
Refactoring of Legacy Software using
Model Learning and Equivalence Checking:

an Industrial Experience Report

Mathijs Schuts1, Jozef Hooman2,3 and Frits Vaandrager3

1 Philips, Best, The Netherlands
mathijs.schuts@philips.com

2 Embedded Systems Innovation (ESI) by TNO, Eindhoven, The Netherlands
jozef.hooman@tno.nl

3 Department of Software Science, Radboud University, Nijmegen, The Netherlands
f.vaandrager@cs.ru.nl

Abstract. Many companies struggle with large amounts of legacy soft-
ware that is difficult to maintain and to extend. Refactoring legacy code
typically requires large efforts and introduces serious risks because often
crucial business assets are hidden in legacy components. We investigate
the support of formal techniques for the rejuvenation of legacy embed-
ded software, concentrating on control components. Model learning and
equivalence checking are used to improve a new implementation of a
legacy control component. Model learning is applied to both the old and
the new implementation. The resulting models are compared using an
equivalence check of a model checker. We report about our experiences
with this approach at Philips. By gradually increasing the set of input
stimuli, we obtained implementations of a power control service for which
the learned behaviour is equivalent.

1 Introduction

The high-tech industry creates complex cyber physical systems. The architec-
tures for these systems evolved over many decades through a constant stream of
product innovations. This usually leads to so-called legacy components that are
hard to maintain and to extend [24,25]. Typically, these components are based
on obsolete technologies, frameworks, and tools. Documentation might not be
available or outdated and the original developers are often no longer available.
In addition, the existing regression test set for validating the component will be
very limited in most cases.

Given these characteristics, innovations that require changes of legacy com-
ponents are risky. Many legacy components implicitly incorporate important
business knowledge, hence failures will lead to substantial losses. To avoid a
risky greenfield approach, starting from scratch, several techniques are being de-
veloped to extract the crucial business information hidden in legacy components
in a (semi-)automated way and to use this information to develop a refactored
version of the component.

2

There are several approaches to extract this hidden information. Static anal-
ysis methods concentrate on the analysis and transformation of source code. For
instance, the commercial Design Maintenance System (DMS)4 has been used in
several industrial projects to re-engineer code. DMS is based on abstract syntax
tree (AST) representations of programs [3].

Whereas static analysis techniques focus on the internal structure of compo-
nents, learning techniques aim at capturing the externally visible behaviour of
a component. Process mining extracts business logic based on event logs [23].
In [17], a combination of static analysis and process mining has been applied to a
financial management system, identifying tasks, actors, and their roles. Process
mining can be seen as a passive way of learning which requires an instrumenta-
tion of the code to obtain event logs.

Active learning techniques [4,22] do not require code instrumentation, but
need an adapter to interact with a running system. In this approach, a learning
algorithm interacts with a software component by sending inputs and observing
the resulting output, and uses this information to construct a state machine
model. Active learning has, for instance, been successfully applied to learn mod-
els of (and to find mistakes in) implementations of protocols such as TCP [12] and
TLS [8], to establish correctness of protocol implementations relative to a given
reference implementation [2], and to generate models of a telephone switch [18]
and a printer controller [21]. Learning-based testing [11] combines active learning
and model checking. In this approach, which requires the presence of a formal
specification of the system, model checking is used to guide the learning process.
In [11] three industrial applications of learning-based testing are described from
the web, automotive and finance domains.

In this paper, we report about a novel industrial application of active learning
to gain confidence in a refactored legacy component using formal techniques. In
the absence of any formal specification of the legacy system, the use of model
checking and learning-based testing was not possible. Instead we decided to use
a different combination of tools, similar to the approach of [13,2]. The model
learning tool LearnLib [15] was used to learn Mealy machine models of the
legacy and the refactored implementation. These models were then compared to
check if the two implementations are equivalent. Since the manual comparison
of large models is not feasible, we used an equivalence checker from the mCRL2
toolset [7] for this task. In brief, our approach can be described as follows (see
also Figure 1):

1. Implementation A (the legacy component) is explored by a model learner.
The output of the model learner is converted to an input format for the
equivalence checker, model MA.

2. Implementation B (the refactored component) is explored by a model learner.
The output of the model learner is converted to an input format for the
equivalence checker, model MB.

