The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/158677

Please be advised that this information was generated on 2018-03-19 and may be subject to change.
Structural Assignment

Securing Important Strigolactone Key Structures: Orobancheol and 5-Deoxystrigol


Abstract: Strigolactones (SLs) constitute an important new class of plant hormones. Their isolation from natural resources, such as root exudates, is laborious and difficult. Therefore, synthetic SLs are needed to discover their (biological) properties. Such syntheses involve many steps. When repeating a published procedure for the synthesis of orobanchol, we noticed that the structure of the synthesized material was ambiguous. This structure was secured by means of X-ray analysis. An essential step in the synthesis, namely an allylic oxidation of the ABC scaffold, was significantly improved by using Pd/C and tert-butyl hydroperoxide (Corey’s method). The second issue deals with the structure of the four stereoisomers of 5-deoxystrigol. The stereochemistry of these compounds was based on the use of Welzel’s empirical rules for CD spectra. By means of X-ray analysis the stereochemistry of one of the stereoisomers was established unambiguously, thereby securing the configuration of all four isomers.

Introduction

Strigolactones (SLs) are new plant hormones that have received much attention in the recent literature.[1–6] In 1966, the first SL was isolated, and was named strigol (1a; Figure 1).[7a] It took about 20 years before its detailed structure was established.[7] The most notable biological property of strigol is its ability to germinate the seeds of the parasitic weeds Striga (witchweed) and Orobanche spp. (broomrape).[8] These weeds cause serious problems in agricultural food production in developing countries.[8,9] The roots of important food crops, such as maize, sorghum, and rice produce SLs, which induce germination of the seeds of the weeds. This produces a radicle, which attaches itself to the roots of the host plant. The parasite then takes nutrients from the host plant for its own development. As a consequence, the crop yields are lowered substantially, sometimes by up to 90%.[9] Controlling the parasitic weeds is ex-

![Figure 1. Structures of strigol, 5-deoxystrigol, and orobanchol.](image-url)
and the originally proposed structures of alectrol\textsuperscript{[11b,15]} and orobanchol\textsuperscript{[15]} were corrected about 20 years later.\textsuperscript{[1,17–18]} This paper deals with the structure of orobanchol. This SL was isolated from red clover roots by Yokata et al.\textsuperscript{[15]} Its structure was determined on the basis of spectroscopic analysis, and its stereochemistry was proposed based on an assumed analogy with the stereostructure of strigol (1a).\textsuperscript{[19]} It should be noted, however, that chiroptical data were not made available. Mori et al.\textsuperscript{[19,20]} synthesized orobanchol with the proposed structure (i.e., 2), also in enantiopure form using a lipase-catalysed asymmetric acetylation as the key step.\textsuperscript{[21]} Originally, structure 2 was assigned to the naturally occurring orobanchol.\textsuperscript{[15]} However, this structure was shown to be incorrect; it actually has a stereoisomeric structure, namely 3.\textsuperscript{[17]} Several structural corrections of naturally occurring SLs have been reported.\textsuperscript{[1,16–18]} However, the correction of the orobanchol structure has a serious impact on SL research, as this SL is one of the most abundant ones. The literature published before the structure change in 2011 refers to the old and incorrect structure (i.e., 2), but not all researchers are aware of this, which may give rise to confusion.\textsuperscript{[1,13]} The structure of racemic orobanchol assigned to the product synthesized by Mori et al.\textsuperscript{[19,20]} is ambiguous. In this paper, the correct structures will be reported.

In addition, this paper deals with the stereochemistry of the four stereoisomers of 5-deoxystrigol (1b, 5-DES; for nomenclature, see refs.\textsuperscript{[1,6]}\textsuperscript{[14,22,23,28]}). Biosynthetically, (+)-5-deoxystrigol originates from carlactone,\textsuperscript{[24,25]} and it plays a key role in SL research. Note that carlactone is not an SL, but is accepted as a precursor of SLs.\textsuperscript{[25]} The assignment of the stereostructure of the 5-DES isomers relies on the application of the Welzel rule using circular dichroism (CD) spectroscopy.\textsuperscript{[26]} Isomers with a positive Cotton effect in the 270 nm region have the (S) stereochemistry at C-2’, while those with a negative Cotton effect have the (R) configuration at C-2’. The Welzel rule is entirely empirical, and is based on correlation diagrams with structures of known absolute stereochemistry.\textsuperscript{[26a]} The assignment of the stereochemistry at C-2’ of SLs seems to be consistent. However, for the assignment of the stereochemistry at C-2’ of carlactone, the Welzel rule does not apply.\textsuperscript{[24]} The stereochemistry of SLs is a very important issue, and therefore it is relevant to unambiguously determine the absolute structure of one 5-DES stereoisomer by means of an X-ray diffraction analysis. The results are reported in this paper.

