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1
I N T R O D U C T I O N

1.1 decision making and uncertainty

Decision making for specific situations by humans is usually done in the face of
limited availability of knowledge about these situations as well as about general
principles according to which the world behaves. Developing an understanding
of such reasoning is not only crucial for decision making, but also as a founda-
tion for empirical science. Moreover, without such an understanding one cannot
build intelligent systems that are able to operate in an uncertain world. For these
systems, it is essential to have the ability to distinguish between valid and invalid
conclusions about the world and a way to compare the effects of decisions and
actions, even if these effects are uncertain.

A well-accepted theory, which lays the foundation for such understanding, is
probability theory. It is based on the idea of measuring uncertainty in terms of
probabilities, i.e. real numbers in the range between 0 and 1, with a foundation
based on mathematical measure theory. Probability theory provides operations
to combine uncertain events and ways to update probabilities by incorporating
evidence. However, this is only the first step, as also needed are methods that al-
low humans to express uncertain knowledge and support uncertainty reasoning
in a structured and efficient manner.

1.2 from logical to probabilistic reasoning

Before we come to probabilistic reasoning, we start with a discussion of logical
reasoning, as this is well understood and provides important insights for proba-
bilistic reasoning.

Logic already emerged in ancient times and is not only concerned with an ab-
stract mathematical structure of logical reasoning, but also offers a language to
express knowledge in a structured way, conceivable by humans. This structured
way of expressing knowledge is also the basis for reasoning, by employing rea-
soning steps that agree with human intuition. For instance, Aristotle proposed
a certain structure of how knowledge should be represented and came up with
general principles of how to reason with such structured knowledge, which is
nowadays referred to as syllogistic. This paved the way for the development of
modern formal logics.

1



2 introduction

Modern formal logics not only provide languages for expressing knowledge
in a structured, unambiguous way, but also provide rigid, mathematical defi-
nitions of what distinguishes valid from invalid conclusions. To mechanically
draw conclusions, logics come with inference rules which can be applied to any
knowledge represented in logic, thereby abstracting from the actual knowledge
expressed. An important property of such inference methods is that they provide
only valid conclusions, based on the mathematics of validity. Such inference sys-
tems are said to be sound. The consequence of this is that wrong conclusions, in
the sense of being different from what is expected in the real world, are always a
consequence of the knowledge used and never due to reasoning steps. It is accept-
able that an inference procedure is not able to draw conclusions in all cases, i.e. it
is not necessarily complete, as this cannot lead to incorrect conclusions. Typically,
the reason for an inference method to be incomplete is that it is either computa-
tionally too expensive or even impossible to provide all valid conclusions for a
certain logic.

This complexity of reasoning is highly related to the expressivity of a language:
there is always a trade-off between expressivity, on the one hand, and complex-
ity and decidability of reasoning, on the other hand [86]. For logic, there are
different ways of structuring knowledge with varying expressivity. An impor-
tant aspect is the ability to express general knowledge for a group of objects,
which is crucial to make the representation of general knowledge possible. Such
abstraction is provided by variables and quantifiers in first-order logic (FOL). There
are more expressive logics, such as higher-order logic (HOL), which allows one to
express general knowledge not only about objects, but also about properties of
objects. This increased expressivity has significant influence on the complexity
and decidability of reasoning.

Probability theory, on the other hand, offers mathematical definitions of (con-
ditional) probabilities of events, but it does not provide means to define probabil-
ity measures and ways for structural reasoning with them. For probabilistic rea-
soning, it is however crucial to have reasoning methods with similar properties
as for logical reasoning. A way to achieve this is to combine logics with prob-
ability theory. Such combinations are referred to as probabilistic logics. Similar
to logical reasoning, a significant challenge is to take into account the trade-off
between expressivity and the complexity of reasoning.

There are two fundamentally different ways of combining logical and proba-
bilistic reasoning. At first sight, probabilistic reasoning can be seen as a special
case of logical reasoning. As logical reasoning is very general, one can use logic
to formalise probability theory and reason about probability measures. Repre-
sentative for this approach is the work on probabilistic logics by Bacchus [6] and
Halpern [63]. On the other hand, logical reasoning can be viewed as a special
case of probabilistic reasoning, with deterministic probabilities, 0 and 1, only.
We consider dealing with uncertainty as a central issue, which is why we be-
lieve that probabilistic reasoning should be seen as a generalisation of logical
reasoning. Such reasoning yields, instead of deterministic conclusions, probabil-
ity distributions over conclusions. This point of view is also the basis for most
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practical probabilistic logic languages in the context of artificial intelligence (AI),
emerging from the early work of Nilsson [113].

Concretely, probabilistic logics use logics to express probabilistic events and
knowledge about their probabilities in a structured way. As for logical reason-
ing, we want to provide sound inference methods, meaning that the conclusions
drawn about the events’ probabilities are always correct. We can use different
logics as a basis for probabilistic logics, which as for standard logics provide a
different balance between expressivity, and complexity and decidability of infer-
ence.

1.3 making probabilistic logical languages feasible

The field of AI aims at automating reasoning for realistic problems. To achieve
this, languages are employed that must not only be expressive enough, but
should also allow to structure the knowledge in a way suited for the application
domain at hand. Similarly, reasoning must not only have desirable theoretical
complexity properties, but one requires efficient implementations of inference
algorithms, such that conclusions can be computed within a specific time, ac-
ceptable for the application.

The first successful languages for structured probabilistic knowledge were
based on graphs. Bayesian networks (BNs) [119] are a prominent example of such
a language. These languages have, despite their limited expressivity, successfully
been employed for serious, real-world problems, as the probabilistic aspect of a
problem is implicitly included in the models and does not have to be encoded
graphically. However, in the same way as for logics, abstract knowledge, in par-
ticular knowledge abstracting from concrete objects, so being at least first-order,
requires textual languages. Probabilistic logic languages employ variables to pro-
vide the ability to express first-order knowledge, similarly as ordinary logical
languages.

As for the various non-probabilistic logic languages, different probabilistic
logic languages provide different balances between expressiveness, complexity
and decidability of reasoning. On one side of the spectrum of probabilistic logics,
there are languages enforcing little structure on how probabilistic information
is specified. As a consequence, probability measures can be underspecified, i.e.
the probability of statements is only bounded and not uniquely determined,
and definitions can even become inconsistent. Such underspecified probabilities
are also called imprecise probabilities. This is analogous to classical logics, in
which a theory may not be able to determine whether a statement is true or
false and where theories can become inconsistent. The work on such logics (e.g.
Nilsson [113]) is moreover more of a theoretical nature and does not provide
efficient algorithms for reasoning.

On the other end of the spectrum of probabilistic logics, languages have been
proposed that enforce a structured definition of a unique probability measure.
The structure provided by such languages can be exploited for efficient infer-
ence and indeed such languages have successfully been employed for solving
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practical problems. There are numerous languages and implementations avail-
able, ranging from Markov logic networks (MLNs) [130], which employ weights
instead of probabilities to ensure unique distributions, to a family of languages,
based on logic programming (LP), which provides similar structure as BNs, for in-
stance independent choice logic (ICL) [122], PRISM [138], ProbLog [125] and causal
probabilistic logic (CP-logic) [152].

However, enforcing a unique probability distribution has major drawbacks.
First, it requires the modeller to be more precise than might be justified by the
knowledge available, which may lead to decisions that are not justified. Second,
it causes many issues when dealing with an infinite number of states, which is
already the case as soon as a single real number or integer without bounded
range is used to model the world. The ability to deal with numbers is certainly
crucial for most realistic problems. However, as computing exact probabilities
requires the consideration of an infinite number of states, such computations
become incomputable in general. The only way to still allow for sound infer-
ence, is to severely restrict the expressiveness of a language, i.e. to restrict the
distributions used and how they can be combined. This dramatically hinders the
applicability of such languages to many real-world problems.

One possible solution for the latter problem is to compute approximations of
probabilities instead of computing exact ones. There are numerous algorithms,
mainly based on sampling, that can compute good approximations even for in-
computable problems. A limitation of such inference methods is that they do not
provide general guarantees about the quality of the result. This can again lead
to wrong decisions.

Languages supporting imprecise probabilities can handle both issues men-
tioned above. Firstly, imprecise probabilities overcome the issue that one is forced
to specify knowledge more precisely than is actually justified. In contrast to spec-
ifying precise probabilities they allow one to only constrain the probabilities of
events as much as justified by the knowledge available. A consequence of this
is that one may not be able to determine what the best decision is. So impre-
cise reasoning is cautious in the sense that it prefers a situation in which one
cannot decide what the best decision is, above a situation in which a wrong con-
clusion seems as a correct one. The second advantage of imprecise reasoning is
that it can be made sound for probabilistic reasoning over infinite spaces. An
underspecified set of probability distributions over an infinite space can still be
represented by a finite number of probabilistic constraints. As an example, sup-
pose that the probability of the temperature being between 19 ◦C and 21 ◦C is 0.9.
One can soundly conclude from this that the probability of a temperature above
15 ◦C is at least 0.9, but has to accept the imprecision that it can be higher as well.
This information may not be enough to determine what the best decision is, but
in case it is, this conclusion is sound.

There are however some drawbacks of using languages that support imprecise
probabilities, as they usually impose little structure. A consequence of this is
that knowledge can quickly become inconsistent and this is hard to solve for a
user of the language, as it might be the result of complex interactions between
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pieces of knowledge. The lack of structure also hinders efficient inference, as
exploiting the structure of problems is the key for making inference efficient.
Even for imprecise languages which provide much structure, such as extensions
of BNs (e.g. locally defined credal networks (LDCNs) [31]), inference is strictly more
complex than for the precise case.

1.4 contributions of this thesis

This thesis argues in favour of imprecise probabilistic logic reasoning, while pre-
serving important properties by the provision of enough structure. An important
aim is to keep a balance between the two extremes of the spectrum of languages
mentioned above. The main guarantee we strive for, is to prevent the occurrence
of inconsistencies, unlike previous imprecise probabilistic logics. Also we show
that we can achieve imprecise inference complexity, similar to precise inference
complexity.

To demonstrate the practical applicability of the underlying ideas, it is not
enough to only provide a general reasoning framework, but also one has to pro-
vide actual languages that offer support for the natural representation of knowl-
edge. So in this thesis we provide two languages with different aims in terms of
which kind of knowledge can be expressed and with different guarantees. The
design of a language is closely connected to considerations about what sort of
knowledge one wishes to represent and the reasoning capabilities that should be
supported. Since these considerations range from theoretical to practical ones, a
similar range of results, from the theoretical underpinning of the languages to
its actual implementation, can be found in this thesis. The results support sound
probabilistic reasoning with models having infinitely many states and for cases
where probabilistic information is missing.

We also show applicability of our results for a concrete problem domain. We
built a model for maritime safety and security tasks, using one of the languages
proposed. This probabilistic logic is very suited for the domain for a number of
reasons. First, knowledge representation is essential in this domain, as labelled
data about safety and security tasks is hardly available. This makes methods
solely based on machine learning unsuitable. Second, rational reasoning involv-
ing numeric information with infinitely many states is essential, as numeric as-
pects are very important in this domain. Lastly, since actual decisions in the do-
main can have a huge impact, it is important that guarantees about probabilities
on which the decisions are based can be given.

1.5 outline of the thesis

We give an overview of the thesis’ chapters and the publications on which they
are based.
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Chapter 2: preliminaries

In this chapter we give a brief overview of the principles of the two basic theories
the work of this thesis is based on: logic and probability theory.

Chapter 3: probabilistic logics

This chapter offers an overview of work in which logics and probability theory
are combined and also compares several probabilistic logics. The chapter focuses
more on a conceptual level on properties of families of languages, instead of con-
crete implementation choices, with the goal of providing the necessary context
for the work in this thesis. The content of this chapter is so far unpublished. My
contribution consisted of writing this overview.

Chapter 4: a new probabilistic constraint logic

This chapter introduces a novel probabilistic logic: Probabilistic Constraint Logic
Programming (PCLP). PCLP is more expressive than many modern languages,
which mainly aim at efficient inference, as it supports arbitrary random variable
ranges while preserving computability of reasoning by utilising underspecified
probability distributions, i.e. imprecise probabilities. At the same time, it has
similar characteristics as many other modern probabilistic logics in terms of
consistency guarantees. This chapter is based on Sections 2, 4–6 and 8.1 of the
following article:

“A new probabilistic constraint logic programming language based on a generalised dis-
tribution semantics” [99]

I contributed the design of the language as well as the theoretical results, con-
cretely the definition of the semantics and the proofs of its properties. I also did
most of the writing.

The principles the work is based upon were already published before in:

“Inference for a New Probabilistic Constraint Logic” [96]

I provided the basic idea the work is based on, contributed to the theoretical
development and the writing, and designed and implemented the inference al-
gorithm and carried out the experiments.

Chapter 5: inference by generalised weighted model counting

In this chapter we introduce an inference algorithm for PCLP, which is a gen-
eralisation of weighted model counting (WMC) algorithms, typically employed for
inference for commonly applied probabilistic logics, defining precise distribu-
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tions. The results have a theoretical and a practical nature. Theoretically, we
show that inference for PCLP has complexity characteristics, comparable to the
above mentioned precise probabilistic logics, which is exceptional for an impre-
cise language. Practically, we show as well that the algorithm can exploit the
structure of problems, similarly to how this is possible for precise problems.
This illustrates the practical applicability of PCLP, which is further supported
by experiments. The basis for this chapter are Sections 7 and 8.2 of:

“A new probabilistic constraint logic programming language based on a generalised dis-
tribution semantic” [99]

I designed and implemented the algorithm and performed the experiments. Also
the main part of the theoretical work and the writing are my contribution.

An early version of the inference algorithm was already included in the paper:

“Inference for a New Probabilistic Constraint Logic” [96]

Chapter 6: effective approximation of hybrid distributions with

bounded error

In this chapter we further illustrate the practical applicability of the inference
principle developed in Chapter 5 for approximating hybrid distributions with
bounded error. This is done by providing an algorithm that iteratively refines
imprecise approximations of precise, hybrid distributions in an effective way.
The effectiveness is shown by experimental comparison with state-of-the-art
sampling-based inference algorithms. The chapter is based on the paper:

“Approximate Probabilistic Inference with Bounded Error for Hybrid Probabilistic Logic
Programming" [100]

My contribution includes the design and implementation of the algorithm, car-
rying out the experiments and the main part of the writing.

Chapter 7: imprecise probabilistic horn clause logic

The chapter introduces another probabilistic logic, which allows for imprecise
reasoning: imprecise probabilistic Horn clause logic (IPHL). This logic is geared to-
wards imprecise knowledge representation for discrete problems and has the
unique property that imprecise reasoning is equally expensive as inference for
corresponding precise problems. The basis for this chapter is the paper:

“Imprecise Probabilistic Horn Clause Logic” [98]

My contribution consisted of collaborating in designing the language, provid-
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ing the inference method with proofs of correctness and complexity properties
and main parts of the writing.

Chapter 8: application to maritime safety and security tasks

In this chapter we show an application of PCLP in the context of the maritime
safety and security domain. We discuss the principles of a model for reasoning
about situations, based on the uncertain information available in this domain,
with a focus on illustrating applicability of PCLP. Effectiveness of the proposed
model is shown qualitatively and quantitatively. Additionally, real-world appli-
cability is illustrated by discussing the successful integration in a complex proto-
type system, developed in the course of the METIS project. The chapter is based
on:

“A Decision Support Model for Uncertainty Reasoning in Safety and Security Tasks” [97]

I developed and implemented the model, performed the experiments and con-
tributed to the writing.

