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Abstract

It is shown that the Jacobian Conjecture holds for all polynomial maps F : kn →
kn of the form F = x + H , such that JH is nilpotent and symmetric, when n ≤ 4.
If H is also homogeneous a similar result is proved for all n ≤ 5.

Introduction

Let F := (F1, . . . , Fn) : Cn → Cn be a polynomial map i.e. each Fi is a polynomial
in n variables over C. Denote by JF := (∂Fi

∂xj
)1≤i,j≤n, the Jacobian matrix of F .

Then the Jacobian Conjecture (which dates back to Keller [9], 1939) asserts that if
detJF ∈ C

∗, then F is invertible. It was shown in [1] and [12] that it suffices to
prove the Jacobian Conjecture for all n ≥ 2 and all polynomial maps of the form
F = x + H , where JH is homogeneous and nilpotent (these two conditions imply
that detJF = 1); in fact it is even shown that the case where JH is nilpotent and H
is homogeneous of degree 3 is sufficient.

For n = 3 resp. n = 4 this so-called cubic homogeneous case was proved by
Wright resp. Hubbers in [11] resp. [8]. For n = 3, the case F = x + H , where H is
not necessarily homogeneous, but of degree 3, was proved by Vistoli in [10]. On the
other hand, if H has degree ≥ 4 not much is known; if for example F is of the form
x+H where H is homogeneous of degree ≥ 4, then all cases n ≥ 3 remain open. The
aim of this paper is to study these type of problems under the additional hypothesis
that JH is symmetric. This is no loss of generality since it was recently shown by
the authors in [3] that it suffices to prove the Jacobian Conjecture for all polynomial
maps F : Cn → Cn of the form F = x+H with JH nilpotent, homogeneous of degree
≥ 2 and symmetric.

For such maps the conjecture was proved for all n ≤ 4 in [6]. The proof of
this result is based on a remarkable theorem of Gordan and Noether, which asserts
that if n ≤ 4, then h(f), the Hessian matrix of the homogeneous polynomial f ∈
C[x1, . . . , xn], is singular iff f is degenerate i.e. there exists a linear coordinate change
T such that f(Tx) ∈ C[x1, . . . , xn−1]. However if n = 5 such a result does not hold:
the polynomial f = x2

1x3+x1x2x4+x2
2x5 has a singular Hessian but is not degenerate.
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Nevertheless one of the main results of this paper (theorem 4.1) asserts that the
Jacobian Conjecture holds for all polynomial maps F : C

5 → C
5 of the form F =

x + H with JH nilpotent, homogeneous and symmetric. To prove this result we first
extend the 3 dimensional Gordan-Noether theorem to the case where f needs not
be homogeneous, but has the additional property that trh(f) = 0 (proposition 3.2).
Next we show, using a result of [4], that in case n = 5 and f is homogeneous, the
condition h(f) is nilpotent implies that f is degenerate. Then we are in the position
to apply the main result of [2], to conclude the above mentioned 5-dimensional result.

Finally we also extend the 4-dimensional homogeneous result obtained in [6] to
the case where H needs not be homogeneous (theorem 5.1).

1 Preliminaries

The main aim of this section is to fix the notations, collect some results from [2] and
[4] and to give some additional preliminaries which we will need in the sequel.

Throughout this paper k denotes an algebraically closed field of characteristic
zero and k[n] := k[x1, . . . , xn] is the polynomial ring in n variables over k. By H =
(H1, . . . , Hn) : kn → kn we mean a polynomial map, i.e. each Hi belongs to k[n]. One
easily verifies that JH is symmetric iff there exists an f ∈ k[n] such that Hi = fxi ,
the partial derivative of f with respect to xi, for all i. In particular, JH = h(f) :=
( ∂2f

∂xi∂xj
), the Hessian matrix of f . We may obviously assume that f is reduced, i.e.

does not contain terms of degree ≤ 1. Our main interest is to study the Jacobian
Conjecture for all polynomial maps of the form F = x + H , where JH is nilpotent
and symmetric. As already remarked above, this is sufficient for investigating the
Jacobian Conjecture. Starting point is the main result of [2]. To explain it, we need
to formulate the (homogeneous) symmetric dependence problem:

(Homogeneous) Symmetric Dependence Problem (H)SDP(n).
Let f ∈ k[n] be a (homogeneous) polynomial in k[n] of degree d ≥ 2 such that h(f) is
nilpotent. Are the rows of h(f) linearly dependent over k?

The following result can be found in [2].

Proposition 1.1

i) SDP(n) has an affirmative answer for all n ≤ 2.

ii) If n ≤ 4 and f ∈ k[n] is homogeneous, then h(f) is singular implies that f is
degenerate. In particular HSDP(n) has an affirmative answer if n ≤ 4.

Since f is assumed to be reduced, it is shown in [2, 1.2] that the dependence of the
rows of h(f) is equivalent to the fact that the partials fxi of f are linearly dependent
over k, which in turn is equivalent to f being degenerate. The main result of [2]
asserts the following.

