The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/157307

Please be advised that this information was generated on 2017-11-20 and may be subject to change.
Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor

Loai K. E. A. Abdelmohsen, Marlies Nijemeisland, Gajanan M. Pawar, Geert-Jan A. Janssen, Roeland J. M. Nolte, Jan C. M. van Hest, and Daniela A. Wilson*

Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands

ABSTRACT: Self-powered artificial nanomotors are currently attracting increased interest as mimics of biological motors but also as potential components of nanomachinery, robotics, and sensing devices. We have recently described the controlled shape transformation of polymersomes into bowl-shaped stomatocytes and the assembly of platinum-driven nanomotors. However, the platinum encapsulation inside the structures was low; only 50% of the structures contained the catalyst and required both high fuel concentrations for the propelling of the nanomotors and harsh conditions for the shape transformation. Application of the nanomotors in a biological setting requires the nanomotors to be efficiently propelled by a naturally available energy source and at biologically relevant concentrations. Here we report a strategy for enzyme entrapment and nanomotor assembly via controlled and reversible folding of polymersomes into stomatocytes under mild conditions, allowing the encapsulation of the proteins inside the stomach with almost 100% efficiency and retention of activity. The resulting enzyme-driven nanomotors are capable of propelling these structures at low fuel concentrations (hydrogen peroxide or glucose) via a one-enzyme or two-enzyme system. The confinement of the enzymes inside the stomach does not hinder their activity and in fact facilitates the transfer of the substrates, while protecting them from the deactivating influences of the media. This is particularly important for future applications of nanomotors in biological settings especially for systems where fast autonomous movement occurs at physiological concentrations of fuel.

KEYWORDS: supramolecular chemistry, stomatocytes, nanomotor, biofuel, autonomous movement

Received: December 7, 2015
Accepted: January 26, 2016

Biological motors are fascinating structures involved in almost every biological process such as cell division, muscle contraction, and relaxation. Their intricate movement and architecture have been a source of inspiration for scientists from a wide range of disciplines who have tried to mimic biological motor function using both top-down and bottom-up strategies. Various motor designs have been reported in the literature, such as nanorods/wire motors, Janus motors, polymer-based motors, and polymeric self-assembled nanomotors. These systems have opened the door to various biomedical and environmental-related applications; however, for such motors to be truly successfully applied in a biological context, a nanosized motor has to be constructed that can propel itself in biological fluids and at biologically relevant fuel concentrations, employing a fuel-selective catalytic system. Until now most of the biohybrid designs have focused on the replacement of bare metal surface motors with soft matter alternatives such as carbon-based microfibers, polymeric materials, enzyme molecules, and micropumps. They showed the ability to propel themselves in different media, however at quite high fuel concentrations and low efficiency. We have recently reported a supramolecular approach to construct catalytic nanomotors via the shape transformation of polymersomes under osmotic shock, followed by metal catalyst entrapment in the inner compartment of the bowl-shaped structures (stomatocytes). This design merges the properties of polymeric vesicles to enclose different types of drugs for in vivo intracellular delivery with the advantages of a locomotive self-propelling nanomotor system. However, for its use in biological setting, efficient movement by a naturally available energy source and at biological relevant concentrations is required. Biocatalysts such as enzymes are biological molecules capable of converting with remarkable efficiency and...
selectivity different biological substrates and were thought to provide the required energy source for our motors. They are also very sensitive to the presence of deactivating molecules in the media such as organic solvents, which can denature their structure. The shape transformation of polymersomes into folded stomatocyte structures reported previously required, however, harsh conditions such as large amounts of organic solvents. The organic solvent was used as a plasticizer for the glassy bilayer membrane of the polymersomes assembled from the amphiphilic block copolymer poly(ethylene glycol)-polystyrene (PEG-PS). In the presence of the plasticizer, the bilayer membrane becomes flexible and responsive to osmotic shock. This property facilitated the successful change in shape of polymersomes from spherical objects into bowl-shaped stomatocytes via either direct dialysis of flexible polymersomes or reverse engineering of rigid polymersomes (Supplementary Figure 1). Both dialysis methods however require large amounts of organic solvent, which in most cases is not compatible with the entrapment of proteins, due to the long contact time between the protein and the organic solvent, leading to protein denaturation.

