The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/159727

Please be advised that this information was generated on 2017-08-05 and may be subject to change.
Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at $\sqrt{s} = 13$ TeV

The ATLAS Collaboration *

A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb$^{-1}$ of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at $\sqrt{s} = 13$ TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Models of TeV-scale gravity postulate that the fundamental scale of gravity, M_D, in a higher-dimensional space–time is much lower than is measured in our four-dimensional space–time. In large extra-dimensional models (e.g. the model proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) [1,2]) there are n additional flat extra dimensions, assumed to be compactified on a torus with a common radius much larger than $1/M_D$. Another class of models (e.g. that of Randall and Sundrum (RS) [3,4]) uses one extra dimension in a highly warped anti-de-Sitter space. Both of these types of model can address the large difference between the scale of electroweak interactions, $\mathcal{O}(0.1$ TeV), and that of gravity, the Planck scale, $M_{Pl} = \mathcal{O}(10^{16}$ TeV), in a natural way. Interesting signatures are expected in these models in the form of non-perturbative gravitational states such as microscopic black holes [5,6]. Such final states could be produced in proton–proton (pp) interactions at the Large Hadron Collider (LHC) [7]. In the absence of a full theory of quantum gravity, predictions for production cross-sections and decays of black holes rely on semi-classical approximations which are expected to be valid if the mass of the black hole is well above M_D and also higher than the Hawking temperature [8]. A strong rise in the production rate of such states is expected when the energy scale of the interactions reaches the order of M_D. Since the gravitational interaction couples to the energy–momentum tensor rather than gauge quantum numbers, final states are expected to be populated “democratically”, according to the number of available Standard Model degrees of freedom. For this reason, it is expected that a significant fraction of final states would contain leptons. This search exploits this feature to enhance the signal contribution in comparison with the dominant background at the LHC, which arises from quark and gluon scattering processes forming hadronic final states. Final states with at least three high transverse momentum (p_T) objects are selected, of which at least one must be an electron or muon (leptons in what follows) and the others can be either leptons or hadronic jets. The discriminating variable used in this search, $\sum p_T$, is the scalar sum of the transverse momenta of high p_T objects in an event. The signal is expected to appear at high $\sum p_T$. Searches by ATLAS [9–12] and CMS [13,14] during Run 1 of the LHC did not reveal any significant excesses over expected background levels. An ATLAS analysis [15] of Run-2 data at 13 TeV also found no evidence of new effects in multijet final states. This work extends the reach of the analysis in Ref. [12], performed at a centre-of-mass energy of 8 TeV, with 3.2 fb$^{-1}$ of data recorded by ATLAS in 2015 at 13 TeV. This search is potentially sensitive to other forms of new physics at high-mass and involving the electroweak sector.

2. ATLAS detector

ATLAS [16] is a multipurpose detector with a forward–backward symmetric cylindrical geometry and nearly 4π coverage in solid
angle. The inner detector (ID) utilises fine-granularity pixel and microstrip detectors over the pseudorapidity range \(|\eta| < 2.5\) to provide precise track parameter and secondary vertex measurements. For Run 2 of the LHC, a new pixel layer has been added at a radius of 3.3 cm [17]. A gas-filled straw-tube tracker complements the silicon tracker at larger radii. The tracking detectors are immersed in a 2 T magnetic field produced by a thin superconducting solenoid. The electromagnetic (EM) calorimeters employ lead absorbers and use liquid argon as the active medium. The barrel EM calorimeter covers \(|\eta| < 1.5\) and the end-cap EM calorimeters cover \(1.4 < |\eta| < 3.2\). Hadronic calorimetry in the region \(|\eta| < 1.7\) is performed using steel absorbers with scintillator tiles as the active medium. Liquid-argon calorimetry with copper absorbers is used in the hadronic end-cap calorimeters, which cover the region \(1.5 < |\eta| < 3.2\). The forward calorimeters \((3.1 < |\eta| < 4.9)\) use copper and tungsten as absorber with liquid argon as active material. The muon spectrometer (MS) measures the deflection of muon trajectories in the region \(|\eta| < 2.7\), using three stations of precision drift tubes (with cathode strip chambers in the innermost station for \(|\eta| > 2.0\)) located in a toroidal magnetic field of approximately 0.5 T and 1 T in the central and end-cap regions, respectively. The muon spectrometer is also instrumented with separate trigger chambers covering \(|\eta| < 2.4\). Events are selected using a first-level trigger implemented in custom electronics, designed to reduce the event rate down to 100 kHz using a subset of detector information [18]. Software algorithms with access to the full detector information are then used to yield a recorded event rate of about 1 kHz.