Proposition 1.2 Let n ≥ 2 and H ∈ k[x1, . . . , xn]n with JH symmetric and nilpo-
tent. Then
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i) x + H is invertible if SDP(p) has an affirmative answer for all p ≤ n.

ii) If H is homogeneous, then x + H is invertible if SDP(p) has an affirmative
answer for all p ≤ n − 2 and HSDP(p) for p = n − 1 and p = n.

The remainder of this paper is therefore devoted to showing that SDP(p) has an
affirmative answer for all p ≤ 4 as well as HSDP(5).
In order to investigate nilpotent Hessians we first recall our main results on singular
Hessians obtained in [4]. To formulate them we need some preliminaries. First, let
f ∈ k[n]. A polynomial g ∈ k[n] is called equivalent to f if there exists T ∈ Gln(k)
such that g = f ◦ T i.e. g(x) = f(Tx). It is well-known that

h(g) = T th(f)|TxT (1)

So if g is equivalent to f and deth(f) = 0, then deth(g) = 0 as well. Furthermore,
if deth(f) = 0 there exists a nonzero polynomial R(y1, . . . , yn) ∈ k[y1, . . . , yn] such
that R(fx1 , . . . , fxn) = 0. We say that R is a relation of f . Consequently (since
deth(g) = 0), also the partials of g are algebraically dependent over k. This enables
us to give the following definition: let f ∈ k[n] with det h(f) = 0. Then s(f) is the
maximal natural number s, 0 ≤ s ≤ n− 1 for which there exists a g ∈ k[n] equivalent
to f which has a relation in k[ys+1, . . . , yn]. In other words n − s(f) is the least
number of variables a relation of a with f equivalent polynomial can have.

Theorem 1.3 Let f ∈ k[n] be reduced and satisfy deth(f) = 0. Then

1) If n = 3 then either f is degenerate or equivalent to a polynomial of the form
a1(x1) + a2(x1)x2 + a3(x1)x3.

2) If n = 4 and s(f) ≥ 1 then either f is degenerate or equivalent to a polynomial
of one of the following forms:

i) a1(x1, x2)+a2(x1, x2)x3 +a3(x1, x2)x4 with a2 and a3 algebraically depen-
dent over k.

ii) p(x1, a) + b, with p(y1, y2) ∈ k[y1, y2] and a, b ∈ Ax2 + Ax3 + Ax4 where
A = k[x1].

3) If n = 5 and f is homogeneous, then either f is degenerate or equivalent to a
polynomial of the form p(a), where a = a1x3+a2x4+a3x5 with ai ∈ A = k[x1, x2]
for all i and p(X) ∈ A[X ].

2 Orthogonal equivalence of polynomials with sin-
gular Hessians

Theorem 1.3 gives a classification for small n of reduced polynomials with singular
Hessians up to equivalence. In this section we refine this result, namely we obtain a
classification of such polynomials up to orthogonal equivalence: two polynomials f
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and g in k[n] are called orthogonally equivalent if there exists an orthogonal matrix
T ∈ O(n) i.e. T ∈ Mn(k) with T tT = In, such that g = f ◦ T . The advantage of
working with orthogonal equivalence is that it preserves the nilpotency of Hessians,
i.e. h(f) is nilpotent iff h(g) is nilpotent (which follows from (1)). The main result of
this section is

Theorem 2.1 Let f ∈ k[n] be reduced and satisfy det h(f) = 0. Then

1) If n = 3, then either f is degenerate or orthogonally equivalent to a polynomial
of one of the following two forms:

a1(x1) + a2(x1)x2 + a3(x1)x3 (2)

a1(x1 + ix2) + a2(x1 + ix2)x2 + a3(x1 + ix2)x2 (3)

2) If n = 4 and s(f) ≥ 1, then either f is degenerate or orthogonally equivalent to
a polynomial of one of the following forms:

U := a1(x1, x2) + a2(x1, x2)x3 + a3(x1, x2)x4 (4)

with a2 and a3 algebraically dependent over k,

U|x1:=x1+ix3 (5)

with a2 and a3 algebraically dependent over k,

U|x1:=x1+ix3,x2:=x2+ix4 (6)

with a2 and a3 algebraically dependent over k,

p(x1, a) + b (7)

with p(y1, y2) ∈ k[y1, y2], a, b ∈ Ax2 + Ax3 + Ax4 and A = k[x1],

(p(x1, a) + b)|x1:=x1+ix2 (8)

3) If n = 5 and f is homogeneous, then either f is degenerate or orthogonally
equivalent to a polynomial of one of the following forms

p(x1, x2, a) (9)

with a = a1x3 + a2x4 + a3x5 and ai ∈ A := k[x1, x2] for all i and p(y1, y2, y3) ∈
k[y1, y2, y3],

p(x1, x2, a)|x1:=x1+ix3 (10)

p(x1, x2, a)|x1:=x1+ix3,x2:=x2+ix4 (11)

The proof of this result is based on theorem 1.3 and the following lemma
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Lemma 2.2 Let v1, . . . , vr ∈ kn be linearly independent over k. Then there exist an
s : 0 ≤ s ≤ r, an S ∈ Glr(k) and an orthogonal matrix T ∈ O(n) such that

S

⎛
⎜⎝

vt
1
...
vt

r

⎞
⎟⎠T =

(
Ir

iIs

∅ ∅
)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

et
1 + iet

r+1
...

et
s + iet

r+s

et
s+1
...
et

r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ei is the i-th standard basis vector in kn (if s = 0 read S(vt
1, . . . , v

t
r)T =

(et
1, . . . , e

t
r)).

