NILPOTENT SYMMETRIC JACOBIAN MATRICES AND THE JACOBIAN CONJECTURE II

Michiel de Bondt, Arno van den Essen

Report No. 0318 (November 2003)

Nilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture II

Michiel de Bondt and Arno van den Essen

November 26, 2003

Abstract

It is shown that the Jacobian Conjecture holds for all polynomial maps $F: k^{n} \rightarrow$ k^{n} of the form $F=x+H$, such that $J H$ is nilpotent and symmetric, when $n \leq 4$. If H is also homogeneous a similar result is proved for all $n \leq 5$.

Introduction

Let $F:=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial map i.e. each F_{i} is a polynomial in n variables over \mathbb{C}. Denote by $J F:=\left(\frac{\partial F_{i}}{\partial x_{j}}\right)_{1 \leq i, j \leq n}$, the Jacobian matrix of F. Then the Jacobian Conjecture (which dates back to Keller [9], 1939) asserts that if $\operatorname{det} J F \in \mathbb{C}^{*}$, then F is invertible. It was shown in [1] and [12] that it suffices to prove the Jacobian Conjecture for all $n \geq 2$ and all polynomial maps of the form $F=x+H$, where $J H$ is homogeneous and nilpotent (these two conditions imply that $\operatorname{det} J F=1$); in fact it is even shown that the case where $J H$ is nilpotent and H is homogeneous of degree 3 is sufficient.

For $n=3$ resp. $n=4$ this so-called cubic homogeneous case was proved by Wright resp. Hubbers in [11] resp. [8]. For $n=3$, the case $F=x+H$, where H is not necessarily homogeneous, but of degree 3 , was proved by Vistoli in [10]. On the other hand, if H has degree ≥ 4 not much is known; if for example F is of the form $x+H$ where H is homogeneous of degree ≥ 4, then all cases $n \geq 3$ remain open. The aim of this paper is to study these type of problems under the additional hypothesis that $J H$ is symmetric. This is no loss of generality since it was recently shown by the authors in [3] that it suffices to prove the Jacobian Conjecture for all polynomial maps $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ of the form $F=x+H$ with $J H$ nilpotent, homogeneous of degree ≥ 2 and symmetric.

For such maps the conjecture was proved for all $n \leq 4$ in [6]. The proof of this result is based on a remarkable theorem of Gordan and Noether, which asserts that if $n \leq 4$, then $h(f)$, the Hessian matrix of the homogeneous polynomial $f \in$ $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, is singular iff f is degenerate i.e. there exists a linear coordinate change T such that $f(T x) \in \mathbb{C}\left[x_{1}, \ldots, x_{n-1}\right]$. However if $n=5$ such a result does not hold: the polynomial $f=x_{1}^{2} x_{3}+x_{1} x_{2} x_{4}+x_{2}^{2} x_{5}$ has a singular Hessian but is not degenerate.

Nevertheless one of the main results of this paper (theorem 4.1) asserts that the Jacobian Conjecture holds for all polynomial maps $F: \mathbb{C}^{5} \rightarrow \mathbb{C}^{5}$ of the form $F=$ $x+H$ with $J H$ nilpotent, homogeneous and symmetric. To prove this result we first extend the 3 dimensional Gordan-Noether theorem to the case where f needs not be homogeneous, but has the additional property that $\operatorname{tr} h(f)=0$ (proposition 3.2). Next we show, using a result of [4], that in case $n=5$ and f is homogeneous, the condition $h(f)$ is nilpotent implies that f is degenerate. Then we are in the position to apply the main result of [2], to conclude the above mentioned 5 -dimensional result.

Finally we also extend the 4 -dimensional homogeneous result obtained in [6] to the case where H needs not be homogeneous (theorem 5.1).

1 Preliminaries

The main aim of this section is to fix the notations, collect some results from [2] and [4] and to give some additional preliminaries which we will need in the sequel.

Throughout this paper k denotes an algebraically closed field of characteristic zero and $k^{[n]}:=k\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in n variables over k. By $H=$ $\left(H_{1}, \ldots, H_{n}\right): k^{n} \rightarrow k^{n}$ we mean a polynomial map, i.e. each H_{i} belongs to $k^{[n]}$. One easily verifies that $J H$ is symmetric iff there exists an $f \in k^{[n]}$ such that $H_{i}=f_{x_{i}}$, the partial derivative of f with respect to x_{i}, for all i. In particular, $J H=h(f):=$ $\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)$, the Hessian matrix of f. We may obviously assume that f is reduced, i.e. does not contain terms of degree ≤ 1. Our main interest is to study the Jacobian Conjecture for all polynomial maps of the form $F=x+H$, where $J H$ is nilpotent and symmetric. As already remarked above, this is sufficient for investigating the Jacobian Conjecture. Starting point is the main result of [2]. To explain it, we need to formulate the (homogeneous) symmetric dependence problem:
(Homogeneous) Symmetric Dependence Problem (H)SDP(n).
Let $f \in k^{[n]}$ be a (homogeneous) polynomial in $k^{[n]}$ of degree $d \geq 2$ such that $h(f)$ is nilpotent. Are the rows of $h(f)$ linearly dependent over k ?
The following result can be found in [2].

Proposition 1.1

i) $\operatorname{SDP}(n)$ has an affirmative answer for all $n \leq 2$.
ii) If $n \leq 4$ and $f \in k^{[n]}$ is homogeneous, then $h(f)$ is singular implies that f is degenerate. In particular $\operatorname{HSDP}(n)$ has an affirmative answer if $n \leq 4$.

Since f is assumed to be reduced, it is shown in $[2,1.2]$ that the dependence of the rows of $h(f)$ is equivalent to the fact that the partials $f_{x_{i}}$ of f are linearly dependent over k, which in turn is equivalent to f being degenerate. The main result of [2] asserts the following.

Proposition 1.2 Let $n \geq 2$ and $H \in k\left[x_{1}, \ldots, x_{n}\right]^{n}$ with $J H$ symmetric and nilpotent. Then
i) $x+H$ is invertible if $S D P(p)$ has an affirmative answer for all $p \leq n$.
ii) If H is homogeneous, then $x+H$ is invertible if $S D P(p)$ has an affirmative answer for all $p \leq n-2$ and $\operatorname{HSDP}(p)$ for $p=n-1$ and $p=n$.

The remainder of this paper is therefore devoted to showing that $\operatorname{SDP}(\mathrm{p})$ has an affirmative answer for all $p \leq 4$ as well as $\operatorname{HSDP}(5)$.
In order to investigate nilpotent Hessians we first recall our main results on singular Hessians obtained in [4]. To formulate them we need some preliminaries. First, let $f \in k^{[n]}$. A polynomial $g \in k^{[n]}$ is called equivalent to f if there exists $T \in G l_{n}(k)$ such that $g=f \circ T$ i.e. $g(x)=f(T x)$. It is well-known that

$$
\begin{equation*}
h(g)=T^{t} h(f)_{\mid T x} T \tag{1}
\end{equation*}
$$

So if g is equivalent to f and $\operatorname{det} h(f)=0$, then $\operatorname{det} h(g)=0$ as well. Furthermore, if $\operatorname{det} h(f)=0$ there exists a nonzero polynomial $R\left(y_{1}, \ldots, y_{n}\right) \in k\left[y_{1}, \ldots, y_{n}\right]$ such that $R\left(f_{x_{1}}, \ldots, f_{x_{n}}\right)=0$. We say that R is a relation of f. Consequently (since $\operatorname{det} h(g)=0$), also the partials of g are algebraically dependent over k. This enables us to give the following definition: let $f \in k^{[n]}$ with $\operatorname{det} h(f)=0$. Then $s(f)$ is the maximal natural number $s, 0 \leq s \leq n-1$ for which there exists a $g \in k^{[n]}$ equivalent to f which has a relation in $k\left[y_{s+1}, \ldots, y_{n}\right]$. In other words $n-s(f)$ is the least number of variables a relation of a with f equivalent polynomial can have.

