Measurement of the ZZ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

The ATLAS Collaboration

Abstract

The ZZ production cross section in proton–proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb$^{-1}$ of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66–116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving $16.7^{+2.2}_{-2.0}(\text{stat.})^{+0.9}_{-1.0}(\text{syst.})^{+1.0}_{-0.7}(\text{lumi.})$ pb. The results agree with standard model predictions.
Studying the production of pairs of Z bosons in proton–proton (pp) interactions at the Large Hadron Collider (LHC) tests the electroweak sector of the standard model (SM) at the highest available energies. In pp collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV, ZZ production is dominated by quark–antiquark ($q\bar{q}$) interactions, with an $O(10\%)$ contribution from loop-induced gluon–gluon (gg) interactions [1, 2]. The SM ZZ production can proceed via a Higgs boson propagator, although this contribution is suppressed in the region where both Z bosons are produced on-shell. As such, non-Higgs ZZ production is an important background in studies of the Higgs boson [3–5]. It is also a background in searches for new physics producing pairs of Z bosons at high invariant mass [6, 7] and sensitive to triple neutral-gauge-boson couplings, which are not allowed in the SM [8].

This Letter presents the first measurement of the ZZ production cross section in pp interactions at $\sqrt{s} = 13$ TeV. Throughout it, “Z boson” refers to the superposition of a Z boson and virtual photon with mass in the range 66–116 GeV. The analyzed data correspond to an integrated luminosity of 3.2 \pm 0.2 fb$^{-1}$, collected with the ATLAS detector [9]. The uncertainty of the integrated luminosity is derived, following a methodology similar to that detailed in Ref. [10], from a preliminary calibration of the luminosity scale using a pair of x–y beam-separation scans performed in June 2015. The ZZ production cross section was previously measured at $\sqrt{s} = 7$ and 8 TeV by the ATLAS and CMS collaborations [11–13] and found to be consistent with SM predictions.

Candidate events are reconstructed in the fully leptonic $ZZ \rightarrow ℓ⁺ℓ⁻ℓ′⁺ℓ′−$ decay channel where $ℓ$ and $ℓ'$ can be an electron or a muon. The cross section $σ_{ZZ→ℓ⁺ℓ⁻ℓ′⁺ℓ′−}^{fid}$ is found by counting candidate events, subtracting the expected contribution from background events, correcting for detector effects, and dividing by the integrated luminosity. It is measured in a fiducial phase space that corresponds closely to the experimental acceptance. In addition, an extrapolation of the cross section to a total phase space for Z bosons, $σ_{ZZ→ℓ⁺ℓ⁻ℓ′⁺ℓ′−}^{tot}$, is performed. The presented cross-section measurements are inclusive with respect to additional jets. Small contributions from triboson production with two leptonically decaying Z bosons and a third hadronically decaying weak boson and contributions from double parton scattering are included in the measurement.

The fiducial phase space, which is designed to reflect the acceptance of the ATLAS detector (described below), is defined for simulated events by applying the following criteria to the final-state particle-level objects. Final-state electrons and muons are required to be prompt (i.e. not originate from hadron or τ decay) and their kinematics are computed including the contributions from prompt photons with a distance in $η$–$φ$ coordinates1 of $ΔR_{ℓ,γ} = \sqrt{(Δη_{ℓ,γ})^2 + (Δφ_{ℓ,γ})^2} < 0.1$ between the charged lepton and the photon, as motivated in Ref. [14]. The leptons are required to be well-separated with $ΔR_{ℓ,ℓ'} > 0.2$ between any two leptons. Each lepton must have a momentum component transverse to the beam direction $p_T > 20$ GeV and pseudorapidity $|η| < 2.7$. Events must have exactly four leptons satisfying the above criteria forming two pairs of same-flavor oppositely charged leptons ($μ^+μ^−$ or $e^+e^−$). This gives rise to three signal channels: 4e, 4$μ$, and 2e2$μ$. Each lepton pair must have an invariant mass in the range 66–116 GeV. In the 4e and 4$μ$ channels, where there are two possible ways to form same-flavor oppositely charged lepton pairs, the combination that minimizes $|m_{ℓℓ,a} − m_Z| + |m_{ℓℓ,b} − m_Z|$ is chosen, where $m_{ℓℓ,a}$ and $m_{ℓℓ,b}$ are the invariant masses of the lepton pairs and m_Z is the mass of the Z boson.