Proof. Put A := (〈vi, vj〉)1≤i,j≤r . Since A is symmetric, there exist an S ∈ Glr(k)
and an s : 0 ≤ s ≤ r such that

StAS = J :=
(

0s

Ir−s

)

Put (ṽ1 · · · ṽr) := (v1 · · · vr)·S. Then one readily verifies (or see [2, lemma 1.3]) that
(〈ṽi, ṽj〉)i,j = J . So replacing the vi by the ṽi, we may assume that (〈vi, vj〉)i,j = J .
Now we distinguish two cases: s = 0 and s ≥ 1.

• Case 1: s = 0.
Then by the Gram-Schmidt theorem, there exists an orthogonal matrix T ∈
Gln(k) such that the j-th row Tj of T equals vt

j for all j : 1 ≤ j ≤ r. So Tivi = 1
and Tjvi = 0 for all i : 1 ≤ i ≤ r and all j 
= i. In other words, Tvi = ei for all
i : 1 ≤ i ≤ r, i.e. T is an orthogonal matrix satisfying T (v1 · · · vr) = (e1 · · · er).

• Case 2: s ≥ 1.
So 〈v1, vj〉 = 0 for all j : 1 ≤ j ≤ r. Observe that v1 is perpendicular to
kv1 + . . . + kvr, so r ≤ n − 1. We may assume that v11 = 1. So 〈v1, e1〉 = 1.
Hence if we put u := i(e1−v1), then 〈e1, u〉 = 0 and 〈u, u〉 = 1. So by the Gram-
Schmidt theorem there exists an orthogonal matrix T ∈ Gln(k) with T1 = et

1

and Tr+1 = ut, where again Tj is the j-th row of T . So Tje1 = 0 for all j 
= 1
and Tju = 0 for all j 
= r + 1, which by the definition of u implies that Tjv1 =
Tje1 = 0 for all j /∈ {1, r + 1}. Also Tr+1v1 = 〈v1, u〉 = i(〈v1, e1〉 − 〈v1, v1〉) = i.
Summarizing Tv1 = (T1v1, . . . , Tnv1) = (e1 + ier+1).

Define wj := Tvj for all j. Then T (v1 · · · vr) = (w1 · · · wr) = ((e1 +
ier+1) w2 · · · wr). Since T is orthogonal, we have that 〈wi, wj〉 = 〈vi, vj〉
for all i, j. Now replace for each j ≥ 2 wj by wj − cjw1 for suitable cj ∈ k
(which operation can be obtained by replacing (w1 · · · wr) by (w1 · · · wr)S
for suitable S ∈ Glr(k)) we may assume that the first component of wj equals
zero. Since 〈w1, wj〉 = 0 for all j ≥ 2, it follows, using w1 = e1 + ier+1, that
also the (r +1)-th component of wj equals zero. Now consider the r− 1 vectors
w2, . . . , wr in kn−2 = ke2 + . . . + ker + ker+2 + . . . + ken and use induction on
n �
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Corollary 2.3 Let v1, . . . , vr, vr+1, . . . , vn be a k-basis of kn. Put Vi := 〈vi, x〉. Let
f be of the form

f = p

⎛
⎝V1, . . . , Vr,

n∑
j=r+1

aj(V1, . . . , Vr)Vj ,
n∑

j=r+1

bj(V1, . . . , Vr)Vj

⎞
⎠

Then f is orthogonally equivalent to a polynomial of the form

q

⎛
⎝X0,

n∑
j=r+1

cj(X0)xj ,

n∑
j=r+1

dj(X0)xj

⎞
⎠

where X0 = (x1 + ixr+1, . . . , xs + ixr+s, xs+1, . . . , xr).

Proof. Choose T and S as in Lemma 2.2. Observe that

f = p̃

⎛
⎝S(V1, . . . , Vr),

n∑
j=r+1

ãj(S(V1, . . . , Vr))Vj ,

n∑
j=r+1

b̃j(S(V1, . . . , Vr))Vj

⎞
⎠

for suitable p̃, ãj and b̃j . Now we claim that f ◦ T is of the desired form. Notice first
that it follows from lemma 2.2 that

E := S(V1 ◦ T, . . . , Vr ◦ T )
= S(vt

1Tx, . . . , vt
rTx)

= X0

Consequently,

f ◦ T = p̃(X0,

n∑
j=r+1

ãj(X0)Wj ,

n∑
j=r+1

b̃j(X0)Wj)

where Wj := Vj ◦ T is a linear form in all xi over k. Finally observe that

n∑
j=r+1

ãj(X0)Wj ,

n∑
j=r+1

b̃j(X0)Wj ∈ k[X0] +
n∑

j=r+1

k[X0]xj

So we can write f ◦ T in the desired form �

Proof of theorem 2.1. In each of the cases in theorem 2.1 it follows from theorem
1.3 that there exists T ∈ Gln(k) such that f ◦ T is of the form

p

⎛
⎝x1, . . . , xr,

n∑
j=r+1

aj(x1, . . . , xr)xj ,

n∑
j=r+1

bj(x1, . . . , xr)xj

⎞
⎠

for suitable r, p, aj and bj . Hence f is of the form described in corollary 2.3, where vt
i

is the i-th row of T−1. Then apply this corollary �
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3 The symmetric Jacobian Conjecture in dimension
3

The main result of this section is

Theorem 3.1 Let F = x + H : k3 → k3 be a polynomial map with JH symmetric
and nilpotent. Then F is invertible.