Herein we report a mild methodology for the entrapment of catalytic enzymes inside the stomatocytes allowing the assembly of enzyme-driven supramolecular nanomotors propelled by naturally occurring chemical fuel and at biological relevant concentrations (Figure 1). In contrast to other reported examples, the biohybrid stomatocyte nanomotors are very efficient, capable of propelling at high speeds over 176 body lengths/s. Furthermore, a cascade reaction between two complementary enzymes was demonstrated to propel the structures in alternative fuel such as glucose and at biologically relevant concentrations. While high-concentration peroxide-powered catalase micrometer-size motors have been reported, the use of physiological levels of glucose and hydrogen peroxide is certainly attractive for biological applications. In addition, we also demonstrate that the encapsulated enzymes are confined and protected inside of the cavities of stomatocytes, preventing their degradation in the presence of proteases, usually prevalent in biological systems. Furthermore, the PEGylated locomotive capsule is made of a soft self-assembled material and provides stealth behavior by preventing protein adsorption onto their surface, which is expected to occur in hard micrometer-size metal nanomotors, leading to reduced efficiency. The self-assembled nanomotors should also create a soft interface with the living systems, particularly important for biological applications. Finally, this method of entrapment is applicable to other enzymes and is reversible, which broadens significantly the scope of our nanomotor design for future biological applications.

RESULTS AND DISCUSSION

Solvent Addition Method for Stomatocyte Formation under Mild Conditions. Entrapment of enzymes and other proteins inside the bowl-shaped polymersomes (stomatocytes) requires a fast shape transformation of the spherical polymersomes into stomatocytes with minimal solvent exposure to the proteins to prevent their denaturation. We therefore set out to develop a method that would meet these criteria. We started out with the standard preparation of rigid spherical polymersomes from PEG-PS amphiphilic block copolymers.

The addition of water to a solution of polymer in THF/dioxane (4:1 v/v) promotes the self-assembly into polymersomes. Dialysis against Milli-Q for at least 24 h results in solvent removal and polymersomes with glassy membranes. In order to fold the membrane inward, the bilayer was made flexible by the addition of small volumes of THF/dioxane (4:1 v/v) via a syringe pump. A shape transformation into stomatocytes with a large opening occurred quickly after the addition of 150 µL to a 500 µL polymersome solution (10 mg mL⁻¹).

Addition of a second aliquot of the organic solvent (vial 2) induced a decrease in the size of the opening until the structures were almost completely closed after 90 min. When more organic solvent was added, the flexibility and permeability

Figure 1. Supramolecular assembly of the enzyme-driven nanomotor. (a) Solvent addition method for stomatocyte formation under mild conditions. The stomatocyte formation with different openings is perfectly reversible, and once the structure is quenched in water, the transformation cycle can be restarted. (b) Schematic representation of the assembly of the nanomotor with multiple enzymes entrapped inside the structure. The enzymes are responsible for generating the propelling jet during the catalytic reaction. The nanomotor can be reversibly engineered to polymersomes, releasing its content.
of the bilayer membrane increased, to the extent that complete equilibration of the osmotic pressure over the membrane occurred, followed by the recovery of the spherical polymer-some morphology (Figure 2 and Supplementary Figure 2).

This method enables a fast shape transformation of polymersomes into stomatocytes with different openings in a controlled and reversible manner with a minimum amount of solvent necessary for the transformation. Stomatocytes with different size openings were preserved during the transformation cycle by quenching the structures at different time points (30, 60, 90, or 120 min) in a 2 mL aliquot of Milli-Q water. Most importantly, once rigid, these intermediate large-opening stomatocytes could be reshaped into the smaller opening structures by repeating the transformation cycle, this time requiring even less time and organic solvent for the transformation to occur (Figure 2). For example, the 103 ± 9 nm opening glassy stomatocyte batch (500 μL colloidal solution, 10 mg mL⁻¹ concentration) obtained after 60 min of organic solvent addition required only 150 μL of organic solvent to undergo the shape transformation into the closed structure, in only 30 min. This methodology presents obvious advantages in reducing both the solvent exposure time and amount of organic solvent required, which are mandatory to prevent denaturation from taking place during enzyme encapsulation (vide infra).