The ATLAS detector is a multipurpose particle detector with a cylindrical geometry. It consists of layers

\footnotesize{1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the detector and the z-axis along the beam pipe. The x-axis points to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates ($r, φ$) are used in the transverse plane, $φ$ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle $θ$ as $η = −\ln(\tan(θ/2))$.}
of tracking detectors, calorimeters, and muon chambers. The inner detector (ID) covers the pseudorapidity range $|\eta| < 2.5$. The calorimeter covers the pseudorapidity range $|\eta| < 4.9$. Within $|\eta| < 2.47$ the finely segmented electromagnetic calorimeter identifies electromagnetic showers and measures their energy and position, providing electron identification together with the ID. The muon spectrometer (MS) surrounds the calorimeters and provides muon identification and measurement in the region $|\eta| < 2.7$ and triggering in the region $|\eta| < 2.4$.

A muon is reconstructed by matching a track (or track segment) reconstructed in the MS to a track reconstructed in the ID. Its momentum is calculated by combining the information from the two systems and correcting for energy deposited in the calorimeters. In regions of limited coverage of the MS ($|\eta| < 0.1$) or outside the ID acceptance ($2.5 < |\eta| < 2.7$), muons can also be reconstructed by matching calorimeter signals consistent with muons to ID tracks (calorimeter-tagged muons) or standalone in the MS [15], respectively.

An electron is reconstructed from an energy deposit (cluster) in the electromagnetic calorimeter matched to a track in the ID. Its momentum is computed from the cluster energy and the direction of the track. Electrons are distinguished from other particles using several identification criteria that rely on the shapes of electromagnetic showers as well as tracking and track-to-cluster matching quantities. The output of a likelihood function taking these quantities as input, similar to that described in Ref. [16], is used to identify electrons. Electrons sharing an ID track with a selected muon are ignored.

The leptons are required to be isolated from other particles using ID track information, and for muons also calorimeter information (since standalone muons are outside the ID acceptance). The exact requirements depend on the lepton p_T and η and are designed to give a uniform 99% efficiency.

Leptons are required to originate from the primary vertex, defined as the reconstructed vertex with the largest sum of the p_T^2 of the associated tracks. To this end, the longitudinal impact parameter of each lepton track, calculated with respect to the vertex and multiplied by $\sin \theta$ of the track, is required to be less than 0.5 mm. Furthermore, the significance of the transverse impact parameter calculated with respect to the beam line is required to be less than three (five) for muons (electrons). Standalone muons are exempt from both impact parameter requirements, as they do not have an ID track.

Candidate events are preselected by either a single-muon or dielectron trigger. As in the fiducial phase space described above, leptons must have $p_T > 20$ GeV. As slight differences from the fiducial phase space, electrons must satisfy $|\eta| < 2.47$ due to the limited experimental acceptance, and at least one muon in the 4μ channel must satisfy $|\eta| < 2.4$, corresponding to the acceptance of the muon trigger. The other muons must satisfy $|\eta| < 2.7$. Events are ignored if more than one selected muon is calorimeter-tagged or standalone. Apart from the above differences, reconstructed candidate events are selected using exactly the same criteria that define the fiducial phase space. A total of 63 events are observed, of which 15, 30, and 18 are in the 4ℓ, $2\ell 2\mu$, and 4μ channel, respectively.

Monte-Carlo-simulated (MC) event samples are used to obtain corrections for detector effects and to estimate background contributions. The principal sample is generated with the Powheg method and framework [17–19], with a diboson event generator [20, 21] used to simulate the ZZ production process at next-to-leading order (NLO). The simulation of parton showering, underlying event, and hadronization is performed with Pythia 8 [22, 23] using the AZNLO set of tuned parameters (tune) [24]. Sherpa [25–31] is used to generate a sample with the $q\bar{q}$-initiated process simulated at NLO for ZZ plus zero or one

3 Throughout this Letter, orders of calculations refer to perturbative expansions in the strong coupling constant α_S unless stated otherwise.
additional jet and at leading order (LO) for two or three additional jets, as well as a sample with the loop-induced gg-initiated process simulated at LO with zero or one additional jet. These are used to include the loop-induced gg-initiated production, which is not included in the Powheg + Pythia 8 sample, as well as to estimate, by comparison of the various samples, a systematic uncertainty due to the choice of event generator. The CT10 NLO [32] parton distribution functions (PDFs) are used in the event generation for all samples above. Additional samples are generated to estimate the contribution from background events. Triboson events are simulated with Sherpa, using CT10 PDFs, and $t\bar{t}Z$ events are simulated with MadGraph [33] interfaced with Pythia 8 using the NNPDF 2.3 LO PDFs [34] and the A14 tune [35].