Proof. This is an immediate consequence of proposition 1.1 i), proposition 1.2 and
proposition 3.2 below �

Proposition 3.2 SDP(3) has an affirmative answer.

Proof. Let f ∈ k[3] be reduced and assume that h(f) is nilpotent. Then by theorem
2.1 we may assume that f is either of the form (2) or of the form (3).

i) Suppose first that f is of the form (2). Since tr h(f) = 0 this gives a′′
1(x1) +

a′′
2(x1)x2 +a′′

3(x1)x3 = 0. So deg ai ≤ 1 for all i. Since f is reduced, this implies
that f = c1x1x2+c2x1x3 for some ci ∈ k. It follows that fx2 and fx3 are linearly
dependent over k, so f is degenerate.

ii) Now assume that f is of the form (3). Then a simple computation gives tr h(f) =
∂2
1f + ∂2

2f + ∂2
3f = 2ia′

2(x1 + ix2). Since trh(f) = 0, this implies that a2 ∈ k
and hence that a2 = 0, since f is reduced. Consequently, f = a1(x1 + ix2) +
a3(x1 + ix2)x3 ∈ k[x1 + ix2, x3]. So f is degenerate �

4 The homogeneous symmetric Jacobian Conjec-

ture in dimension 5

The main result of this section is

Theorem 4.1 Let F = x + H : k5 → k5 be a polynomial map with JH symmetric,
nilpotent and homogeneous of degree ≥ 2. Then F is invertible.

Proof. By propositions 1.1 i) and 3.2, SDP(n) has an affirmative answer for all
n ≤ 3. Also HSDP(4) has an affirmative answer by proposition 1.1. Furthermore we
will show in proposition 4.2 below that HSDP(5) has an affirmative answer. Then
the desired result follows from proposition 1.2 ii) �

Proposition 4.2 HSDP(5) has an affirmative answer.

Proof. Let f ∈ k[5] be homogeneous and reduced and assume that h(f) is nilpotent.
Then by theorem 2.1 we may assume that f is of the form (9), (10) or (11). We will
show that in each of these cases f is degenerate.
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i) First assume that f is either of the form (9) or (10). Since f is homogeneous
it follows that all ai are homogeneous of the same degree, say d. If d = 0
then f is trivially degenerate. So assume d ≥ 1. Write p = γr(y1, y2)yr

3 +
γr−1(y1, y2)yr−1

3 + · · · and ∂i instead of ∂xi . Then g := ∂r−1
5 f is of the form

g = b1(x1 + cx3, x2) + b2(x1 + cx3, x2)x3 +
b3(x1 + cx3, x2)x4 + b4(x1 + cx3, x2)x5

with c ∈ {0, i} and bj = r!ar−1
3 γraj for all j ≥ 2. Since tr h(f) = 0 we have

Δf = 0 where Δ = ∂2
1 + . . . + ∂2

5 . Consequently, using that ∂r−1
5 commutes

with Δ, we get that Δ∂r−1
5 f = ∂r−1

5 Δf = 0 i.e. Δg = 0. It then follows
from the form of g that (∂2

1 + ∂2
2 + ∂2

3)bj(x1 + cx3, x2) = 0 for all j ≥ 2, since
xj(∂2

1+∂2
2+∂2

3)bj(x1+cx3, x2) is the leading term of xj of Δf , seen as polynomial
over x1 + cx3, x2, . . . , x5, for all j ≥ 2.

If c = 0, this implies that bj(x1, x2) is of the form λj(x1 + ix2)s + μj(x1 − ix2)s

for some λj , μj ∈ k and s ≥ 1. If c = i, then it follows from ∂2
2bj(x1 + ix3, x2) =

(∂2
1 + ∂2

2 + ∂2
3)bj(x1 + ix3, x2) = 0 that each bj(x1 + ix3, x2) is of the form

λj(x1 + ix3)s + μjx2(x1 + ix3)s−1 for some λj , μj ∈ k and s ≥ 1. In both
cases, the polynomials b2, b3, b4 belong to a 2-dimensional k-vectorspace and
hence are linearly dependent over k. Since bj = r!ar−1

3 γraj for all j ≥ 2, also
the polynomials a2, a3, a4 are linearly dependent over k. In case (9), it follows
that fx3 , fx4, fx5 are linearly dependent over k, so f is degenerate. In case (10),
first make the coordinate change which sends x1 to x1 − ix3. Then the same
argument shows that f|x1−ix3 is degenerate and hence so is f .

ii) So it remains to show the case (11). We will show that a1 and a2 are linearly
dependent over k, which will imply that f is degenerate. Write again p =
γr(y1, y2)yr

3 + · · · . We distinguish two cases: r ≥ 2 and r = 1.