Theorem 1.3 Let $f \in k^{[n]}$ be reduced and satisfy $\operatorname{det} h(f)=0$. Then

1) If $n=3$ then either f is degenerate or equivalent to a polynomial of the form $a_{1}\left(x_{1}\right)+a_{2}\left(x_{1}\right) x_{2}+a_{3}\left(x_{1}\right) x_{3}$.
2) If $n=4$ and $s(f) \geq 1$ then either f is degenerate or equivalent to a polynomial of one of the following forms:
i) $a_{1}\left(x_{1}, x_{2}\right)+a_{2}\left(x_{1}, x_{2}\right) x_{3}+a_{3}\left(x_{1}, x_{2}\right) x_{4}$ with a_{2} and a_{3} algebraically dependent over k.
ii) $p\left(x_{1}, a\right)+b$, with $p\left(y_{1}, y_{2}\right) \in k\left[y_{1}, y_{2}\right]$ and $a, b \in A x_{2}+A x_{3}+A x_{4}$ where $A=k\left[x_{1}\right]$.
3) If $n=5$ and f is homogeneous, then either f is degenerate or equivalent to a polynomial of the form $p(a)$, where $a=a_{1} x_{3}+a_{2} x_{4}+a_{3} x_{5}$ with $a_{i} \in A=k\left[x_{1}, x_{2}\right]$ for all i and $p(X) \in A[X]$.

2 Orthogonal equivalence of polynomials with singular Hessians

Theorem 1.3 gives a classification for small n of reduced polynomials with singular Hessians up to equivalence. In this section we refine this result, namely we obtain a classification of such polynomials up to orthogonal equivalence: two polynomials f
and g in $k^{[n]}$ are called orthogonally equivalent if there exists an orthogonal matrix $T \in O(n)$ i.e. $T \in M_{n}(k)$ with $T^{t} T=I_{n}$, such that $g=f \circ T$. The advantage of working with orthogonal equivalence is that it preserves the nilpotency of Hessians, i.e. $h(f)$ is nilpotent iff $h(g)$ is nilpotent (which follows from (1)). The main result of this section is

Theorem 2.1 Let $f \in k^{[n]}$ be reduced and satisfy $\operatorname{det} h(f)=0$. Then

1) If $n=3$, then either f is degenerate or orthogonally equivalent to a polynomial of one of the following two forms:

$$
\begin{gather*}
a_{1}\left(x_{1}\right)+a_{2}\left(x_{1}\right) x_{2}+a_{3}\left(x_{1}\right) x_{3} \tag{2}\\
a_{1}\left(x_{1}+i x_{2}\right)+a_{2}\left(x_{1}+i x_{2}\right) x_{2}+a_{3}\left(x_{1}+i x_{2}\right) x_{2} \tag{3}
\end{gather*}
$$

2) If $n=4$ and $s(f) \geq 1$, then either f is degenerate or orthogonally equivalent to a polynomial of one of the following forms:

$$
\begin{equation*}
U:=a_{1}\left(x_{1}, x_{2}\right)+a_{2}\left(x_{1}, x_{2}\right) x_{3}+a_{3}\left(x_{1}, x_{2}\right) x_{4} \tag{4}
\end{equation*}
$$

with a_{2} and a_{3} algebraically dependent over k,

$$
\begin{equation*}
U_{\mid x_{1}:=x_{1}+i x_{3}} \tag{5}
\end{equation*}
$$

with a_{2} and a_{3} algebraically dependent over k,

$$
\begin{equation*}
U_{\mid x_{1}:=x_{1}+i x_{3}, x_{2}:=x_{2}+i x_{4}} \tag{6}
\end{equation*}
$$

with a_{2} and a_{3} algebraically dependent over k,

$$
\begin{equation*}
p\left(x_{1}, a\right)+b \tag{7}
\end{equation*}
$$

with $p\left(y_{1}, y_{2}\right) \in k\left[y_{1}, y_{2}\right], a, b \in A x_{2}+A x_{3}+A x_{4}$ and $A=k\left[x_{1}\right]$,

$$
\begin{equation*}
\left(p\left(x_{1}, a\right)+b\right)_{\mid x_{1}:=x_{1}+i x_{2}} \tag{8}
\end{equation*}
$$

3) If $n=5$ and f is homogeneous, then either f is degenerate or orthogonally equivalent to a polynomial of one of the following forms

$$
\begin{equation*}
p\left(x_{1}, x_{2}, a\right) \tag{9}
\end{equation*}
$$

with $a=a_{1} x_{3}+a_{2} x_{4}+a_{3} x_{5}$ and $a_{i} \in A:=k\left[x_{1}, x_{2}\right]$ for all i and $p\left(y_{1}, y_{2}, y_{3}\right) \in$ $k\left[y_{1}, y_{2}, y_{3}\right]$,

$$
\begin{gather*}
p\left(x_{1}, x_{2}, a\right)_{\mid x_{1}:=x_{1}+i x_{3}} \tag{10}\\
p\left(x_{1}, x_{2}, a\right)_{\mid x_{1}:=x_{1}+i x_{3}, x_{2}:=x_{2}+i x_{4}} \tag{11}
\end{gather*}
$$

The proof of this result is based on theorem 1.3 and the following lemma

Lemma 2.2 Let $v_{1}, \ldots, v_{r} \in k^{n}$ be linearly independent over k. Then there exist an $s: 0 \leq s \leq r$, an $S \in G l_{r}(k)$ and an orthogonal matrix $T \in O(n)$ such that

$$
S\left(\begin{array}{c}
v_{1}^{t} \\
\vdots \\
v_{r}^{t}
\end{array}\right) T=\left(\begin{array}{ccc}
I_{r} & i I_{s} & \emptyset
\end{array}\right)=\left(\begin{array}{c}
e_{1}^{t}+i e_{r+1}^{t} \\
\vdots \\
e_{s}^{t}+i e_{r+s}^{t} \\
e_{s+1}^{t} \\
\vdots \\
e_{r}^{t}
\end{array}\right)
$$

where e_{i} is the i-th standard basis vector in k^{n} (if $s=0$ read $S\left(v_{1}^{t}, \ldots, v_{r}^{t}\right) T=$ $\left.\left(e_{1}^{t}, \ldots, e_{r}^{t}\right)\right)$.

Proof. Put $A:=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{1 \leq i, j \leq r}$. Since A is symmetric, there exist an $S \in G l_{r}(k)$ and an $s: 0 \leq s \leq r$ such that

$$
S^{t} A S=J:=\left(\begin{array}{cc}
0_{s} & \\
& I_{r-s}
\end{array}\right)
$$

Put $\left(\tilde{v_{1}} \cdots \tilde{v}_{r}\right):=\left(v_{1} \cdots v_{r}\right) \cdot S$. Then one readily verifies (or see [2, lemma 1.3]) that $\left(\left\langle\tilde{v}_{i}, \tilde{v_{j}}\right\rangle\right)_{i, j}=J$. So replacing the v_{i} by the $\tilde{v_{i}}$, we may assume that $\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{i, j}=J$. Now we distinguish two cases: $s=0$ and $s \geq 1$.