In all MC samples, additional pp interactions occurring in the same bunch crossing as the ZZ production, or in nearby ones, are simulated with Pythia 8 with MSTW 2008 LO PDFs [36] and the A2 tune [37]. The samples are then passed through a simulation of the ATLAS detector [38] based on Geant 4 [39]. Scale factors are applied to the simulated events to correct for the small differences from data in the trigger, reconstruction, identification, isolation, and impact parameter efficiencies for electrons and muons [15, 16]. Furthermore, the lepton momentum scales and resolutions are adjusted to match the data.

Background events from processes with at least four prompt leptons in the final state are estimated with the MC samples described above, including uncertainties from the cross-section values, luminosity, and reconstruction effects. Contributions of 0.07 ± 0.02 events from ZZ processes where at least one Z boson decays to τ leptons, 0.17 ± 0.05 events from non-hadronic triboson processes, and 0.30 ± 0.09 events from all-leptonic $t\bar{t}Z$ processes are predicted. Events from processes with two or three prompt leptons, e.g. Z, WW, WZ, $t\bar{t}$, and ZZ events where one Z boson decays hadronically, where associated jets or photons contain or fake a nonprompt lepton, can pass the event selection. This background contribution is estimated to be $0.09_{-0.04}^{+0.08}$ events, using control samples and a data-driven technique described in Ref. [11]. The uncertainty is dominated by the small number of events in the control samples. It can be asymmetric due to truncation, as background contributions cannot be negative. Background from two single Z bosons produced in different pp collisions in the same bunch crossing is estimated to be negligible. The total expected number of background events is 0.20 ± 0.05 ($0.25_{-0.05}^{+0.40}$, $0.17_{-0.04}^{+1.00}$) in the $4e$ ($2e2\mu$, 4μ) channel, giving a total of $0.62_{-0.16}^{+0.08}$ events.

A correction factor C_{ZZ} is applied to correct for detector inefficiencies and resolution effects. It relates the background-subtracted number of selected events to the number in the fiducial phase space, and is defined as the ratio of generated events passing the selection criteria using reconstructed objects to the number passing the fiducial criteria using generator-level objects. C_{ZZ} is determined with a combination of the Powheg ZZ MC sample and the Sherpa loop-induced gg-initiated sample. The normalization of the latter is scaled to $O(a_\alpha^3)$ accuracy [2] in order to improve the model used to correct the measurement. The C_{ZZ} value is determined to be 0.55 ± 0.02 (0.63 ± 0.02, 0.81 ± 0.03) in the $4e$ ($2e2\mu$, 4μ) channel. The dominant systematic uncertainties come from the uncertainties of the scale factors used to correct lepton reconstruction and identification efficiencies in the simulation and the choice of MC generator. Other smaller uncertainties come from the scale and resolution of the lepton momenta, PDFs, and statistical fluctuations in the MC sample. Table 1 gives a breakdown of the systematic uncertainties.

Figure 1 shows the invariant mass of the leading-p_T,\ell and the subleading-p_T,\ell lepton pair (\ell\ell), as well as the invariant mass, transverse momentum, and rapidity of the four-lepton system. Distributions from data are compared to the signal and background expectations, with good agreement in general.

The fiducial cross section is determined using a maximum-likelihood fit to the event counts in the three signal channels. A Poisson probability function is used to model the number of expected events, multiplied by Gaussian distributions that model the nuisance parameters representing systematic uncertainties.
Figure 1: (a) Invariant mass $m_{\ell\ell}$ of the leading-$p_T,\ell\ell$ versus the subleading-$p_T,\ell\ell$ lepton pair ($\ell\ell$), before the requirement $66\text{ GeV} < m_{\ell\ell} < 116\text{ GeV}$ is applied. (b) Invariant mass, (c) transverse momentum, and (d) rapidity of the four-lepton system in selected events. The points represent experimental data. The filled histograms show the signal prediction from simulation, including the $q\bar{q}$ and loop-induced gg-initiated process. The contributions are stacked. In the simulation, the prediction from Powheg + Pythia 8 combined with Sherpa is scaled to $O(\alpha_S^2)$ accuracy. The uncertainties in the simulation are from the same sources as the C_{ZZ} uncertainty. In addition, 6% ZZ cross-section uncertainty and 5% integrated-luminosity uncertainty are included. The expected background of $0.62_{-0.11}^{+1.08}$ events is not shown as a histogram due to its small size.
Table 1: Relative uncertainties of the correction factor C_{ZZ} by signal channel, expressed in percent.