First assume r ≥ 2. Make the coordinate change X1 := x1 + ix3, X2 :=
x2 + ix4, Xj := xj for all j ≥ 3. Put U := a1(X1, X2)X3 + a2(X1, X2)X4 +
a3(X1, X2)X5. Then the condition tr h(f) = 0, i.e. Δf = 0, becomes

(2i(∂X1∂X3 + ∂X2∂X4) + ∂2
X3

+ ∂2
X4

+ ∂2
X5

)(γr(X1, X2)U r + · · · ) = 0 (12)

Applying ∂r−1
X3

to this equation gives

2i(∂X1∂X3 + ∂X2∂X4 + ∂2
X3

+ ∂2
X4

+ ∂2
X5

)(r!γra
r−1
1 U) = 0

So

∂X1(γra
r
1) + ∂X2(γra

r−1
1 a2) = ∂X1∂X3γra

r−1
1 U + ∂X2∂X4γra

r−1
1 U = 0

Consequently there exists a homogeneous element h1 ∈ k[X1, X2] such that

γra
r
1 = ∂X2h1 and γra

r−1
1 a2 = −∂X1h1 (13)
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So if we put D = a1∂X1 + a2∂X2 , then h1 ∈ kerD. Similarly, applying ∂r−1
X4

to the equation (12) gives ∂X1(γra1a
r−1
2 ) + ∂X2(γra

r
2) = 0. So there exists a

homogeneous element h2 ∈ k[X1, X2] such that

γra1a
r−1
2 = ∂X2h2 and γra

r
2 = −∂X1h2 (14)

So h2 ∈ kerD.

Since a1 and a2 are homogeneous of the same degree, both h1 and h2 are also
homogeneous of the same degree. Also kerD = k[v] for some homogeneous
element v ∈ k[X1, X2] (by [5, 1.2.25]). Consequently h1 = c1v

s and h2 = c2v
s

for some cj ∈ k and s ≥ 1. It follows that h1 and h2 are linearly dependent
over k and hence so are ∂X2h1 and ∂X2h2. Whence by (13) and (14) ar−1

1 and
ar−1
2 are linearly dependent over k, which implies that a1 and a2 are linearly

dependent over k (since r ≥ 2!).

So it remains to consider the case r = 1, which follows immediately from the
next lemma (which is a slightly generalized version of lemma 1.2 of [3]) �

Lemma 4.3 Let 0 ≤ s ≤ n
2 and f ∈ k[n] of the form

f = a0(z) + a1(z)xs+1 + a2(z)xs+2 + . . . + an−s(z)xn

where z is an abbreviation of x1 + ixs+1, x2 + ixs+2, . . . , xs + ix2s. Then h(f) is
nilpotent iff J(a1, . . . , as) is nilpotent.

Proof. h(f) is nilpotent iff det(TIn − h(f)) = T n. Put q := 1
2

∑n
i=1 x2

i . Then
h(Tq) = TIn. Let S := (x1 − ixs+1, x2 − ixs+2, . . . , xs − ix2s, xs+1, . . . , xn). Then
f ◦ S = a0 + a1xs+1 + . . . + an−sxn. Since detS = 1 it follows from (1) in section 1
that M := h(Tq − f) ◦ S satisfies det M = T n iff h(f) is nilpotent. Now observe that

q ◦ S =
1
2

s∑
j=1

(x2
j − 2ixjxj+s − x2

j+s) +
1
2

n∑
j=s+1

x2
j

=
1
2

s∑
j=1

(x2
j − 2ixjxj+s) +

1
2

n∑
j=2s+1

x2
j .

Then it follows that M is of the form

M =

⎛
⎝ ∗ −iT Is − J(a1, . . . , as)t ∗

−iT Is − J(a1, . . . , as) 0 0
∗ 0 TIn−2s

⎞
⎠

Finally observe that

det M = (−1)s · det(iT Is + J(a1, . . . , as)) ·
det(iT Is + J(a1, . . . , as)t) · T n−2s

= det(TIs − iJ(a1, . . . , as))2T n−2s

Consequently detM = T n iff det(TIn−iJ(a1, . . . , as)) = T s, which implies the desired
result �
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5 The symmetric Jacobian Conjecture in dimension
4

The main result of this section is

Theorem 5.1 Let F = x + H : k4 → k4 be a polynomial map with JH symmetric
and nilpotent. Then F is invertible.

Proof. This is an immediate consequence of propositions 1.2, 3.2, 1.1 and 5.2 below
�

Proposition 5.2 SDP(4) has an affirmative answer.

The proof of this result is based on theorem 1.3 2). In order to use this result we
will first show that the hypothesis h(f) is nilpotent indeed implies that s(f) ≥ 1. For
the proof of this implication we need to recall some results obtained in [7], which we
summarize in the next two propositions.