3. Analysis

3.1. Signal simulation

Signal samples are generated by using the CHARYBDIS2 10.4 generator [19] to simulate the production and decay of rotating black holes in models with \(n = 2, 4\) and 6 extra dimensions and values of \(M_D\) ranging from 2 TeV to 5 TeV. Black holes are assumed to be produced over a continuous range of mass values above a threshold \(M_{th}\), set so as to avoid the theoretical uncertainties associated with the region close to \(M_D\). The analysis is guided by two benchmark signal models, the first of which has \(M_D = 2\) TeV and \(M_{th} = 7\) TeV, resulting in a cross-section of 0.72 pb. The second has \(M_D = 4\) TeV, \(M_{th} = 6\) TeV, and a cross-section of 0.93 pb. In these simulations, no initial-state gravitational radiation is permitted, while the final decay of the black-hole remnant produces a variable number of particles, whose multiplicity is drawn from a Poisson distribution in accordance with the CHARYBDIS2 default. The RIVET [20] parton distribution functions (PDFs) are used taken from Ref. [20], while the final-state fragmentation and parton showering is modelled using PYTHIA [21]. The detector response is modelled using a fast simulation of the response of the calorimeters [22] and GEANT4 [23] for other parts of the detector. Events from minimum-bias interactions are also simulated with PYTHIA. They are overlayed on the simulated signal and background events according to the luminosity profile of the recorded data. Interactions within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings are both simulated and are referred to as pile-up.

3.2. Event selection

Events are selected from a sample with an integrated luminosity of \(3.2 \pm 0.2\) fb\(^{-1}\). The luminosity estimate is derived following the same methodology as that detailed in Ref. [24], from a calibration of the luminosity scale using a pair of \(x-y\) beam-separation scans performed in August 2015. The event selection uses the lowest-threshold single-lepton triggers available. In April 2016, the single-electron trigger uses a minimum threshold of \(p_T = 50\) GeV. All the final-state objects are required to satisfy basic criteria to ensure that they are well reconstructed and originate from the primary interaction. Candidate electrons and muons are required to have \(p_T > 10\) GeV and pseudorapidity \(|\eta| < 2.47\) (electrons) or \(|\eta| < 2.5\) (muons). They are also required to satisfy baseline identification criteria (the “Loose” operating point of Ref. [25] for electrons and the “Medium” criteria of Ref. [26] for muons). Jets of hadrons are reconstructed using the anti-\(k_T\) algorithm with a radius parameter of 0.4 [27] and are required to be of at least “loose” quality [28] and to have a calibrated \(p_T > 20\) GeV and \(|\eta| < 2.8\). Jets containing \(b\)-hadrons are identified using the “b-tagging” techniques described in Refs. [30,31]. To avoid double-counting of reconstructed objects, electrons sharing an inner detector track with a muon are removed. Following this, jet candidates that are not b-tagged are removed if they are within \(\Delta R < 0.2\) of an electron candidate. Finally, lepton candidates are removed if they lie within \(\Delta R < 0.4\) of a surviving jet candidate that is not tagged as originating from pile-up [32]. The remaining electrons are required to satisfy the “Tight” operating point of Ref. [25]. Leptons are required to be isolated from other activity using a relatively loose criterion designed to pass 99% of leptons from Z decays [26,33]. Events are sorted into electron and muon channels according to the flavour of the highest \(p_T\) lepton. Two signal regions (SRs) are defined, requiring a leading lepton with \(p_T > 100\) GeV and at least two other objects (leptons or jets) with \(p_T > 100\) GeV, with \(\sum p_T > 2\) TeV or 3 TeV, where \(\sum p_T\) includes all objects in the event with \(p_T > 60\) GeV. The first signal region (named \(SR\lt 2\) TeV) allows the search to cover the parameter space near the existing limits, while the second (named \(SR\lt 3\) TeV) provides sensitivity at the highest \(\sum p_T\) accessible. The \(SR\lt 3\) TeV selection gives efficiency \(\times\) acceptance values for the benchmark signal models of 19% (for the model at \(M_D = 2\) TeV, \(M_{th} = 7\) TeV) and 8% (for the model at \(M_D = 4\) TeV, \(M_{th} = 6\) TeV).