Supramolecular Assembly of Enzyme-Driven Nanomotors. The solvent addition method thus allows for the closing of wide-opening stomatocytes to almost completely closed structures in the time frame of only 30 min using a procedure in which 150 μL of organic solvent is added to 500 μL of colloidal solution (Figure 2 and Supplementary Figure 3) followed by fast removal of organic solvent via spin filtration and dialysis. This method therefore provides the appropriate conditions for enzyme encapsulation and the assembly of a biohybrid nanomotor. The catalytic activity of enzymes entrapped in this way during the transition to the closed
structure can be used to construct a fast-moving jet, as will be shown below. The enzyme can also be released from the stomatocyte nanocavity by reshaping the enzyme-filled stomatocytes back into the polymersome morphology by solvent addition (Figure 2 and Supplementary Figure 2).

Several enzymes (catalase and its mixture with glucose oxidase) were selected for entrapment in the stomatocytes because of their catalytic abilities to produce the propelling jet required for movement of the nanomotor. Catalase is an enzyme that has the ability to efficiently decompose hydrogen peroxide into water and oxygen. When catalase is combined with glucose oxidase (GOx), a cascade reaction is possible in which glucose is oxidized by GOx to gluconic acid and hydrogen peroxide, and the latter is further decomposed into oxygen and water by catalase, making glucose the fuel for driving the nanomotor. In order to entrap the enzymes efficiently and in their active state, a number of aspects had to be taken into consideration. First of all, due to the small hydrodynamic diameter of the selected enzymes (catalase 11 nm and glucose oxidase 7.8 nm, respectively), efficient closing of the stomatocytes is crucial for the entrapment of the enzymes and ultimately for the proper functioning of the motor. Furthermore, for the enzymes to retain their catalytic activity, denaturation should be prevented during the shape transformation cycle. This was achieved by mixing large concentrations of the enzymes with the glassy stomatocytes of 103 ± 9 nm opening followed by closing of the stomatocyte neck in 30 min by the addition of 150 μL of the solvent mixture (vide infra). Directly after this process, the organic solvent was removed first via spin filtration over a 0.22 μm spin filter using a salt solution (5 mM NaNO₃) then dialysis against the same salt solution for an hour (Supporting Information). Afterward, the stomatocytes were concentrated and dispersed in Milli-Q water, followed by spin filtration to remove all the nonencapsulated enzymes. The 103 ± 9 nm stomatocytes were previously obtained from polymersomes by addition of the solvent mixture (300 μL) over a period of 60 min and quenching of the structures in water. After encapsulation, the enzyme activity was assessed using standard colorimetric enzymatic assays (Supporting Information, Table 3). Several analysis techniques were used to demonstrate the successful entrapment of the enzymes as well as to determine the structure, stability, and size distribution of the supramolecular assembly.

Asymmetric field flow fractionation (AFFF) coupled with static (multiangle) light scattering and dynamic light scattering techniques to determine the ratio between the radius of gyration (R_g) and hydrodynamic radius (R_h) (Supporting Information, Figures 5 and 7), which gives information about the mass distribution within the structure. Note the clear distinction between the fitting of the R_g-R_h ratios of filled and nonfilled stomatocytes. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDX) showing the mapping of iron (Fe) of the heme group present in catalase and sulfur (S) specific to the cysteines and methionines in both catalase and GOx enzymes, and their localization inside the stomatocyte cavity.

Figure 3. Characterization techniques to prove enzyme encapsulation. (a) Asymmetric field flow fractionation (AFFF) of enzyme-filled stomatocytes purified by spin filtration and dialysis and their comparative elution to the controls: polymersomes, polymersomes obtained via reshaping of filled stomatocytes, empty stomatocytes, and pure enzymes. Note that GOx and catalase are very close in size and therefore very difficult to separate by FFF; however, tuning the FFF method to low molecular weight compounds allowed for a slight differentiation between the two enzymes (inset). (b) AFFF coupled with static (multiangle) light scattering and dynamic light scattering techniques to determine the ratio between the radius of gyration (R_g) and hydrodynamic radius (R_h) (Supporting Information, Figures 5 and 7), which gives information about the mass distribution within the structure. Note the clear distinction between the fitting of the R_g-R_h ratios of filled and nonfilled stomatocytes. (c) Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDX) showing the mapping of iron (Fe) of the heme group present in catalase and sulfur (S) specific to the cysteines and methionines in both catalase and GOx enzymes, and their localization inside the stomatocyte cavity.
injected in the AFFF separation channel. While catalase and GOx enzymes clearly eluted in the first minutes (Figure 3a, blue and purple lines), the stomatocytes eluted much later, as expected, due to their larger size and therefore smaller diffusion coefficient (Figure 3a, green line).