More details of the model were also given in a technical report:

“A Probabilistic Logic-based Model for Fusing Attribute Information of Objects Under
Surveillance” [95]

The description of the integration in the METIS prototype in this chapter (Sec-
tion 8.4.3) is partly based on Section 4 of the paper:

“An Integrated Reconfigurable System for Maritime Situational Awareness” [151]

My contribution was the active participation in the METIS project, which made
possible the development of the prototype, that integrates components from our
industrial and various academic partners.

Chapter 9: discussion and conclusions

In this chapter we look back on what we have achieved in the research described
in this thesis and offer an outlook on directions for future work.



2
P R E L I M I N A R I E S

In this chapter we introduce the two main concepts the work of the thesis is
based on: logic (Section 2.1) and probability theory (Section 2.2).

2.1 logic

In this section we introduce the concepts behind modern formal logic. The logics
we discuss in particular in this section are first-order logic (FOL) and logic program-
ming (LP), which are significantly important for artificial intelligence (AI). Modern
formal logics emerged from the work of Boole in the eighteenths century, who
first put logic in a mathematical, in particular an algebraic context, meaning that
logical reasoning can be viewed as computations [14]. Frege laid the basis for
a formal language expressing assertions about the world, particularly the use
of quantifiers to express general knowledge [50]. The development of modern
mathematical logic laying the foundation for the languages treated here, is based
largely on the work of Gödel and Tarski in the 1930s.

2.1.1 Possible Worlds

The basic concept underlying logics is that of possible worlds. Possible worlds are
in logic also called structures or models. We however use the term possible world,
which generalises the concept as we also apply it to probability theory, which
we introduce later. Logical reasoning then means starting from all possible states
of the world and using statements about the world to restrict the set of possible
worlds, thereby increasing the knowledge about the world. The basic idea is
illustrated in Figure 2.1a.

Once the set of possible worlds is defined, knowledge about the world is ex-
pressed by a logical theory, also called knowledge base. This theory expresses in
general which worlds are actually possible in reality and which not. The strength
of formal logic is that it allows one to mathematically define which possible
worlds are consistent with a theory and which are not. The set of possible worlds
is further restricted by observations of the current situation. In some cases no ob-
servations are required, e.g. the theory is a set of mathematical axioms and we
want to conclude theorems from it. In theories about the real world however
there is often the natural distinction between general knowledge about objects

9
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All Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary, alarm
no burglary, alarm

burglary, no alarm
no burglary, no alarm

Real Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary, alarm
no burglary, alarm

burglary, no alarm
no burglary, no alarm

Theory
Burglary causes the alarm.

Current Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary, alarm
no burglary, alarm

burglary, no alarm
no burglary, no alarm

Observations
Burglary is observed.

Conclusions

A statement
holds in all
current possible
worlds.

Example

In all current possible
worlds there is an alarm.

Question
Is there an alarm?

(a) General Logical Reasoning

All Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary(h1), alarm(h1)
¬burglary(h1), alarm(h1)

burglary(h1), ¬alarm(h1)
¬burglary(h1), ¬alarm(h1)

Real Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary(h1), alarm(h1)
¬burglary(h1), alarm(h1)

burglary(h1), ¬alarm(h1)
¬burglary(h1), ¬alarm(h1)

Theory (T)
∀H burglary(H)→ alarm(H)

Current Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary(h1), alarm(h1)
¬burglary(h1), alarm(h1)

burglary(h1), ¬alarm(h1)
¬burglary(h1), ¬alarm(h1)

Observations (O)
burglary(h1)

Conclusions

T ∪O |= s Example

T ∪O |= alarm(h1)

Question (s)
alarm(h1)

(b) FOL Reasoning

Figure 2.1: Logical Reasoning Illustrations

in the world and current observations of specific objects. The distinction between
the theory and the observations can be purely conceptual, in which case techni-
cally there is no difference and together they just form a single theory, but both
can also be treated differently in some formalisms, i.e. observations are treated in
a special way. The distinction will especially become important when we move
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on to probability theory. Finally, conclusions are drawn based on the remaining
possible worlds. Concretely, it is usually concluded that some statement holds
in all possible worlds or not.

Example 2.1
We use a classic example commonly used to illustrate uncertainty reasoning
as a running example to illustrate the properties of logical, probabilistic and
combined formalisms. Suppose we want to model a house with an alarm system
detecting burglars and just model the possible states of the world as the possible
combinations of statements whether there is a burglar and an alarm or not, as
shown in Figure 2.1a. The general theory states that burglary causes the alarm,
which means that the possible world in which there is a burglar, but no alarm,
is inconsistent with the theory. In case we observe that there is a burglar we can
also exclude two more possible worlds. We can conclude that there is an alarm,
as this holds in the only possible world remaining.

2.1.2 First-Order Logic

FOL is a widely applied predicate logic, where predicates are used to model rela-
tions between specific objects and quantified variables are used to express general
relations abstracting from specific objects. This is in contrast to so-called proposi-
tional logic, which only allows one to express statements and does not explicitly
distinguish between objects and relationships. The abstraction offered by quanti-
fied variables is the key property to make FOL suited for developing real-world
models. It allows one to express complex relations between a large number of
objects, but still keep the complexity of reasoning and learning manageable. A
classic example to illustrate how FOL compares to propositional logic, is that
the rules of chess can be encoded in FOL about 100 000 times more compactly
than with a propositional theory. The natural statement “A pawn can move to an
unoccupied square in front.” can be translated to FOL quite directly. In contrast,
a propositional theory would have to include statements such as “The first white
pawn can move from a3 to a4 in case the last black pawn is not on a4 and the
second white pawn is not on a4 and . . . ”.

An important property of FOL is that it is complete, as proven by Gödel’s com-
pleteness theorem [55]. That means semantic truth and syntactic provability corre-
spond to each other; so if something is proven it is also semantically true and all
semantically true statements can also be proven. However, FOL is restricted in
its expressiveness, as it only allows to quantify over objects and not over predi-
cates. For example, one can express that in chess all rooks have certain properties,
but not that all properties possessed by rooks also transfer to the queen. This is
allowed in second-order logic which comes with the price that important proper-
ties, such as completeness, do not hold any more. We therefore restrict to FOL,
which is expressive enough to model a wide range of AI problems. FOL is still
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only semi-decidable, which can hardly be avoided for a sufficiently expressive
knowledge representation formalism.

2.1.2.1 Syntax & Semantics

As discussed, FOL is concerned with relations between objects in the world. The
objects in the world are formalised as the domain of discourse D, which can be
an arbitrary set. The bridge from the objects in the domain of discourse and the
logical language is formed by terms, composed of functions. In the language of
FOL such functions are represented by function symbols with associated arity;
functions of arity 0 are also called constants. A function symbol of arity n is
interpreted as function from Dn to D in a possible world. Predicates are used to
represent relations between objects. For which objects the predicates hold is also
fixed in a possible world. We denote function symbols starting with lower case
letters (e.g. person1, motherOf , . . . ). Predicate symbols also have an arity and are
interpreted as functions from Dn to {true, false}, indicating whether the relation
holds between the objects given or not. We denote predicates also with lower
case letters (e.g. alarm, motherOf , . . . ). Note that motherOf could be meaningful
as a 1-ary function, e.g. motherOf (person1) could represent the mother of person1,
or as 2-ary predicate, e.g. motherOf (person1, person2) could mean person1 is the
mother of person2.

A possible world is then formalised as a domain of discourse D and a so-called
interpretation I , determining the functions and relations:

• For each n-ary function symbol f , I(f ) is a function from Dn to D.

• For each n-ary predicate symbol p, I(p) is a function from Dn to {true, false}.

Example 2.2
We continue with Example 2.1, but this time consider multiple houses instead
of a single one. In case there are n houses, the domain of discourse could for
instance be:

D = {house1, . . . , housen}

Here we do not distinguish between burglars, so we can only model that there
is a burglar present in a particular house, but cannot say anything more about
burglars. With this, we can use the two predicates burglary and alarm of arity
1 to model whether a burglar is present in a house and the alarm is on. The
possible worlds for a single house (D = {h1}) are illustrated in Figure 2.1b.
In general, there are 22n possible worlds for n houses. The notation is chosen
for convenience. Formally, alarm(h1) means I(alarm)(h1) = true and ¬alarm(h1)
means I(alarm)(h1) = false. Also we assume that the function symbols h1, . . . , hn
match the objects in the domain of discourse, i.e. that for all i: I(hi) = housei.

Logical theories are built by formulas, corresponding to statements about the
world. The basic building blocks of logic formulas are predicates applied to
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terms, which are build from function applications. Examples are burglary(h1)
and rich

(
ownerOf (h1)

)
. Formulas can be combined using operators. Some exam-

ples are:

• conjunctions ( f ∧ g): f and g are both true.

• disjunctions ( f ∨ g): f or g (or both) are true.

• implications ( f → g): In case f is true, g is true as well.

• equivalences ( f ↔ g): f and g are either both true or both not true.

The meaning of such operators is usually defined by so-called truth tables, of
which examples are given in Table 2.1. Also formulas can be modified by nega-
tions (¬). There is some redundancy in the above set of operators. For instance,
f ↔ g can be expressed as f → g ∧ g → f , which in turn is equivalent to
(¬ f ∨ g) ∧ (¬g ∨ f ). However, the various operators are used for convenience
and intuitively match important concepts of rational reasoning.

f g f ∧ g f ∨ g f → g f ↔ g

⊥ ⊥ ⊥ ⊥ > >
⊥ > ⊥ > > ⊥
> ⊥ ⊥ > ⊥ ⊥
> > > > > >

Table 2.1: Truth Table for Logical Connectives

To represent general knowledge abstracting from concrete objects, variables
are used. Such variables can be used instead of terms (e.g. burglary(H)). We
denote variables starting with upper case letters (e.g. House). Variables have to
be bound by either universal quantification (∀) or existential quantification (∃),
e.g. ∀X f (X) binds X and means that f holds for all objects in the domain of
discourse. Existential quantification means that there is at least one object in the
domain of discourse for which the formula holds.

A formula is called a sentence in case all variables are bound, as only then it
represents a self-contained statement about the world. A logical theory is a set of
sentences assumed to always hold. One can conclude that a sentence s is always
true given a theory T, in case s is true in all possible worlds allowed by T and
denote this as:

T |= s

We also say in this case that the theory is a model of the sentence or the sentence
is a consequence of the theory. There is also an alternative formulation of that a
sentence can be concluded from a theory. The statement T |= s is equivalent to
the statement that the following sentence is valid:( ∧

t∈T
t

)
→ s
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Here valid means that it is true in all possible worlds.
This definition of how to draw conclusions can be problematic in case the

theory becomes inconsistent, i.e. no possible world is consistent with it. In this
case, every possible statement is a consequence of the theory, which is usually
unwanted in practice. The situation often occurs when adding observations to
a general theory, which overspecifies the domain, meaning that it forbids cases
which can actually occur in reality.

The notion of consequence is actually not only restricted to all possible worlds
given a single domain of discourse, but applies to all possible domains of dis-
course. Usually if building a theory one has a specific intended interpretation in
mind, but all knowledge about the structure of the domain of discourse can in
FOL be encoded in the theory, the actual domain of discourse and meaning of
functions does not matter for reasoning. In the previous examples the domain of
discourse was given only as illustration. As discussed later, in other logics and in
case we want to define a probability distribution over possible worlds however it
is often desirable to fix the domain of discourse and interpretation of functions,
called a pre-interpretation.

Given a possible world, whether a sentence is true can be determined formally
by the so-called truth schema (T-schema) [145]. As we inductively break down the
formula, sub-formulas are not necessarily sentences, i.e. they may contain free
variables. So additionally to the possible world we require a valuation µ, which
is a function from all variable symbols to objects in the domain of discourse. The
truth value of sentences does not depend on this valuation, so initially we can
start with an arbitrary one. Then the T-schema is defined as follows:

1. ∀X f is true given µ, if for all possible valuations µ′i, . . ., differing in µ only
on the value of X, f is true.

2. ∃X f is true given µ, if there is a valuation µ′, differing in µ only on the
value of X, such that f is true.

3. ¬ f is true, if f is not true.

4. f � g (where � is some operator) is evaluated according to the truth table
of �.

5. p(t1, . . . , tn) is true in case p(v1, . . . , vn) is true given the current inter-
pretation (I

(
p(v1, . . . , vn)

)
= true), where v1, . . . , vn are the valuations of

t1, . . . , tn according to µ and I .

Example 2.3
How we can formally reason in FOL about the burglary example is shown in Fig-
ure 2.1b. That burglary causes an alarm is expressed as T = {∀H burglary(H)→
alarm(H)}, which means that for all objects (only houses in this case) in case
there is a burglar, there also has to be an alarm. The observation that there is
a burglar in a specific house can be expressed by a single sentence, without
variables: O = {burglary(h1)}.
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We can now conclude that there is an alarm in house h1 (T ∪O |= alarm(h1)).
For another house we cannot draw that conclusion (T ∪O 2 alarm(h2)), as we
do not know whether there is a burglar in this house or not. If we consider
the alternative observation that there is no burglar (O′ = {¬burglary(h1)}), we
can also not conclude that there is no alarm (T ∪O′ 2 ¬alarm(h1)), as the rule
∀H burglary(H) → alarm(H) only tells there is an alarm in case of burglary, but
does not say anything about the case there is no burglary. There are still two
possible worlds which do not agree whether there is a burglar or not.

2.1.2.2 Automating Reasoning: Herbrand’s Theorem

The challenge for determining whether a sentence is a consequence of a theory,
or equivalently whether a sentence is valid, is that one has to consider all possi-
ble worlds of which there are infinitely many. A fundamental result of Herbrand
is that only a fixed, finite domain of discourse is necessary to prove that a sen-
tence is valid [67]. We present this result as a refutation method, meaning the
method tries to derive that the negation of the sentence is unsatisfiable, i.e. it is
false in all possible worlds, which equivalently means that the original sentence
is valid. This is possible by constructing possible worlds that will eventually
falsify the sentence in case it is unsatisfiable. In case the sentence is satisfiable
the algorithm may never terminate, as reasoning in FOL is semi-decidable. The
method is still the basis for most modern automated proof methods.

For convenience, we consider sentences in so-called Skolem normal form (SNF).
This means that all existential quantifiers are removed and all universal quan-
tifiers are at the outer level of the sentence. Each sentence can be translated to
a SNF, which is not necessarily equivalent, but is unsatisfiable if and only of
the original sentence is unsatisfiable. Transforming the sentence such that all
quantifiers are at the outer level, can be achieved by equivalence transforma-
tions. Removing the existential quantifiers is done by so-called Skolemnisation,
which means that each existentially quantified variable is replaced by a Skolem
function f (X1, . . . , Xn), where f is some fresh function symbol and X1, . . . , Xn are
all universally quantified variables in the scope of the existential quantifier. Intu-
itively, the Skolem functions represent an arbitrary object satisfying the formula,
of which there must be at least one in case the formula is satisfiable. We do not
formally prove here that this transformation preserves unsatisfiability.

Example 2.4
Consider the following statement derived from Example 2.3, together with the
assumption that there is a burglar in at least one house. Then there must also be
an alarm in at least one house:(

∀H burglary(H)→ alarm(H)
)
∧
(
∃H burglary(H)

)
→
(
∃H alarm(H)

)
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To show that this sentence is valid we can show that its negation is unsatisfiable:

¬
((
∀H burglary(H)→ alarm(H)

)
∧
(
∃H burglary(H)

)
→
(
∃H alarm(H)

))
⇐⇒

(
∀H burglary(H)→ alarm(H)

)
∧
(
∃H burglary(H)

)
∧ ¬

(
∃H alarm(H)

)
⇐⇒

(
∀H burglary(H)→ alarm(H)

)
∧
(
∃H burglary(H)

)
∧
(
∀H ¬alarm(H)

)
The above is obviously unsatisfiable. In case a burglar always causes an alarm
(∀H burglary(H) → alarm(H)) and there is at least one house with a burglar
(∃H burglary(H)), then in this house there must be an alarm, which is contradict-
ing with the statement that there is no alarm in any house (∀H ¬alarm(H)).