3. The two models are checked by the equivalence checker. The result of the
equivalence checker can be:

4 www.semanticdesigns.com

3

Fig. 1. Approach to compare legacy component and refactored version

– The two models are equivalent. In this case we are done.
– The two models are not equivalent and a counterexample is provided: a

sequence of inputs σ for which the outputs produced by the two models
are different. In this case we proceed to step 4.

4. Because models A and B have been obtained through a finite number of tests,
we can never be sure that they correctly describe implementations A and B,
respectively. Therefore, if we find a counterexample σ for the equivalence of
models MA and MB, we first check whether implementation A and model
MA behave the same for σ, and whether implementation B and model MB
behave the same for σ. If there is a discrepancy between a model and the
corresponding implementation, this means that the model is incorrect and
we ask the model learner to construct a new model based on counterexample
σ, that is, we go back to step 1 or 2. Otherwise, counterexample σ exhibits a
difference between the two implementations. In this case we need to change
at least one of the implementations, depending on which output triggered in
response to input σ is considered unsatisfactory behaviour. Note that also the
legacy component A might be changed, because the counterexample might
indicate an unsatisfactory behaviour of A. After the change, a corrected
implementation needs to be learned again, i.e., we go back to step 1 or 2.

Since the learning of an implementation can take a substantial amount of
time, we start with a limited subset of input stimuli for the model-learner and
increase the number of stimuli once the implementations are equivalent for a
smaller number of stimuli. Hence, the approach needs to be executed iteratively.

We report about our experiences with the described approach on a real de-
velopment project at Philips. The project concerns the introduction of a new

4

hardware component, the Power Control Component (PCC). A PCC is used
to start-up and shutdown an interventional radiology system. All computers in
the system have a software component, the Power Control Service (PCS) which
communicates with the PCC over an internal control network during the exe-
cution of start-up and shutdown scenarios. To deal with the new hardware of
the PCC, which has a different interface, a new implementation of the PCS is
needed. Since different configurations have to be supported, with old and new
PCC hardware, the old and new PCS software should have exactly the same
externally visible behaviour.

The PCS is described in Sect. 2 to the extend needed for understanding
this paper. Section 3 describes the use of model-learning and model-checking
to compare the two PCS implementations for the old and the new PCC. The
results of testing the two PCS implementations are described in Sect. 4. Section 5
discusses the scalability of our approach. Concluding remarks can be found in
Sect. 6.

2 The Industrial Development Project

2.1 Power Control Service

For starting up and shutting down an interventional radiology system multiple
components are involved. The Power Control Component (PCC) is a hardware
component that gets the mains power input from the hospital. It conditions the
mains power, switches the power taps that are connected to system’s internal
components and acts as the master of the system when executing start-up and
shutdown scenarios. All computers in the system are powered by the PCC and
are controlled by the PCC via a Power Control Service (PCS) that connects to
the PCC via the system’s internal control network.

Figure 2 depicts the PCS in its context. The PCS is a software component
that is used to start and stop subsystems via their Session Managers (SMs).
In addition to the start-up and shutdown scenarios executed by the PCC, the
PCS is also involved during service scenarios such as upgrading the subsystem’s
software.

Fig. 2. Context Power Control Service

5

In a typical shutdown scenario, the user presses the off button and the shut-
down scenario is initiated by the PCC. The PCC sends an event to all PCSs. The
PCS stops the SMs. Once the SMs are stopped, the PCS triggers the Operating
System (OS) to shutdown. In the end, the OS will stop the PCS.

Another scenario is to switch from closed profile to open profile when the sys-
tem is in the operational state. In closed profile only the clinical application can
be executed by the user of the system. Open profile is used during development
for testing purposes. In this scenario, the service application triggers the PCS
to switch to open profile. The PCS will then stop the SMs. When the PCS is
ready, the service application reboots the PC. After the reboot, the OS starts up
the PCS and the PCS starts a subset of the SMs based on the SM’s capabilities.
In open profile, the service application can also start the clinical application by
providing the PCS with the OpenProfileStartApplication trigger.

2.2 Refactoring

The PCS implementation for the old PCC is event-based. An event is handled
differently based on the value of global flags in the source code. Hence, all state
behaviour is implicitly coded by these flags, which makes the implementation
unmaintainable. The development of a new implementation for supporting the
new PCC is an opportunity to create a maintainable implementation. The new
implementation makes the state behaviour explicit by a manually crafted state
machine.