Proposition 5.3 Let f ∈ k[n] be homogeneous and R ∈ k[y1, . . . , yn] such that
R(fx1 , . . . , fxn) = 0. Put hi := Ryi(fx1 , . . . , fxn) and D :=

∑n
i=1 hi∂xi . Then

i) D2(xi) = 0 for all i.

ii) Let f = Axr
1 + xr+1

1 (. . .), where 0 
= A ∈ K[x2, . . . , xn]. If h1 = 0, then
A(h2, . . . , hn) = 0.

Proposition 5.4 Let D =
∑n

i=1 hi∂xi be a homogeneous derivation on k[n] such that
D2(xi) = 0 for all i and denote by μ the dimension of the rational map h : Pn−1 ���
Pn−1. If μ ≤ 1 then there exist at least two linearly independent linear relations
between the hi.

Now we are ready to prove

Proposition 5.5 Let f ∈ k[4] be reduced and such that h(f) is nilpotent. Then
s(f) ≥ 1, i.e. there exists a nonzero degenerate polynomial R ∈ k[y1, y2, y3, y4] such
that R(fx1 , fx2, fx3 , fx4) = 0.

Proof. If rkh(f) ≤ 2, then rkJ(fx1 , fx2 , fx3) ≤ 2. So by [5, proposition 1.2.9],
trdegk k(fx1 , fx2 , fx3) ≤ 2, which implies that there exists a nonzero polynomial R ∈
k[y1, y2, y3] with R(fx1, fx2 , fx3) = 0. Clearly R is degenerate in k[y1, y2, y3, y4]. So
we may assume that rkh(f) = 3.

i) Let d := deg f . Observe that d ≥ 2 since f is reduced. Since det h(f) = 0 there
exists some nonzero polynomial R ∈ k[y1, y2, y3, y4], say of degree r, such that
R(fx1 , fx2, fx3 , fx4) = 0. Let f̄ be the leading part of f and R̄ the leading part
of R. Then R̄(f̄x1 , f̄x2, f̄x3 , f̄x4) = 0. So it follows from proposition 1.1 ii) that
f̄ is degenerate.
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ii) Put S := yr
6R( y

y6
). Then S ∈ k[y1, y2, y3, y4, y6] is homogeneous of degree

r and S(fx1 , fx2, fx3 , fx4 , 1) = 0. Put g := xd
5f( x

x5
) + xd−1

5 x6. Then gxi =
xd−1

5 fxi(
x
x5

) for all i ≤ 4 and gx6 = xd−1
5 · 1. Since S is homogeneous and

S(fx1 , fx2 , fx3, fx4 , 1) = 0 it follows that S(gx1 , gx2 , gx3 , gx4, gx6) = 0. Now we
want to apply proposition 5.3 ii) to the polynomial g ∈ k[6] and the relation
S ∈ k[y1, . . . , y6] which does not contain y5. Put zi := Syi(gx1 , gx2 , gx3 , gx4, gx6)
for all i : 1 ≤ i ≤ 6. Observe that z5 = 0 and that g = f̄(x1, x2, x3, x4)+ (. . .)x5

(since d ≥ 2). So taking A := f̄ in proposition 5.3 we get that f̄(z1, z2, z3, z4) =
0.

iii) Let M := h(f)m where M 
= 0 and h(f)m+1 = 0. Choose a nonzero column h̃
of M . Since h(f)M = 0 it follows that h(f)h̃ = 0. Furthermore 〈h̃, h̃〉 = 0, for
M2 = 0. Since

0 = ∂xiR(fx1 , fx2 , fx3, fx4)

=
4∑

j=1

Ryj (fx1 , fx2, fx3 , fx4)fxjxi

=
4∑

j=1

hjfxjxi

for all 1 ≤ i ≤ 4, we get that h(f)h = 0 Since we already saw that h(f)h̃ = 0, the
hypothesis that rkh(f) = 3 implies that h = αh̃ for some α ∈ k(x1, x2, x3, x4).
Hence 〈h̃, h̃〉 = 0 implies that h2

1 + h2
2 + h2

3 + h2
4 = 0.

iv) The polynomial z2
1 + z2

2 + z2
3 + z2

4 is clearly homogeneous. Furthermore, sub-
stituting x5 = 1 gives h2

1 + h2
2 + h2

3 + h2
4 = 0 (by iii)). Hence z2

1 + z2
2 + z2

3 +
z2
4 = 0, which is an irreducible non-degenerate relation between the polyno-

mials z1, z2, z3, z4. Since we also found a degenerate relation between the zi

in ii), namely f̄(z1, z2, z3, z4) = 0, it follows that trdegk k(z1, z2, z3, z4) ≤ 2.
Consequently the dimension of the rational map z : P

4 ��� P
4 defined by

z(x) = (z1, z2, z3, z4, 0) is at most 1.