Results and Discussion

The synthetic outline of Mori et al.\textsuperscript{[20]} for the preparation of racemic orobanchol and its 2’-epimer was essentially followed. The required starting material, ABC scaffold 4, was synthesized in a 12-step sequence starting from mesityl oxide, as reported by Reizelman et al.\textsuperscript{[14]} (Scheme 1). All steps were optimized for multigram quantities, resulting in an overall yield of ca 25%. For the conversion of the ABC scaffold into orobanchol, two strategies can be envisaged: initial oxidation of the B-ring, followed by attachment of the D-ring; or alternatively, initial at-

\begin{scheme}
\begin{center}
\includegraphics[width=\textwidth]{Scheme1}
\end{center}
\caption{Optimized synthesis of racemic orobanchol epimers.}
\end{scheme}
tachment of the D-ring, and then oxidation of the B-ring.\[^{13}\]
Mori et al.\[^{20}\] used the first-mentioned route. The oxidation of the
A BC scaffold was problematic, as it gave a mixture of A-ring product 5 (40 \%; ref.\[^{20}\] 75 \%) and B-ring product 6 in a ratio of
3:1, and only a 15 \% yield (ref.\[^{20}\] 23 \%) of the desired regioisomer (i.e., 6). Moreover, the literature procedure\[^{20}\] requires the
use of 100 equiv. of toxic chromium trioxide, as well as 3,5-
dimethylpyrazole. Therefore, an alternative procedure for this
allylic oxidation was investigated. The method reported by
Corey,\[^{27}\] using palladium on charcoal in combination with tert-
butyl peroxide and a catalytic amount of potassium carbonate,
gave a similar ratio and yield of strigol precursor 5 and
orobanchol precursor 6. However, the procedure is far more
attractive than the procedure by Mori in terms of workup and
environmental impact.\[^{18}\] The resulting 4-oxo-ABC unit (i.e., 6)
was subsequently subjected to a Luche reduction with NaBH₄/
CeCl₃ to give a mixture of the corresponding alcohols (i.e., 7
and 8); unwanted isomer 7, with the OH group in a sin orientation
relative to the C-ring, was the predominant isomer. The
configuration of this alcohol was inverted using the standard
Mitsunobu procedure to give the desired anti-alcohol (i.e., 8).\[^{14,20}\]

Having adjusted the stereochemistry of the hydroxy group
at the B-ring to anti relative to the C-ring (8), the coupling with
the D-ring was carried out in the usual manner, by potassium
tert-butoxide mediated formylation with methyl formate, and
coupling with bromobutenolide (Scheme 1). This coupling gave
the two racemic diastereoisomers (i.e., 9 and 10) in 23 and 21 \% yield, respectively.

The conversion of ABC scaffold 4 into a mixture of orobanchol
and its 2'-epimer described above essentially follows the
route reported by Mori et al.\[^{20}\] However, this paper by Mori
contains disturbing mistakes concerning the identities of the
structures of the racemic epimers. In the main text (p. 2202),
the structure of the low-melting epimer (m.p. 170–172 °C) is
reported to have structure 10, which was substantiated by an
X-ray analysis. In the experimental section (p. 2208) the high-
melting epimer (m.p. 200–201 °C) is given the same structure
10. Unfortunately, the crystallographic data at the Cambridge
Structural Database do not give conclusive information, be-
cause the melting point of the compound that was subjected
to X-ray analysis is not mentioned.