<table>
<thead>
<tr>
<th>Source</th>
<th>$4e$</th>
<th>$2e2\mu$</th>
<th>4μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Theoretical</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Experimental efficiencies</td>
<td>2.3</td>
<td>2.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Momentum scales and resolutions</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>3.5</td>
<td>3.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

This procedure can lead to asymmetric uncertainties as Poisson-distributed variables cannot be negative.

The cross section measured in the fiducial phase space is also extrapolated to the total phase space, which includes a correction for QED final-state radiation effects. The extrapolation factor is obtained from the same combination of MC samples as used in the C_{ZZ} determination. The ratio of the fiducial to full phase-space cross section is 0.39 ± 0.02, in all three channels. It is corrected for the small bias introduced by the pairing algorithm in the $4e$ and 4μ channel. The dominant systematic uncertainty comes from the difference between the nominal value and that obtained using the SHERPA samples. Smaller uncertainties are derived from PDF variations in the CT10 error set, differences between using PYTHIA 8 and HERWIG++ [40] for simulating the rest of the event, and varying the QCD renormalization and factorization scales independently by a factor of two. In order to extrapolate to the total cross section, the fiducial cross sections are divided by the ratio 0.39 ± 0.02 and corrected for the leptonic branching fraction $(3.3658\%)^2$ [41].

The measured fiducial cross sections are shown in Table 2 and Figure 2(a) along with a comparison to $O(\alpha_s^2)$ calculations [1]. Table 2 also shows the total combined cross section. The CT10 NNLO PDFs [42] and a dynamic scale equal to the mass of the four-lepton system are used in the calculation. The loop-induced gg-initiated process is included, and contributes 7.0% (5.8%) of the cross section in the fiducial (total) phase space. The predicted cross sections in the fiducial phase space are corrected for QED final-state radiation effects, which amount to a 4% reduction. The measurements agree with the SM predictions.

The theoretical predictions do not include the following effects. The loop-induced gg-initiated process calculated at $O(\alpha_s^2)$ could receive large corrections at $O(\alpha_s^3)$ of 70% [2], which would increase the prediction by $4 \text{--} 5\%$. Electroweak corrections at next-to-leading order [43, 44] are expected to reduce the cross section by $7 \text{--} 8\%$ [44]. Furthermore, the contribution from double parton scattering is not accounted for, but is expected to be an effect of less than 1% [45].

The measured total cross section is compared to measurements at lower center-of-mass energies and to a prediction from MCFM [46] with the CT14 NLO PDFs [47], which is calculated at $O(\alpha_s^3)$ accuracy for the $q\bar{q}$-initiated process and at $O(\alpha_s^2)$ accuracy for the loop-induced gg-initiated process and is shown versus center-of-mass energy in Figure 2(b). The cross section increases by a factor of more than two with a center-of-mass energy increase from 8 TeV to 13 TeV.

In summary, ATLAS has measured the ZZ production cross section in 3.2 fb^{-1} of 13 TeV pp collisions at the LHC using the fully leptonic decay channel $ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$. Fiducial cross sections as well as a
Table 2: Cross-section measurement results compared to the $O(α_s^2)$ standard model predictions. The per-channel and combined fiducial cross sections are shown along with the combined total cross section. For experimental results, the statistical, systematic, and luminosity uncertainties are shown. For theoretical predictions, the PDF and renormalization and factorization scale uncertainties added in quadrature are shown.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>$O(α_s^2)$ prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$σ_{ZZ→e^+e^−e^+e^−}^{fid}$</td>
<td>$8.4^{+4.8}{−2.0}$ (stat.) $^{+0.4}{−0.2}$ (syst.) $^{+0.5}_{−0.3}$ (lumi.) fb</td>
</tr>
<tr>
<td>$σ_{ZZ→e^+e^−μ^+μ^−}^{fid}$</td>
<td>$14.7^{+2.9}{−2.5}$ (stat.) $^{+0.6}{−0.4}$ (syst.) $^{+0.9}_{−0.6}$ (lumi.) fb</td>
</tr>
<tr>
<td>$σ_{ZZ→μ^+μ^−μ^+μ^−}^{fid}$</td>
<td>$6.8^{+1.8}{−1.5}$ (stat.) $^{+0.3}{−0.3}$ (syst.) $^{+0.4}_{−0.3}$ (lumi.) fb</td>
</tr>
<tr>
<td>$σ_{ZZ→e^+e^−μ^+μ^−}$</td>
<td>$29.7^{+3.9}{−3.6}$ (stat.) $^{+1.0}{−0.8}$ (syst.) $^{+1.7}_{−1.3}$ (lumi.) fb</td>
</tr>
<tr>
<td>$σ_{tot}^{ZZ→4l}$</td>
<td>$16.7^{+2.2}{−2.0}$ (stat.) $^{+0.9}{−0.7}$ (syst.) $^{+1.0}_{−0.7}$ (lumi.) pb</td>
</tr>
</tbody>
</table>