To be able to support both the old and the new PCC, the PCS software has
been refactored such that the common behaviour for both PCCs is extracted.
Figure 3(a) depicts the PCS before refactoring. The Host implements the IHost
interface that is used by the service application. The implementation of the PCS
after refactoring is show in Fig. 3(b).

(a) Before refactoring (b) After refactoring

Fig. 3. Class Diagrams of PCS Design

The PcsCommon class implements the ISessionManager interface to control
the SMs. The OldPccSupport class contains the legacy implementation for the
old PCC whereas a NewPccSupport class deals with the new PCC. Both classes

6

inherit from the PcsCommon class to achieve the same internal interface for the
Host. Depending on the configuration, the Host creates an instance of either the
OldPccSupport or the NewPccSupport class.

The PCS as depicted in Fig. 3(b) is written in C++ and consists of a total
of 3365 Lines Of Code (LOC): Host has 741 LOC, PcsCommon has 376 LOC,
OldPccSupport has 911 LOC, and NewPccSupport has 1337 LOC.

The unit test cases were adapted to include tests for the new implementation.
It was known that the unit test set is far from complete. Hence, we investigated
the possibility to use model-learning to get more confidence in the equivalence
of the old and new implementations.

3 Application of the Learning Approach

To learn models of our implementations, we used the LearnLib tool [19], see
http://learnlib.de/. For a detailed introduction into LearnLib we refer to
[22]. In our application we used the development 1.0-SNAPSHOT of LearnLib
and its MealyLearner which is connected to the System Under Learning (SUL)
by means of an adapter and a TCP/IP connection.

3.1 Design of the learning environment

Figure 4 depicts the design used for learning the PCS component. Creating an
initial version of the adapter took about 8 hours, because the test primitives of
the existing unit test environment could be re-used.

Fig. 4. Design learning environment

http://learnlib.de/

7

With this design, the PCS can be learned for both the old and the new
PCC. The adapter automatically changes the configuration of the PCS such
that the PCS knows if it needs to instantiate the old or the new implementation.
Depending on the old or new PCC, the adapter instantiates a different PCC stub.

3.2 Learned output

The Mealy machine that is the result of a LearnLib session is represented as a
”dot” file, which can be visualized using Graphviz5. A fragment of a model is
shown in Table 1.

digraph g {
start0 [label=”” shape=”none”];

s0 [shape=”circle” label=”0”];
s1 [shape=”circle” label=”1”];
s2 [shape=”circle” label=”2”];
s3 [shape=”circle” label=”3”];
s4 [shape=”circle” label=”4”];
s5 [shape=”circle” label=”5”];
s6 [shape=”circle” label=”6”];
s7 [shape=”circle” label=”7”];
s8 [shape=”circle” label=”8”];
s0 -> s1 [label=”|PCC(StateSystemOn)| / |PCS(Running);SM1(Running);SM2(Running)|”];
s0 -> s2 [label=”|PCC(StateSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|”];
s1 -> s2 [label=”|PCC(ButtonSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|”];
s1 -> s3 [label=”|Host(goToOpenProfile)| / |PCS(Stopped);SM1(Stopped);SM2(Stopped);Dev(OpenProfile)|”];
...
start0 -> s0;
}

Table 1. Fragment of a learned dot-file

3.3 Checking Equivalence

For models with more than five states it is difficult to compare the graphical out-
put of LearnLib for different implementations. Therefore, an equivalence checker
is used to perform the comparison. In our case, we used the tool support for
mCRL2 (micro Common Representation Language 2) which is a specification
language that can be used for specifying system behaviour. The mCRL2 lan-
guage comes with a rich set of supporting programs for analysing the behaviour
of a modelled system [7].

Once the implementation is learned, a small script is used to convert the
output from LearnLib to a mCRL2 model. Basically, the learned Mealy machine
is represented as an mCRL2 process Spec(s:States). As an example, the two
transitions of state s0 in the dot-file

5 www.graphviz.org/

8

s0 -> s1 [label=”|PCC(StateSystemOn)| / |PCS(Running);SM1(Running);SM2(Running)|”];
s0 -> s2 [label=”|PCC(StateSystemOff)| / |PCS(Running);SM1(Stopped);SM2(Stopped);Dev(Shutdown)|”];

are translated into the following process algebra construction:

(s==s0) -> (
(PCC(StateSystemOn) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +
(PCC(StateSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2))

)