To formally show that, the first step it to obtain a SNF, by first bringing all
quantifiers to the front:(

∀H burglary(H)→ alarm(H)
)
∧
(
∃H burglary(H)

)
∧
(
∀H ¬alarm(H)

)
⇐⇒ ∀H ∃I

(
burglary(H)→ alarm(H)

)
∧ burglary(I) ∧ ¬alarm(H)

For the variable I we now introduce the Skolem function f and remove the
existential quantifier:

∀H
(
burglary(H)→ alarm(H)

)
∧ burglary

(
f (H)

)
∧ ¬alarm(H)

The above sentence states that for each house H: (1) a burglar causes an alarm,
(2) there is a burglar in some house, denoted by f (H) and (3) there is no alarm in
any house. This is unsatisfiable. There is no burglar in any house, as this would
cause an alarm. So there cannot be a burglar in f (H).

Note that in this case we could have also changed the order of the quantifiers,
which means we would require only a Skolem constant instead of a 1-ary function.
We did choose the order however for illustrational purposes.

The first step towards automated reasoning is to restrict the infinite number of
possible domains of discourse, which is possible by using so-called Herbrand uni-
verses. In case a sentence is unsatisfiable under the Herbrand universe, this is true
for all possible domains of discourse. The basic idea is to use terms built from
applications of the functions appearing in the sentence themselves as elements
of the domain of discourse. Each function application just represents itself. All
information about the functions, that matters for reasoning, is encoded by the
sentence. An interpretation assigning to all function applications the terms rep-
resenting the function applications themselves, is called a Herbrand interpretation.

We now formally define the concept of Herbrand universes, as it will also
play an important role in another kind of logic relevant for our work, called
LP (Section 2.1.3). We start defining the set H0, which includes all constants
occurring in the sentence. In case no constants are included, we use a single
arbitrary constant (e.g. H0 = {a}). Further, for all i > 0, Hi is defined as the
application of all occurring functions to the elements of Hi−1. The Herbrand
universe is then defined as H∞. So the Herbrand universe is infinite as soon as
functions occur in the sentence.
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Example 2.5
We continue with our example and repeat the SNF of the formula we have to
prove unsatisfiability of:

∀H
(
burglary(H)→ alarm(H)

)
∧ burglary

(
f (H)

)
∧ ¬alarm(H)

As there is no constant we introduce a single arbitrary one, lets say a. The Her-
brand universe is then constructed as:

H0 = {a}
H1 = {a, f (a)}
H2 = {a, f (a), f ( f (a))}
· · ·

H∞ = {a, f (a), f ( f (a)), f ( f ( f (a))), . . .}

It remains the challenge that one has to consider all possible truth assignments
to predicates for a potentially infinite domain. The first observation to solve
that problem, is that in case a partial possible world falsifies the sentence, all
possible worlds consistent with it, falsify the sentence as well. So a partial world
can represent an infinite set of possible worlds. Each possible world is always
in a set represented by a finite partial world falsifying the sentence, in case the
sentence is unsatisfiable. This is the essence of Herbrand’s theorem and actually
means that unsatisfiability can be decided by generating finite partial worlds
in an exhaustive and structured way until all partial possible worlds falsify the
sentence. This may not terminate in case the sentence is satisfiable, which is
equivalent to deciding whether a sentence follows from a theory, if the answer
is negative. As discussed, this problem is only semi-decidable. For generating
partial worlds a so-called semantic tree [131] can be used. Such tree splits at each
level into the possible worlds, in which a specific predicate holds and does not
hold respectively.

Example 2.6
To show that the sentence of the continued example is invalid, we construct
partial interpretations as semantic tree, shown in Figure 2.2. At the first level, we
choose the truth value for burglary

(
f (a)

)
. As the sentence requires that there is a

burglar for all objects given by f for all possible arguments, the choice that there
is no burglar for f (a) falsifies the sentence. So we can close that branch and do
not have to care about the interpretation of all other predicates.

In the other branch we know for sure that there is an alarm, which is im-
plied by the fact that there is a burglar, because the sentence requires that
burglary(H) → alarm(H) for all H. So choosing alarm

(
f (a)

)
to be false, falsifies

the entire sentence. Choosing alarm
(

f (a)
)

to be true however also falsifies it, as
the sentence requires that there is no alarm in any house. The tree exhaustively
covers all possible interpretations and proves them to falsify the sentence, which
proves that the sentence is unsatisfiable.
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⊥

alarm
(

f (a)
)

⊥

¬alarm
(

f (a)
)

burglary
(

f (a)
)

⊥

¬burglary
(

f (a)
)

Figure 2.2: Semantic Tree Example

2.1.2.3 Satisfiability Modulo Theories

When building logical models, one often wants to use commonly applied theo-
ries, i.e. functions and predicates that already have a commonly used meaning.
Examples are equality between the objects in the domain of discourse, but also
inequalities and functions as addition and multiplication for integers and real
numbers. Such problems are commonly referred to as satisfiability modulo theories
(SMT) problems. The meaning of those functions could also be encoded in FOL,
but using the intended objects, e.g. numbers, as domain of discourse for some
variables is conceptually more clear and can be computationally more efficient.

Example 2.7
Suppose we also want to model the possibility that an earthquake causes the
alarm and want to consider the earthquake’s strength. We could classify the
earthquake’s strength in a discrete way, which means the domain of discourse
could for instance be:

D = {no, low, medium, high, house1, . . . , housen}

Then a possible theory would be:

∀H (burglary(H) ∨ earthquake = high)→ alarm(H)

Here we make use of the function earthquake indicating the strength of the earth-
quake and also of the function high, which we assume to be the object from the
domain of discourse with the same name in all possible worlds. Furthermore,
we assume that equality is in all possible worlds defined as equality between
objects of the domain of discourse.

We can also express the earthquake’s strength by a continuous scale, then the
domain of discourse could be:

D = R∪ {house1, . . . , housen}

A possibly theory could then look like:

∀H (burglary(H) ∨ earthquake > 5.5)→ alarm(H)
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Here we assume that earthquake only yields real numbers and not the house ob-
jects from the domain of discourse and further that > has the common meaning
for real numbers in all possible worlds. From earthquake > 8.0 one can still draw
the conclusion that there is an alarm (actually in all houses), even though the
number of remaining possible worlds is infinite, as the value of earthquake can
be anything above 8.0.

Satisfiability is decidable for many relevant classes of theories, e.g. linear in-
equalities on integers (excluding multiplication) [116] and inequalities on real
numbers including multiplication [36]. Also the complexity of deciding satis-
fiability is often manageable. For instance, the complexity of SMT solving is
polynomial for equalities and inequalities on sums and differences of real num-
bers [45, 79]. Arithmetic with integers is however NP-complete [116], and real
number arithmetic including multiplication is even more complex [36].

Such theories could as discussed in principle be encoded as FOL theories,
but it is often much more efficient to use specialised algorithm for solving such
problems. Such algorithms are included in so-called SMT solvers, e.g. Yices [46]
and Z3 [39].

2.1.2.4 Discussion

FOL is very useful in domains such as mathematics or where statements can
be assumed to always hold. In many real world applications however virtually
nothing can be said with absolute certainty. So either one underspecifies the
problem, such that no useful conclusions can be drawn any more, or overspeci-
fies it, such that observations can contradict the theory, making the new theory
inconsistent and therefore useless. There are various qualitative solutions for
such issues, for instance default logic [126], stating what usually holds given the
opposite is not observed. We do not discuss those logics in detail, as we focus
later on probabilistic logic, solving this problem in a quantitative way.

2.1.3 Logic Programming

LP is based on the idea of using predicate logic as a programming language [89].
Prolog is by far the most well-known example of such a language, although there
are several other LP languages available. Since LP is based on FOL, the language
is also very suitable as a basis for knowledge representation and reasoning.

2.1.3.1 Syntax & Semantics

A logic program L consists of a set of rules, also called clauses. Rules are (implic-
itly universally quantified) expressions of the form:

h← l1, . . . , ln

where h is called the head and the collection of literals l1, . . . , ln form the body of
the rule and represent a conjunction. The head h is an atom, i.e. an expression
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of the form p(t1, . . . , tm) with p a predicate and t1, . . . , tn are terms, i.e. function
applications. In LP the meaning of such applications is fixed to the Herbrand in-
terpretations, which is motivated by the aim to provide efficient inference. If there
are no variables in all terms t1, . . . , tm, the atom p(t1, . . . , tm) is called ground.
The literals of a body are atoms (e.g. a) or negated atoms (e.g. not(a)). Facts, also
called unit clauses, are clauses without a body, assumed to be always true.

Although the syntax of LP is a subset of FOL, the semantics of LP and FOL
differ. The difference emerges from the semantics of negations in LP, which,
similar to the closed world assumption, states that a certain conclusion is false if
it cannot be derived from the knowledge base. In contrast, in FOL a statement
is only proved to be false if the negation of this statement is implied by the
knowledge base, which means that some statements cannot be decided to be true
or false. This difference allows LP to express non-ground inductive definitions,
such as transitive closures, which is not possible in FOL [58].

The main consequence of this difference is that for a large class of programs
there is only a single unique possible world, which is also often called model
in this context. Programs L without negation are characterised by their smallest
model M(L), called the least Herbrand model, consisting of ground atoms entailed
by the logic program L, i.e. a ∈ M(L) iff L |= a. In case the ←s in the pro-
gram are treated as implications, there are obviously multiple Herbrand models
M(L)1, M(L)2, . . . consistent with the program. The least Herbrand model is the
intersection of all those models M(L)1 ∩ M(L)2 ∩ · · · . This model matches the
intuitively intended model, interpreting the rules as defining when the head is
true and when it is false. It is true in case one of the bodies is true and false
otherwise, in contrast to the FOL interpretation without a unique model where
the truth of the head would be undetermined in case no body is true. The least
Herbrand model can also be characterised by the program’s completion in FOL,
introduced by Clark [26]. Rules for the same head, such as

h← l11, . . . , l1m

· · ·
h← ln1, . . . , lnk

are characterised by the completion

h↔ (l11 ∧ · · · ∧ l1m) ∨ · · · ∨ (ln1 ∧ · · · ∧ lnk)

which unambiguously defines the truth value of h in case the truth value of all
body elements is known.

Also logic programs with negations often have a unique model. Stratified logic
programs with negations, meaning that the program disallows certain combina-
tions of recursion and negations, also have a unique least Herbrand model [3].
Non-stratified programs may still have a unique model in the form of non-
partial well-founded models [150] or stable models [53]. Even though there are pro-
grams without such unique models, we assume that all programs used have
such model.
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The fact that a logic program always leaves only a single possible world, is
illustrated in Figure 2.3. It does not make sense to show the possible worlds
remaining with the model only without observations, as the truth value of each
predicate has to be given either explicitly by adding it to the program or implic-
itly by not including it in the program.

All Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary(h1), alarm(h1), . . .
¬burglary(h1), alarm(h1), . . .

burglary(h1), ¬alarm(h1), . . .
¬burglary(h1), ¬alarm(h1), . . .
· · ·

Current Possible Worlds

ω1
ω2
ω3
· · ·

Example

burglary(h1), alarm(h1), . . .
¬burglary(h1), alarm(h1), . . .

burglary(h1), ¬alarm(h1), . . .
¬burglary(h1), ¬alarm(h1), . . .
· · ·

Theory + Observations (L)
alarm(H)← burglary(H) + burglary(h1)

Conclusions

L |= s Example

L |= alarm(h1)
L |= ¬alarm(h2)

Question (s)
alarm(h1)

Figure 2.3: Logic Programming Reasoning Illustration

Example 2.8
We illustrate Example 2.1 in the context of LP in Figure 2.3. One cannot leave out
the observation, as not specifying that there is burglary means that we assume
there is no burglary. Only the part of the possible worlds for the constant h1 and
the predicates burglary and alarm is given, because each possible world is infinite,
as the domain of discourse ranges over all possible terms. Also the number of
possible worlds itself is infinite. Given the program, actually all other grounded
predicates are false. Therefore we can also conclude that there is no alarm for h2.

If we would only observe that there is an alarm, we can conclude that there is
no burglary, unlike as in FOL where in this situation the truth value of burglary
is unknown. So here the usually made observation of an alarm may even lead to
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a possibly wrong conclusion, which illustrates the limited ability of LP to deal
with uncertain situations.

2.1.3.2 Constraint Logic Programming

Constraint logic programming (CLP) [72] is the LP equivalent of SMT. It extends
LP such that it can also deal with objects with associated theories as numbers,
by also allowing special predicates (e.g. <, ≤, . . . ) on function applications of
variables in rules, which actually constrain the possible values a variable can
take. The general approach supports various constraint theories. For example, in
CLP(FD) [27] constraints involving variables with a finite domain can be han-
dled. Another example is CLP(R) [73], which introduces constraints on real
numbers inside LP. Note that usually implementations of Prolog, without using
CLP, also support numbers and special predicates as <. However, those predi-
cates are evaluated by the time they occur during resolution, which only works
in case the arguments are grounded numbers. This restricts the constraints on a
numeric variable, as it must be fixed to a point and cannot only be constrained to
an interval, and also makes the result of resolution dependent on the evaluation
order, i.e. there is no declarative semantics when using those predicates.

Example 2.9
We go back to Example 2.7 and model the fact that an earthquake with strength
above 5.5 also causes the alarm by CLP(R):

alarm(H)← burglary(H)

alarm(H)← earthquake(E), 〈E > 5.5〉

The brackets 〈〉 indicate that the predicates inside (in this case <) are not defined
by the program, but have a special meaning given by a theory1. In case we
observe that the earthquake has a strength above 8.0, we add the following to
the program:

earthquake(E)← 〈E > 8.0〉

From this we can conclude that there is an alarm in all houses.

2.1.3.3 Discussion

LP is very suited for cases in which one can define predicates in terms of other
ones, therefore it is more similar to a programming language. It provides struc-
ture that makes definitions easier to capture than FOL definitions, as to under-
stand the definition of a predicate one only has to inspect all rules with the

1 We use 〈〉 rather than {} as usually used, to avoid confusion with set notation in mathematical
definitions.
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predicate as head. Furthermore, it allows to reason in a more efficient way and
can represent knowledge not expressive in FOL (e.g. transitive closures) [58].

For models as the burglary model it is less suited, because one has to choose
the direction in which the model is defined, i.e. whether burglary and earth-
quake are defined in terms of alarm or the other way around, which restricts the
direction in which one can reason. There are qualitative solutions to this, such
as answer-set programming [92, 112], which allows one to ask for the possible ex-
planations given observations, e.g. an alarm. Probabilistic logic however again
provides a solution, not bound to a direction of reason, in a quantitative way.

2.2 probability theory

As discussed, traditional logic can deal with facts that are not certainly known, if
at all, only in qualitative ways. Most real world problems however require deal-
ing with uncertainty. Probability theory offers a widely used and well-founded
basis for representing and reasoning with such uncertainty.

Dealing with probabilities as a scientific discipline, developed much slower
than logic. This is in particular because is was long questioned that it makes
sense at all to deal with random phenomena in a scientific way. Also there is a
dispute about the meanings of probabilities. A first view, known as the frequentist
view, is that probabilities are physical quantities, which can be measured by
repeated observations. In the Bayesian view, probabilities represent the believe
that something holds, given the information available. From a practical point of
view, it matters less whether we do not know something because it is inherently
random or because we do not have sufficient information. Probability theory is
successfully applied for dealing with all kinds of uncertainty.

