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Summary

Knowledge of the mechanisms by which fish excrete

their metabolic nitrogenous waste and insights into

nitrogen cycling in aquaculture systems is of utmost

importance to improve the sustainable commercial

production of fish. In fish, most nitrogenous waste is

excreted via the gills as ammonia, a potentially toxic

nitrogenous compound. In this study; activity assays,

physiological experiments, molecular analysis and

microscopy were used to show that the gills of fish

harbor a unique combination of hitherto overlooked

nitrogen-cycle microorganisms that can theoretically

detoxify excreted ammonia by converting it into inert

dinitrogen gas. By doing so, these microorganisms

may benefit from the ammonia supply by the host

and prevent the build-up of this compound to toxic

concentrations. This novel relationship between ver-

tebrates and microorganisms may shed new light on

nitrogen handling by ammonotelic fish species.

Introduction

Fish in aquaculture are usually fed protein-rich diets to

maximize growth performance (Ip et al., 2004; Chakra-

borty et al., 1992), but this also leads to high levels of

metabolic nitrogenous waste. Most fish are ammonotelic;

nitrogenous waste is directly excreted as ammonia via

specific ammonia transporters in the fish gill (Chakra-

borty et al., 1992; Evans et al., 2005; Nakada et al.,

2007). Ammonia is toxic to fish (Schram et al., 2010)

and concentrations in the gills should be kept low to pre-

vent tissue damage.

The gills of fish harbour an own microbial community;

the composition of the microbiota is substantially differ-

ent from the microbial community of the water (Trust,

1975; Wang et al., 2010). It was thought that these

microorganisms only belong to a few taxa (Steinum

et al., 2009) but since the application of new sequencing

techniques it appears that the gill microbiota is more

complex than thought before (Lowrey et al., 2015).

Because of the constant supply of nitrogen, gills would

be an ideal niche for N-cycle microorganisms. However,

so far the presence of N-cycle microorganisms in the

gills of fish has not been shown. A consortium of

ammonia-oxidizing and nitrite-reducing microorganisms

can theoretically detoxify excreted ammonia into harm-

less dinitrogen gas within the fish’ gill. Symbiosis like

this are only demonstrated for invertebrates, as

reviewed by Dubilier et al. (2008).

We investigated the presence of a N-cycle bacteria

consortium in two related fish species; common carp

(Cyprinus carpio) and zebrafish (Danio rerio). It was

shown that fish indeed produce dinitrogen gas. Ammo-

nia oxidizing and denitrifying bacteria could be detected

in gill tissue using molecular techniques (PCR and

FISH) and microscopy (FISH and TEM). Altogether, the

data in this study show that the gills of fish harbor an

active consortium of N-cycle bacteria and teleostean fish

which may shed new light on nitrogen handling by these

animals.

Results and discussion

Ammonia excretion by fish

We compared the amounts of ammonia excreted by

carp which were fed continuously using an automated
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feeding system which supplied small portions of food

over the whole day (demand-fed; Klaren et al,. 2013) or

fed once a day (hand-fed). Ammonium concentrations in

tanks with demand-fed fish were relatively stable during

the day (Supporting Information Fig. S1), whereas

ammonium concentrations in tanks with hand-fed fish

peaked 1–5 h post feeding. These data were used to

calculate the ammonium excretion by these groups of

fish as a percentage of total nitrogen input (based on

the amount of eaten food). When corrected for the total

consumption of food and nitrogen used for growth, 18%

and 31% of the nitrogen intake was detected as ammo-

nium in the water for demand-fed and hand-fed fish,

respectively. This indicates that less nitrogenous waste

could be traced back in the tank water for fish which

were demand-fed. Production of dinitrogen gas by a

microbial consortium may explain the discrepancy in

ammonia excretion. As shown in Supporting Information

Fig. S1, demand-fed fish are excreting ammonium over

the whole day and microorganisms in the gills therefore

face a constant supply of ammonium. This may result in

an increased ammonia turnover by the microflora of the

fish gills, explaining the difference in the amount of nitro-

gen traced back in the water.

Nitrogen gas production by microorganisms present in

fish gills

In order to test if fish indeed produce nitrogen gas, fish

were transferred to airtight tanks with a small air space

filled with an argon/O2 gas mixture (80/20%). Nitrogen

gas accumulation in this headspace was followed by GC

measurements. Dinitrogen gas was indeed produced by

carp (303 6 113 mmol in 150 min, n� 5) and zebrafish

(1.2 6 0.9 mmol in 65 min, n 5 3). Unfed fish produced

significantly (P< 0.05) less nitrogen gas compared to

fed fish (26 6 4 mmol in 150 min and 0.4 6 0.04 mmol in

65 min for unfed carp and zebrafish, respectively), sug-

gesting that nitrogen gas production depends at least

partly on the excretion of ammonia arising from dietary

protein catabolism. Exposure of zebrafish to 15N-labelled

ammonium via the ambient water did not lead to produc-

tion of 29N2 or 30N2 showing that water-borne ammonia

does not significantly contribute to nitrogen gas

production.