A part of the result of translating the model of Table 1 to mCRL2 is shown in
Table 2.

sort States = struct s0 | s1 | s2 | s3 | s4 | s5 | s6 | s7 | s8;
OsStim = struct StartPcs | StopPcs;
PCCStim = struct StateSystemOn | StateSystemOff | ...;
HostStim = struct stopForInstallation | startAfterInstallation | ...;
ServiceStates = struct Running | Stopped;
DevStates = struct OpenProfile | Shutdown;

act OS:OsStim;
act PCC:PCCStim;
act Host:HostStim;
act PCS:ServiceStates;
act SM1:ServiceStates;
act SM2:ServiceStates;
act Dev:DevStates;

proc Spec(s:States)=
(s==s0) -> (
(PCC(StateSystemOn) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +
(PCC(StateSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2))

) +
(s==s1) -> (
(PCC(ButtonSystemOff) . PCS(Running) . SM1(Stopped) . SM2(Stopped) . Dev(Shutdown) . Spec(s2)) +
(Host(goToOpenProfile) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Dev(OpenProfile) . Spec(s3)) +
(Host(goToClosedProfile) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Spec(s4)) +
(Host(openProfileStartApplication) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +
(Host(openProfileStopApplication) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +
(OS(StartPcs) . PCS(Running) . SM1(Running) . SM2(Running) . Spec(s1)) +
(OS(StopPcs) . PCS(Stopped) . SM1(Stopped) . SM2(Stopped) . Spec(s4))

) +
(s==s2) -> (
...
);

init Spec(s0);

Table 2. Fragment of mCRL2 model

Given two (deterministic) Mealy machines, the labelled transition systems
for the associated mCRL2 processes are also deterministic. Since the labelled
transition systems also do not contain any τ -transitions, trace equivalence and
bisimulation equivalence coincide, and there is no difference between weak and
strong equivalences [10]. Thus, two Mealy machines are equivalent iff the associ-
ated mCRL2 processes are (strong) trace equivalent, and the mCRL2 processes
are (strong) trace equivalent iff they are (strong) bisimulation equivalent.

9

3.4 Investigating Counterexamples

When the equivalence check indicates that the two models are not equivalent,
the mCRL2 tool provides a counterexample. To investigate counterexamples, we
created a program that reads a produced counterexample and executes this on
the implementations. In the design depicted in Fig. 4, the LearnLib component
has been replaced by the counterexample program. As before, switching between
the two implementations can be done by instructing the adapter. In this way,
the standard logging facilities of program execution are exploited to study the
counterexample.

4 Results of Learning the Implementations of the PCS

In this section we describe the results of applying the approach of Sect. 1 to the
implementations of the PCS component.

4.1 Iteration 1

The first iteration was used to realize the learning environment as is described in
Sect. 3.1. An adapter was created to interface between the PCS and LearnLib.
Because the communication between the PCS and the adapter is asynchronous,
the adapter has to wait some time before the state of the PCS can be examined.
In this iteration we performed a few try runs to tweak the wait time needed before
taking a sample. In addition, the first iteration was used to get an impression on
how long learning the PCS takes with different numbers of stimuli. The necessary
waiting time of 10 second after a stimulus for learning the PCS is quite long,
and this greatly influenced the time needed for learning models.

4.2 Iteration 2

After a first analysis of the time needed for model learning in iteration 1, we
decided to start learning with 9 stimuli. These 9 stimuli were all related to basic
start-up/shutdown and service scenarios. We learned the PCS implementation
for the old PCC and the PCS implementation for the new PCC. The results are
presented in Table 3. The table has a column for the number of stimuli, for the
number of states and transitions found, and for the time it took for LearnLib to
learn the implementations.

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 9 8 43 32531

PCS implementation for new PCC 9 3 8 1231

Table 3. Results learning PCS with 9 stimuli

10

Note that learning a model for the old implementation took 9 hours. (This
excludes the time used to test the correctness of the final model.) As described
in Sect. 3.3, the learned models were converted to mCRL2 processes. Next, the
mCRL2 tools found a counterexample starting with:

PCC(StateSystemOn), PCS(Running), SM1(Running), SM2(Running), ...

We investigated this counterexample and found an issue in the PCS imple-
mentation for the new PCC. The new implementation did not make a distinction
between the SystemOff event, and the ServiceStop and ServiceShutdown events.