3.3. Backgrounds

The dominant backgrounds originate from \(W\) and \(Z\) boson production associated with hadronic jets (\(W +\) jets and \(Z +\) jets) and from \(t\bar{t}\) production. For these backgrounds, the distributions in kinematic quantities are predicted by Monte Carlo (MC) simulations, which are normalised to data in dedicated control regions (CRs). Each CR uses selections which enhance the contribution of the relevant background while maintaining a negligible expected signal contribution. Single-top-quark and diboson production processes give small contributions that are estimated directly from simulations, with normalisations taken from Refs. [34,35] and from the generator, respectively. The bosonic background processes are simulated using SHHERA 2.1 [36], while POWHEG [37-39] in conjunction with PYTHIA [40] is used for top quark production processes. All these background simulations use the CT10 PDF set [41]. The detector response is modelled using GEANT4. The electron channel also contains background events from hadronic jets which are incorrectly reconstructed as electrons. This background, called “multijet”, is estimated from the data using a sample of

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z\)-axis along the beam direction. The \(x\)-axis points from the IP to the centre of the LHC ring, and the \(y\)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam direction. The pseudorapidity is defined in terms of the polar angle \(\eta\) as \(\eta = -\ln(\tan(\theta/2))\). Object separations are measured using \(\Delta R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}\).
events selected with loosened identification criteria using the Matrix Method [42]. The rate of background muons from hadronic jets is negligible.

The background CR selection criteria are summarised in Table 1. All of the CRs select events with 750 < $\sum p_T$ < 1500 GeV, including at least three objects with $p_T > 60$ GeV of which one is required to be a lepton. The Z + jets CR additionally requires exactly two leptons with the same charge and an invariant mass $m_{\ell\ell}$ in the range 80–100 GeV. The W + jets CR requires events with exactly one lepton and a missing transverse momentum E_T^{miss} [43] exceeding 60 GeV. In this CR, in order to suppress background from top quark production, none of the jets may be b-tagged. The tt CR also requires exactly one lepton, but there must be at least four jets of which at least two are b-tagged. In order to use information about the shape of the $\sum p_T$ distribution to more accurately constrain the normalisation of the W + jets, Z + jets and tt backgrounds in the SRs, each control region is divided into three 250-GeV-wide bins.

<table>
<thead>
<tr>
<th>Selection</th>
<th>Control regions</th>
<th>Signal regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z + jets</td>
<td>$\sum p_T$ = 750–1500 GeV</td>
<td>$> 2000,0000$ GeV</td>
</tr>
<tr>
<td>W + jets</td>
<td>≥ 3 objects with $p_T > 60$ GeV</td>
<td>≥ 3 objects with $p_T > 100$ GeV</td>
</tr>
<tr>
<td>tt</td>
<td>Isolated with $p_T > 60$ GeV</td>
<td>Isolated with $p_T > 100$ GeV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_T^{miss}</th>
<th>80–100 GeV</th>
<th>≥ 60 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of leptons</td>
<td>$= 2$, opposite sign same flavour</td>
<td>$= 1$</td>
</tr>
<tr>
<td>Number of b-tagged jets</td>
<td>n/a</td>
<td>≥ 2</td>
</tr>
<tr>
<td>Number of jets</td>
<td>n/a</td>
<td>≥ 4</td>
</tr>
</tbody>
</table>

The systematic uncertainties in the signal and backgrounds include those due to the limited numbers of simulated events and to the measurement of integrated luminosity. Experimental uncertainties arising from the trigger efficiencies, lepton identification and reconstruction procedures, the b-tagging algorithm and the energy calibration of leptons and jets, as well as effects from the jet energy resolution, are also taken into account. Potential mismodelling by the MC simulations of the W + jets, Z + jets and tt backgrounds is quantified by comparing the nominal against alternative simulated samples and PDF sets. For the W + jets and Z + jets backgrounds, simulated by SHERPA, the default renormalisation, factorisation and resummation scales are doubled or halved. The matrix element and parton shower are matched using the CKKW [44] scheme, for which the default scale of 20 GeV is changed to 15 GeV and to 30 GeV. For the tt uncertainties in the hard scatter and fragmentation are estimated by comparison with alternative generators and parton shower models. Variations of the renormalisation scale and of the amount of initial- and final-state radiation are performed within the nominal generator. Since the overall normalisations of the backgrounds are well constrained by the fits to the data described below, only variations in shape as a function of $\sum p_T$ are relevant. The systematic uncertainty in the predicted yields in both channels of SR-2TeV and SR-3TeV is dominated by the limited sizes of the Monte Carlo samples. The total uncertainties in the SRs are mainly of statistical origin.