The gills are the main excretory organs for ammonia,

it was therefore hypothesized that the conversion from

ammonia into dinitrogen gas occurs in the gills. To test

whether dinitrogen gas was indeed produced by micro-

organisms associated with gills, dissected carp gills

were incubated with 15N-labelled ammonium or 15N-

labelled nitrite in the presence or absence of oxygen

(Fig. 1). In the presence of oxygen, gills produced 30N2

from both 15N-labelled ammonium and nitrite. Addition

of 15N-labelled ammonium in the absence of oxygen

did not lead to labelled dinitrogen gas formation. These

results suggest that dinitrogen gas is produced by the

simultaneous activity of ammonia-oxidizing and denitri-

fying microorganisms. The first group requires oxygen

to form nitrite, whereas denitrifying bacteria do not

require oxygen for the reduction of nitrite to dinitrogen

gas. Generally it is assumed that denitrification is inhib-

ited by oxygen but activity of denitrifying microorgan-

isms in multicellular hosts has been described before;

also in the presence of oxygen (Schl€appy et al., 2010).

The execution of the experiments from this and other

studies using non-vertebrate hosts were comparable to

the experiments performed in this study. In our experi-

ments, no denitrification activity could be observed

within 90 min of incubation with nitrite under anoxic

conditions. However, it has been shown before that aer-

obic denitrification sometimes has a long lag phase

before conversion of nitrate or nitrite into dinitrogen gas

is observed (Su et al., 2015). Indeed, prolonged incu-

bation (4 h) of the gills under anoxic conditions with

nitrite eventually resulted in30N2 production but since

the gill structure was completely disintegrated after this

incubation time, it is difficult to draw conclusions from

these observations.

Molecular analysis of fish gills

DNA isolated from gills (van Kessel et al., 2011) was

used for PCR analysis with primers targeting marker

genes from both ammonia-oxidizing (ammonia monoxy-

genase subunit A, amoA) and denitrifying (nitrite reduc-

tase, nir) microorganisms (Supporting Information Table

S1). The amoA gene of archaea was not detected,

while both amoA and 16S rRNA genes of Nitrosomo-

nas-like ammonia- oxidizing bacteria (AOB) were

Fig. 1. Nitrogen gas production by dissected gills of common carp.
Dissected gills were incubated for 90 min with 15N-labelled ammo-
nium or nitrite in the presence or absence of oxygen. Production of
labelled nitrogen gas is shown by an increase in the ratio of 30N to
total nitrogen gas. Values are the mean 6 SD (n 5 6).
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retrieved (Supporting Information Fig. S2). The same

analysis was performed using water samples from the

aquaculture units in which the fish were kept. The pre-

vailing Nitrosomonas species in the water was phyloge-

netically different from the species associated with the

gills. Nitrite reductases (nirS and nirK) were used as

marker genes for denitrifying bacteria. Only PCRs tar-

geting the nirS gene yielded a product (Supporting

Information Fig. S3). Organisms containing these nirS

sequences have been shown before in gills of different

fish species (Wang et al., 2010; Steinum et al., 2009).

However, it has not been shown so far that these bac-

teria are indeed able to denitrify in the fish gills.

Microscopy on fish gills

Fluorescence in situ hybridization (FISH, Supporting

Information Table S2) and transmission electron micros-

copy (TEM) were applied to carp gills to study the micro-

bial consortium in more detail. Carp gills harbour

clusters of bacteria in close proximity to blood vessels

(Supporting Information Fig. S4). These bacterial clus-

ters hybridized with specific probes against Nitrosomo-

nas species (Fig. 2). Not all bacteria targeted by the

betaproteobacterial probe were targeted by the Nitroso-

monas-specific probe. The presence of other betapro-

teobacterial species in the gills is in line with the results

Fig. 2. Microscopic observations of gill tissue. Fluorescence in situ hybridization (FISH) on the gills of common carp (A., B., C.). A. FISH using
eubmix (Eub I, II, III, labelled with Cy3) targeting all bacteria. B. FISH targeting beta-proteobacteria (bet42a 1 competitor, labelled with
FLUOS). C. FISH targeting beta-proteobacterial ammonia-oxidizing bacteria (NSO1225, labelled with Cy5). The bacterial clusters are targeted
by the probes. Many bacteria within the clusters are ammonia-oxidizing bacteria. Scale bar represents 10 mm. Transmission electron micros-
copy on gills of common carp (D., E., F.). D. Clusters of bacteria are found close to blood vessels within the carp gill. E. Bacteria reside in host
cells. F. Magnification of the bacterial cells in the carp gills. Scale bars represent 5 mm, 5 mm and 500 nm for panels D, E, and F, respectively.
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obtained with the molecular analysis targeting the nirS;

