CORSIKA energy-loss model with analytical approximations and other Monte Carlo codes, and found good agreement.

VIII. CONCLUSIONS

We presented the first search for magnetic monopoles ever performed with a UHECR detector, using the Pierre Auger Observatory. The particle showers produced by electromagnetic interactions of an ultrarelativistic monopole along its path through the atmosphere result in an energy deposit comparable to that of a UHECR, but with a very distinct profile which can be distinguished by the fluorescence detector. We have looked for such showers in the sample of hybrid events collected with Auger between 2004 and 2012, and no candidate was found. A 90% C.L. upper limit on the flux of magnetic monopoles was placed, which is compared with results from previous experiments in Figure B. Ours is the best limit for \(\gamma \geq 10^5 \), with a factor of ten improvement for \(\gamma \geq 10^{9.5} \). This result is valid for a broad class of intermediate-mass ultrarelativistic monopoles (\(E_{\text{mon}} \approx 10^{25} \) eV and \(M \sim 10^{11} - 10^{16} \) eV/c\(^2\)) which may be present today as a relic of phase transitions in the early universe. Since the background - less than 0.1 event in the current data set - is not a limiting factor in the search, the upper bound will improve with the steadily increasing exposure of the Pierre Auger Observatory.

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

- Comisión Nacional de Energía Atómica, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Gabinete de la Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil; Grant No. MSMT CR LG15014, LO1305 and LM2015038 and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Régional Ile-de-France, Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences de l’Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Württemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium für
0707.1652.