4. Results

Results are extracted from profile likelihood fits using three background normalisation parameters for the W + jets, Z + jets and tt backgrounds. These normalisation parameters are freely floating in the fits. Nuisance parameters are included in the fits to describe the systematic uncertainties, taking into account the correlations across the processes and regions involved in each fit. A background likelihood fit to all control regions of both lepton channels, assuming no signal contribution, is used to predict the expected yields in validation regions (VRs) and to test the hypothesis that the data is well described with no signal in these regions. The VRs are defined using the same event selections as the signal regions, but in the range 1500 < $\sum p_T$ < 2000 GeV. As in the CRs, any signal contamination in the VRs is expected to be small, based on previous analyses [12] and on signal simulations. Comparisons between the data and the predictions in the control regions, where the background predictions are adjusted by the background likelihood fit, may be seen in Fig. 1. The MC simulation provides a good description of the CR data, with scale factors of 0.81 ± 0.07, 1.01 ± 0.08 and 0.95 ± 0.08 for W + jets, Z + jets and tt respectively. No significant deviation from the background prediction is observed in the VRs.

Fig. 2 shows the data and background predictions for $\sum p_T$ in the electron and muon channels following the background likelihood fit, with two signal models overlaid. This figure uses the SR selection except for the final requirement on $\sum p_T$. The data are in good agreement with the background prediction across the range of $\sum p_T$ which can be tested with the present data, with the size and pattern of deviations between data and background prediction being consistent with statistical fluctuations and the size of the systematic uncertainties. Table 2 presents the data and background predictions in the signal regions. The number of events observed in SR-3TeV is higher than the background estimate in the electron channel with a p-value of 1% when tested against the background-only hypothesis. The excess is not sufficiently significant to be considered as evidence of any new physics effect. The final results are therefore derived from the combination of the two channels. The observed numbers of events in SR-2TeV and SR-3TeV are 192 and 13 respectively for the combination of the electron and muon channels, to be compared with fitted background predictions of 181 ± 11 and 9.9 ± 1.4.

Model-independent cross-section upper limits on any potential new physics contribution are obtained from fits to all control regions and to signal regions combining the electron and muon channels, with potential signal contributions included via a freely-floating parameter in those signal regions. Model-independent upper limits of 12.1 fb (3.4 fb) at the 95% confidence level (CL) are set on the maximum observable cross-section (defined as cross-
Fig. 1. The $\sum p_T$ distribution in each of the control regions. The $W + \text{jets CR}$ is shown in (a) and (b), the $Z + \text{jets CR}$ in (c) and (d), and the $t\bar{t}$ CR in (e) and (f). The electron channel is shown in (a), (c) and (e), and the muon channel in (b), (d) and (f). The data are shown as points with error bars; all expected backgrounds are shown as stacked coloured histograms, with the total background uncertainty shown as a shaded band. The lower panels show the ratio of the data to the expected background. The $W + \text{jets}$ and $Z + \text{jets}$ backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

The impact on the M_{D} limit for $n = 6$ due to the PDF-induced uncertainties in the signal cross-section varies from ± 200 GeV to ± 100 GeV as M_{D} varies from 2 TeV to 5 TeV. The limit on M_{D} is more stringent than that from the Run 1 search by almost 3 TeV at $M_{\text{D}} = 2$ TeV and by more than 2 TeV at...
Fig. 2. The $\sum p_T$ distributions in (a) the electron channel and (b) the muon channel. The selection is that of the signal regions except for the final requirement on $\sum p_T$. The data are shown as points with error bars; all expected backgrounds are shown as stacked coloured histograms, with the total background uncertainty shown as a shaded band. Two representative signal distributions for rotating black holes with $n = 6$ are overlaid to illustrate the signal properties. The lower panels show the ratio of the data to the expected background. The $t\bar{t}$, W + jets and Z + jets backgrounds are normalised by the factors 0.95, 0.81 and 1.01 as obtained from the background likelihood fit. The single-top-quark and diboson background normalisations are taken from the simulation. The multijet background is obtained using a data-driven method. Additionally, the likelihood fit may constrain nuisance parameters for certain systematic uncertainties, altering the normalisation and shape of some of the distributions.