Note that before performing the learning experiment the new and old imple-
mentations were checked using the existing regression test cases. This issue was
not found by the existing unit test cases.

4.3 Iteration 3

In the third iteration, the PCS implementation for the new PCC was re-learned
after solving the fix. Table 4 describes the results.

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 9 8 43 32531

PCS implementation for new PCC 9 7 36 8187

Table 4. Results learning PCS with 9 stimuli

An equivalence check with the mCRL2 tools resulted in a new counterexam-
ple of 23 commands:

PCC(StateSystemOn), PCS(Running), SM1(Running), SM2(Running),
Host(goToOpenProfile), PCS(Stopped), SM1(Stopped), SM2(Stopped),
Dev(OpenProfile), OS(StartPcs), PCS(Running), SM1(Stopped),
SM2(Running), Dev(OpenProfile), Host(openProfileStopApplication),
PCS(Running), SM1(Stopped), SM2(Running), Dev(OpenProfile),
PCC(ButtonSystemOff), PCS(Running), SM1(Stopped), SM2(Running).

When we executed this counterexample on the PCS implementation for the
old PCC, we found the following statement in the logging of the PCS: ”Off
button not handled because of PCS state (Stopping)”. A quick search in the
source code revealed that the stopSessionManagers method prints this statement
when the Stopping flag is active. This is clearly wrong, because this flag is set by
the previous stimulus, i.e., the openProfileStopApplication stimulus. The PCS
implementation for the old PCC was adapted to reset the Stopping flag after
handling the openProfileStopApplication stimulus.

11

4.4 Iteration 4

In the fourth iteration, the PCS implementation for the old PCC was re-learned
after solving the fix. Table 5 describes the results after re-learning. Note that,
after correcting the error, learning the model for the old implementation only
takes slightly more than one hour. When checking the equivalence, the mCRL2
tool reports that the two implementation are (strong) trace equivalent for these
9 stimuli.

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 9 7 36 4141

PCS implementation for new PCC 9 7 36 8187

Table 5. Results learning PCS with 9 stimuli

4.5 Iteration 5

As a next step we re-learned the implementations for the complete set of 12 stim-
uli; the results are shown in Table 6. Note that learning the new implementation
takes approximately 3.5 hours. The mCRL2 tools report that the two obtained
models with 12 stimuli are trace equivalence and bisimulation equivalent.

Stimuli States Transitions Time (in seconds)

PCS implementation for old PCC 12 9 65 10059

PCS implementation for new PCC 12 9 65 12615

Table 6. Results learning PCS with 12 stimuli

5 Scalability of the Learning Approach

Using model learning we found issues in both a legacy software component and in
a refactored implementation. After fixing these issues, model learning helped to
increase confidence that the old and the new implementations behave the same.
Although this is a genuine industrial case study, the learned Mealy machine
models are very small. Nevertheless, learning these tiny models already took up
to 9 hours. For applying these techniques in industry there is an obvious need
to make model learning more efficient in terms of the time needed to explore a
system under learning. Clearly, our approach has been highly effective for the
PCC case study. But will it scale?

Below we present an overview of some recent results that make us optimistic
that indeed our approach can be scaled to a large class of more complex legacy
systems.

12

5.1 Faster implementations

The main reason why model learning takes so long for the PCC case study is
the long waiting time in between input events. As a result, running a single
test sequence (a.k.a. membership query) took on average about 10 seconds. One
of the authors was involved in another industrial case study in which a model
for a printer controller was learned with 3410 states and 77 stimuli [21]. Even
though more than 60 million test sequences were needed to learn it, the task
could be completed within 9 hours because on average running a single test
sequence took only 0.0005 seconds. For most software components the waiting
times can be much smaller than for the PCS component studied in this paper. In
addition, if the waiting times are too long then sometimes it may be possible to
modify the components (just for the purpose of the model learning) and reduce
the response times. For our PCC case study such an approach is difficult. The
PCS controls the Session Managers (SMs), which are Windows services. After
an input event we want to observe the resulting state change of the SMs, but
due to the unreliable timing of the OS we need to wait quite long. In order to
reduce waiting times we would need to speed up Windows.