To solve this ambiguity, X-ray analysis was carried out for
both epimers 9 and 10. Our results clearly show that the low-
melting epimer has structure 9, while the high-melting com-
pound is 2'-epimer 10 (Figure 2). We therefore conclude that
the information in the experimental section of the Mori pa-
erg\[^{20}\] is correct. The compound with the originally assigned
structure (i.e., 2) for the naturally occurring orobanchol (Fig-
ure 1) is present in racemate 9 with the low melting point, while
the compound with the correct structure (i.e., 3) is present in
the high-melting racemic 2'-epi-orobanchol 10 (Figure 2). It
should be noted that usually only one enantiomer of a race-
mate is pictured (see Scheme 1). This means that the correct
structure of natural orobanchol, having the \((R,R,R)\) configura-
tion, is "hidden" in racemic 2'-epimer 10. The name of natural
orobanchol with the correct structure (i.e., 3) is ent-2'-epi-
orobanchol when (+)-strigol is taken as the parent compound.
However, some SL researchers prefer to take the correct struc-
ture as the parent, meaning that the natural product is named
orobanchol. These different names may lead to confusion.\[^{1,13}\]
For details of the naming issue, see ref.\[^{1}\]

The second stereochemical problem in this paper deals with
securing the absolute configuration of all four stereoisomers
of 5-deoxystrigol (1b). These four stereoisomers were prepared
according to an optimized literature procedure,\[^{14a}\] as shown in
Scheme 2. Chiral separation\[^{14a,22,28}\] of both the racemic dia-
stereoisomers of 5-deoxystrigol was carried out using a Chiral-
pak AD HPLC column, and CD spectra of the four stereoisomers
were recorded (Figure 3). One of these stereoisomers was sub-
jected to X-ray diffraction analysis, which identified the struc-
ture of this compound as isomer 12b. Gratifyingly, the X-ray
structure (Figure 4) was in full agreement with the structure
assigned by CD spectra applying Welzel's rule,\[^{23,26,28}\] i.e., the
\((3aS,8bR,2'R)\) configuration, with a negative Cotton effect in the
270 nm region of the CD spectrum, thus corresponding to (–)-
ent-2'-epi-5-deoxystrigol. Having determined the absolute con-
figuration of stereoisomer 12b, the remaining peaks in the chri-
ral HPLC chromatograms could be attributed to the enantiopure
5-deoxystrigol stereoisomers 1b, 11b, and 12a, respectively, us-
ing the CD correlation diagrams (Figure 3). We now have an
unambiguous proof of the stereostructures of all four 5-deoxy-
strigols, which can reliably be used in plant research.
Scheme 2. Synthesis of racemic 5-deoxystrigol epimers 11 and 12 and their chiral separation.

Figure 3. Chiral HPLC chromatograms and CD spectra of all four stereoisomers of 5-deoxystrigol (1b).
Conclusions

The stereochemistry of SLs is increasingly important for the understanding of the biological processes in which these new plant hormones are involved. The results described here remove any confusion about the structure of the synthetic orobanchol in ref. [20] By means of X-ray analyses, the structures were assigned unambiguously. The assignment of the stereostructures of all four 5-deoxystrigol isomers was confirmed by X-ray analysis of one of the isomers, together with circular dichroism and chiral HPLC. The reported syntheses of ABC scaffolds 4, orobanchols, and 5-deoxystrigols were optimized, and chiral compounds were prepared on a large enough scale to allow material to be supplied to biologists for wide application in SL plant research.

Experimental Section

General Information: Compounds 4, [14] 7 [20] 8, [20] 11 [14a] and 12 [14a] were prepared according to (optimized) literature procedures. All reactions were carried out under nitrogen using dry solvents and reagents. Reactions were monitored by thin-layer chromatography (TLC) using silica gel 60 F254 plates (Merck). Flash column chromatography: Silica gel 60, 20–45 μm (Grace). Column chromatography: Silica gel 60, 60–200 μm (Acros). LCMS-UV: Waters Iclass, PDA 220–320 nm, SQD2 ESI, pos/neg 100–800; column: Waters Acquity™ CSH C18, 50 × 2.1 mm, 1.7 μm; temp: 35 °C; flow: 0.6 mL/min; gradient: t1 = 5 % A, t1,min = 98 % A, t1,0,min = 98 % A, post-time 0.5 min; eluent A: acetonitrile (with 0.1 % formic acid), eluent B: water (with 0.1 % formic acid). 1H NMR (400 MHz): Bruker post-time 0.5 min; eluent A: acetonitrile (with 0.1 % formic acid), chroism and chiral HPLC. The reported syntheses of ABC scaffolds of all four 5-deoxystrigol isomers was confirmed by column chromatography: Silica gel 60, 20–45 μm (Grace). Column chromatography (TLC) using silica gel 60 F254 plates (Merck). Flash chromatography on silica gel 60% to 75% EtOAc. C19H22O6 (346.37). LCMS-UV: purity >95 %; 1H NMR spectroscopy. The analytical data were identical to those reported in the literature.[20]