- Case 1: $s=0$.

Then by the Gram-Schmidt theorem, there exists an orthogonal matrix $T \in$ $G l_{n}(k)$ such that the j-th row T_{j} of T equals v_{j}^{t} for all $j: 1 \leq j \leq r$. So $T_{i} v_{i}=1$ and $T_{j} v_{i}=0$ for all $i: 1 \leq i \leq r$ and all $j \neq i$. In other words, $T v_{i}=e_{i}$ for all $i: 1 \leq i \leq r$, i.e. T is an orthogonal matrix satisfying $T\left(v_{1} \cdots v_{r}\right)=\left(e_{1} \cdots e_{r}\right)$.

- Case 2: $s \geq 1$.

So $\left\langle v_{1}, v_{j}\right\rangle=0$ for all $j: 1 \leq j \leq r$. Observe that v_{1} is perpendicular to $k v_{1}+\ldots+k v_{r}$, so $r \leq n-1$. We may assume that $v_{11}=1$. So $\left\langle v_{1}, e_{1}\right\rangle=1$. Hence if we put $u:=i\left(e_{1}-v_{1}\right)$, then $\left\langle e_{1}, u\right\rangle=0$ and $\langle u, u\rangle=1$. So by the GramSchmidt theorem there exists an orthogonal matrix $T \in G l_{n}(k)$ with $T_{1}=e_{1}^{t}$ and $T_{r+1}=u^{t}$, where again T_{j} is the j-th row of T. So $T_{j} e_{1}=0$ for all $j \neq 1$ and $T_{j} u=0$ for all $j \neq r+1$, which by the definition of u implies that $T_{j} v_{1}=$ $T_{j} e_{1}=0$ for all $j \notin\{1, r+1\}$. Also $T_{r+1} v_{1}=\left\langle v_{1}, u\right\rangle=i\left(\left\langle v_{1}, e_{1}\right\rangle-\left\langle v_{1}, v_{1}\right\rangle\right)=i$. Summarizing $T v_{1}=\left(T_{1} v_{1}, \ldots, T_{n} v_{1}\right)=\left(e_{1}+i e_{r+1}\right)$.
Define $w_{j}:=T v_{j}$ for all j. Then $T\left(v_{1} \cdots v_{r}\right)=\left(\begin{array}{lll}w_{1} & \cdots & w_{r}\end{array}\right)=\left(\left(e_{1}+\right.\right.$ $\left.\left.i e_{r+1}\right) w_{2} \cdots w_{r}\right)$. Since T is orthogonal, we have that $\left\langle w_{i}, w_{j}\right\rangle=\left\langle v_{i}, v_{j}\right\rangle$ for all i, j. Now replace for each $j \geq 2 w_{j}$ by $w_{j}-c_{j} w_{1}$ for suitable $c_{j} \in k$ (which operation can be obtained by replacing $\left(w_{1} \cdots w_{r}\right)$ by $\left(w_{1} \cdots w_{r}\right) S$ for suitable $S \in G l_{r}(k)$) we may assume that the first component of w_{j} equals zero. Since $\left\langle w_{1}, w_{j}\right\rangle=0$ for all $j \geq 2$, it follows, using $w_{1}=e_{1}+i e_{r+1}$, that also the $(r+1)$-th component of w_{j} equals zero. Now consider the $r-1$ vectors w_{2}, \ldots, w_{r} in $k^{n-2}=k e_{2}+\ldots+k e_{r}+k e_{r+2}+\ldots+k e_{n}$ and use induction on $n \square$

Corollary 2.3 Let $v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}$ be a k-basis of k^{n}. Put $V_{i}:=\left\langle v_{i}, x\right\rangle$. Let f be of the form

$$
f=p\left(V_{1}, \ldots, V_{r}, \sum_{j=r+1}^{n} a_{j}\left(V_{1}, \ldots, V_{r}\right) V_{j}, \sum_{j=r+1}^{n} b_{j}\left(V_{1}, \ldots, V_{r}\right) V_{j}\right)
$$

Then f is orthogonally equivalent to a polynomial of the form

$$
q\left(X_{0}, \sum_{j=r+1}^{n} c_{j}\left(X_{0}\right) x_{j}, \sum_{j=r+1}^{n} d_{j}\left(X_{0}\right) x_{j}\right)
$$

where $X_{0}=\left(x_{1}+i x_{r+1}, \ldots, x_{s}+i x_{r+s}, x_{s+1}, \ldots, x_{r}\right)$.
Proof. Choose T and S as in Lemma 2.2. Observe that

$$
f=\tilde{p}\left(S\left(V_{1}, \ldots, V_{r}\right), \sum_{j=r+1}^{n} \tilde{a_{j}}\left(S\left(V_{1}, \ldots, V_{r}\right)\right) V_{j}, \sum_{j=r+1}^{n} \tilde{b_{j}}\left(S\left(V_{1}, \ldots, V_{r}\right)\right) V_{j}\right)
$$

for suitable $\tilde{p}, \tilde{a_{j}}$ and $\tilde{b_{j}}$. Now we claim that $f \circ T$ is of the desired form. Notice first that it follows from lemma 2.2 that

$$
\begin{aligned}
E & :=S\left(V_{1} \circ T, \ldots, V_{r} \circ T\right) \\
& =S\left(v_{1}^{t} T x, \ldots, v_{r}^{t} T x\right) \\
& =X_{0}
\end{aligned}
$$

Consequently,

$$
f \circ T=\tilde{p}\left(X_{0}, \sum_{j=r+1}^{n} \tilde{a_{j}}\left(X_{0}\right) W_{j}, \sum_{j=r+1}^{n} \tilde{b_{j}}\left(X_{0}\right) W_{j}\right)
$$

where $W_{j}:=V_{j} \circ T$ is a linear form in all x_{i} over k. Finally observe that

$$
\sum_{j=r+1}^{n} \tilde{a_{j}}\left(X_{0}\right) W_{j}, \sum_{j=r+1}^{n} \tilde{b_{j}}\left(X_{0}\right) W_{j} \in k\left[X_{0}\right]+\sum_{j=r+1}^{n} k\left[X_{0}\right] x_{j}
$$

So we can write $f \circ T$ in the desired form
Proof of theorem 2.1. In each of the cases in theorem 2.1 it follows from theorem 1.3 that there exists $T \in G l_{n}(k)$ such that $f \circ T$ is of the form

$$
p\left(x_{1}, \ldots, x_{r}, \sum_{j=r+1}^{n} a_{j}\left(x_{1}, \ldots, x_{r}\right) x_{j}, \sum_{j=r+1}^{n} b_{j}\left(x_{1}, \ldots, x_{r}\right) x_{j}\right)
$$

for suitable r, p, a_{j} and b_{j}. Hence f is of the form described in corollary 2.3, where v_{i}^{t} is the i-th row of T^{-1}. Then apply this corollary

3 The symmetric Jacobian Conjecture in dimension 3

The main result of this section is
Theorem 3.1 Let $F=x+H: k^{3} \rightarrow k^{3}$ be a polynomial map with JH symmetric and nilpotent. Then F is invertible.