Control experiments with both pure enzymes and stomatocytes showed the same elution volumes as the mixture of stomatocytes and free enzymes. This result is a good indication that under the applied encapsulation conditions both enzymes do not adsorb to the outer surface of the stomatocytes. This result was also confirmed by zeta potential measurements on the empty and enzyme-filled stomatocytes, which allowed for the measurement of the net charge on the surface of the structures before and after entrapment. Both measurements gave almost the same result, i.e., a negative value of the zeta potential of -26 ± 2 mV. Stomatocytes in which catalase and a combination of GOx and catalase were entrapped during the shape transformation and further purified showed only one peak corresponding to the filled stomatocytes and the complete disappearance of the enzyme peaks at low retention times. When compared to the empty stomatocytes, both catalase- and GOx–catalase (3:1)-filled stomatocytes showed a slight delay in the elution time, indicating that the encapsulation led to the formation of larger stomatocytes possibly due to a templating effect induced by the clustered enzyme molecules inside the stomatocytes. This hypothesis was further confirmed by the in-flow hydrodynamic radii measurements of the closed-neck empty and catalase-filled stomatocytes, showing in all cases a larger size for the enzyme-filled stomatocytes compared to the empty ones. As mentioned above, the solvent addition method is reversible and can regenerate the polymersome morphology from the stomatocytes. This property was exploited in order to demonstrate the presence of the enzymes inside the stomatocytes by releasing their content during the shape transformation back into polymersomes. As expected, the FFF data showed the presence of two peaks, one corresponding to the catalase and the other corresponding to the polymersomes. The coupling of the AFFF system to MALS and dynamic light scattering (DLS) allowed for further characterization of the physiochemical characteristics of the particles. While DLS determines the hydrodynamic radius (R_h) of the separate peaks and implicitly of the filled and nonfilled stomatocytes, the MALS system enables the calculation of both the molecular weight of the assemblies and the radius of gyration of the particles (R_g), which gives information on the distribution of mass within the particles. The ratio R_h/R_g of spherical objects provides information with respect to their composition. While for an ideal empty sphere R_h equals R_g due to the lack of mass inside the structures, filled objects have been shown to have a smaller radius of gyration due to the concentration of mass inside the structures, leading to R_h/R_g values of 0.775. Cryo-TEM measurements confirmed the overall spherical geometry of our polymersomes and stomatocytes and the applicability of these studies to our system. The measurements on catalase-filled and GOx–catalase-filled stomatocytes clearly showed consistently smaller R_g and R_h/R_g values over the entire peak compared to the controls, indicating the presence of the enzymes inside the structures (Figure 3b). Enzyme entrapment inside the stomatocytes was also evidenced from experiments in which the energy dispersive X-ray technique in combination with TEM was used. This technique proved the presence of both enzymes in the cavities of the stomatocytes by position mapping of specific atoms in which the enzymes are rich, such as iron for catalase and sulfur for both GOx and catalase, as is shown in Figure 3c. Furthermore, a population element mapping by TEM-EDX showed that there were hardly any empty stomatocytes present, demonstrating that the enzyme-filled stomatocyte formation process is near quantitative (Supporting Information, Figure 10). The TEM and cryo-TEM show the presence of almost completely closed stomatocytes, while the enzymes are tightly packed inside the structures. We think this is due to the confining effect of the stomatocytes, which allows for the enzymes to assemble in tightly packed clusters. The formation of these clusters could also be responsible for the high encapsulation efficiency via a possible templating effect mechanism.

Enzyme-Driven Supramolecular Nanomotors: Movement Analysis. To test the autonomous movement of the enzyme-filled nanomotors, we analyzed their behavior in the presence of hydrogen peroxide and glucose at different concentrations. We used nanoparticle-tracking analysis (NTA), a technique complementary to DLS that uses laser light scattering in combination with a charge-coupled camera (CCD) and a microscope, to provide individual particle-by-particle analysis of colloidal particles instead of an assemble size distribution as shown by DLS. The Stokes–Einstein equation is then used to determine the size of the structures by correlating the tracking coordinates from the Brownian movement to the particle size as shown in our previous study on platinum-driven nanomotors. In this equation the hydrodynamic diameter of the supramolecular nanomotor d is inversely related to the time-dependent particle diffusion coefficient $D(t)$, which however is valid only when no fuel is present in the system and the particles move under Brownian motion ($D(t) = T K_B/3\pi d\eta$). When the temperature increases, the diffusion coefficient and the hydrodynamic radius of the particles R_h increases, which gives R_h/R_g values similar to the same structures before adding the fuel, due to the inverse relation between diffusion and (apparent) size.