The mathematical foundations for probability theory were laid by Bernoulli [10]
and de Moivre [38]. The modern theory of probabilities, also used in this thesis,
was developed by Kolmogorov [81] and is in particular also suited for the case of
continuous problems, meaning that there are uncountably many possible states
of the world.

2.2.1 Measures on Possible Worlds

The theory, as logic, also makes use of the concept of possible worlds, which is
here called the sample space. Probability theory provides a general way to deal
with possible worlds of any structure. No structure of possible worlds is pre-
scribed; the sample space can be an arbitrary set. Probability theory is basically
about not only determining whether an event possibly occurs, but measuring
how likely that is by a probability between 0 and 1, where 0 means that the
event (almost) certainly2 does not occur and 1 the opposite. There is also no struc-

2 Note that the difference between certainly and almost certainly has to be made for continuous distri-
butions. For instance, the probability that the temperature is exactly 20 ◦C is 0.0, but theoretically
possible. Therefore, we cannot say that this event does “certainly” not occur, but have to say that it
does “almost certainly” not occur.
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ture prescribed to represent such events, as is given in logic by the structure of
sentences. Probabilistic events are just sets including possible worlds, meaning
that the world is in one of the states in the set.

Probability theory provides well-defined ways to combine probabilities and
makes use of partial knowledge about the state of the world by incorporating
observations, in probability theory usually called evidence. Here we have to make
a strict distinction between the model of the world and evidence, unlike in FOL.
In FOL, statements which are not always true or false, e.g. whether there is a
burglar, have to be left open and are then determined by observations. LP forces
to determine whether something holds or not, so it does not make sense distin-
guishing between the model and observations. Probability theory does not force
one to decide for the extremes, but instead one is forced to specify a probability,
indicating how likely the event occurs. For instance, one has to say that there is a
burglar with a chance of 0.001. If a burglar is observed this means that the prob-
ability of that event becomes 1.0, which is inconsistent with the model. So the
combination of observations and model requires a special way of updating the
probabilities, which is also called conditioning. One speaks about the probability
of an event, given observed other ones. This conditioning actually works similar
to adding sentences to a FOL theory: possible worlds inconsistent with the evi-
dence are excluded. In probability theory additionally the probabilities have to
be renormalised to make sure probability 1.0 is still assigned to the space of all
possible worlds remaining.

This is illustrated in Figure 2.4a. The world is modelled by a probability measure
over all possible worlds, we also call a probability distribution. The most straight-
forward way to define such a measure, is to assign a probability to each possible
world, as is done in the illustration. However, this is not feasible for realistic
models, as the number of probabilities grows exponentially and even impossi-
ble in case the space of possible worlds is uncountably large, e.g. in case real
numbers are involved. This general case is discussed later. Possible worlds are
excluded given observations and the probabilities of the remaining worlds are
renormalised. Finally, one can reach conclusions about how likely a certain event
is in the updated conditional measure.

Example 2.10
We consider again the burglary problem with only a single house, so there are
only four possible worlds as in Example 2.1. The fact that burglary causes the
alarm is expressed by the fact that the probability for the case that there is bur-
glary, but no alarm, is low. This case is actually completely excluded by the FOL
model (Figure 2.1b), but probability theory makes it possible to not completely
exclude it, but to state that it is unlikely. One actually has to define probabilities
for all cases, e.g. that there is a burglar and the likelihood of a false alarm. A
possible probability assignment is given in Figure 2.4a. In this model, the prob-
ability that there is an alarm is only 0.04 + 0.009 = 0.049. The low probability
makes sense as hopefully there are not that many burglaries and false alarms.
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Conclusions

A statement holds with a probability
within a certain a range.

(b) Imprecise Probabilistic Reasoning

Figure 2.4: Probabilistic Reasoning Illustrations

In case we then observe a burglar, as in the FOL example (Figure 2.1b) we
exclude the worlds without burglary. However, we also renormalise the prob-
abilities, so the probability of alarm raises to 0.98, which makes sense even if
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before the probability for an alarm was that low, because in the unlikely pos-
sible worlds in which there is a burglar, there is also likely an alarm. This is
illustrated in Figure 2.4a. One can also without changing the model, compute
the probability of burglary given an alarm in the same way, i.e. reverse the direc-
tion of reasoning, which is a big advantage of probability theory.

As soon as the sample space becomes uncountably large, a measure cannot di-
rectly be defined on it. It is not possible to define a measure on arbitrary spaces.
Measure theory requires that such spaces are measurable. This means that it is in
general impossible to assign meaningful measures to all possible events. There-
fore, the events are restricted by means of a so-called event space. We introduce
now this very general, measure-theoretic approach to probability theory, specif-
ically Kolmogorov’s probability theory [81]. Often a simplified view is used for
AI models, but the general theory is necessary for the work presented in this
thesis, as it is concerned with constructing complex probability distributions.

Probability spaces form the basis of modelling uncertain processes in the theory
presented. A probability space (Ω,A, P) formally consists of:

1. A sample space Ω: An arbitrary set of all possible states the world can be in.

2. An event space A: A subset of the sample space’s powerset (A ⊆ ℘(Ω))
which is a σ-algebra, meaning that it (i) contains the empty set (∅ ∈ A), is
closed under (ii) complement (e ∈ A =⇒ (Ω \ e) ∈ A) and (iii) countable
union (e1, e2 ∈ A =⇒ (e1 ∪ e2) ∈ A). A consequence of properties (i) and
(ii) is that the entire sample space Ω is always part of the event space as
well. Elements of A are called events and probabilities are only assigned
to these events.

3. A probability measure P: A function assigning a number from the closed
interval [0, 1] to any event. P must be countably additive, which means that
the probability of the union of countably many pairwise disjoint events
must equal the sum of the probabilities of those events (P(e1∪ e2) = P(e1)+
P(e2), if e1 ∩ e2 = ∅). Additionally, P must assign 1 to the entire sample
space (P(Ω) = 1).

Example 2.11
The sample space of the burglary example can be defined by a tuple of two
boolean values:

Ω = { (true, true), (false, true), (true, false), (true, true) }

Here the first value represents whether there is a burglar and the second whether
there is an alarm. The event space can in this example just be the powerset of
Ω, which is always a σ-algebra for countable sample spaces. The probability
measure can be defined as:

P
(
(true, true)

)
= 0.04 P

(
(false, true)

)
= 0.009

P
(
(true, false)

)
= 0.001 P

(
(false, false)

)
= 0.95
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This uniquely defines a probability measure P, i.e. establishes probabilities for
all other events in the event space, given the properties of a probability measure.
The probability for an alarm is computed as:

P
({

(true, true), (false, true)
})

= 0.04 + 0.009 = 0.049

In case we want to extend the model with the strength of an earthquake, mea-
sured as real number, we extend the previously defined space: Ω×R. The power-
set of this space is not measurable; one has to choose a proper event space, which
is for instance possible by considering all real intervals with rational bounds as
events. Also the probability measure cannot be defined by assigning probabilities
to every possible world any more. How such measures are defined is discussed
later.

We next define some key concepts, which are important to achieve a compact
representation and efficient inference. The concept of independence is especially
important for efficient inference. Two events e and f are independent in case the
occurrence of the one does not affect the other. In that case:

P(e ∩ f ) = P(e)P( f ) (2.1)

That e and f are independent is denoted as:

e ⊥⊥ f

Another property essential for efficient inference, directly given by the definition
of probability space before, is that for two mutually exclusive events (e ∩ f = ∅)
holds:

P(e ∪ f ) = P(e) + P( f ) (2.2)

Conditional probabilities are probabilities conditioned on the knowledge that an
event is certainly true. The probability of event e given f for which P( f ) > 0 is
defined as:

P(e | f ) def
=

P(e ∩ f )
P( f )

(2.3)

The given event f is also referred to as evidence.

Example 2.12
We can compute the conditional probability of an alarm given that there is a
burglar as:

P
({

(true, true), (false, true)
}
|
{
(true, true), (true, false)

})
=

P
({

(true, true)
})

P
({

(true, true), (true, false)
}) =

0.004
0.0041

≈ 0.98
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Analogously, we can compute the probability of a burglar given an observed
alarm:

P
({

(true, true), (true, false)
}
|
{
(true, true), (false, true)

})
=

P
({

(true, true)
})

P
({

(true, true), (false, true)
}) =

0.004
0.0049

≈ 0.82

2.2.2 Random Variables

Often random variables are used to represent probability distributions and we
denote them with bold upper-case letters, e.g. X, Y. We assume that each random
variable Vi has a range Rangei of values. Sometimes sets of random variables
are indicated by an index set: VI = {Vi | i ∈ I}, where I is an index set. Random
variables are actually functions mapping the sample space to the variable’s range:
Vi : Ω→ Rangei. This has to be done in such a way that the probability measure
P of the original probability space assigns a probability to each event concerning
the random variable Vi as well. We usually use a simple mapping from sample
spaces to random variables. We represent the random variables’ values as tuples
of which each element represents a single random variable’s state. The random
variables are therefore just functions mapping a tuple to one specific element.

A distribution assigning probabilities to values assignments of a number of
random variables is called a joint distribution. In the case of a finite number of
random variables with finite ranges, one can uniquely define a joint probability
distribution P by assigning a probability to each joint assignment of values vi ∈
Rangei, i = 1, . . . , n, to random variables P(V1 = v1, . . . , Vn = vn). Such a
function, assigning probabilities to values of random variables, is also called
probability mass function (PMF). From probability distributions one can compute
the probability of partial assignments using marginalisation:

P(VK = vK) = ∑
vJ ,J=I\K

P(VK = vk, VJ = vJ), (2.4)

where I = {i | 1 ≤ i ≤ n}.

Example 2.13
Meaningful random variables for the burglary example, where the first ele-
ment of the sample space represents whether there is a burglar and the second
whether there is an alarm, can be defined as: Burglary

(
(ω1, ω2)

)
= ω1 and

Alarm
(
(ω1, ω2)

)
= ω2. We can also express the distribution of Example 2.10 as:

P(Burglary = true, Alarm = true) = 0.04

P(Burglary = false, Alarm = true) = 0.009

P(Burglary = true, Alarm = false) = 0.001

P(Burglary = false, Alarm = false) = 0.95
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We can use marginalisation to compute for instance:

P(Alarm = true)

=P(Burglary = true, Alarm = true) + P(Burglary = false, Alarm = true)

=0.04 + 0.009 = 0.049

This works well for the discrete case, but the continuous case, i.e. if random
variables have uncountable ranges, requires more sophisticated techniques. In
case the range of random variables are the real numbers, probability measures
for intervals are often defined in terms of probability density functions (PDFs). If
f is a PDF of a random variable Vi then the probability that Vi takes a value
within the interval [a, b] is defined as:

P
(
Vi ∈ [a, b]

) def
=
∫ b

a
f (x)dx (2.5)

The main problem with that definition is that integrals can only be computed ex-
actly or even be approximated with certain and acceptable error in very limited
cases.

Generally, random variables offer an intuitive way to look at probability dis-
tributions, although they are not always suited to construct complex probability
distributions.

2.2.3 Imprecise Probability Theory

Imprecise probability theory is a generalisation of probability theory. It avoids
using crisp probabilities and therefore allows one to express ignorance concern-
ing probability distributions. The theory is used if it is not possible to obtain
precise probabilities, either due to insufficient availability of data to estimate the
probabilities, or because probabilities are estimated by a number of experts, thus
providing a range of probabilities. Imprecise probabilities are discussed here, be-
cause many methods to combine probability theory and logics, also the work
in this thesis, do not define a single probability measure, but actually only put
constraints on such measure, which leads to imprecise probabilities.

There are different approaches to imprecise probabilities with varying expres-
siveness [154]. In this thesis we consider convex sets of probability distributions,
referred to as credal sets [87]. This setting makes it possible to express probabili-
ties of events by a lower and upper bound. Formally, we denote a credal set as P,
assume it has an associated sample and event space, and consists of a collection
of probability measures consistent with Kolmogorov’s axioms. Such credal set
is illustrated in Figure 2.4b. For each event e there exists a distribution in P for
which the probability attains a minimum and maximum. We denote these prob-
abilities by P(e) and P(e), respectively. Note that all probabilities in this interval
are possible and none is preferred, thus with imprecise probabilities one can ex-
press ignorance about what the real probability is. In contrast, in the alternative
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method of using second-order probabilities, a probability distribution is defined
for the original probability.

There are multiple definitions of conditional probabilities for imprecise prob-
ability distributions. Weichselberger argues that different notions of conditional
probabilities should be used depending on the purpose they are used for [157].
We here restrict to what Weichselberger calls the intuitive concept. A credal set
can then be conditioned similarly to single probability measures. This is done
by conditioning all probability measures in the credal set, as illustrated in Fig-
ure 2.4b.

Example 2.14
Consider the two possible probability distributions for the burglary example in
Table 2.2.

P1 alarm no alarm

burglary 0.004 0.001

no burglary 0.009 0.95

P2 alarm no alarm

burglary 0.03 0.02

no burglary 0.01 0.94

Table 2.2: Example Possible Probability Distributions in Credal Set

Actually, convex credal sets usually consist of infinitely many probability dis-
tributions, except for the corner case of a single point distribution. If we observe
that there is a burglar, all distributions are updated accordingly, as shown in
Table 2.3. We again only show two possible distributions.

P1 alarm no alarm

burglary 0.8 0.2

no burglary 0.009 0.95

P2 alarm no alarm

burglary 0.6 0.4

no burglary 0.01 0.94

Table 2.3: Conditioned Example Possible Probability Distributions in Credal Set

If we assume the two probability distributions remaining, after incorporating
the evidence, represent the extreme points, we can conclude that the probability
for an alarm is between 0.6 and 0.8. As we assume credal sets are convex, in this
example the credal set also contains distributions assigning all infinitely many
possible probabilities in between.

A price to pay for imprecise probabilities is usually an increased inference com-
plexity. Very often, imprecise probabilistic inference is in general much more
complex than precise probabilistic inference. For instance, obtaining a bound
on a marginal probability given a locally defined credal network (LDCN) [31], an
imprecise version of Bayesian networks (BNs), is NPPP-complete, while it is PP-
complete for BNs [37].
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2.2.4 Discussion

Probability theory provides the necessary basis for dealing with uncertainty in
a well-founded way. Imprecise probability theory relieves from the necessity
to always exactly specify a probability distribution. It adds the possibility of
expressing ignorance, which is also possible in classical FOL. The main drawback
of probability theory is that it lacks structure as provided in logic by the logical
languages. Random variables are a concept to provide a convenient view on
probability distributions, but do not allow to specify probability distributions
in a compact way. This requires additional means to express structure such as
independencies and first-order abstraction.
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P R O B A B I L I S T I C L O G I C S

To practically build probabilistic models, one has to basically perform two steps:
First, one has to define a measurable event space. Second, one has to define a mea-
sure (or a credal set of those) on this event space. As it is infeasible to build real-
istic models by straightforwardly defining a measure, representation languages
are employed. They allow for a compact representation of distributions, by mak-
ing assumptions about the probability distribution’s structure. A crucial issue for
making probability theory practical is therefore how the structure of probability
distributions is expressed. This always requires a balance between convenience
of model construction, expressiveness and efficiency of inference. The most pop-
ular formalisms in artificial intelligence (AI) use graphs to express distributions’
structures. One of the most influential of such formalisms are Bayesian networks
(BNs) [119], expressing dependencies between random variables using a directed,
acyclic graph. However, such formalisms have the major shortcoming that they
are propositional. This hinders a compact representation of many problems, sim-
ilar to the shortcoming of propositional logic compared to first-order logic (FOL).
So probabilistic formalisms should also be first-order.