Proof. This is an immediate consequence of proposition 1.1 i), proposition 1.2 and proposition 3.2 below

Proposition 3.2 $S D P(3)$ has an affirmative answer.
Proof. Let $f \in k^{[3]}$ be reduced and assume that $h(f)$ is nilpotent. Then by theorem 2.1 we may assume that f is either of the form (2) or of the form (3).
i) Suppose first that f is of the form (2). Since $\operatorname{tr} h(f)=0$ this gives $a_{1}^{\prime \prime}\left(x_{1}\right)+$ $a_{2}^{\prime \prime}\left(x_{1}\right) x_{2}+a_{3}^{\prime \prime}\left(x_{1}\right) x_{3}=0$. So deg $a_{i} \leq 1$ for all i. Since f is reduced, this implies that $f=c_{1} x_{1} x_{2}+c_{2} x_{1} x_{3}$ for some $c_{i} \in k$. It follows that $f_{x_{2}}$ and $f_{x_{3}}$ are linearly dependent over k, so f is degenerate.
ii) Now assume that f is of the form (3). Then a simple computation gives $\operatorname{tr} h(f)=$ $\partial_{1}^{2} f+\partial_{2}^{2} f+\partial_{3}^{2} f=2 i a_{2}^{\prime}\left(x_{1}+i x_{2}\right)$. Since $\operatorname{tr} h(f)=0$, this implies that $a_{2} \in k$ and hence that $a_{2}=0$, since f is reduced. Consequently, $f=a_{1}\left(x_{1}+i x_{2}\right)+$ $a_{3}\left(x_{1}+i x_{2}\right) x_{3} \in k\left[x_{1}+i x_{2}, x_{3}\right]$. So f is degenerate

4 The homogeneous symmetric Jacobian Conjecture in dimension 5

The main result of this section is

Theorem 4.1 Let $F=x+H: k^{5} \rightarrow k^{5}$ be a polynomial map with JH symmetric, nilpotent and homogeneous of degree ≥ 2. Then F is invertible.

Proof. By propositions 1.1 i) and $3.2, \operatorname{SDP}(\mathrm{n})$ has an affirmative answer for all $n \leq 3$. Also $\operatorname{HSDP}(4)$ has an affirmative answer by proposition 1.1. Furthermore we will show in proposition 4.2 below that $\operatorname{HSDP}(5)$ has an affirmative answer. Then the desired result follows from proposition 1.2 ii)

Proposition 4.2 HSDP(5) has an affirmative answer.
Proof. Let $f \in k^{[5]}$ be homogeneous and reduced and assume that $h(f)$ is nilpotent. Then by theorem 2.1 we may assume that f is of the form (9), (10) or (11). We will show that in each of these cases f is degenerate.
i) First assume that f is either of the form (9) or (10). Since f is homogeneous it follows that all a_{i} are homogeneous of the same degree, say d. If $d=0$ then f is trivially degenerate. So assume $d \geq 1$. Write $p=\gamma_{r}\left(y_{1}, y_{2}\right) y_{3}^{r}+$ $\gamma_{r-1}\left(y_{1}, y_{2}\right) y_{3}^{r-1}+\cdots$ and ∂_{i} instead of $\partial_{x_{i}}$. Then $g:=\partial_{5}^{r-1} f$ is of the form

$$
\begin{aligned}
g= & b_{1}\left(x_{1}+c x_{3}, x_{2}\right)+b_{2}\left(x_{1}+c x_{3}, x_{2}\right) x_{3}+ \\
& b_{3}\left(x_{1}+c x_{3}, x_{2}\right) x_{4}+b_{4}\left(x_{1}+c x_{3}, x_{2}\right) x_{5}
\end{aligned}
$$

with $c \in\{0, i\}$ and $b_{j}=r!a_{3}^{r-1} \gamma_{r} a_{j}$ for all $j \geq 2$. Since $\operatorname{tr} h(f)=0$ we have $\Delta f=0$ where $\Delta=\partial_{1}^{2}+\ldots+\partial_{5}^{2}$. Consequently, using that ∂_{5}^{r-1} commutes with Δ, we get that $\Delta \partial_{5}^{r-1} f=\partial_{5}^{r-1} \Delta f=0$ i.e. $\Delta g=0$. It then follows from the form of g that $\left(\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}\right) b_{j}\left(x_{1}+c x_{3}, x_{2}\right)=0$ for all $j \geq 2$, since $x_{j}\left(\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}\right) b_{j}\left(x_{1}+c x_{3}, x_{2}\right)$ is the leading term of x_{j} of Δf, seen as polynomial over $x_{1}+c x_{3}, x_{2}, \ldots, x_{5}$, for all $j \geq 2$.

If $c=0$, this implies that $b_{j}\left(x_{1}, x_{2}\right)$ is of the form $\lambda_{j}\left(x_{1}+i x_{2}\right)^{s}+\mu_{j}\left(x_{1}-i x_{2}\right)^{s}$ for some $\lambda_{j}, \mu_{j} \in k$ and $s \geq 1$. If $c=i$, then it follows from $\partial_{2}^{2} b_{j}\left(x_{1}+i x_{3}, x_{2}\right)=$ $\left(\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}\right) b_{j}\left(x_{1}+i x_{3}, x_{2}\right)=0$ that each $b_{j}\left(x_{1}+i x_{3}, x_{2}\right)$ is of the form $\lambda_{j}\left(x_{1}+i x_{3}\right)^{s}+\mu_{j} x_{2}\left(x_{1}+i x_{3}\right)^{s-1}$ for some $\lambda_{j}, \mu_{j} \in k$ and $s \geq 1$. In both cases, the polynomials b_{2}, b_{3}, b_{4} belong to a 2 -dimensional k-vectorspace and hence are linearly dependent over k. Since $b_{j}=r!a_{3}^{r-1} \gamma_{r} a_{j}$ for all $j \geq 2$, also the polynomials a_{2}, a_{3}, a_{4} are linearly dependent over k. In case (9), it follows that $f_{x_{3}}, f_{x_{4}}, f_{x_{5}}$ are linearly dependent over k, so f is degenerate. In case (10), first make the coordinate change which sends x_{1} to $x_{1}-i x_{3}$. Then the same argument shows that $f_{\mid x_{1}-i x_{3}}$ is degenerate and hence so is f.
ii) So it remains to show the case (11). We will show that a_{1} and a_{2} are linearly dependent over k, which will imply that f is degenerate. Write again $p=$ $\gamma_{r}\left(y_{1}, y_{2}\right) y_{3}^{r}+\cdots$. We distinguish two cases: $r \geq 2$ and $r=1$.