To test the expected directional movement in our enzyme-driven nanomotors and make sure that the fuel addition was not responsible for the change in the size, we investigated the effect of the addition of hydrogen peroxide and glucose to empty stomatocytes. As expected, no change in their Brownian motion observed when fuel is added to the self-assembled structures. First, the fast directional autonomous movement of the nanomotors in the presence of the fuel makes their sizes “appear” smaller compared to the same structures before adding the fuel, due to the inverse relation between diffusion and (apparent) size. Additionally, a clear change of their trajectories from a nondirectional Brownian motion to a propulsive directional movement was observed (Supplementary Figure 1). When the peroxide was fully consumed, the structures recovered their original size as measured by NTA, demonstrating that the effect was due to the propulsive movement of the nanomotors. Furthermore, the addition of hydrogen peroxide to a mixture of 90% empty stomatocytes and 10% catalase nanomotors (v) showed simultaneously the autonomous directional movement of the nanomotors and the expected Brownian motion of the empty stomatocytes (Supplementary Video 2; note the...
In this case the size and trajectories of the empty stomatocytes (90% control structures) are not affected by the fuel addition. This experiment further confirms that the movement of the assembled nanomotors is autonomous and is not caused or affected by any drift or flow within the chamber, which is only expected at much higher fuel concentrations than used in our system, due to the fast accumulation of gases within the chamber. As shown in our previous report on platinum-driven nanomotors, the ability of the NTA technique to measure the trajectories and \(x, y \) coordinates of the single-particle nano-motors allowed for a closer analysis of their movements by studying their paths and their average mean square displacements (MSD).\(^{11,43}\) We used the self-diffusiophoretic model proposed by Golestanian and co-workers to determine the speed of the nanomotors.\(^{43}\) The model indicates that the directional movement of micrometer-size Janus sphere motors is the result of both rotational and translational diffusion. The model has two limiting forms, a parabolic component for short periods of observation and a linear component for long periods.

The fitting of the experimental MSD data of our enzyme-driven nanomotors allowed only for the observation of the parabolic component. This was due to the limitations of the nanosight system in the movement analysis of nanometer-scale objects that prevented the tracking of the nanomotors for long periods of time and at high capture rates. Both the trajectories and the average MSDs of 105 nanomotors at three hydrogen peroxide concentrations (11, 50, and 111 mM) were measured, and the propulsive and directional movement of the nanomotors was determined from the fitting of the parabolic fit of the MSD dependency on time according to the equation \(\langle r^2 \rangle = 4Dt + (vt)^2 \) (Figure 4a and supplementary Figure 14) with \(D \) being the diffusion coefficient and \(v \) the speed of the nanomotors. The movement of the nanomotors without fuel (controls) showed only a linear \(\langle r^2 \rangle = 4Dt \) dependency, typical for a Brownian motion. The average speeds of the nanomotors at these concentrations were found to be 15, 26, and 60 \(\mu \)m/s (Figure 4a). The biohybrid catalase-driven nanomotor therefore runs at remarkably high speeds of 176 body lengths/s in 100 mM hydrogen peroxide concentrations, which is 3 times higher than the speed of our previously reported platinum-driven nanomotors.\(^{11} \) This high efficiency is most probably due to the combination of high catalytic activity of the catalase molecules and the excellent encapsulation efficiency of the enzyme compared to the stomatocytes filled with the catalytically active platinum nanoparticles. We also think this is due to the special design of our nanomotor system, which confines the enzymes in a small compartment with a very small opening while the gases are expelled through a nanometer pore resembling the nozzle of a rocket. This design is much different from the traditional Janus particle, where the substrates are released from a larger surface.

We subsequently tested the stomatocytes containing the two-enzyme cascade system based on glucose oxidase and catalase with glucose as a fuel (Figure 4b). The ratio between catalase and GOx was selected to be 1:3 (w/w), taking into account the known difference in activities of the two enzymes. The GOx–catalase nanomotor was observed to become more active in time and increased its speed several seconds after the addition of the glucose. We attribute this behavior to the slower GOx enzyme, which requires oxygen to start the catalytic process.