From a computing science point of view, this can be achieved by providing
probabilistic versions of programming languages, as all deterministic program-
ming languages employed to solve realistic problems are at least first-order.
There are various paradigms for probabilistic programming, which are related
to paradigms for non-probabilistic programming. They range from graphical ap-
proaches (e.g. multi-entity Bayesian networks [84]), imperative and object-oriented
approaches (e.g. FACTORIE [94], Figaro [120]), purely functional approaches
(e.g. Church [57]), logic programming (LP) approaches (e.g. independent choice logic
(ICL) [122], ProbLog [125]), to other logic approaches (e.g. BLOG [102]). We focus
here on logic based approaches. The reason for this is first, that logic is very
suited to study programming methods on a conceptual level. Furthermore, logic
is widely applied for and very suited for knowledge representation, in contrast
to imperative and functional approaches. The goal of this section is not so much
to discuss details about choices made in the design of concrete languages, but
more to contrast approaches at a conceptual level to make clear where the work
in this thesis is positioned.

33
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3.1 internal & external probabilistic logics

Early work on probabilistic logics by Bacchus [6] and Halpern [63] was aiming at a
logic to reason about probabilities in the most general way possible. This means
that it is not only possible to express knowledge about concrete domains, but
also to prove general theorems about probability theory, e.g. :

∀e∀f P(e∩ f ) = 0.0→ P(e∪ f ) = P(e) + P(f )

Such languages are referred to as internal probabilistic logics by Williamson [158].
The probability measure P is embedded in such logics. It is a function about which
properties can be stated and proven in the logic itself. This generality has the
major drawback that validity is undecidable for such languages, which is not
surprising as validity in FOL is undecidable as well. However, in contrast to
FOL, such probabilistic logics are not even completely axiomatisable, so validity
is not even semi-decidable as validity in FOL [1]. Issues with decidability can be
avoided by assuming a finite domain of discourse, which makes such probabilistic
logics decidable [1], still reasoning can be very complex. Most languages aiming
to provide a modelling language for AI problems, externalise the probabilistic
aspect, which means that the probability measure is not part of the logic itself.
Instead, the properties of the probability measure that can be expressed, are
restricted to making statements about probabilities of events in some external
way. We focus on such external probabilistic logics [158] in the following.

For such external probabilistic logicss, the most important function of logic is
to provide a mean to represent the sample space and events in a structured way.
The key insight here is that logical structures naturally correspond to elements
of probabilistic sample spaces. Both describe a possible state of the world; as
said, we use the term possible world for the unification of both concepts. The only
difference is that logical possible worlds provide more structure, as they assign
values to named predicate and function symbols. As the sample space can be
arbitrary, the set of all possible structures, or a subset hereof, can be used as
sample space in the definition of a probability space.

Analogously, logic provides a structured way to define event spaces by means
of sentences. This idea goes back to Boole, who already proposed to speak of
the probability of propositions asserting the occurrence of an event, instead of
the event itself [15, 62]. The connection to measure-theoretic probability theory
was later drawn by Gaifman [51]. Sentences can be related to a set of possible
worlds, that is the set of worlds which are models of the sentence. Formally, an
event es corresponding to a sentence s is defined as:

es
def
= {ω ∈ Ω | ω |= s} (3.1)

It makes sense to write ω |= s as Ω is a set of possible worlds. From now on we
use a sentence to denote the event it represents if the meaning is clear from the
context and also speak of the probability of sentences. So an event space can be
defined as some subset of all possible sentences. The only technical pitfall here
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is that this set has to be a σ-algebra (see Section 2.2.1), which is however hardly
an issue in practice, as the logic’s signature is usually countable.

3.2 constraints on probability distributions

The most straightforward choice for an external probabilistic logics is to allow
probabilistic constraints on arbitrary sentences. For propositional logic an early
proposal for such logic is by Gaifman [51] and was picked up in the context of
AI by e.g. Nilsson [113].

3.2.1 Constraining Probabilities of Sentences

Basically, as a logical theory is defined by a set of sentences, a theory in such
probabilistic logic is defined by a set of constraints of sentences’ probabilities:

P(s1) = p1

· · ·
P(sn) = pn

(3.2)

This can be generalised to probability intervals (e.g. P(si) ∈ [pi, pi]). It can then
be asked whether a probabilistic constraint on arbitrary sentences holds given
such theory T, analogous to ordinary propositional logic:

T |= P(s | O) ∈ [p, p] (3.3)

The approach is illustrated in Figure 3.1a. We start from all possible worlds,
which are in this case possible structures of a logical theory. From that we
can consider all possible probability measures on those possible worlds. The
theory, consisting of statements as in Equation 3.2, then restricts the possible
measures, in the same way as discussed for general imprecise probability theory
(Section 2.2.3). The set of possible worlds left over is actually a credal set about
which conclusions can be drawn.

Example 3.1
Coming back to the burglary example we could define a theory:

P(burglar) = 0.02

P(burglar→ alarm) = 0.99

From this one can conclude:

0.01 ≤ P(alarm) ≤ 0.99

This conclusion may seem counter-intuitive at first, but is clarified by Table 3.1,
which illustrates the distributions with the extreme values for the probability of
alarm. The only world not consistent with burglar→ alarm is the world in which
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Figure 3.1: Probabilistic Logic Languages

holds burglar ∧ ¬alarm, so its probability is fixed to 1.0− 0.99 = 0.01. Because
of the constraint P(burglar) = 0.02, we also have to fix the probability of the
world burglar ∧ alarm to 0.01. The theory does not constrain how the remaining
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probability mass is distributed between the two remaining possible worlds and
the two choices corresponding to the extreme probabilities for alarm are given in
Table 3.1.

alarm ¬alarm

burglar 0.01 0.01

¬burglar 0.0 0.98

alarm ¬alarm

burglar 0.01 0.01

¬burglar 0.98 0.0

Table 3.1: Probability Distributions With Extreme Points for P(alarm)

3.2.2 First-Order Definitions

Clearly, employing logic employing at least first-order variables, is desirable, as
this makes such logic more expressive than other propositional ways to construct
probability distributions, such as graphical models. The approach discussed for
propositional logic can in principle be transferred to FOL [51]. However, for
expressing general, statistical knowledge, which one naturally expects to be ex-
pressable in a probabilistic FOL, a different kind of semantics is required, as
pointed out by Bacchus [6] and Halpern [63]. They developed probabilistic log-
ics with a special quantified probability measure, representing the probability
given a randomly selected object for the quantified variable.

The semantics of this general approach is quite different from the semantics
based on measures on possible worlds, as discussed so far. Instead, it is based
on measures on the domain. Despite of this difference in semantics, it has been
shown that such logics can be combined with logics based on probabilities on
possible worlds and that both logics are in fact equally expressive [1]. Most prac-
tical languages discussed later on allow to specify the same independent probabil-
ity for all objects. So given a predicate pred one can specify that the probability
that pred(X) holds is some probability p for all objects filled in for X. This is a
pragmatic choice and not the same as specifying that p is the probability that pred
holds for a randomly chosen object. The first problem with this method is that
adding a different probability that pred holds for a specific object makes the the-
ory inconsistent. Still, one can incorporate observations about specific objects by
conditioning on them. A second, more theoretical issue is that the method does
not support learning in the limit. Learning in the limit means that if a property
is observed for a number of objects, this should induce the universal statement
that this property holds for all objects, in case the number of objects with the
observed property goes to infinity. In the settings described above this fails as
the probability of infinitely many observations with independent probabilities,
converges to 0.0. This issue and a possible solution is discussed by Hutter et
al. [70] in detail. Here we restrict to the discussion of more pragmatic solutions,
which the goal of practical applicability.
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Example 3.2
Consider the statement: “99% of the time a burglar causes an alarm.” A first
failed attempt to formalise this may be:

P
(
∀H burglary(H)→ alarm(H)

)
= 0.99

This is however not a correct formalisation, as it actually means that with prob-
ability 0.99 a burglar causes an alarm for all houses. Possible worlds where only
a single alarm system fails, are inconsistent with that statement.

One could move the quantifier outside to match the intuition that this proba-
bility holds for all houses separately:

∀H P
(
burglary(H)→ alarm(H)

)
= 0.99

which has to be understood as abbreviation for:

P
(
burglary(h1)→ alarm(h1)

)
= 0.99

P
(
burglary(h2)→ alarm(h2)

)
= 0.99

· · ·

This is problematic in case we add knowledge about a particular house:

P
(
¬burglary(h1)

)
= 0.999

The sentence ¬burglary(h1) represents a subset of the possible worlds repre-
sented by the implication burglary(h1) → alarm(h1). Therefore, it cannot have
a larger probability than this implication. This problem is often circumvented
practically by considering observations about specific objects as evidence, updat-
ing the probability measure, thus causing no inconsistency.

The aim of Bacchus was however to design a general language for reasoning
about probabilities without those restrictions [6]. In this language, the knowl-
edge can then be formalised as:

[burglary(H)→ alarm(H)]H = 0.99

This means that the probability that the implication holds for a randomly se-
lected house H is 0.99, which corresponds to the statement we aim to formalise.

Just as, given a FOL theory there are sentences of which we cannot decide
whether they hold or not, given probabilistic constraints on sentences there are
probabilistic constraints on sentences of which we cannot decide whether they
are true or not. This means probabilistic constraints on sentences define a credal
set rather than a single probability measure, although the connection with im-
precise probability theory is usually not drawn in such work on probabilistic log-
ics. It is however often considered to be desirable to define a single probability
measure for various reasons. First, in case one bases decisions on such distribu-
tion, there is a single best decision in the precise, but not always the imprecise
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case. Second, inference and learning are much easier for precise distributions,
as discussed in Section 2.2.3. Finally, the credal set, a probabilistic FOL theory
defines, may also be empty, similar to the fact that an ordinary FOL theory may
be inconsistent. This is often problematic when incorporating new knowledge.
Analogously, for non-probabilistic logic languages a large portion of work is de-
voted to avoiding inconsistency in theories after adding new knowledge. So also
most recent work on probabilistic logics aims at providing a formalism in which
each theory defines a single probability distribution.

3.2.3 Continuous Distributions

The idea of probability constraints can also straightforwardly be applied to con-
tinuous distributions, which means that the number of possible worlds becomes
uncountably infinite. Surprisingly, we found no previous work considering such
extension before and such extension is a first step towards the concept proposed
in this thesis. The extension is based on the observation that we can reason about
probabilities on infinitely many possible worlds, in a similar way as reasoning
in FOL, where we can also reason about an infinite number of possible worlds.
It is however not possible to define a unique probability measure and remain
decidable, as this requires assigning infinitely many probability values.

Example 3.3
Consider the statement:

P(earthquake > 8.0) = 0.9∧ P(earthquake > 5.5→ alarm) = 0.95

As we do not define a single probability measure, we do not have to define the
distribution in terms of probability density functions (PDFs). Because of this, we
can conclude 0.85 ≤ P(alarm) ≤ 0.95 without solving an integral, even though
earthquake has uncountably many possible values. Similar as for Example 3.1, the
possible distributions with extreme probabilities for alarm are illustrated in Ta-
ble 3.2. There are many possible distributions with the same maximal probability
for alarm and we give two representatives. Blank fields mean that the remaining
probability can arbitrarily be distributed between all of them.

3.3 maximum entropy models

A possible way to restrict to a single distribution is to pick the one with the max-
imal entropy. This of course requires consistent definitions as starting point, such
that there are distributions to choose from. The distribution with the maximal
entropy makes the least assumptions, additional to the ones given by the proba-
bilistic constraints. This is a general technique for selecting a unique probability
measure in case the measure is not completely determined. Some justifications
for the choice of the maximum entropy distribution are given by Paris [117]. The
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earthquake ∈
(−∞, 5.5]

earthquake ∈
(5.5, 8.0]

earthquake ∈
(8.0, ∞)

alarm 0.0 0.0 0.85

¬alarm 0.1 0.0 0.05

earthquake ∈
(−∞, 5.5]

earthquake ∈
(5.5, 8.0]

earthquake ∈
(8.0, ∞)

alarm 0.85

¬alarm 0.0 0.0 0.05

earthquake ∈
(−∞, 5.5]

earthquake ∈
(5.5, 8.0]

earthquake ∈
(8.0, ∞)

alarm 0.9

¬alarm 0.0 0.05 0.0

Table 3.2: Probability Distributions With Extreme Points for P(alarm)

idea is illustrated in Figure 3.1b. As before a theory restricts the possible dis-
tributions to form a credal set of which then the distribution with the maximal
entropy is selected.

In this section we assume a finite number of possible worlds. The general,
infinite case will shortly be discussed later in Section 3.3.3. A finite number
of possible worlds can be imposed by assuming a finite number of predicates,
functions with known definition and finitely many objects in the domain of
discourse. The distribution can then be defined by a probability mass function
(PMF) P on the possible worlds and its entropy is then defined by:

H(P) def
= − ∑

ω∈Ω
P(ω) log

(
P(ω)

)
(3.4)

The basic idea is to choose the distribution with maximum entropy, which is at
the same time consistent with the constraints given (Equation 3.2). Nilsson [113]
already proposed to choose a unique probability measure in this way. This is
however not straightforward in practice, as it is hard to determine such distribu-
tion.

3.3.1 Maximum Entropy Probabilistic Logic

Paskin [118] first proposed a probabilistic logic, which makes finding the maxi-
mum entropy distribution computationally feasible. The idea is to use log-linear
models, for which it is feasible to find a maximum entropy distribution. The sen-
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tences probabilistic constraints are put on s1, . . . , sn are used as so-called features
in such a model. The distribution is then defined as:

P(ω)
def
=

exp
( n

∑
i=1

wi1si (ω)
)

∑
ω∈Ω

exp
( n

∑
i=1

wi1si (ω)
) (3.5)

Here 1s is an indicator function, giving 1 in case sentence s holds in the world
given as argument. The model is defined by weights w1, . . . , wn assigned to sen-
tences. There is a weighted feature for all and only those sentences of which the
probability is constrained. Finding such model, i.e. the weights w1, . . . , wn, with
maximum entropy, but still consistent with the probabilities put on sentences, is
a convex optimisation problem and can therefore be solved by hill-climbing algo-
rithms.

The main disadvantage of the method is that the distribution chosen is based
on the implicit maximum entropy assumption, which may yield unintended re-
sults in case parts of the distribution are heavily underspecified. Furthermore,
the set of constraints can still be inconsistent, so there is no distribution to choose
from in this case. Finally, the logic does not make it possible to capture general
statistical first-order information in a satisfactory way.

3.3.2 Markov Logic Networks

A straightforward solution to the problem of inconsistent constraints is to di-
rectly consider the weights as model definition, instead of using probabilistic
constraints. This approach is taken by Markov logic networks (MLNs) [130]. MLNs
also tackle the problem of how to encode general first-order statistics, but in a
quite pragmatic way. Compared to Paskin’s logic, this is achieved by treating
formulas with variables differently. Using a sentence such as ∀H buglary(H) →
alarm(H) as feature means that possible worlds were only a single burglar does
not cause an alarm are as unlikely as world in which no burglar does. To solve
this, in MLNs all possible groundings are considered as separate features, which
however have the same weight. As we make the assumption of a finite number
of objects in the domain of discourse here, the number of possible groundings is
finite as well.