First assume $r \geq 2$. Make the coordinate change $X_{1}:=x_{1}+i x_{3}, X_{2}:=$ $x_{2}+i x_{4}, X_{j}:=x_{j}$ for all $j \geq 3$. Put $U:=a_{1}\left(X_{1}, X_{2}\right) X_{3}+a_{2}\left(X_{1}, X_{2}\right) X_{4}+$ $a_{3}\left(X_{1}, X_{2}\right) X_{5}$. Then the condition $\operatorname{tr} h(f)=0$, i.e. $\Delta f=0$, becomes

$$
\begin{equation*}
\left(2 i\left(\partial_{X_{1}} \partial_{X_{3}}+\partial_{X_{2}} \partial_{X_{4}}\right)+\partial_{X_{3}}^{2}+\partial_{X_{4}}^{2}+\partial_{X_{5}}^{2}\right)\left(\gamma_{r}\left(X_{1}, X_{2}\right) U^{r}+\cdots\right)=0 \tag{12}
\end{equation*}
$$

Applying $\partial_{X_{3}}^{r-1}$ to this equation gives

$$
2 i\left(\partial_{X_{1}} \partial_{X_{3}}+\partial_{X_{2}} \partial_{X_{4}}+\partial_{X_{3}}^{2}+\partial_{X_{4}}^{2}+\partial_{X_{5}}^{2}\right)\left(r!\gamma_{r} a_{1}^{r-1} U\right)=0
$$

So

$$
\partial_{X_{1}}\left(\gamma_{r} a_{1}^{r}\right)+\partial_{X_{2}}\left(\gamma_{r} a_{1}^{r-1} a_{2}\right)=\partial_{X_{1}} \partial_{X_{3}} \gamma_{r} a_{1}^{r-1} U+\partial_{X_{2}} \partial_{X_{4}} \gamma_{r} a_{1}^{r-1} U=0
$$

Consequently there exists a homogeneous element $h_{1} \in k\left[X_{1}, X_{2}\right]$ such that

$$
\begin{equation*}
\gamma_{r} a_{1}^{r}=\partial_{X_{2}} h_{1} \text { and } \gamma_{r} a_{1}^{r-1} a_{2}=-\partial_{X_{1}} h_{1} \tag{13}
\end{equation*}
$$

So if we put $D=a_{1} \partial_{X_{1}}+a_{2} \partial_{X_{2}}$, then $h_{1} \in \operatorname{ker} D$. Similarly, applying $\partial_{X_{4}}^{r-1}$ to the equation (12) gives $\partial_{X_{1}}\left(\gamma_{r} a_{1} a_{2}^{r-1}\right)+\partial_{X_{2}}\left(\gamma_{r} a_{2}^{r}\right)=0$. So there exists a homogeneous element $h_{2} \in k\left[X_{1}, X_{2}\right]$ such that

$$
\begin{equation*}
\gamma_{r} a_{1} a_{2}^{r-1}=\partial_{X_{2}} h_{2} \text { and } \gamma_{r} a_{2}^{r}=-\partial_{X_{1}} h_{2} \tag{14}
\end{equation*}
$$

So $h_{2} \in \operatorname{ker} D$.
Since a_{1} and a_{2} are homogeneous of the same degree, both h_{1} and h_{2} are also homogeneous of the same degree. Also $\operatorname{ker} D=k[v]$ for some homogeneous element $v \in k\left[X_{1}, X_{2}\right]$ (by [5, 1.2.25]). Consequently $h_{1}=c_{1} v^{s}$ and $h_{2}=c_{2} v^{s}$ for some $c_{j} \in k$ and $s \geq 1$. It follows that h_{1} and h_{2} are linearly dependent over k and hence so are $\partial_{X_{2}} h_{1}$ and $\partial_{X_{2}} h_{2}$. Whence by (13) and (14) a_{1}^{r-1} and a_{2}^{r-1} are linearly dependent over k, which implies that a_{1} and a_{2} are linearly dependent over k (since $r \geq 2$!).
So it remains to consider the case $r=1$, which follows immediately from the next lemma (which is a slightly generalized version of lemma 1.2 of [3])

Lemma 4.3 Let $0 \leq s \leq \frac{n}{2}$ and $f \in k^{[n]}$ of the form

$$
f=a_{0}(z)+a_{1}(z) x_{s+1}+a_{2}(z) x_{s+2}+\ldots+a_{n-s}(z) x_{n}
$$

where z is an abbreviation of $x_{1}+i x_{s+1}, x_{2}+i x_{s+2}, \ldots, x_{s}+i x_{2 s}$. Then $h(f)$ is nilpotent iff $J\left(a_{1}, \ldots, a_{s}\right)$ is nilpotent.

Proof. $h(f)$ is nilpotent iff $\operatorname{det}\left(T I_{n}-h(f)\right)=T^{n}$. Put $q:=\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}$. Then $h(T q)=T I_{n}$. Let $S:=\left(x_{1}-i x_{s+1}, x_{2}-i x_{s+2}, \ldots, x_{s}-i x_{2 s}, x_{s+1}, \ldots, x_{n}\right)$. Then $f \circ S=a_{0}+a_{1} x_{s+1}+\ldots+a_{n-s} x_{n}$. Since det $S=1$ it follows from (1) in section 1 that $M:=h(T q-f) \circ S$ satisfies $\operatorname{det} M=T^{n}$ iff $h(f)$ is nilpotent. Now observe that

$$
\begin{aligned}
q \circ S & =\frac{1}{2} \sum_{j=1}^{s}\left(x_{j}^{2}-2 i x_{j} x_{j+s}-x_{j+s}^{2}\right)+\frac{1}{2} \sum_{j=s+1}^{n} x_{j}^{2} \\
& =\frac{1}{2} \sum_{j=1}^{s}\left(x_{j}^{2}-2 i x_{j} x_{j+s}\right)+\frac{1}{2} \sum_{j=2 s+1}^{n} x_{j}^{2}
\end{aligned}
$$

Then it follows that M is of the form

$$
M=\left(\begin{array}{ccc}
* & -i T I_{s}-J\left(a_{1}, \ldots, a_{s}\right)^{t} & * \\
-i T I_{s}-J\left(a_{1}, \ldots, a_{s}\right) & 0 & 0 \\
* & 0 & T I_{n-2 s}
\end{array}\right)
$$

Finally observe that

$$
\begin{aligned}
\operatorname{det} M= & (-1)^{s} \cdot \operatorname{det}\left(i T I_{s}+J\left(a_{1}, \ldots, a_{s}\right)\right) \\
& \operatorname{det}\left(i T I_{s}+J\left(a_{1}, \ldots, a_{s}\right)^{t}\right) \cdot T^{n-2 s} \\
= & \operatorname{det}\left(T I_{s}-i J\left(a_{1}, \ldots, a_{s}\right)\right)^{2} T^{n-2 s}
\end{aligned}
$$

Consequently $\operatorname{det} M=T^{n}$ iff $\operatorname{det}\left(T I_{n}-i J\left(a_{1}, \ldots, a_{s}\right)\right)=T^{s}$, which implies the desired result

5 The symmetric Jacobian Conjecture in dimension 4

The main result of this section is
Theorem 5.1 Let $F=x+H: k^{4} \rightarrow k^{4}$ be a polynomial map with JH symmetric and nilpotent. Then F is invertible.

Proof. This is an immediate consequence of propositions 1.2, 3.2, 1.1 and 5.2 below

Proposition 5.2 $S D P(4)$ has an affirmative answer.
The proof of this result is based on theorem 1.32). In order to use this result we will first show that the hypothesis $h(f)$ is nilpotent indeed implies that $s(f) \geq 1$. For the proof of this implication we need to recall some results obtained in [7], which we summarize in the next two propositions.

Proposition 5.3 Let $f \in k^{[n]}$ be homogeneous and $R \in k\left[y_{1}, \ldots, y_{n}\right]$ such that $R\left(f_{x_{1}}, \ldots, f_{x_{n}}\right)=0$. Put $h_{i}:=R_{y_{i}}\left(f_{x_{1}}, \ldots, f_{x_{n}}\right)$ and $D:=\sum_{i=1}^{n} h_{i} \partial_{x_{i}}$. Then
i) $D^{2}\left(x_{i}\right)=0$ for all i.
ii) Let $f=A x_{1}^{r}+x_{1}^{r+1}(\ldots)$, where $0 \neq A \in K\left[x_{2}, \ldots, x_{n}\right]$. If $h_{1}=0$, then $A\left(h_{2}, \ldots, h_{n}\right)=0$.