For this reason we used aerated Milli-Q water to perform the rest of the experiments. The movements of particles at two glucose concentrations are shown in Figure 4b and supplementary Figure 15. As can be seen, the two-enzyme nanomotor is able to propel itself at very low concentrations of glucose, even down to 5 mM. This is a much lower value when compared to a previously reported example where carbon nanotubes to which the same catalytic enzyme combination was attached were used. In that case a much higher concentration of glucose, 100 mM, was required.\(^{30} \) We think this is because the reaction in the stomatocytes is concerted in the nanocavity, and thus faster transfer of substrates between different enzymes occurs. This is not the case if the enzymes are chemically attached to the surface of the motors, as transfer of byproduct substrates relies on slow diffusion in solution. Furthermore, the design of the stomatocyte nanomotor facilitates the protection of the enzymes by preventing any inhibition of their activity or denaturation in the presence of other proteins such as proteases, often prevalent in biological systems (Figure 4c,d and supplementary Figure 16). To our knowledge this is the first example of an enzyme-driven supramolecular nanomotor that is able to propel itself at low concentrations of biological...
fuel and at biologically relevant concentrations with such high speeds.

In a final series of experiments we investigated whether the motion of the supramolecular nanomotors could be manipulated by controlling the activity of the entrapped enzymes. Sodium azide is a known small inhibitor of catalase. Its anion binds to the heme iron center in the active site of the enzyme. As expected, the addition of sodium azide irreversibly inhibited the decomposition of hydrogen peroxide and consequently the production of the propelling oxygen gas necessary for the functioning of the stomatocyte motor. After the addition of the inhibitor, both the trajectories of the nanomotors and their sizes indicated the recovery of the Brownian motion characteristics of the nanomotors in the absence of fuel. The inhibition of the catalase inside the stomatocytes was possible due to the small size of the sodium azide, which was able to diffuse inside the stomach. In the case where the inhibitor was a proteolytic enzyme, for instance, trypsin, its larger size should prevent it from diffusing inside the nanomotors to inhibit the activity of the enzyme (Figure 4c,d). To test the protecting effect provided by the stomatocyte, we exposed the GOx–Cat nanomotors to 434 μM trypsin, a proteolytic enzyme, and analyzed the movement of the nanomotors after protein addition (Figure 4d). Both enzymes (GOx and Cat) were able to work in a cascade inside the stomatocytes to produce the propelling gas; therefore the presence of the proteolytic enzyme did not have any remarkable effect on the function as nanomotors (Figure 4c,d). A small decrease in the speed of the nanomotors was observed, most probably due to the decrease in the concentration upon protein addition. Besides their nanometer size, the encapsulation of the enzyme inside the stomatocytes is of great importance, as it provides protection against deactivating elements present in biological environments, such as proteases. The nanomotor design therefore offers a clear advantage compared to other enzyme nanomotors, especially when applying these nanomotors in biologically related applications due to their high efficiency and activity at very low concentrations of naturally occurring fuels.

CONCLUSIONS

In summary, we have developed a strategy to incorporate sensitive proteins or enzymes with very high encapsulation efficiencies inside the cavity of polymeric stomatocytes via a process of shape transformation of polymersomes under mild conditions, while fully retaining their activity. Using this procedure we have constructed self-assembled nanometer-scale enzyme-driven motors capable of propelling themselves with ultrahigh speeds using biologically relevant fuels and concentrations. The encapsulation of the two complementary enzymes GOx and catalase allows the nanomotors to propel themselves using glucose as an alternative fuel for hydrogen peroxide at biologically relevant concentrations, i.e., only 5 mM. This efficiency is probably attributed to the compartmentalization and confining of the enzymes in such a nanovector. This strategy for enzyme entrapment is highly efficient and can also be conveniently applied to the entrapment of other enzymes. The morphology of these nanomotors provides protection of the enzymes within their cavities from proteolytic enzymes that are available in biological species, thus providing a broader scope to the nanomotor design for biological applications, e.g., in living cells. Besides its application for nanomotor assembly, this strategy of encapsulation, release, and protection of proteins within a nanovesicle containing a large pore (stomatocyte) could be useful to other fields such as drug/ protein delivery or nanoreactor applications. The unique features of the nanomotors and further control in movement and directionality could be further useful for other applications such as biosensing, protein and DNA isolation and detection, or immunoassays. Nanomotors could rapidly in situ recognize, isolate, and enrich target biomolecules, such as DNA, proteins, and cells, in untreated biological samples. In addition, nanomotors can be a promising tool for treatments in nanotechnology. Future research is focused on demonstrating the functioning of nanomotors in biological media and their collective movement in a gradient of fuel. This will lead to intelligent, self-propelled, and self-guided drug carriers that can follow the chemical clues given by tumor cells. High chemotactic efficiencies are however required, and attractants besides hydrogen peroxide are needed for future applications. Our nanomotor assembly and the strategy of encapsulation provide high flexibility in the cargo-load and holds therefore considerable potential for future research in the biomedical field. Methods