Figure 2: (a) Comparison between measured fiducial cross sections and $O(α_s^2)$ predictions. (b) Total cross section compared to measurements at lower center-of-mass energies by ATLAS, CMS, CDF, and D0 [11–13, 48, 49], and to a prediction from MCFM at $O(α_s^2)$ accuracy for the $q\bar{q}$-initiated process and at $O(α_s^2)$ accuracy for the loop-induced gg-initiated process. A full $O(α_s^2)$ prediction (known to improve agreement at $\sqrt{s} = 13$ TeV) was not yet available for all the different center-of-mass energies. Some data points are shifted horizontally to improve readability.

The total cross section for Z bosons with mass 66–116 GeV have been measured and agree well with $O(α_s^2)$ SM predictions.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DHRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA/DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy;
MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
References

[44] B. Biedermann et al., ‘Next-to-leading-order electroweak corrections to \(pp \rightarrow \mu^+\mu^-e^+e^-\) at the LHC’, to be submitted.

35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Faculty of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
INFN Sezione di Pavia; Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; Faculdade de Ciências, Universidade de Lisboa, Lisboa; Department of Physics, University of Coimbra, Coimbra; Centro de Física Nuclear da Universidade de Lisboa, Lisboa; Departamento de Física, Universidade do Minho, Braga; Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
Czech Technical University in Prague, Praha, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
INFN Sezione di Roma; Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre; Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; Faculté des sciences, Université Mohammed V, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
(a) Department of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

145 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

146 Physics Department, Royal Institute of Technology, Stockholm, Sweden

147 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

148 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

149 School of Physics, University of Sydney, Sydney, Australia

150 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

151 Department of Physics, University of Toronto, Toronto ON, Canada

152 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada

153 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan

154 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America

155 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

156 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

157 Department of Physics, University of British Columbia, Vancouver BC, Canada

158 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

159 Department of Physics, University of Warwick, Coventry, United Kingdom

160 Waseda University, Tokyo, Japan

161 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

162 Department of Physics, University of Wisconsin, Madison WI, United States of America

163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

164 Department of Physics, University of Illinois, Urbana IL, United States of America

165 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

166 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

167 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität

26
Wuppertal, Wuppertal, Germany
175 Department of Physics, Yale University, New Haven CT, United States of America
176 Yerevan Physics Institute, Yerevan, Armenia
177 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America

f Also at Department of Physics, California State University, Fresno CA, United States of America
g Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
h Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain
i Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
j Also at Tomsk State University, Tomsk, Russia
k Also at Universita di Napoli Parthenope, Napoli, Italy
l Also at Institute of Particle Physics (IPP), Canada
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
n Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
o Also at Louisiana Tech University, Ruston LA, United States of America
p Also at Instituto Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
q Also at Graduate School of Science, Osaka University, Osaka, Japan
r Also at Department of Physics, National Tsing Hua University, Taiwan
s Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America

t Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
u Also at CERN, Geneva, Switzerland
v Also at Georgian Technical University (GTU), Tbilisi, Georgia
w Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
x Also at Manhattan College, New York NY, United States of America
y Also at Hellenic Open University, Patras, Greece
z Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
aa Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
ab Also at School of Physics, Shandong University, Shandong, China
ac Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ad Also at Section de Physique, Université de Genève, Geneva, Switzerland
ae Also at International School for Advanced Studies (SISSA), Trieste, Italy
af Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ag Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
ah Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria
ai Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
aj Also at National Research Nuclear University MEPhI, Moscow, Russia
ak Also at Department of Physics, Stanford University, Stanford CA, United States of America
al Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

27
Hungary

* Deceased