Now define D =
∑6

i=1 zi∂xi . Then by proposition 5.3 i) D(zi) = 0 for all i.
Observe that zi ∈ k[x1, . . . , x5] and recall that z5 = 0. So also D̃(zi) = 0
for all i ≤ 4, where D̃ is the derivation

∑4
i=1 zi∂xi on k[x1, . . . , x5]. Then it

follows from proposition 5.4 that besides the relation z5 = 0 there is another
linear relation between z1, . . . , z5. So z1, z2, z3, z4 are linearly dependent over
k. Taking x5 = 1 it follows that h1, h2, h3, h4 are linearly dependent over k.
Consequently there exist ci ∈ k, not all zero with

4∑
i=1

ciRyi(fx1 , fx2, fx3 , fx4) = 0 i.e.

(
4∑

i=1

ciRyi

)
(fx1 , fx2, fx3 , fx4) = 0

Now assume that R was taken of minimal degree, then it follows that
∑4

i=1 ciRyi =
0, i.e. R is degenerate, which completes the proof �
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Proof of proposition 5.2. According to proposition 5.5 we may assume that f is
of one of the forms (4)-(8) of theorem 2.1.

i) Let f be of the form (4). Then

h(f) =
(

h(a2) 0
0 0

)
x3 +

(
h(a3) 0

0 0

)
x4 + A

where A is a 4×4 matrix which entries are polynomials in x1 and x2. Since h(f)
is nilpotent, so is h(a2)c1 + h(a3)c2 for each c1, c2 ∈ k (look at the highest x3-
term of h(f)|(x1,x2,c1x3,c2x3)). In particular both h(a2) and h(a3) are nilpotent.
Then it is well-known that the reduced parts of a2 and a3 are polynomials in
x1 + ix2 or x1 − ix2 over k. Say the reduced part of a2 is a nonzero polynomial
in x1+ix2. Consequently the reduced part of a3 is also a polynomial in x1 +ix2,
for otherwise h(a2) + h(a3) = h(a2 + a3) cannot be nilpotent.

Write a2 = c1x2+g1(x1+ix2) and a3 = c2x2+g2(x1+ix2), with c1, c2 ∈ k. Since
a2 and a3 are algebraically dependent over k, the same holds for c1x2 + g1(x1)
and c2x2 + g2(x1) (make the coordinate change x1 �→ x1 − ix2). If c1 
= 0
or c2 
= 0, it follows readily that c1g2 − c2g1 ∈ k (make a coordinate change
which sends one of the elements cix2 + gi(x1) to x2). Therefore c1g2 = c2g1,
for g1(0) = g2(0) = 0 due to the reducedness of f . Hence a2 and a3 are linearly
dependent over k (since a2(0) = a3(0) = 0), which implies that f is degenerate.
So we may assume that c1 = c2 = 0. So both a2 and a3 belong to k[x1 + ix2].

Finally Mc := h(f)|(x1,x2,c,0) is nilpotent for all c ∈ k and is of the form

Mc =

⎛
⎜⎜⎝

h(a1 + ca2)
a′
2 a′

3

ia′
2 ia′

3

a′
2 ia′

2

a′
3 ia′

3

0 0
0 0

⎞
⎟⎟⎠

An easy computation shows that the characteristic polynomial of a 4×4 matrix
of the form (

A B
Bt 0

)
where B =

(
p p
ip iq

)

is of the form T 4 − (tr A)T 3 + (detA)T 2 + · · · . Since Mc is nilpotent this
implies that h(a1 + ca2) is nilpotent for all c ∈ k. Taking c = 1 (and using
that a1 has no terms of degree ≤ 1, since f is reduced) it follows as above from
a2 ∈ k[x1 + ix2] that also a1 ∈ k[x1 + ix2]. Consequently f ∈ k[x1 + ix2, x3, x4],
i.e. f is degenerate.

ii) Now assume that f is of the form (5). Since tr h(f) = 0, it follows that (∂2
1 +

∂2
2 + ∂2

3)(f)|x1−ix3 = 0. Looking at the coefficients of x3 resp. x4 we get that
(a2)x2x2 = 0 resp. (a3)x2x2 = 0, i.e. degx2

ai ≤ 1 for i = 2, 3. Suppose that
degx2

a2 = 1 or degx2
a3 = 1. Since a2 and a3 are algebraically dependent over

k, they are both polynomials in one polynomial, say u, with u(0) = 0, over k
(Gordan’s lemma). Hence degx2

u = 1 and degu a2, degu a3 ≤ 1. Since f is
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reduced, we have a2(0) = a3(0) = 0. So from u(0) = 0, it follows that a2 = c2u
and a3 = c3u for some ci ∈ k. Hence a2 and a3 are linearly dependent over k,
whence f is degenerate.