The problem is actually related to the expressiveness problem pointed out
by Halpern [63] and Bacchus [6], discussed in Section 3.2. Instead of constrain-
ing the probability of a sentence such as P

(
∀H burglary(H) → alarm(H)

)
= p,

the MLN approach can be seen as constraining the probability for each single
grounding of H, which could be written as ∀H P

(
burglary(H)→ burglary(H)

)
=

p. In the latter case the probability of possible worlds decreases gradually with
the number of burglars causing no alarm.
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A MLN therefore consists of a number of sentences s1, . . . , sn with associated
weights w1, . . . , wn together with a finite set of objects as domain of discourse.
The probability distributions over possible worlds is then defined as:

P(ω)
def
=

exp
( n

∑
i=1

winsi (ω)
)

∑
ω∈Ω

exp
( n

∑
i=1

winsi (ω)
) (3.6)

The distribution is similar to the distribution of Paskin’s approach (Equation 3.5),
except that the indicator function 1s is replaced by the function ns, which gives
the number of true groundings of s in the possible world given as argument.

MLNs are very popular and very powerful in particular in case the number
of objects is fixed and weights are learned from data. It is also considered as
an advantage that new weighted sentences can just be added to an existing
knowledge base and the knowledge base remains consistent in each case. There
are however some severe drawbacks. In case the number of objects changes,
learned weights are not valid any more; the predictions can in fact be changed
arbitrarily by adding irrelevant objects [103, 75]. Another problem is that MLNs
are not very interpretable and therefore less suited as knowledge representation
language. The probability of a sentence can in general not be derived from its
weight, but may depend also on the weights of other sentences. The issues are
illustrated by the following example.

Example 3.4
We consider the burglary example again and start with a simple propositional
model. If we want to model the fact that the probability for a burglar is 0.01,
we have to assign the weight of ln(0.01) to the sentence burglary. However, the
probability of burglary is changed in case more sentences are added to the theory.
Suppose we for example add the sentence burglary→ alarm with weight 1.0 and
compute the weights of the four possible worlds:

burglary, alarm : v1 = exp
(

ln(0.01) + 1.0
)

¬burglary, alarm : v2 = exp
(
1.0
)

burglary, ¬alarm : v3 = exp
(

ln(0.01)
)

¬burglary, ¬alarm : v4 = exp
(
1.0
)

From this we can compute the probability of burglary as:

P(burglary) =
v1 + v3

v1 + v2 + v3 + v4
≈ 0.0068

So the probability whether there is a burglar cannot be derived directly from a
single weight, but one has to consider the combination of all related weights. In
case we would add the sentence alarm, the probability of burglary also depends
on the weight on that sentence, even though the relation between those sentences
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can only be seen by considering the implication. In realistic models the relations
are usually much more complex. This makes MLN models hard to interpret.

Consider the following first-order version of the burglary model:

−4.6 : burglary(H)

1.0 : burglary(H)→ alarm(H)

1.0 : earthquake→ alarm(H)

Such model only has a meaning if we fix the the number of houses. In case we
consider a single house only, the probability of burglary is about 0.00738, in case
we consider ten houses it is about 0.00686, in case we consider twenty houses it
is about 0.00683 and so on. This illustrates that in general MLN models are only
valid for a fixed number of objects and generalise badly.

3.3.3 Continuous Distributions

The concept of maximum entropy distributions can in principle also be applied
to continuous distributions by replacing the sum by integration in Equation 3.4.
The challenge is however how to define the features of a log-linear model, which
is required to make finding maximum entropy distributions practical. Binary
features do not carry enough information about continuous distributions. In fact
the probability that a continuous function takes a point value, expressed as state-
ment earthquake = x, has always probability 0.0 in case earthquake is distributed
according to any common continuous PDF. Actually, with the statement above,
one intuitively wants to express that the probability decreases with increasing
difference between earthquake and x. Yu and et al. [160] suggest using continuous
features, which however makes it hard to find the maximum entropy distribu-
tion.

An extension of Markov logic has been proposed [156], which makes use of
numeric features, additional to binary ones. The authors propose to interpret a =
b as −(a− b)2, which introduces a Gaussian penalty for the difference between
a and b. The authors also propose possible translations of inequalities. Those
translations are more or less arbitrary and make implicit assumptions about the
underlying distribution. The general concept of arbitrary numeric features is
very expressive, but makes theories hard to interpret.

Example 3.5
Consider the following hybrid MLN:

w : earthquake = 0.5

Which is actually sugar for:

w : − (earthquake− 0.5)2
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This makes earthquake normally distributed with mean 0.5 and a standard devia-
tion dependent on the weight (1/

√
2w). As for discrete MLNs, in case the theory

includes more sentences, the distribution is affected by the other sentences and
the number of objects.

3.4 first-order bayesian networks

A commonly used method to define precise probability distributions, is to de-
fine it in independent pieces instead of defining the entire distribution at the
same time. Concretely, probability measures are usually defined by defining lo-
cal (conditional) distributions together with an encoding of assumptions about
the measure’s structure, usually in terms of (conditional) independencies. For
instance, a BN fixes (conditional) probabilities of a number of random variables.
This, together with the graph’s structure, fixes the probability of all events and
therefore defines a single probability measure. Here, we discuss ways to also
achieve this similarly with logic.

3.4.1 Probabilistic Functional Programming

A way to ensure a unique distribution is to use functions only. If one has given
definitions for a number of dependent functions, the value of each function ap-
plication is uniquely determined. Here that functions are dependent means, that
function symbols of some functions can be used in the definition of other ones.
This is the same principle as used by ordinary functional programming lan-
guages. If we assume an independent probabilistic choice for the definition of
each function, this defines a single joint probability distribution, similarly to a
BN. As in BNs, the distribution is only well defined in case there are no cyclic
dependencies.

Unlike LP, functional programming can be seen is a subset of FOL, although
practical languages also come with facilities to help writing actual programs, as
type systems and ways to define data structures. Also functions are required to
be unambiguously defined to eliminate the indeterminateness immanent to FOL,
which is in actual languages enforced by providing special syntax to define func-
tions, such as case statements. Probabilistic functional languages furthermore
make use of functions yielding probability distributions instead of probability
distributions over functions, providing a more compact and intuitive represen-
tation, which is however equally expressive. There are several languages based
on this idea, such as Church [57], BLOG [102] and Figaro [120] though not all of
them realise the concept in a pure way.

Example 3.6
In the example we use syntax which does not directly correspond to any ac-
tual language, but is representative for this family of languages. The probability
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distribution of the function alarm could be defined by functions yielding distri-
butions as:

burglary = {0.01 : true, 0.99 : false}

alarm =

{
{0.99 : true, 0.01 : false} if burglary = true

{0.02 : true, 0.98 : false} if burglary = false

Both distributions above have to be seen as independent. The probability of
alarm = true is 0.01 · 0.99 + 0.99 · 0.02 = 0.0297.

Formally, suppose we have n function labels f1, . . . , fn. For the i-th function there
are mi possible definitions Di = {di1, . . . , dimi}, with associated probabilities
pi1, . . . , pimi . We can define an event, equivalent to a sentence s, as a special case
of Equation 3.1:

es
def
= {d1 ∈ D1, . . . , dn ∈ Dn | f1 ≡ d1 ∧ · · · ∧ fn ≡ dn |= s} (3.7)

The sentence s here can be some statement about the functions, e.g. f (v) = w
and f (v) = g(v). We use the notation f ≡ d to indicate that the function with
label f obeys definition d. The probability of one assignment of function defini-
tions is the product of the associated probabilities, as we assume the choices of
definitions to be independent:

P(f1 ≡ d1 ∧ · · · ∧ fn ≡ dn)
def
= p1 · · · · · pn (3.8)

Here each pi is the probability associated with definition di. The probability of
an event is then the sum of all those probabilities:

P(es)
def
= ∑

ω∈es

P(ω) (3.9)

First-order models can be defined by using variables in function definitions, as is
commonly done in all programming languages. The variables are implicitly uni-
versally quantified, which actually expresses that the same definition holds for
all values of the variables. So in contrast to MLNs, the model generalises to an
arbitrary number of objects. Statistical information however cannot straightfor-
wardly be expressed in this way, as discussed in Section 3.2. However, given the
guarantee that functions are defined unambiguously, provided by functional lan-
guages, it is not possible to add inconsistent knowledge. Practically, observations
about particular objects are treated as observations updating the distribution de-
fined by the model.

Example 3.7
The function alarm can be defined for multiple houses as:

alarm(H) =

{
{0.99 : true, 0.01 : false} if burglary(H) = true

{0.02 : true, 0.98 : false} if burglary(H) = false
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The variable H has to be considered as being implicitly universally quantified.
This definition then actually means that the probability for an alarm depend-
ing on burglary is the same for all houses. As discussed before, this does not
properly encode statistical information about randomly selected houses, but ob-
servations about particular houses can be used to update the distribution over
all houses defined above.

3.4.2 Probabilistic Logic Programming

LP provides another way to avoid indeterminateness. As functional program-
ming guarantees that each function application has a unique value, a LP theory
unambiguously defines which predicates are true and false (this is the basic
assumption we make in Section 2.1.3). So LP can also be taken as a basis for
precise probability distributions and has compared to the functional approach
the advantage that it is for some domains more suited as knowledge represen-
tation tool. Probabilistic LP is well studied and there are a large number of
concrete languages and implementations, for instance ICL [122], PRISM [138],
ProbLog [125] and causal probabilistic logic (CP-logic) [152]. We introduce Sato’s
distribution semantics [137], which is the most basic probabilistic LP semantics
with a rigorous development for an infinite number of objects in the domain of
discourse. Concrete languages have a number of extensions to support model
construction, which are not discussed here in detail (see [40] for a detailed dis-
cussion of differences of concrete languages).

The purpose of the distribution semantics is to extend the semantics of LP
towards a probabilistic semantics by guaranteeing the existence of a unique
probability distribution consistent with Kolmogorov’s probability axioms. The
key property here is the fact that logic programs always have a unique model.
Sato uses the traditional least model semantics, but the concept can be gener-
alised to all programs for which some kind of unique model can be defined.
Suppose we split program L into rules R and facts F, i.e. L = F ∪ R. Facts are
rules with an empty body and we assume that facts never occur as the head
of a rule. The semantics assume a probability measure on facts, so facts are
considered as being binary random variables, taking values true or false. This
distribution can uniquely be extended to all predicates defined by rules R. Con-
crete languages usually require to define the measure on facts by independent
probabilities, however without loss of generality, as dependencies can be intro-
duced by the structure of the rules and additional auxiliary facts. This concept
is illustrated in Figure 3.2. A grounded program, i.e. a program in which each
variable is replaced by all possible ground terms, potentially includes an infi-
nite, but countable, number of ground facts. For instance, a probabilistic process
could include random variables representing whether it rains on particular days
(a fact) for an infinite number of future days. First-order models can therefore be
defined in the same way as in the functional approach discussed above: one can
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state prior probabilities for all possible objects, but not properly state statistical
information about randomly selected objects.

Independent Probability Measures (PF)

P1

p11 : ω11
p12 : ω12
p13 : ω13

. . .

P2

p21 : ω21
p22 : ω22
p23 : ω23

. . .

P3

p31 : ω31
p32 : ω32
p33 : ω33

. . .

· · ·

Probability Measure

p1 : ω1
p2 : ω2
p3 : ω3
p4 : ω4

Rules (R)

Conclusions

PF, R |= P(s | O) = p

Question (s)
+

Observations (O)

Figure 3.2: Distribution Semantics Illustration

Associated to the distribution on the facts we have a sample space ΩF, where
each element is a potentially infinite sequence of Boolean values indicating the
truth value of all facts. The truth value of each literal in L is determined by such
a truth assignment and we can therefore speak of the model associated with an
element ωF ∈ ΩF and denote it by ML(ωF). Given a probability measure PF
defined on the event space, which is the powerset of ΩF, it is possible to extend
this distribution to all atoms occurring in the program in a unique way. We refer
to the resulting distribution as PL. The used sample space ΩL is defined similarly
as the event space of the facts, but includes all atoms. The event space is again
the sample space’s powerset. We show formally how a probability measure on
a potentially infinitely large event space can properly be defined in detail, as
the work in the thesis makes use of the same idea. The construction is based on
finite measures restricted to the first n atoms, which can then be extended to a
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measure on the infinite event space using the extension theorems of probability
measures [110, III.3]. A finite measure on the first n atoms is defined as:

Pn
L (ω

n
L)

def
= PF

(
{ωF ∈ ΩF | ML(ωF) |= ωn

L}
)

(3.10)

Here we use an element ωL of the sample space as a logical formula representing
a conjunction that determines for each atom whether it is true or false. The event
of which the probability is computed here is similar to the one in Equation 3.1,
except that only the fact-part of the sample space is considered. For each Pn

L
defined like this, Pn+1

L is compatible, which means:

∑
a∈{true,false}

Pn+1
L (ωn

L, a) = Pn
L (ω

n
L) (3.11)

Therefore, the finite probability measures construct a probability measure for the
infinite number of atoms.

The probability measure defined on all atoms makes it possible to compute
the probability of any arbitrary query sentence q by PL

(
{ωL ∈ ΩL | ωL |= q}

)
.

Probabilities of queries with finite grounding can be computed exactly, since
finite measures can be used then.

Example 3.8
We build the burglary model starting with independent probabilities on binary
facts:

P(burglary) = 0.01

P(alarm_if _burglary) = 0.99

P(alarm_if _no_burglary) = 0.02

We can then define the predicate alarm as:

alarm← alarm_if _burglary, burglary

alarm← alarm_if _no_burglary, not(burglary)

Table 3.3 shows all elements of the sample space on F, together with models and
probabilities associated with the elements. We can now compute, for instance,
the probability of alarm by summing over all cases in which alarm is included
in the model: P(alarm) = 0.000198 + 0.019602 + 0.009702 + 0.000198 = 0.0297.
In the same way we can compute the probability of other logical sentences. Ex-
amples are P(alarm ∧ burglary) = 0.009702 + 0.000198 = 0.0099 and P(alarm ∨
burglary) = 0.000198 + 0.019602 + 0.000098 + 0.000002 + 0.009702 + 0.000198 =
0.0298.

Finally, we also give a first-order version of the model:

∀H P
(
burglary(H)

)
= 0.01

∀H P
(
alarm_if _burglary(H)

)
= 0.99

∀H P
(
alarm_if _no_burglary(H)

)
= 0.02
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ωF = ML(ωF) PL(ωF)

(burglary,

alarm_if _burglary,

alarm_if _no_burglary)

(false, false, false) {} 0.009702

(false, false, true) {alarm_if _no_burglary, alarm} 0.000198

(false, true, false) {alarm_if _burglary} 0.960498

(false, true, true) {alarm_if _burglary,
alarm_if _no_burglary, alarm}

0.019602

(true, false, false) {burglary} 0.000098

(true, false, true) {burglary, alarm_if _no_burglary} 0.000002

(true, true, false) {burglary, alarm_if _burglary, alarm} 0.009702

(true, true, true) {burglary, alarm_if _burglary,
alarm_if _no_burglary, alarm}

0.000198

Table 3.3: Distribution Semantics Example

alarm(H)← alarm_if _burglary(H), burglary(H)

alarm(H)← alarm_if _no_burglary(H), not(burglary(H))

In the rules, the variable H is universally quantified, which is implicit in LP rules.
One could define a rule representing that there is an alarm in a house and all
next houses:

all(H)← alarm(H), all(next(H))

This defines a probability distribution for all houses a,next(a),next(next(a)),. . . .