Proposition 5.4 Let $D=\sum_{i=1}^{n} h_{i} \partial_{x_{i}}$ be a homogeneous derivation on $k^{[n]}$ such that $D^{2}\left(x_{i}\right)=0$ for all i and denote by μ the dimension of the rational map $h: \mathbb{P}^{n-1} \rightarrow$ \mathbb{P}^{n-1}. If $\mu \leq 1$ then there exist at least two linearly independent linear relations between the h_{i}.

Now we are ready to prove
Proposition 5.5 Let $f \in k^{[4]}$ be reduced and such that $h(f)$ is nilpotent. Then $s(f) \geq 1$, i.e. there exists a nonzero degenerate polynomial $R \in k\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ such that $R\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right)=0$.

Proof. If $\operatorname{rk} h(f) \leq 2$, then $\operatorname{rk} J\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}\right) \leq 2$. So by [5, proposition 1.2.9], $\operatorname{trdeg}_{k} k\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}\right) \leq 2$, which implies that there exists a nonzero polynomial $R \in$ $k\left[y_{1}, y_{2}, y_{3}\right]$ with $R\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}\right)=0$. Clearly R is degenerate in $k\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$. So we may assume that $\operatorname{rk} h(f)=3$.
i) Let $d:=\operatorname{deg} f$. Observe that $d \geq 2$ since f is reduced. Since $\operatorname{det} h(f)=0$ there exists some nonzero polynomial $R \in k\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$, say of degree r, such that $R\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right)=0$. Let \bar{f} be the leading part of f and \bar{R} the leading part of R. Then $\bar{R}\left(\bar{f}_{x_{1}}, \bar{f}_{x_{2}}, \bar{f}_{x_{3}}, \bar{f}_{x_{4}}\right)=0$. So it follows from proposition 1.1 ii) that \bar{f} is degenerate.
ii) Put $S:=y_{6}^{r} R\left(\frac{y}{y_{6}}\right)$. Then $S \in k\left[y_{1}, y_{2}, y_{3}, y_{4}, y_{6}\right]$ is homogeneous of degree r and $S\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}, 1\right)=0$. Put $g:=x_{5}^{d} f\left(\frac{x}{x_{5}}\right)+x_{5}^{d-1} x_{6}$. Then $g_{x_{i}}=$ $x_{5}^{d-1} f_{x_{i}}\left(\frac{x}{x_{5}}\right)$ for all $i \leq 4$ and $g_{x_{6}}=x_{5}^{d-1} \cdot 1$. Since S is homogeneous and $S\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}, 1\right)=0$ it follows that $S\left(g_{x_{1}}, g_{x_{2}}, g_{x_{3}}, g_{x_{4}}, g_{x_{6}}\right)=0$. Now we want to apply proposition 5.3 ii) to the polynomial $g \in k^{[6]}$ and the relation $S \in k\left[y_{1}, \ldots, y_{6}\right]$ which does not contain y_{5}. Put $z_{i}:=S_{y_{i}}\left(g_{x_{1}}, g_{x_{2}}, g_{x_{3}}, g_{x_{4}}, g_{x_{6}}\right)$ for all $i: 1 \leq i \leq 6$. Observe that $z_{5}=0$ and that $g=\bar{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)+(\ldots) x_{5}$ (since $d \geq 2$). So taking $A:=\bar{f}$ in proposition 5.3 we get that $\bar{f}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=$ 0.
iii) Let $M:=h(f)^{m}$ where $M \neq 0$ and $h(f)^{m+1}=0$. Choose a nonzero column \tilde{h} of M. Since $h(f) M=0$ it follows that $h(f) \tilde{h}=0$. Furthermore $\langle\tilde{h}, \tilde{h}\rangle=0$, for $M^{2}=0$. Since

$$
\begin{aligned}
0 & =\partial_{x_{i}} R\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right) \\
& =\sum_{j=1}^{4} R_{y_{j}}\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right) f_{x_{j} x_{i}} \\
& =\sum_{j=1}^{4} h_{j} f_{x_{j} x_{i}}
\end{aligned}
$$

for all $1 \leq i \leq 4$, we get that $h(f) h=0$ Since we already saw that $h(f) \tilde{h}=0$, the hypothesis that $\operatorname{rk} h(f)=3$ implies that $h=\alpha \tilde{h}$ for some $\alpha \in k\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Hence $\langle\tilde{h}, \tilde{h}\rangle=0$ implies that $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}+h_{4}^{2}=0$.
iv) The polynomial $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}$ is clearly homogeneous. Furthermore, substituting $x_{5}=1$ gives $h_{1}^{2}+h_{2}^{2}+h_{3}^{2}+h_{4}^{2}=0$ (by iii)). Hence $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+$ $z_{4}^{2}=0$, which is an irreducible non-degenerate relation between the polynomials $z_{1}, z_{2}, z_{3}, z_{4}$. Since we also found a degenerate relation between the z_{i} in ii), namely $\bar{f}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=0$, it follows that $\operatorname{trdeg}_{k} k\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \leq 2$. Consequently the dimension of the rational map $z: \mathbb{P}^{4} \rightarrow \mathbb{P}^{4}$ defined by $z(x)=\left(z_{1}, z_{2}, z_{3}, z_{4}, 0\right)$ is at most 1 .
Now define $D=\sum_{i=1}^{6} z_{i} \partial_{x_{i}}$. Then by proposition 5.3 i) $D\left(z_{i}\right)=0$ for all i. Observe that $z_{i} \in k\left[x_{1}, \ldots, x_{5}\right]$ and recall that $z_{5}=0$. So also $\tilde{D}\left(z_{i}\right)=0$ for all $i \leq 4$, where \tilde{D} is the derivation $\sum_{i=1}^{4} z_{i} \partial_{x_{i}}$ on $k\left[x_{1}, \ldots, x_{5}\right]$. Then it follows from proposition 5.4 that besides the relation $z_{5}=0$ there is another linear relation between z_{1}, \ldots, z_{5}. So $z_{1}, z_{2}, z_{3}, z_{4}$ are linearly dependent over k. Taking $x_{5}=1$ it follows that $h_{1}, h_{2}, h_{3}, h_{4}$ are linearly dependent over k. Consequently there exist $c_{i} \in k$, not all zero with

$$
\sum_{i=1}^{4} c_{i} R_{y_{i}}\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right)=0 \text { i.e. }\left(\sum_{i=1}^{4} c_{i} R_{y_{i}}\right)\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, f_{x_{4}}\right)=0
$$

Now assume that R was taken of minimal degree, then it follows that $\sum_{i=1}^{4} c_{i} R_{y_{i}}=$ 0 , i.e. R is degenerate, which completes the proof \square