Now assume that degx2
a2 = degx2

a3 = 0, i.e. a2, a3 ∈ k[x1 + ix3]. We show
that a2 ∈ k, which implies that a2 = 0 (since f is reduced) and hence that
f ∈ k[x1 + ix3, x2, x4]. So f is degenerate. To see that a2 ∈ k, observe that our
assumption implies that f is of the form

f = q(x1 + ix3, x2, x4) + a2(x1 + ix3)x3 (15)

So M := h(f)|(x1,x2,0,x3) is of the form

M =

⎛
⎜⎜⎝

qx1x1 qx2x1 iqx1x1 + (a2)x1 qx3x1

∗ ∗ ∗ ∗
iqx1x1 + (a2)x1 iqx2x1 −qx1x1 + 2i(a2)x1 iqx3x1

∗ ∗ ∗ ∗

⎞
⎟⎟⎠

So if we substitute T := i(a2)x1 in the matrix TI4 − M we get a matrix which
first and third row are linearly dependent over k. Consequently i(a2)x1 is a root
of the characteristic polynomial T 4 of M . So (a2)x1 = 0 i.e. a2 ∈ k, as desired.

iii) Now let f be of the form (6). Then by lemma 4.3, h(f) is nilpotent iff
J(a2(x1, x2), a3(x1, x2)) is nilpotent. So by [5, 7.1.7] a2 and a3 are linearly
dependent over k, which implies that f is degenerate.

iv) Now let f be of the form (7), with a = a1x2 +a2x3 +a3x4 and b = b1x2 +b2x3 +
b3x4, where ai, bj ∈ k[x1] for all i, j. If degy2

p = 1, then we can rewrite f and
“put the ai’s in the bi’s”, so that we may assume that a1 = a2 = a3 = 0 ∈ k.
Also if degy2

p ≥ 2, we get that a2, a3, a4 ∈ k. To see for example that a1 ∈ k,
consider the coefficient of the highest x2 power in f , say c(x1). Since tr h(f) = 0,
it follows that c′′(x1) = 0 i.e. deg c(x1) ≤ 1. Consequently, since a1(x1)2 divides
c(x1) (for deg p ≥ 2), we get that a1 ∈ k. So ai ∈ k for all i. Without loss of
generality we may assume that a1 
= 0. Then f is of the form

f = c1(x1, a1x2 + a2x3 + a3x4) + c2(x1)x3 + c3(x1)x4

= c1(x1, a) + c2(x1, a)x3 + c3(x1, a)x4

where a = a1x2 + a2x3 + a3x4. So f is of the form 2i) of theorem 1.3, since
obviously c2(x1, a) = c2(x1) and c3(x1, a) = c3(x1) are algebraically dependent
over k. So by the proof of theorem 2.1 f is orthogonally equivalent to one the
forms (4)-(6). For these cases we have already shown that f is degenerate.

v) Finally assume that f is of the form (8). The case degy2
p ≤ 1 and also the

case a1, a2, a3 ∈ k follow by a similar argument as above. So we may assume
that degy2

p ≥ 2 and that {a1, a2, a3} is not contained in k. We distinguish two
subcases: a1 = 0 and a1 
= 0. First assume a1 = 0. Then f is of the form
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f = q(x1 + ix2, x3, x4)+ b1(x1 + ix2)x2, i.e. exactly of the form (15) with x2 and
x3 interchanged. So by the argument given there we obtain b1 = 0 and hence
f is degenerate. Now assume that a1 
= 0. We will show that this case leads to
a contradiction and hence cannot occur. Therefore put u := a1(x1 + ix2)x2 +
a2(x1 + ix2)x3 + a3(x1 + ix2)x4. Then ∂r−1

4 f = r!(γar−1
3 )(x1 + ix2)u. Since

trh(f) = 0 we have (∂2
1 + . . . + ∂2

4)f = 0 and hence (∂2
1 + . . . + ∂2

4)(∂r−1
4 f) = 0.

Since ∂r−1
4 f is linear in x3 and x4 and each polynomial in x1 + ix2, x3 and x4

belongs to ker ∂2
1 + ∂2

2 we get that

(∂2
1 + ∂2

2)[(γar−1
3 a1)(x1 + ix2)x2] = 0

which implies that γar−1
3 a1 ∈ k, as one easily verifies. Consequently ar−1

3 a1 ∈ k.
A similar argument gives that ar−1

2 a1 ∈ k (using ∂r−1
3 instead of ∂r−1

4 ). Since
a1 
= 0 and {a1, a2, a3} is not contained in k, it follows that a2 = a3 = 0. But
then, again using that tr h(f) = 0, now using (∂2 − i∂1)r−1 instead of ∂r−1

4 ,
we obtain that γar

1 ∈ k, which implies that a1 ∈ k. So all ai belong to k, a
contradiction. This completes the proof �
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[7] P. Gordan and M. Noether, Über die algebraische Formen, deren Hesse’sche De-
terminante identisch verschwindet, Mathemathische Annalen 10 (1876), pp. 547-568.
[8] E. Hubbers, The Jacobian Conjecture: Cubic homogeneous maps in Dimension
Four, Master’s thesis, University of Nijmegen, 1994.
[9] O. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys., 47 (1939),
299-306.
[10] A. Vistoli, The Jacobian Conjecture in dimension 3 and degree 3, J. of Pure and
Applied Algebra, 142 (1999), 79-89.
[11] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in di-
mension three, Linear and Multilinear Algebra, 34 (1993), 85-97.

14



[12] A. Yagzhev, On Keller’s problem, Siberian Math. J., 21 (1980), 747-754.

Authors’ address:
University of Nijmegen
Department of Mathematics
Postbus 9010
6500 GL Nijmegen

Email: debondt@math.kun.nl, essen@math.kun.nl

15