Oxidation of rac-(3aR,8bS)-8,8-Dimethyl-3a,4,5,6,7,8,8b-octahydro-2H-indeno[1,2-b]furan-2-one (4). Method a: 3,5-Dimethylpyrazole (9.32 g, 97.0 mmol) was added to a solution of chromium(VI) oxide (9.70 g, 97.0 mmol) in CH2Cl2 (70 mL) at –20 °C. The reaction mixture was stirred at –20 °C for 30 min. A solution of rac-(3aR,8bS)-8,8-dimethyl-3a,4,5,6,7,8,8b-octahydro-2H-indeno[1,2-b]furan-2-one (4; 200 mg, 0.970 mmol) in CH2Cl2 (6 mL) was added. The reaction mixture was stirred at –20 °C for 4 h and then it was quenched with a solution of NaOH (8.80 g, 220 mmol) in water (44 mL). The layers were separated, and the organic layer was washed with water (40 mL), HCl (1 M aq.; 20 mL), and saturated aq. NaHCO3 (20 mL). The organic phase was then dried with Na2SO4 and concentrated. The residue was purified by flash column chromatography on silica gel using a gradient of heptane/EtOAc (80:20 to 40:60) to give, as the first eluting fraction, compound 6 [32 mg, 15 %], and, as the second eluting fraction, compound 5 [88 mg, 41 %]. Method b: tert-Butyl hydroperoxide (70 % solution in water; 33.6 mL, 31.2 g, 242 mmol) was extracted with CH2Cl2 (200 mL), dried with Na2SO4, and partly concentrated (75 mL). CAUTION: Strong oxidant and potentially explosive! The solution was added to a mixture of K2CO3 (1.68 g, 12.1 mmol) and compound 4 (10.0 g, 48.5 mmol) in CH2Cl2 (250 mL) at 0 °C. Pd/C (10 %; 1.24 g) was added (gas evolution), and the reaction mixture was stirred at 0 °C overnight. Celite was added, and the mixture was filtered through Celite and concentrated. The crude material (19 g) was purified by column chromatography on silica gel using a gradient of heptane/EtOAc (70:30 to 50:50) to give, as the first eluting fraction, compound 6 (1.48 g, 14 %), and, as the second eluting fraction, compound 5 (4.22 g, 40 %).

rac-(3aR,8bS)-8,8-Dimethyl-3a,4,5,6,7,8,8b-hexahydro-2H-indeno[1,2-b]furan-2,5(3H)-dione (5): C13H16O2 (MW 220.26). Purity >95 % by 1H NMR spectroscopy. The analytical data were identical to those reported in the literature.[20]

rac-(3aR,8bS)-8,8-Dimethyl-3,3a,5,6,7,8-hexahydro-2H-indeno[1,2-b]furan-2,4(8bH)-dione (6): C13H16O2 (MW 220.26). Purity >95 % by 1H NMR spectroscopy. The analytical data were identical to those reported in the literature.[20]

rac-Orobanchol (9) and rac-2′-epi-Orobanchol (10): Potassium tert-butoxide (786 mg, 7.00 mmol) was added portionwise to a solution of rac-(3aR,4R,8bR)-4-hydroxy-8,8-dimethyl-3a,4,5,6,7,8,8b-octahydro-2H-indeno[1,2-b]furan-2-one (8) (778 mg, 3.50 mmol) and methyl formate (1.08 mL, 1.05 g, 17.5 mmol) in diethyl ether (25 mL) at 0 °C. The mixture was stirred for 1.5 h, then it was cooled to –50 °C, and a solution of 5-bromo-3-methylfuran-2(5H)-one (1.08 g, 6.13 mmol) in DMF (12.5 mL) was added dropwise over 5 min. The reaction mixture was stirred at room temperature overnight, then it was poured into a mixture of water and saturated aq. NaHCO3 (1:1; 100 mL), and extracted with EtOAc (2 × 50 mL). The combined organic layers were washed with brine (3 × 50 mL), dried with Na2SO4, and concentrated. The residue (1.44 g) was purified by flash column chromatography on silica gel (80 g) using a gradient of heptane/EtOAc (30:70 to 50:50) to give, after the first eluting fraction, compound 9 (277 mg, 23 %), and, as the second eluting fraction, compound 10 (252 mg, 21 %).