Proof of proposition 5.2. According to proposition 5.5 we may assume that f is of one of the forms (4)-(8) of theorem 2.1.
i) Let f be of the form (4). Then

$$
h(f)=\left(\begin{array}{cc}
h\left(a_{2}\right) & 0 \\
0 & 0
\end{array}\right) x_{3}+\left(\begin{array}{cc}
h\left(a_{3}\right) & 0 \\
0 & 0
\end{array}\right) x_{4}+A
$$

where A is a 4×4 matrix which entries are polynomials in x_{1} and x_{2}. Since $h(f)$ is nilpotent, so is $h\left(a_{2}\right) c_{1}+h\left(a_{3}\right) c_{2}$ for each $c_{1}, c_{2} \in k$ (look at the highest $x_{3^{-}}$ term of $\left.h(f)_{\mid\left(x_{1}, x_{2}, c_{1} x_{3}, c_{2} x_{3}\right)}\right)$. In particular both $h\left(a_{2}\right)$ and $h\left(a_{3}\right)$ are nilpotent. Then it is well-known that the reduced parts of a_{2} and a_{3} are polynomials in $x_{1}+i x_{2}$ or $x_{1}-i x_{2}$ over k. Say the reduced part of a_{2} is a nonzero polynomial in $x_{1}+i x_{2}$. Consequently the reduced part of a_{3} is also a polynomial in $x_{1}+i x_{2}$, for otherwise $h\left(a_{2}\right)+h\left(a_{3}\right)=h\left(a_{2}+a_{3}\right)$ cannot be nilpotent.
Write $a_{2}=c_{1} x_{2}+g_{1}\left(x_{1}+i x_{2}\right)$ and $a_{3}=c_{2} x_{2}+g_{2}\left(x_{1}+i x_{2}\right)$, with $c_{1}, c_{2} \in k$. Since a_{2} and a_{3} are algebraically dependent over k, the same holds for $c_{1} x_{2}+g_{1}\left(x_{1}\right)$ and $c_{2} x_{2}+g_{2}\left(x_{1}\right)$ (make the coordinate change $\left.x_{1} \mapsto x_{1}-i x_{2}\right)$. If $c_{1} \neq 0$ or $c_{2} \neq 0$, it follows readily that $c_{1} g_{2}-c_{2} g_{1} \in k$ (make a coordinate change which sends one of the elements $c_{i} x_{2}+g_{i}\left(x_{1}\right)$ to $\left.x_{2}\right)$. Therefore $c_{1} g_{2}=c_{2} g_{1}$, for $g_{1}(0)=g_{2}(0)=0$ due to the reducedness of f. Hence a_{2} and a_{3} are linearly dependent over k (since $\left.a_{2}(0)=a_{3}(0)=0\right)$, which implies that f is degenerate. So we may assume that $c_{1}=c_{2}=0$. So both a_{2} and a_{3} belong to $k\left[x_{1}+i x_{2}\right]$.
Finally $M_{c}:=h(f)_{\mid\left(x_{1}, x_{2}, c, 0\right)}$ is nilpotent for all $c \in k$ and is of the form

$$
M_{c}=\left(\begin{array}{ccrl}
h\left(a_{1}+c a_{2}\right) & a_{2}^{\prime} & a_{3}^{\prime} \\
a_{2}^{\prime} & i a_{2}^{\prime} & i a_{3}^{\prime} \\
a_{3}^{\prime} & i a_{3}^{\prime} & 0 & 0 \\
0 & 0
\end{array}\right)
$$

An easy computation shows that the characteristic polynomial of a 4×4 matrix of the form

$$
\left(\begin{array}{cc}
A & B \\
B^{t} & 0
\end{array}\right) \text { where } B=\left(\begin{array}{cc}
p & p \\
i p & i q
\end{array}\right)
$$

is of the form $T^{4}-(\operatorname{tr} A) T^{3}+(\operatorname{det} A) T^{2}+\cdots$. Since M_{c} is nilpotent this implies that $h\left(a_{1}+c a_{2}\right)$ is nilpotent for all $c \in k$. Taking $c=1$ (and using that a_{1} has no terms of degree ≤ 1, since f is reduced) it follows as above from $a_{2} \in k\left[x_{1}+i x_{2}\right]$ that also $a_{1} \in k\left[x_{1}+i x_{2}\right]$. Consequently $f \in k\left[x_{1}+i x_{2}, x_{3}, x_{4}\right]$, i.e. f is degenerate.
ii) Now assume that f is of the form (5). Since $\operatorname{tr} h(f)=0$, it follows that $\left(\partial_{1}^{2}+\right.$ $\left.\partial_{2}^{2}+\partial_{3}^{2}\right)(f)_{\mid x_{1}-i x_{3}}=0$. Looking at the coefficients of x_{3} resp. x_{4} we get that $\left(a_{2}\right)_{x_{2} x_{2}}=0$ resp. $\left(a_{3}\right)_{x_{2} x_{2}}=0$, i.e. $\operatorname{deg}_{x_{2}} a_{i} \leq 1$ for $i=2,3$. Suppose that $\operatorname{deg}_{x_{2}} a_{2}=1$ or $\operatorname{deg}_{x_{2}} a_{3}=1$. Since a_{2} and a_{3} are algebraically dependent over k, they are both polynomials in one polynomial, say u, with $u(0)=0$, over k (Gordan's lemma). Hence $\operatorname{deg}_{x_{2}} u=1$ and $\operatorname{deg}_{u} a_{2}, \operatorname{deg}_{u} a_{3} \leq 1$. Since f is
reduced, we have $a_{2}(0)=a_{3}(0)=0$. So from $u(0)=0$, it follows that $a_{2}=c_{2} u$ and $a_{3}=c_{3} u$ for some $c_{i} \in k$. Hence a_{2} and a_{3} are linearly dependent over k, whence f is degenerate.
Now assume that $\operatorname{deg}_{x_{2}} a_{2}=\operatorname{deg}_{x_{2}} a_{3}=0$, i.e. $a_{2}, a_{3} \in k\left[x_{1}+i x_{3}\right]$. We show that $a_{2} \in k$, which implies that $a_{2}=0$ (since f is reduced) and hence that $f \in k\left[x_{1}+i x_{3}, x_{2}, x_{4}\right]$. So f is degenerate. To see that $a_{2} \in k$, observe that our assumption implies that f is of the form

$$
\begin{equation*}
f=q\left(x_{1}+i x_{3}, x_{2}, x_{4}\right)+a_{2}\left(x_{1}+i x_{3}\right) x_{3} \tag{15}
\end{equation*}
$$

So $M:=h(f)_{\mid\left(x_{1}, x_{2}, 0, x_{3}\right)}$ is of the form

$$
M=\left(\begin{array}{cccc}
q_{x_{1} x_{1}} & q_{x_{2} x_{1}} & i q_{x_{1} x_{1}}+\left(a_{2}\right)_{x_{1}} & q_{x_{3} x_{1}} \\
* & * & * & * \\
i q_{x_{1} x_{1}}+\left(a_{2}\right)_{x_{1}} & i q_{x_{2} x_{1}} & -q_{x_{1} x_{1}}+2 i\left(a_{2}\right)_{x_{1}} & i q_{x_{3} x_{1}} \\
* & * & * & *
\end{array}\right)
$$