All chemicals and enzymes were used as received unless otherwise stated. For the block copolymer synthesis, styrene was distilled before use to remove the inhibitor. Anisole and N,N,N′,N″,N″-pentamethyldiethylenetriamine were purchased from Sigma-Aldrich. Ultrapure Milli-Q water, obtained with the help of a Labconco Water Pro PS purification system (18.2 MΩ), was used for the procedures of polymersome self-assembly and the dialyses experiments. Dialysis Membranes MWCO 12–14 000 g mol⁻¹ Spectra/Por were used where required. Ultrafree-MC centrifugal filters (0.22 μm) were purchased from Millipore. Sodium nitrate was purchased from Merck. Catalase (E.C. 1.11.16) from bovine liver, lyophilized powder 2000–5000 U mg⁻¹, was purchased from Sigma-Aldrich. Glucose oxidase (E.C. 1.1.1.4) from Aspergillus niger type II lyophilized powder (228.25 U mg⁻¹) was obtained from Sigma-Aldrich. Peroxidase from horsehead (E.C. 1.11.1.7) type I, 50–150 U mg⁻¹ solid, and AmpUltralight Red were purchased from Sigma-Aldrich.

Synthesis of Poly(ethylene glycol)₄₄-b-poly(styrene)ₚₚₚₚ. This compound was synthesized using atom transfer radical polymerization as previously reported in the literature. The length and the polydispersity of the polystyrene block were determined by ¹H NMR and GPC. The synthetic details are described in the Supporting Information.

Preparation of Glassy Wide-Opened-Neck Stomatocytes via the Solvent Addition Method. Block copolymer poly(ethylene glycol)₄₄-b-poly(styrene)ₚₚₚ (20 mg) was dissolved in 2 mL of THF/dioxane (80:20 v/v), and 3 mL of Milli-Q was added to the solution at a rate of 1 mL h⁻¹. The generated polymersomes were dialyzed against Milli-Q for at least 24 h. The volume of the formed colloidal solution was adjusted to 2 mL, and 500 μL of this solution was transferred to a 5 mL vial, which was sealed with a septum. Subsequently, 300 μL of a 56% THF/dioxane (80:20 v/v) mixture was added at a rate of 300 μL h⁻¹, while there was a 0.6 mm needle inserted through the septum throughout the whole experiment. After the addition the resulting solution was quenched with 2 mL of water and the volume reduced to 500 μL by spin filtration.

Encapsulation of Enzymes inside the Stomatocyte Cavity. Catalase (6 mg) or a mixture of catalase (2 mg) and GOX (6 mg) was dissolved in 500 μL of the colloidal open-neck stomatocyte solution. Subsequently, 150 μL of THF/dioxane (80:20 v/v) was added to the mixture at a rate of 300 μL h⁻¹ while there was a 0.6 mm needle inserted through the septum throughout the whole experiment. The structures were purified from the free enzymes via dialysis and spin filtration using an aqueous 5 mM NaNO₃ solution.

Autonomous Movement of the Stomatocyte Nanomotor. The concentrations of the enzyme-containing stomatocytes were...
ASSOCIATED CONTENT

583 Supporting Information
585 The Supporting Information is available free of charge on the
586 ACS Publications website at DOI: 10.1021/acs.nano.5b07689.
587 Additional information regarding polymersome shape
588 transformation with detailed cryo-TEM images, EDX
589 mapping images, nanomotor tracking analysis (PDF)
590 Nanoparticle tracking video (MPG)
591 Nanoparticle tracking video (MPG)
592 Nanoparticle tracking video (AVI)
593 Nanoparticle tracking video (AVI)

AUTHOR INFORMATION

594 Corresponding Author
595 *E-mail: d.wilson@science.ru.nl.
596 Notes
597 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

599 The authors would like to thank General Instruments from
600 Radboud University for assistance with the Cryo-TEM analysis
601 and TEM-EDX experiments This work was supported by the
602 European Research Council under the European Union’s
603 Seventh Framework Programme (FP7/2007-2012)/ERC-StG
604 and TEM-EDX experiments This work was supported by the
605 Ministry of Education, Culture and Science (Gravity Program
606 024.001.035).