3.4.3 Continuous Distributions

The directed way of defining distributions, can also be extended to continuous
distributions. Distributions can be defined by PDFs or conditional PDFs, mean-
ing that the parameters of the PDFs depend on the value of other random vari-
ables. As an example, we briefly discuss distributional clauses (DC) [61], which
builds upon a generalisation of the distribution semantics. The language explic-
itly introduces random variables, to conveniently represent distributions with
multiple states, which are potentially continuous. Inference is not possible in an
exact way and is therefore based on sampling.
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Example 3.9
Recall the deterministic burglary program from Example 2.9:

alarm(H)← burglary(H)

alarm(H)← earthquake(E), 〈E > 5.5〉

With DC we can model the problem in a very similar way, except that prior
distributions are required:

burglary(H) ∼ [0.01 : yes, 0.99 : yes]

earthquake ∼ gamma(1.0, 2.0)

alarm(H)←'burglary(H) = yes

alarm(H)←'earthquake > 5.5

Here burglary(H) is a random variable with two possible states. In the rule it is
used together with ', which maps a random variable to its value. Continuous
random variables are used in the same way, such as earthquake in the example.
The distribution is in this case defined by a commonly used PDF.

An example of a conditional continuous distributions, is a measure of the
earthquake’s strength, which depends on the actual strength, but introduces
some (Gaussian) error:

measure ∼ gamma('earthquake, 1.0)

All languages allowing to define precise and continuous distributions basically
share the same drawbacks. Firstly, one is forced to choose an appropriate PDF
and parameters to describe the distribution, which usually requires data, as it is
even harder for humans to estimate than discrete probabilities. The main techni-
cal drawback is that marginal probabilities are usually not computable, but can
only be approximated.

3.5 discussion

In this chapter we discussed and compared several ways to combine logics with
probability theory. The main insight is, that making such combination practi-
cal requires balancing pragmatics with expressivity. An intuitive representation
of probability distributions and preventing inconsistencies is only possible by
forcing a very structured way of assigning probabilities to logical statements.

Languages providing such structure are actually similar to BNs, with the dif-
ference that they are first-order. One restriction is however that such language
cannot properly encode general statistical knowledge, which can however prag-
matically be solved by viewing a probability on a first-order statements as in-
dependent probabilities on all possible groundings and allow updating knowl-
edge by conditioning on evidence only. Another restriction, shared with all for-
malisms defining a unique probability distribution, is that, as soon as ranges of
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variables become infinitely large, probabilities cannot be computed exactly any
more, but one has to rely on approximation methods, not providing any ratio-
nal guarantee on the quality of results. Logics in general however often allow to
draw rational conclusions, i.e. they provide sound inference, also for the case that
infinite ranges are involved. We will further deal with this issue in the thesis.





4
A N E W P R O B A B I L I S T I C C O N S T R A I N T L O G I C

In this chapter we introduce the novel language Probabilistic Constraint Logic Pro-
gramming (PCLP).

4.1 in favour of imprecise probabilities

In contrast to most recent probabilistic logic languages, the work of this thesis
considers imprecise rather then precise probability distributions. As discussed,
imprecise probabilities are very useful in case no precise probabilities are known.
The main reason to use imprecise probabilities in this work is however that some
statements about probabilities on an infinite number of possible worlds, which
cannot be decided in a precise setting, can be in an imprecise setting. As an
example consider the statement P(a < 1) = 0.1 ∧ P(a > 1) = 0.9. From this one
can conclude P(a > 0) ≥ 0.9 and P(a < 0) ≤ 0.1, without having to resort to
approximation methods as sampling.

While employing imprecise probabilities, we want to avoid the disadvantages
of other imprecise methods. First of all, we want that our language remains
decidable (at least if considering a finite number of random variables), in con-
trast to the most general probabilistic logics, but also in contrast to defining a
point distribution on continuous variables by means of probability density func-
tions (PDFs). Also, we want the guarantee that definitions are always consistent,
as provided by most recent languages, but unlike defining credal sets by putting
arbitrary probabilistic constraints on sentences. Finally, we desire that the infer-
ence complexity compared to precise probabilistic reasoning is increased as less
as possible. Concretely, inference should be in the same complexity class, which
is for instance not the case for locally defined credal networks (LDCNs).

We introduce a novel language, PCLP, which possesses all those properties.
The inference complexity is compared to existing methods in Figure 4.1. Here
inference complexity increases from left to right. On the right side there are
undecidable methods. On the left side we have precise distributions. PCLP is
placed just right of precise distributions. It is more expressive, as it supports
certain kinds of imprecise reasoning, but remains in the same complexity class.
It is nevertheless more complex in terms of complexity parametrised by the
problem structure (Section 5.3.2). Decidable imprecise formalisms, as LDCNs,
are more expressive, at the price of increased inference complexity.

53
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PP NPPP undecidable

finite, precise distribu-
tions

PCLP
independently defined
credal sets

finite, imprecise distri-
butions

infinite distributions
general probabilistic
logic [63]

Figure 4.1: Complexity of Probabilistic Reasoning Methods

4.2 assigning probability mass to events

We first give an overview of the basic idea PCLP is based on, before we introduce
the language formally. Credal sets in PCLP are defined by splitting the entire
probability mass of 1.0 into a finite number of pieces and assign it to events. To
assign probability mass to an event means, that the probability mass is somehow
distributed over that event.

Example 4.1
Assume we have a single random variable with the real numbers as range and
assign some probability mass to the set of all values between 1 and 3. Figure 4.2
depicts some possible ways of how the probability mass can be distributed: it
can be distributed uniformly over the entire set (Figure 4.2a) or only parts of it
(Figures 4.2b and 4.2c) or distributed in a more complex manner (Figure 4.2d).
These are just a few examples; there are actually uncountably many ways to
distribute the probability mass over that set.

1 3

(a)

1 3

(b)

1 3

(c)

1 3

(d)

Figure 4.2: Examples of Possible Distributions of Probability Mass over all Real Values
Between 1 and 3

As there are multiple possible ways in which the probability mass can be dis-
tributed, this implies that this does not define a unique probability distribution,
but a credal set. The credal set is however never empty, which is a consequence
of splitting the probability mass, instead of assigning arbitrary probabilities to
events. Furthermore, in case the number of probability assignments is finite,
computing probabilistic bounds on events is decidable.
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Example 4.2
Consider the following constraint logic program:

q← 〈V1 ≥ 0〉

Suppose we define the probability distribution of V1 by assigning a probability
mass of 0.1 to the set of all values smaller than −1 (Set 1), 0.3 to the closed
interval [−1, 1] (Set 2) and 0.6 to the set of all values larger than 1 (Set 3). It is
clear that no matter how the probability mass is distributed over the values in
Set 1 the probability that q can be derived is always 0.0. For Set 2 the probability
could be 0.0 in case all probability mass is distributed to values below 0.0, or 0.3
in the opposite case. For Set 3 the query can always be derived, no matter how
the probability mass is distributed. We conclude that the probability of q is at
least 0.6 and at most 0.9.

For encoding the structure of problems, we use the idea of the distribution se-
mantics. Independent credal sets are combined by deterministic rules, as shown
in Figure 4.3. This makes inference as complex as precise probabilistic inference.
In contrast to defining independent credal sets, for instance LDCNs define con-
ditional credal sets independently. However, to handle those conditional depen-
dencies during inference, it has to be decided which extreme probability points
lead to extreme probabilities for other random variables, which cannot be done
independently. This makes inference NPPP-complete. In contrast, inference for
PCLP remains in PP, as will be proven later in this thesis (Section 5.3.1).

4.3 motivating examples

To illustrate the expressive power of the new language PCLP, a few typical ex-
amples are presented.

4.3.1 Fruit Selling

We start with an example concerning the likelihood that consumers will buy
a certain kind of fruit, based on [11]. Since we have a first-order formalism,
this generalises easily to an arbitrary number of kinds (in the example: apples
and bananas). The main goal is to show how PCLP can deal with continuous
distributions.

Yield of fruit is clearly relevant for its price. We model the yield of fruit with
normally distributed random variables (denoted by a string starting with an
upper case letter and in bold):

Yield(apple) ∼ N (12 000.0, 1000.0)

Yield(banana) ∼ N (10 000.0, 1500.0)
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Independent Credal Sets

P1

P11

p111 : ω11
p112 : ω12
p113 : ω13

. . .

P12

p121 : ω11
p122 : ω12
p123 : ω13

. . .

· · ·

P2

P21

p211 : ω21
p212 : ω22
p213 : ω23

. . .

P22

p221 : ω21
p222 : ω22
p223 : ω23

. . .

· · ·
· · ·

Combined Credal Set

P1

p′11 : ω1
p12 : ω2
p′13 : ω3

. . .

P2

p′21 : ω1
p22 : ω2
p′23 : ω3

. . .

P3

p′31 : ω1
p32 : ω2
p′33 : ω3

. . .

· · ·

Rules (R)

Conclusions

PF, R |= P(s | O) ∈ [p, p]

Question (s)
+

Observations (O)

Figure 4.3: PCLP Semantics Illustration

The price is also influenced by government support, which is modelled by dis-
crete random variables:

Support(apple) ∼ {0.3 : yes, 0.7 : no}
Support(banana) ∼ {0.5 : yes, 0.5 : no}

The basic price linearly depends on the yield, which is expressed as a determin-
istic logic fact:

basic_price(apple, 250− 0.007 · Yield(apple))

basic_price(banana, 200− 0.006 · Yield(banana))
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In case the price is supported it is raised by a fixed amount:

price(Fruit, BPrice + 50)← basic_price(Fruit, BPrice), 〈Support(Fruit) = yes〉
price(Fruit, BPrice) ← basic_price(Fruit, BPrice), 〈Support(Fruit) = no〉

Fruit is a logical variable (not denoted in bold) which can take kinds of fruit, e.g.
apple and banana, as possible instantiations. Here we make use of the special pred-
icate 〈〉, which represents probabilistic events; for example, 〈Support(Fruit) =
yes〉 is true in case the random variable Support(Fruit) takes the value yes. In
constraint logic programming (CLP) [72] a similar predicate is used to represent
constraints.

At which maximum price customers still buy a certain fruit is modelled by a
gamma distribution:

Max_price(apple) ∼ Γ(10.0, 18.0)

Max_price(banana) ∼ Γ(12.0, 10.0)

Thus, a customer is willing to buy in case the price is equal to or less than the
maximum price, which can be expressed by the following first-order rule:

buy(Fruit)← price(Fruit, P), 〈P ≤ Max_price(Fruit)〉

The interesting question to ask given this knowledge base is whether customers
buy a certain fruit. As it is uncertain which of the events, specified by the oc-
currences of 〈〉, actually occur, the only answer we can give is how likely such
statements are, e.g. P(buy(apple)) or P(buy(apple) ∨ buy(banana)). Another possi-
ble question is what the probability is that customers buy apples given that we
know what the least maximum yield will be, e.g. P(buy(apple) | 〈Yield(apple) ≥
10 000.0〉).

Note that such probabilities cannot be computed exactly, as they require com-
puting probabilities of linear inequalities between different kinds of continuous
distributions, which is in general not computable. The work of this thesis how-
ever, allows one to determine approximations with known maximum errors, for
example:

P
(
buy(apple)

)
≈ 0.464± 0.031

P
(
buy(banana)

)
≈ 0.162± 0.031

P
(
buy(apple) ∨ buy(banana)

)
≈ 0.552± 0.054

The maximum error is determined by the used approximation scheme and can
be made arbitrarily small, as explained in Section 4.5.2.5.

4.3.2 Diabetes Mellitus

The next, medical example shows how PCLP can be used to model problems
involving continuous distributions as well as imprecise probabilities. The latter
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means one uses bounds rather than precise probability estimates, which is a way
to handle situations concerned with insufficient data to reliably estimate proba-
bilities. Such situations frequently occur in clinical research. A possible approach
in such cases is to express uncertainty about probabilities by yet another proba-
bility distribution, i.e. using second-order probability distributions. In contrast,
the approach of imprecise probabilities assumes that all possible probabilities
within the specified range are possible, but furthermore expresses complete ig-
norance of what the actual probability is. So imprecise probabilities relieve from
specifying a second-order distribution, which requires knowledge or an amount
of data not always available, at the price of making a hard choice of which prob-
abilities are possible and which are not.

The example concerns diabetes mellitus type 2, which is a complex disorder
in which several metabolic control mechanisms are disturbed. A first step in its
treatment is to regulate the glucose metabolism. In diabetic patients glucose, al-
though present in abundance in the extracellular fluid with the exception of the
cerebrospinal fluid, is unable to cross the cellular membrane and cells therefore
lack their usual energy resource (often called “starvation amidst abundance”).
A standard test to check the quality of glucose control is the measurement of
fasting blood glucose levels. Furthermore, the levels of glycated hemoglobin
(HbA1c) offer insight into the effectiveness of long-term (8 to 12 weeks) glu-
cose control. Clearly, the fasting blood glucose and HbA1c measurements are
related, although only on average.

While type 2 diabetes is mostly related to lifestyle-related factors, recent bio-
medical research indicates that various genetic factors play a role in its onset.
In [148], familial risk of type 2 diabetes was classified as average, moderate, or
high. In the US population, 69.8% were in the average, 22.7% in the moderate,
and 7.5% in the high familial risk group. In PCLP this can be represented as
follows:

Predisposition ∼ {0.698 : average, 0.227 : moderate, 0.075 : high}

According to [148], the crude prevalences of diabetes within each risk category
was between 5.4% and 6.6% in the average risk group, between 13.1% and 16.7%
in the moderate risk group, and between 26.6% and 33.6% in the high risk group.

DM_if_AverageRisk ∼ {0.054 : yes, 0.934 : no}
DM_if_ModerateRisk ∼ {0.131 : yes, 0.833 : no}
DM_if_HighRisk ∼ {0.266 : yes, 0.664 : no}

The imprecision in these conditional probabilities is encoded by leaving part of
the probability mass unspecified; e.g. for the high risk group, at least 0.266 of
the probability mass is in the yes state, 0.664 is in the no state, and the remainder
is unspecified.
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An atom dm can be defined to indicate whether a patient suffers from diabetes
by defining logical clauses for each case of Predisposition:

dm← 〈DM_if_AverageRisk = yes〉, 〈Predisposition = average〉
dm← 〈DM_if_ModerateRisk = yes〉, 〈Predisposition = moderate〉
dm← 〈DM_if_HighRisk = yes〉, 〈Predisposition = high〉

We can now compute, for example, a probability range for the probability of
diabetes which yields: 0.087379 ≤ P(dm) ≤ 0.109177.

To illustrate a combination with continuous variables, suppose the level of
glucose is represented by two normal distributions N (µ, σ2), where µ and σ
denote the mean and standard deviation for the cases where the patient either
has or does not have diabetes:

Gluc_if_DM ∼ N (7.5, 3.8)

Gluc_if_not_DM ∼ N (5.79, 0.98)

Another continuous variable can be used to represent the level of HbA1c, which
we assume to linearly depend on the level of glucose plus some noise which de-
pends on whether the patient is a diabetic. The noise variables can be modelled
by two random variables, after which HbA1c can be defined:

Noise_if_DM ∼ N (0.0, 3.3)

Noise_if_not_DM ∼ N (0.0, 0.3)

hba1c(1.4 + 0.92 ·Gluc_if_DM + Noise_if_DM) ← dm

hba1c(0.6 + 0.9 ·Gluc_if_not_DM + Noise_if_not_DM)← not(dm)

Using this representation, it is possible, for instance, to compute bounds on the
probability of diabetes given that the level of HbA1c is larger than 7.2. This
evidence can be encoded using the following clause:

e← hba1c(H), 〈H > 7.2〉

The following probability bounds can then be computed:

0.416 ≤ P(dm | e) ≤ 0.554

Note that the imprecision results from the fact that we use imprecise proba-
bilities, as well as from the fact that continuous distributions are approximated.
Again, a better approximation can be found by investing more computation time.