So if we substitute $T:=i\left(a_{2}\right)_{x_{1}}$ in the matrix $T I_{4}-M$ we get a matrix which first and third row are linearly dependent over k. Consequently $i\left(a_{2}\right)_{x_{1}}$ is a root of the characteristic polynomial T^{4} of M. So $\left(a_{2}\right)_{x_{1}}=0$ i.e. $a_{2} \in k$, as desired.
iii) Now let f be of the form (6). Then by lemma 4.3, $h(f)$ is nilpotent iff $J\left(a_{2}\left(x_{1}, x_{2}\right), a_{3}\left(x_{1}, x_{2}\right)\right)$ is nilpotent. So by $[5,7.1 .7] a_{2}$ and a_{3} are linearly dependent over k, which implies that f is degenerate.
iv) Now let f be of the form (7), with $a=a_{1} x_{2}+a_{2} x_{3}+a_{3} x_{4}$ and $b=b_{1} x_{2}+b_{2} x_{3}+$ $b_{3} x_{4}$, where $a_{i}, b_{j} \in k\left[x_{1}\right]$ for all i, j. If $\operatorname{deg}_{y_{2}} p=1$, then we can rewrite f and "put the a_{i} 's in the b_{i} 's", so that we may assume that $a_{1}=a_{2}=a_{3}=0 \in k$. Also if $\operatorname{deg}_{y_{2}} p \geq 2$, we get that $a_{2}, a_{3}, a_{4} \in k$. To see for example that $a_{1} \in k$, consider the coefficient of the highest x_{2} power in f, say $c\left(x_{1}\right)$. Since $\operatorname{tr} h(f)=0$, it follows that $c^{\prime \prime}\left(x_{1}\right)=0$ i.e. $\operatorname{deg} c\left(x_{1}\right) \leq 1$. Consequently, since $a_{1}\left(x_{1}\right)^{2}$ divides $c\left(x_{1}\right)$ (for $\operatorname{deg} p \geq 2$), we get that $a_{1} \in k$. So $a_{i} \in k$ for all i. Without loss of generality we may assume that $a_{1} \neq 0$. Then f is of the form

$$
\begin{aligned}
f & =c_{1}\left(x_{1}, a_{1} x_{2}+a_{2} x_{3}+a_{3} x_{4}\right)+c_{2}\left(x_{1}\right) x_{3}+c_{3}\left(x_{1}\right) x_{4} \\
& =c_{1}\left(x_{1}, a\right)+c_{2}\left(x_{1}, a\right) x_{3}+c_{3}\left(x_{1}, a\right) x_{4}
\end{aligned}
$$

where $a=a_{1} x_{2}+a_{2} x_{3}+a_{3} x_{4}$. So f is of the form 2 i) of theorem 1.3, since obviously $c_{2}\left(x_{1}, a\right)=c_{2}\left(x_{1}\right)$ and $c_{3}\left(x_{1}, a\right)=c_{3}\left(x_{1}\right)$ are algebraically dependent over k. So by the proof of theorem $2.1 f$ is orthogonally equivalent to one the forms (4)-(6). For these cases we have already shown that f is degenerate.
v) Finally assume that f is of the form (8). The case $\operatorname{deg}_{y_{2}} p \leq 1$ and also the case $a_{1}, a_{2}, a_{3} \in k$ follow by a similar argument as above. So we may assume that $\operatorname{deg}_{y_{2}} p \geq 2$ and that $\left\{a_{1}, a_{2}, a_{3}\right\}$ is not contained in k. We distinguish two subcases: $a_{1}=0$ and $a_{1} \neq 0$. First assume $a_{1}=0$. Then f is of the form
$f=q\left(x_{1}+i x_{2}, x_{3}, x_{4}\right)+b_{1}\left(x_{1}+i x_{2}\right) x_{2}$, i.e. exactly of the form (15) with x_{2} and x_{3} interchanged. So by the argument given there we obtain $b_{1}=0$ and hence f is degenerate. Now assume that $a_{1} \neq 0$. We will show that this case leads to a contradiction and hence cannot occur. Therefore put $u:=a_{1}\left(x_{1}+i x_{2}\right) x_{2}+$ $a_{2}\left(x_{1}+i x_{2}\right) x_{3}+a_{3}\left(x_{1}+i x_{2}\right) x_{4}$. Then $\partial_{4}^{r-1} f=r!\left(\gamma a_{3}^{r-1}\right)\left(x_{1}+i x_{2}\right) u$. Since $\operatorname{tr} h(f)=0$ we have $\left(\partial_{1}^{2}+\ldots+\partial_{4}^{2}\right) f=0$ and hence $\left(\partial_{1}^{2}+\ldots+\partial_{4}^{2}\right)\left(\partial_{4}^{r-1} f\right)=0$. Since $\partial_{4}^{r-1} f$ is linear in x_{3} and x_{4} and each polynomial in $x_{1}+i x_{2}, x_{3}$ and x_{4} belongs to ker $\partial_{1}^{2}+\partial_{2}^{2}$ we get that

$$
\left(\partial_{1}^{2}+\partial_{2}^{2}\right)\left[\left(\gamma a_{3}^{r-1} a_{1}\right)\left(x_{1}+i x_{2}\right) x_{2}\right]=0
$$

which implies that $\gamma a_{3}^{r-1} a_{1} \in k$, as one easily verifies. Consequently $a_{3}^{r-1} a_{1} \in k$. A similar argument gives that $a_{2}^{r-1} a_{1} \in k$ (using ∂_{3}^{r-1} instead of ∂_{4}^{r-1}). Since $a_{1} \neq 0$ and $\left\{a_{1}, a_{2}, a_{3}\right\}$ is not contained in k, it follows that $a_{2}=a_{3}=0$. But then, again using that $\operatorname{tr} h(f)=0$, now using $\left(\partial_{2}-i \partial_{1}\right)^{r-1}$ instead of ∂_{4}^{r-1}, we obtain that $\gamma a_{1}^{r} \in k$, which implies that $a_{1} \in k$. So all a_{i} belong to k, a contradiction. This completes the proof \square

References

[1] H. Bass, E. Connell and D. Wright, The Jacobian Conjecture: Reduction of degree and formal Expansion of the Inverse, Bulletin of the AMS, 7 (1982), 287-330.
[2] M. de Bondt and A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture, Report 0307 (June 2003), University of Nijmegen.
[3] M. de Bondt and A. van den Essen, A reduction of the Jacobian Conjecture to the symmetric case, Report 0308 (June 2003), University of Nijmegen (to appear in Proc. of the AMS).
[4] M. de Bondt and A. van den Essen, Singular Hessians, Report 0317 (october 2003), University of Nijmegen.
[5] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Vol. 190 in Progress in Mathematics, Birkhäuser, 2000.
[6] A. van den Essen and S. Washburn, The Jacobian Conjecture for symmetric matrices, Report 0301 (Januari 2003), University of Nijmegen (to appear in J. of Pure and Applied Algebra).
[7] P. Gordan and M. Noether, Über die algebraische Formen, deren Hesse'sche Determinante identisch verschwindet, Mathemathische Annalen 10 (1876), pp. 547-568.
[8] E. Hubbers, The Jacobian Conjecture: Cubic homogeneous maps in Dimension Four, Master's thesis, University of Nijmegen, 1994.
[9] O. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys., 47 (1939), 299-306.
[10] A. Vistoli, The Jacobian Conjecture in dimension 3 and degree 3, J. of Pure and Applied Algebra, 142 (1999), 79-89.
[11] D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra, 34 (1993), 85-97.
[12] A. Yagzhev, On Keller's problem, Siberian Math. J., 21 (1980), 747-754.

Authors' address:
University of Nijmegen
Department of Mathematics
Postbus 9010
6500 GL Nijmegen
Email: debondt@math.kun.nl, essen@math.kun.nl