REFERENCES

607 (1) Sengupta, S.; Ibele, M. E.; Sen, A. Fantastic Voyage: Designing
609 8445.
610 (2) Gibbs, J. G.; Zhao, Y. P. Autonomously Motile Catalytic
612 163104–163104–3.
613 (3) Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous
614 Motion of Metallic Microrods Propelled by Ultrasound. ACS Nano
615 2012, 6, 612–6132.
616 (4) Mei, Y.; Huang, G.; Solovev, A. A.; Ureia, E. B.; Mönch, I.; Ding,
617 F.; Reindl, T.; Fu, R. K. Y.; Chu, P. K.; Schmidt, O. G. Versatile
618 Approach for Integrative and Functionalized Tubes by Strain
620 4085–4090.
621 (5) Kudernac, T.; Ruangsupachat, N.; Parschau, M.; Macia, B.;
622 Katsonis, N.; Harutyunyan, S. R.; Ernst, K.-H.; Feringa, B. L.
623 Electrically Driven Directional Motion of a Four-Wheeled Molecule
625 (6) Mao, C.; Sun, W.; Shen, Z.; Seeman, N. C. A Nanomechanical
626 Device Based on the B-Z Transition of DNA. Nature 1999, 397, 144–
627 146.
628 (7) Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.; Johnson-Buck,
629 A.; Nangreave, J.; Taylor, S.; Pei, R.; Stojanovic, M. N.; Walter, N. G.;
630 Winfree, E.; Yan, H. Molecular Robots Guided by Prescriptive
632 (8) Wang, J. Nanomachines: Fundamentals and Applications; Wiley-
634 (9) Schliwa, M.; Woehlke, G. Molecular Motors. Nature 2003, 422,
635 759–765.
636 (10) Bajić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. A.
638 (11) Wilson, D. A.; Nolte, R. J. M.; van Hest, J. C. M. Autonomous
641 (12) Ernst, K.-H. Molecular motors: A Turn in the Right Direction.
643 (13) Wang, W.; Duan, W.; Sen, A.; Mallouk, T. E. Catalytically
644 Powered Dynamic Assembly of Rod-Shaped Nanomotors and Passive
646 17749.
648 Balasubramanian, S.; Wang, J. Template-Assisted Fabrication of Salt-
651 (15) Mei, Y.; Solovev, A. A.; Sanchez, S.; Schmidt, O. G. Rolled-Up
652 Nanotubes on Polymers: from Basic Perception to Self-Propelled
654 (16) Gao, W.; D’Agostino, M.; Garcia-Gradilla, V.; Orozco, J.; Wang,
657 Polymeric Material that Responds Autonomously and Continuously to
659 (18) Wilson, D. A.; de Nijs, B.; van Blaaderen, A.; Nolte, R. J. M.; van
661 1318.
662 (19) Abdelmohsen, L. K. E. A.; Peng, F.; Tu, Y.; Wilson, D. A. Micro-
665 (20) Gao, W.; Wang, J. Synthetic Micro/Nanomotors in Drug
667 (21) Garcia-Gradilla, V.; Orozco, J.; Sattayasamitsathit, S.; Soto, F.;
668 Kuralay, F.; Pourazary, A.; Katzenberg, A.; Gao, W.; Chen, Y.; Wang, J.
669 Functionalized Ultrasound-Propelled Magnetically Guided Nano-
670 motors: Toward Practical Biomedical Applications. ACS Nano 2013, 6, 671 9232–9240.
674 Zhang, L.; Wang, J. Rapid Delivery of Drug Carriers Propelled and
676 (23) Wu, Z.; de Avila, B. E. F.; Martin, A.; Christianson, C.; Gao, W.;
677 Thompashwatha, S. K.; Escarpa, A.; He, Q.; Zhang, L. F.; Wang, J.
686 (26) Soler, L.; Sanchez, S. Catalytic Nanomotors for Environmental
688 (27) Gaspar, S. Enzymatically Induced Motion at Nano- and Micro-
690 (28) Sattayasamitsathit, S.; Kaufmann, K.; Galamky, M.; Vazquez-
691 Duhalt, R.; Wang, J. Dual-Enzyme Natural Motors Incorporating
696 DOI: 10.1021/acs.nano.5b07689
ACS Nano XXXX, XXX, XXX–XXX