5.2 Faster learning and testing algorithms

There has been much progress recently in developing new algorithms for au-
tomata learning. In particular, the new TTT learning algorithm that has been
introduced by Isberner [16] is much faster than the variant of Angluin’s L∗ al-
gorithm [4] that we used in our experiments. Since the models for the PCS
components are so simple, the L∗ algorithm does not need any intermediate
hypothesis: the first model that L∗ learns is always correct (that is, extensive
testing did not reveal any counterexample). The TTT algorithm typically gen-
erates many more intermediate hypotheses than L∗. This means that it becomes
more important which testing algorithm is being used. But also in the area of
conformance testing there has been much progress recently [9,21]. Figure 5 dis-
plays the results of some experiments that we did using an implementation of the
TTT algorithm that has become available very recently in LearnLib, in combi-
nation with a range of testing algorithms from [9,21]. As one can see, irrespective
of the test method that is used, the TTT algorithm reduces the total number of
input events needed to learn the final PCS model with a factor of about 3.

5.3 Using parallelization and checkpointing

Learning and testing can be easily parallelized by running multiple instances of
the system under learning (in our case the PCS implementation) at the same
time. Henrix [14] reports on experiments in which doubling the number of parallel
instances nearly doubles the execution speed (on average with a factor 1.83).
Another technique that may speed-up learning is to save and restore software
states of the system under learning (checkpointing). The benefit is that if the
learner wants to explore different outgoing transitions from a saved state q it only

13

Fig. 5. Experiments with TTT algorithm for final PCS implementation for new PCC.
The used test methods (W, Wp, hybrid adaptive distinguishing sequences, hybrid
UIOv) were all randomised. For each test method 100 runs were performed. In each
case 95% of the runs were in the shaded area. The dotted lines give the median run
for a given test method.

needs to restore q, which usually is much faster than resetting the system and
bringing it back to q by an appropriate sequence of inputs. Henrix [14] reports
on experiments in which checkpointing with DMTCP [5] speeds up the learning
process with a factor of about 1.7.

5.4 Using abstraction and restriction

The number of test/membership queries of most learning algorithms grows lin-
early with the number of inputs. However, these algorithms usually assume an
oracle that provides counterexamples for incorrect hypothesis models. Such an
oracle is typically implemented using a conformance testing algorithm. In prac-
tice, conformance testing often becomes a bottleneck when the number of inputs
gets larger. Thus we seek methods that help us to reduce the number of inputs.

To get confidence that two implementations with a large number of stimuli
exhibit the same behaviour, a simple but practical approach is to apply model
learning for multiple smaller subsets of stimuli. This will significantly reduce the
learning complexity, also because the set of reachable states will typically be
smaller for a restricted number of stimuli. Models learned for a subset of the
inputs may then be used to generate counterexamples while learning models for

14

larger subsets on inputs. Smeenk [20] reports on some successful experiments in
which this heuristic was used.

A different approach, which has been applied successfully in many case stud-
ies, is to apply abstraction techniques that replace multiple concrete inputs by
a single abstract input. One may, for instance, forget certain parameters of an
input event, or only record the sign of an integer parameter. We refer to [1,6]
for recent overviews of these techniques.

6 Concluding Remarks

We presented an approach to get confidence that a refactored software compo-
nent has equivalent external control behaviour as its non-refactored legacy soft-
ware implementation. From both the refactored implementation and its legacy
implementation, a model is obtained by using model learning. Both learned mod-
els are then compared using an equivalence checker. The implementations are
learned and checked iteratively with increasing sets of stimuli to handle scala-
bility. By using this approach we found issues in both the refactored and the
legacy implementation in an early stage of the development, before the compo-
nent was integrated. In this way, we avoided costly rework in a later phase of the
development. As future work, we intend to apply our approach to other software
components that will be refactored, including a substantially larger component.

Acknowledgements We are most grateful to Joshua Moerman for helping with
the experiments with the TTT algorithm. We also thank Petra van den Bos for
careful proofreading of an earlier version. This research was supported by STW
project 11763 (ITALIA) and the Dutch national program COMMIT.

References

1. F. Aarts, B. Jonsson, J. Uijen, and F.W. Vaandrager. Generating models of infinite-
state communication protocols using regular inference with abstraction. Formal
Methods in System Design, 46(1):1–41, 2015.

2. F. Aarts, H. Kuppens, G.J. Tretmans, F.W. Vaandrager, and S. Verwer. Improving
active Mealy machine learning for protocol conformance testing. Machine Learning,
96(1–2):189–224, 2014.