sequences obtained were also belonging to betaproteo-

bacterial species. The bacterial clusters were localized

intracellularly (Fig. 2), which is similar to mussel sym-

bionts (Duperron et al., 2005). Intracellular bacteria in

fish gills are known, but these bacteria are surrounded

by double membranes (Toenshoff et al., 2012). The bac-

teria in our study were surrounded by a single mem-

brane. Furthermore, fish having intracellular bacteria

suffer from tissue reactions (Toenshoff et al., 2012). Our

carp were healthy and no signs of tissue damage or dis-

turbances were observed, indicating that the intracellular

bacteria that were observed in our study are most likely

not pathogenic.

Conclusions

In conclusion, these results show that gills of carp and

zebrafish harbour several N-cycle bacteria (ammonia

oxidizers and denitrifiers) in their gills. According to the

activity assays performed in this study, ammonia

excreted by fish is directly converted into dinitrogen gas

by this microbial consortium. This may be beneficial to

many ammonotelic fish because it can make the gills

less vulnerable to high ammonia concentrations, but this

has to be investigated in more detail. By performing

more animal experiments using fish fed nitrogen-poor

food, the influence of the amount of ammonia that is

available to the bacteria can be investigated. Further-

more, the microbial population in the gills of ammono-

telic and ureotelic fish can be compared. Ureotelic fish

excrete most of their nitrogenous waste as urea instead

of ammonia and are therefore less vulnerable to toxic

concentrations of ammonia in their gills. This is the first

study which indicates that the microflora of fish gills har-

bors bacteria which might be benefical for the fish and

this can be of great importance for our knowledge about

nitrogenous waste excretion in fish.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Methods.

Table S1. Primer specifications.

Table S2. Probe specifications.

Fig. S1. Ambient ammonium concentrations under three
different feeding regimes of carp. Two groups of fish are
hand fed once a day (10:00 AM and 10:00 PM, closed
squares and triangles respectively), resulting in a peak in
ammonium excretion starting 1 hour after feeding. Ammo-
nium concentration in the water is back at base line level
10 hours after feeding in both groups. Carp from the
demand fed group eat continuously between 5:00 AM and
the end of the experiment (registered meal requests in the
upper part of the graph) resulting in a stable ammonium
concentration between 9:00 AM and the end of the experi-
ment. Water exchange, recirculation and biofilter activity
was exactly same in all three tanks; therefore differences in
total ammonium excretion are therefore only related to the
feeding regime. Based on ammonium concentration in the
water, food consumption and growth it could be calculated

that demand fed fish excrete less nitrogenous waste in the
form of ammonium compared to fish which were hand fed
only once a day. Under these same conditions 18% of the
nitrogen input in demand fed fish was traced back in the
water as ammonium whereas this was 31 6 2% for fish that
were fed once a day.
Fig. S2. Phylogenetic relationship of the AmoA protein
sequences obtained from the gills (zebrafish and carp) and
from aquaculture water. The tree was calculated using the
Neighbour-joining algorithm with Kimura 2-parameter cor-
rection. Bootstrap values of 1000 replicates are shown at
the nodes. The scale bar represents 0.1 amino acid
changes per position. The closely related methane monoox-
ygenase subunit PmoA from Methylocystis sp. m261 is
used as an outgroup.
Fig. S3. Phylogenetic relationship of the nirS gene sequen-
ces obtained from carp gills. The tree was calculated using
the Neighbour-joining algorithm with Kimura 2-parameter
correction. The tree is drawn to scale, with branch lengths
in the same units as those of the evolutionary distances
used to infer the phylogenetic tree. The evolutionary distan-
ces were computed using the Maximum Composite Likeli-
hood method and are in the units of the number of base
substitutions per site. There were a total of 373 positions in
the final dataset. Bootstrap values of 500 replicates are
shown at the nodes. The scale bar represents 0.05 nucleo-
tide changes per position.
Fig. S4. Fluorescence in situ hybridization (FISH) on gills of
common carp. A. Phase contrast image with visible bacte-
rial clusters (arrows) surrounding a blood vessel (*). B.
FISH using eubmix (Eub I, II, III, labelled with Cy3) target-
ing all bacteria. Scale bar represents 10 lm.
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