Table 2

<table>
<thead>
<tr>
<th></th>
<th>$\sum p_T > 2$ TeV (electron)</th>
<th>$\sum p_T > 2$ TeV (muon)</th>
<th>$\sum p_T > 3$ TeV (electron)</th>
<th>$\sum p_T > 3$ TeV (muon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>123</td>
<td>69</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Expected bkg events</td>
<td>104 ± 9</td>
<td>78 ± 6</td>
<td>46 ± 0.8</td>
<td>53 ± 1.2</td>
</tr>
<tr>
<td>Expected $t\bar{t}$ events</td>
<td>13.8 ± 3.1</td>
<td>11.4 ± 2.5</td>
<td>0.65 ± 0.18</td>
<td>0.55 ± 0.15</td>
</tr>
<tr>
<td>Expected W + jets events</td>
<td>32.0 ± 3.5</td>
<td>33.9 ± 3.2</td>
<td>1.76 ± 0.31</td>
<td>2.0 ± 0.4</td>
</tr>
<tr>
<td>Expected Z + jets events</td>
<td>16.6 ± 1.5</td>
<td>12.6 ± 1.4</td>
<td>1.09 ± 0.18</td>
<td>0.77 ± 0.24</td>
</tr>
<tr>
<td>Exp. single-top-quark events</td>
<td>6.1 ± 0.9</td>
<td>5.2 ± 0.7</td>
<td>0.59 ± 0.18</td>
<td>0.54 ± 0.14</td>
</tr>
<tr>
<td>Expected diboson events</td>
<td>11.4 ± 1.4</td>
<td>14.5 ± 1.5</td>
<td>0.22 ± 0.18</td>
<td>1.5 ± 0.5</td>
</tr>
<tr>
<td>Expected multijet events</td>
<td>24 ± 7</td>
<td>0.0 ± 0.0</td>
<td>0.32 ± 0.24</td>
<td>0.0 ± 0.0</td>
</tr>
</tbody>
</table>

$M_D = 4$ TeV. For a model of rotating black holes with two extra dimensions, the 95% CL lower limit on the threshold mass M_{th} is set at 7.8 TeV for $M_D = 2$ TeV. For a model with six extra dimensions, the limit is set at 7.4 TeV for $M_D = 5$ TeV.

5. Conclusion

A search has been performed for signatures of TeV-scale gravity in high-mass final states including at least one lepton in conjunction with at least two other leptons or hadronic jets each with $p_T > 100$ GeV, using 3.2 fb$^{-1}$ of proton–proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy of 13 TeV. No significant deviation from the background predictions is observed. Upper limits are therefore set on the possible contribution of new physics processes in this class of final states at 12.1 fb (3.4 fb) at 95% CL for $\sum p_T > 2$ TeV (3 TeV). Constraints are placed on production of microscopic black holes in models with two to six extra space dimensions which substantially extend the excluded range of model parameters. The results of this analysis could potentially be used to constrain other models predicting new phenomena at the TeV scale involving decays to leptons and jets.
Department of Physics, McGill University, Montreal, QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor, MI, United States
90 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
91 (a) INFN Sezione di Milano, (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
93 National Nuclear and Educational Centre for Particle and High Energy Physics, Minsk, Belarus
94 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
95 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 National Research Nuclear University MEPhI, Moscow, Russia
98 D.V. Shatashvili Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
103 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
107 Department of Physics, Northern Illinois University, Dekalb, IL, United States
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, United States
110 Ohio State University, Columbus, OH, United States
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
113 Department of Physics, Oklahoma State University, Stillwater, OK, United States
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
116 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
120 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
122 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
123 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States
125 (a) Laboratório de Instrumentação e Física Experimental de Partículas – LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos y CAIfEP, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
131 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
132 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
133 (a) INFN Sezione di Roma Tre; (b) Dipartamento di Matematica e Fisica, Università Roma Tre, Roma, Italy
134 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies – Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakesh; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco
135 PSI/PSI-BRU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
136 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
137 Department of Physics, University of Washington, Seattle, WA, United States
138 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
139 Department of Physics, Shinshu University, Nagano, Japan
140 Fachbereich Physik, Universität Siegen, Siegen, Germany
141 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
142 SLAC National Accelerator Laboratory, Stanford, CA, United States
143 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (a) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
144 Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
145 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
146 Physics Department, Royal Institute of Technology, Stockholm, Sweden
147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
149 School of Physics, University of Sydney, Sydney, Australia
150 Institute of Physics, Academia Sinica, Taipei, Taiwan
151 Department of Physics, Technion - Israel Institute of Technology, Haifa, Israel
152 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
153 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
154 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
155 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
156 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
157 Department of Physics, University of Toronto, Toronto, ON, Canada
158 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan
The ATLAS Collaboration / Physics Letters B 760 (2016) 520–537