3. R. L. Akers, I. D. Baxter, M. Mehlich, B. J. Ellis, and K. R. Luecke. Case study:
Re-engineering C++ component models via automatic program transformation.
Information and Software Technology, 49(3):275 – 291, 2007.

4. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2), 1987.

5. J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent checkpointing for
cluster computations and the desktop. In IEEE Parallel and Distributed Processing
Symposium, 2009.

6. S. Cassel. Learning Component Behavior from Tests: Theory and Algorithms for
Automata with Data. PhD thesis, University of Uppsala, 2015.

15

7. S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, W. Wes-
selink, and T.A.C. Willemse. An Overview of the mCRL2 Toolset and Its Recent
Advances. In N. Piterman and S. A. Smolka, editors, TACAS 2013, LNCS, vol.
7795, pages 199–213. Springer, Heidelberg, 2013.

8. J. de Ruiter and E. Poll. Protocol state fuzzing of tls implementations. In 24th
USENIX Security Symposium (USENIX Security 15), pages 193–206. USENIX
Association, 2015.

9. R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko. FSM-based
conformance testing methods: A survey annotated with experimental evaluation.
Information & Software Technology, 52(12):1286–1297, 2010.

10. J. Engelfriet. Determinacy - (observation equivalence = trace equivalence). Theo-
retical Computer Science, 36:21–25, 1985.

11. L. Feng, S. Lundmark, K. Meinke, F. Niu, M.A. Sindhu, and P.Y.H. Wong. Case
studies in learning-based testing. In H. Yenigün, C. Yilmaz, and A. Ulrich, editors,
ICTSS 2013, LNCS, vol. 8254, pages 164–179. Springer, Heidelberg, 2013.

12. P. Fiterău-Broştean, R. Janssen, and F.W. Vaandrager. Learning fragments of the
TCP network protocol. In F. Lang and F. Flammini, editors, FMICS 2014, LNCS,
vol. 8718, pages 78–93. Springer, Heidelberg, 2014.

13. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. Logic Journal
of IGPL, 14(5):729–744, 2006.

14. M. Henrix. Performance improvement in automata learning. Master thesis, Rad-
boud University, Nijmegen, 2015.

15. F. Howar, M. Isberner, M. Merten, and B. Steffen. Learnlib tutorial: From finite
automata to register interface programs. In T. Margaria, editor, ISoLA 2012,
LNCS, vol. 7609, pages 587–590. Springer, Heidelberg, 2012.

16. M. Isberner. Foundations of Active Automata Learning: An Algorithmic Perspec-
tive. PhD thesis, Technical University of Dortmund, 2015.

17. A.C. Kalsing, G.S. do Nascimento, C. Iochpe, and L.H. Thom. An incremental
process mining approach to extract knowledge from legacy systems. In Enterprise
Distributed Object Computing Conference (EDOC), pages 79–88, 2010.

18. T. Margaria, O. Niese, H. Raffelt, and B. Steffen. Efficient test-based model gen-
eration for legacy reactive systems. In 9th IEEE Int. High-Level Design Validation
and Test Workshop, pages 95–100, 2004.

19. H. Raffelt, B. Steffen, T. Berg, and T. Margaria. LearnLib: a framework for ex-
trapolating behavioral models. STTT, 11(5):393–407, 2009.

20. W. Smeenk. Applying Automata Learning to Complex Industrial Software. Master
thesis, Radboud University, Nijmegen, September 2012.

21. W. Smeenk, J. Moerman, F. W. Vaandrager, and D. N. Jansen. Applying automata
learning to embedded control software. In M. Butler, S. Conchon, and F. Zäıdi,
editors, ICFEM 2015, LNCS, vol. 9407, pages 67–83. Springer, Heidelberg, 2015.

22. B. Steffen, F. Howar, and M. Merten. Introduction to active automata learning
from a practical perspective. In Marco Bernardo and Valrie Issarny, editors, SFM
2011, LNCS, vol. 6659, pages 256–296. Springer, Heidelberg, 2011.

23. W. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of
Business Processes. Springer-Verlag Berlin Heidelberg, 2011.

24. C. Wagner. Model-Driven Software Migration: A Methodology. Springer Vieweg,
2014.

25. I. Warren. The Renaissance of Legacy Systems - Method Support for Software-
System Evolution. Springer London, 1999.

	Refactoring of Legacy Software using Model Learning and Equivalence Checking:an Industrial Experience Report