rac-(3aR,4R,8bR,E)-4-Hydroxy-8,8-dimethyl-3-({[(S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy]methylene}-3,3a,4,5,6,7,8,8b-octahydro-2H-indeno[1,2-b]furan-2-one (11): A sample obtained by flash column chromatography on silica gel (80 g) using a gradient of heptane/EtOAc (70:30 to 100:0) to give, as the first eluting fraction, compound 9 (277 mg, 23 %), and, as the second eluting fraction, compound 10 (252 mg, 21 %).
2H-indeno[1,2-b]furan-2-one (4; 8.58 g, 41.6 mmol) and methyl formate (12.8 mL, 125 g, 208 mmol) in diethyl ether (100 mL) at 0 °C. The reaction mixture was allowed to reach room temperature, and tert-butanol (3.98 mL, 30.8 g, 41.6 mmol) was added. After 4 h, N,N-dimethylformamide (50 mL) was added, and the mixture was cooled to –55 °C. A solution of 5-bromo-3-methylfuran-2(5H)-one (8.10 g, 45.8 mmol) in N,N-dimethylformamide (50 mL) was added dropwise over 30 min. The reaction mixture was allowed to reach room temperature and was stirred overnight. EtO (200 mL) and ice-cold water (200 mL) were added, and the layers were separated. The organic layer was washed with a solution of K2CO3 (2 g in 150 mL water), water (100 mL), and brine (3 x 50 mL), dried with Na2SO4, and concentrated. The residue (13.8 g) was purified by column chromatography on silica gel using a gradient of heptane/EtOH.

racc-3aR,8bβ,E)-8,8-Dimethyl-3-{{[R]-4-methyl-5-oxo-2,5-di-hydrofuran-2-yl][oxy]methylene}-3a,4,5,6,7,8b-octahydro-2H-indeno[1,2-b]furan-2-one (11b): C19H22O5 (330.37). Yield: 4.02 g (29 %). M.p. 141.5–143.0 °C (ref.[14a] 139–140 °C). The analytical data were identical to those reported in the literature.[14a]

rac-c-3aR,8bβ,E)-8,8-Dimethyl-3-{{[R]-4-methyl-5-oxo-2,5-di-hydrofuran-2-yl][oxy]methylene}-3a,4,5,6,7,8b-octahydro-2H-indeno[1,2-b]furan-2-one (12b): C19H22O5 (330.37). Yield: 4.37 g (32 %). M.p. 143.5–145.0 °C (ref.[14a] 146–147 °C). The analytical data were identical to those reported in the literature.[14a]


Circular Dichroism 5-Deoxystrigol Isomers: CD spectra of 11b, 12a, and 12b were recorded for samples in acetonitrile (LCMS grade) with a JASCO J-815 CD spectrophotometer.

Data for 1b: CD (c = 45 μM, MeCN): λmax = 220 nm. The elution order was (see note below): (–)-ent-5-deoxystrigol (11b; 16.9 min; 1.05 g, 39 %), (–)-ent-2’-epi-5-deoxystrigol (12b; 20.2 min; 1.05 g, 39 %), (–)-2’-epi-5-deoxystrigol (12a; 22.6 min; 1.10 g, 33 %), (–)-5-deoxystrigol (12b; 27.7 min; 11.0 g, 33 %). Enantiomeric excesses were >99 %, as determined by analytical HPLC using a Chiralpak AD-H column (250 x 4.6 mm, 5 μm, 35 °C), eluting with isocratic heptane/EtOH (90:10, 18 mL/min) with UV detection at λmax = 220 nm. The elution order was (see note below): (-)-ent-5-deoxystrigol (11b; 16.9 min; 1.05 g, 39 %), (-)-ent-2’-epi-5-deoxystrigol (12b; 20.2 min; 1.05 g, 39 %), (+)-2’-epi-5-deoxystrigol (12a; 22.6 min; 1.10 g, 33 %), (+)-5-deoxystrigol (12b; 27.7 min; 11.0 g, 33 %).

Acknowledgments

We thank OLChemM Ltd, Olomouc (Czech Republic) and Wageningen University Plant Sciences (The Netherlands) for financial support, and Dr. Martin Lutz of Utrecht University (The Netherlands) for collecting the single-crystal X-ray diffraction data for compounds 9 and 10.

Keywords: Plant hormones · Structure elucidation · Natural products · Total synthesis · Stereochemistry · Circular dichroism