4.3.3 Running Example: Fire on a Ship

As a final example, we introduce a short case description, which will be used
to illustrate several concepts throughout this chapter. Suppose there is a fire in
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a compartment of a ship. The heat causes the hull of that compartment to warp
and if the fire is not extinguished within 1.25 minutes the hull will breach. After
0.75 minutes the fire will spread to the compartment behind. This means that if
the fire is extinguished within 0.75 minutes the ship is saved for sure:

saved← 〈Time_Comp1 < 0.75〉

In the other compartment the hull will breach 0.625 minutes after the fire breaks
out. In order to reach the second compartment the fire in the first one has to be
extinguished. So both fires have to be extinguished within 0.75 + 0.625 = 1.375
minutes. Additionally, the fire in the first compartment has to be extinguished
within 1.25 minutes, because otherwise the hull breaches there. The second com-
partment is however more accessible, such that four fire-fighters can extinguish
the fire at the same time, which means they can work four times faster:

saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 ·Time_Comp2 < 1.375〉

Suppose further that the time durations required to extinguish the fires are ex-
ponentially distributed:

Time_Comp1 ∼ Exp(1)

Time_Comp2 ∼ Exp(1)

The interesting question here is how likely it is that the ship is saved, i.e. P(saved).

4.4 syntax

PCLP can be seen as a template language, leaving the choice of which constraint
theories to fill in. So we discuss the syntax in two steps: First, we discuss con-
straint theory agnostic rules (Section 4.4.1). Then, we give some examples of con-
straint theories, which can be used to form a concrete language (Section 4.4.2).

4.4.1 Constraint Theory Agnostic Rules & Random Variable Definitions

An overview of the PCLP syntax is given in Table 4.1. In the logical language,
we use logic programming (LP) rules extended with constraints, similar to CLP, as
discussed in Section 2.1.3.2. Elements of rule bodies may consist of both literals
and constraints of the form 〈ϕi〉. We define credal sets by a number of random
variable definitions. Random variable definitions define credal sets for groups of
random variables, such that the definition of each random variable depends only
on a finite number of other ones. Definitions have the form:

(V1, . . . , Vn)(X1, . . . , Xm) ∼ {p1 : ϕ1, . . . , pl : ϕl},

where each Vi is a random variable label, Xi is a parameter, pi is a probability
and ϕi is a constraint. This intuitively means that a piece of the entire probability
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Concept Syntax

Random Variable Definition (V1, . . . , Vn)(t1, . . . , tm)∼{p1 : ϕ1, . . . , pl : ϕl}
Rule h← b1, . . . , bn

Constraint ϕi constraint (e.g. V ∈ {a, b}, V ≤ W)

Body Element bi ai, not(ai) or 〈ϕi〉
Atom ai q(t1, . . . , tn)

Predicate q some predicate name (starting with lower
case)

Term ti some Prolog term (e.g. a, 3, a(b, 3)), may con-
tain logical variables (e.g. a(X))

Logical Variable Xi some variable name (starting with upper
case)

Random Variable Vi some random variable name (starting with
upper case, bold)

Probability pi number in the range [0.0, 1.0]

Table 4.1: PCLP Syntax Overview

mass pi is assigned somehow to the event represented by ϕi, following the idea
discussed previously.

The random variable definitions define random variables

V1(X1, . . . , Xm), . . . , Vn(X1, . . . , Xm),

for all groundings of X1, . . . , Xm. All labels have the same parameters to make
sure all Xi are ground in case a single ground instance of one of the defined
random variables is used in the program. There must be at least one random
variable label in the list and all labels must be distinct. If there is only one, the
brackets may be left out.

Example 4.3
A single random variable, representing the temperature, could for instance be
defined as:

Temperature ∼ . . .

We can also define random variables representing the temperature of all in-
finitely many future days as:

Temperature(Day) ∼ . . .
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We can finally define the temperature and humidity together, which makes sense
in case they are modelled by a multivariate distribution, i.e. the dependency
between the random variables cannot be expressed by the logical structure:

(Temperature, Humidity)(Day) ∼ . . .

In case multiple definitions concern the same random variable, the definition
occurring first in the program defines the variable. Labels occurring together in
a definition can only occur in another definition in an identical list of labels, to
make sure all random variables are always defined unambiguously.

Example 4.4
Suppose we want to specify distributions for the temperature on future days,
but want to make an exception for Day 0. We could do this as follows:

Temperature(0) ∼ . . .

Temperature(Day) ∼ . . .

The second line would define Temperature(0) as well, but it is not used in this
case because the special definition for Day 0 occurs first.

The following definition is invalid:

Temperature(Day) ∼ . . .

(Temperature, Humidity)(Day) ∼ . . .

Temperature is already defined by the first line; the definition in the second line
may contradict that definition.

A random variable definition

(V1, . . . , Vn)(X1, . . . , Xm) ∼ {p1 : ϕ1, . . . , pl : ϕl},

defines an n-dimensional credal set on:

V1(X1, . . . , Xm), . . . , Vn(X1, . . . , Xm)

Each pi is a real number between 0 and 1 and p1 + · · · + pl = 1. The ϕi are
constraint definitions using the Vi as placeholder for the random variables. Each
ϕi must be consistent, to make sure all probability mass is assigned to non-empty
events. The pi and ϕi can be expressions including X1, . . . , Xm.

Example 4.5
Consider the following valid definition:

Temp(Day) ∼ {0.2 : Temp < 0, 0.8 : Temp > 0}

The definition could also depend on the value of the logical variables Day:

Temp(Day) ∼ {0.2 : Temp < Day/1000, 0.8 : Temp > Day/1000}
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The definition is only valid if groundings for Day are restricted to numbers. It
actually expresses that the temperature in the future will increase on average.

Note that in the definitions in the examples (Section 4.3) we use syntactic sugar.
For example consider this definition from the examples:

DM_if_HighRisk ∼ {0.266 : yes, 0.664 : no}

The idea of those kinds of definitions is that they leave part of the probability
mass out to express imprecision. The above definition is actually an abbreviation
for:

DM_if_HighRisk ∼
{

0.266 : DM_if_HighRisk = yes,

0.664 : DM_if_HighRisk = no,

0.07 : DM_if_HighRisk ∈ {yes, no}
}

Definitions can also be continuous distributions, such as N (0.0, 1.0). This can be
seen as infinite definitions. In such a case, only approximations by finite defini-
tions are computable, as will later be discussed in Section 4.5.2.5.

4.4.2 Constraint Theory Examples

PCLP can be based on arbitrary constraint theories under mild restrictions. Those
restrictions will later be discussed in detail in Section 4.5.2.4, but a large class of
practically useful constraints, such as inequalities on integers or real numbers,
fulfil that requirement. We refer to an instance of PCLP based on constraint lan-
guage Constr as PCLP(Constr). In this chapter we make use of two constraint
theories which were already used in the examples before: real numbers (R) and
discrete constants (D). In the examples of Section 4.3 and further in this chapter
we use a combination and refer to the language as PCLP(D, R). The combination
of different theories is realised by assuming that a constraint theory is attached
to each variable. Statements about variables can only be made using the con-
straint language of the corresponding constraint theory attached. For example,
real-valued random variables cannot be compared to discrete ones. Constraints
of different theories can only be combined using logical connectives.

In the constraint theory D random variables take values of discrete constants.
The basic building blocks of the language are set membership (∈), its negation
(/∈) and their special cases equality (=) and inequality ( 6=). The constraint the-
ory is very similar to the finite domain constraint theory of CLP(FD) [66], with
the difference that we do not require to explicitly define the range. The range
of variables are all possible, countably-infinitely many constants. One can how-
ever effectively restrict the range by assigning probability mass to only a finite
number of constants. Using D, one can represent, for instance, Bayesian networks
(BNs) [119], but also first-order formalisms such as causal probabilistic logic (CP-
logic) [152].
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The R theory is basically the same as in CLP(R) [73]. Variables represent real
numbers and constraints consist of linear equalities and inequalities using pred-
icates such as =, 6=,<,>,≤,≥ , rational numbers as constants and functions
+,−, ·. One argument of the multiplication operator must be a constant to make
constraints linear and guarantee decidability. This theory can be used to approxi-
mate a large class of continuous distributions, as will be shown in Section 4.5.2.5.

4.5 semantics

We develop the semantics of PCLP based on a more general, abstract semantics.
For this we first generalise the distribution semantics and develop general condi-
tions under which exact inference is possible (Section 4.5.1). We then extend this
semantics with the idea of credal sets ensuring all discussed, novel properties
of PCLP (Section 4.5.2). Those properties are proven for the abstract semantics.
Based on those general results, we define the concrete semantics of PCLP and
show its properties (Section 4.5.3).

4.5.1 A Generalised Distribution Semantics

In this section we introduce a generalised distribution semantics, extending
Sato’s original distribution semantics to random variables with arbitrary, possi-
bly infinite ranges. While the original distribution semantics is defined for binary
probabilistic facts only, it can easily be generalised to random variables with finite
ranges, e.g. the implementation of the PRISM language supports such random
variables [139]. However, as soon as we deal with infinite ranges, the generalisa-
tion is semantically far from straightforward, in particular when the ranges are
uncountable. For example, grounding a real variable would lead to an uncount-
able number of ground atoms, for which the original distribution semantics does
not provide a well-defined probability distribution.

We tackle this problem by augmenting our logical formalism with special con-
straints, an approach also adopted by deterministic CLP [72] and satisfiability
modulo theories (SMT) solvers. This leads to an expressive language, where for
many queries there is no closed form expression to compute marginal probabil-
ities, i.e. exact inference is not possible. In the second part of this section, we
therefore also discuss sufficient conditions under which exact inference is possi-
ble in this extended language.

Note that the results of this section are not fundamentally different from
known solutions as offered by, for example, Hybrid ProbLog [60]. However, for
the first time we formalise such extension in a general way. As will become
clear, this more general theory will act as a basis for the more advanced work
discussed in the remainder of the thesis.
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4.5.1.1 Probability Distributions on Constraint Logic Programs

Whereas Sato’s distribution semantics assigns a joint probability distribution to
the ground atoms of a logic program using probabilistic facts, in the generalised
distribution semantics we make use of constraints to define this joint distribution.
Therefore, we make use of rules, which may include constraints, as introduced
in Section 4.4.1. We introduce a generalised distribution semantics for this con-
straint logical language.

constraint logic theories with probability measures The basic
idea of the language is to have countably many random variables

V = {V1, V2, . . .},

with ranges that are sets of elements with arbitrary properties, for example dis-
crete constants and real numbers. Hence, the number of random variables can
be infinite, similar to the original distribution semantics. Note that probabilities
of events involving an infinite number of variables may not be computable, but
we separate the semantics from the issue of performing inference in order to not
unnecessarily restrict the generality of the semantics.

Constraints ϕ will be looked upon as predicates on the state of the random
variables, i.e. ϕ is a function from V1 = v1, V2 = v2, . . . to {true, false} where vi
is an element in the range of Vi. Equivalently, each constraint can be seen as a
predicate on the sample space, as it corresponds to the random variables’ states.
The subset of the sample space where a constraint holds, is called the solution
space of the constraint.

Definition 4.1 (Constraint Solution Space). The solution space of a constraint ϕ
given sample space Ω is defined as:

CSS(ϕ)
def
= {ω ∈ Ω | V(ω) = v, ϕ(v)}

where V(ω) = v is shorthand for Vi(ω) = vi for all i.

Formally, we define constraint logic theories as follows.

Definition 4.2 (Probabilistic Constraint Logic Theory). A probabilistic constraint
logic theory T is a tuple

(V, ΩV,AV, PV, Constr, L),

where

• V = {V1, V2, . . .} is a countable set representing random variables with associ-
ated non-empty ranges {Range1, Range2, . . .} (we fix the enumeration such that
each random variable has an index);

• ΩV is the sample space of the random variables V defined as the Cartesian product
of the random variables’ ranges:

ΩV
def
= Range1 × Range2 × · · · ;
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• AV is an event space representing events concerning the random variables V;

• PV is a probability measure on the space defined above, thus (ΩV,AV, PV)
forms a probability space;

• Constr is a set of constraints, closed under conjunction, disjunction and negation,
such that:

{CSS(ϕ) | ϕ ∈ Constr} ⊆ AV,

i.e. the constraints correspond to events;

• L is a set of LP rules with constraints, as introduced in Section 4.4.1:

h← l1, . . . , ln, 〈ϕ1(V)〉, . . . , 〈ϕm(V)〉,

where ϕi ∈ Constr, 1 ≤ i ≤ m.

Note that since the sample space is defined by the Cartesian product of the
ranges, the random variables are simple projections of single tuple elements
of the sample space. So the solution space of an arbitrary constraint ϕ equals
{ω ∈ Ω | ϕ(ω)}.

In the remainder of this chapter, we abstract from the actual constraint lan-
guage used. In the examples, the language used to define constraints is only
meant as illustration. For example, if all Vi are continuous variables, then we
may write 〈∀i Vi+1 ≥ Vi〉 to express that Vi increases with i.

Example 4.6
Consider the running example of Section 4.3.3:

Time_Comp1 ∼ Exp(1)

Time_Comp2 ∼ Exp(1)

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉

Suppose that Time_Comp1 and Time_Comp2 are the only two random vari-
ables in the enumeration. The range of both variables are the real numbers:
Range1 = Range2 = R. The used constraint language includes at least linear
inequalities and the probability measure is such that the first two variables are
independently distributed according to an exponential distribution.

extending probability spaces to the entire theory While a theory
T defines a probability distribution over the random variables, the probabilities
of the events in the logical language are not specified directly. As in the original
distribution semantics, a probability distribution over the random variables can
uniquely be extended to a distribution over the entire program. We show how
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to extend the sample space, the event space and the probability measure, such
that it includes the atoms defined by the rules L as well.

The basic idea our generalisation is based on, is to look upon probabilistic
facts, occurring in rules in the original distribution semantics, as a special kind
of constraints, i.e. the probabilistic fact pf in a rule represents the constraint
that pf is true. In order to generalise this semantics for arbitrary constraints, we
extend the sample space by considering all atoms appearing in the logical theory
L. We assume that there is a countable number of atoms, treat them as random
variables taking values true or false and denote the set of all those atoms with A.
As for variables in V we fix the enumeration and define the sample space ΩL
being the Cartesian product of the values of all atoms:

ΩL
def
=
|A|

∏
i=1
{true, false} (4.1)

For the event space of the logic partAL, we can take the sample space’s powerset,
since the sample space is countable:

AL
def
= ℘(ΩL) (4.2)

The sample space for the entire theory ΩT is the Cartesian product of the sample
spaces for the random variables and the logical theory:

ΩT
def
= ΩV ×ΩL (4.3)

The event space of the entire theory AT is built as well from the event spaces
of the random variables and logical theory. Concretely, it is their tensor-product
σ-algebra:

AT
def
= AV ⊗AL (4.4)

The tensor-product σ-algebra AV ⊗AL is the smallest σ-algebra generated by the
products of elements ofAV andAL: σΩV×ΩL

(
{eV× eV | eV ∈ AL, eL ∈ AL}

)
. We

cannot simply use the product of both spaces, as such product is not necessarily
a σ-algebra.

Example 4.7
Consider the following event spaces:

AV =
{

∅, {a}, {b, c}, {a, b, c}
}

AL =
{

∅, {true}, {false}, {true, false}
}

The product {eV × eL | eV ∈ AV, eL ∈ AL} is then:{
∅, {(a, true)}, {(a, false)}, {(a, true), (a, false)},
{(b, true), (c, true)}, {(b, false), (c, false)},
{(b, true), (b, false), (c, true), (c, false)},
{(a, true), (b, true), (c, true)}, {(a, false), (b, false), (c, false)},
{(a, true), (a, false), (b, true), (b, false), (c, true), (c, false)}

}
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This product is no σ-algebra as for instance {(a, false)} ∪ {(b, true), (c, true)} is
not included. In the tensor product the minimal number of elements are added
to the product, such that it becomes a σ-algebra.

Finally, the probability measure PV is extended to a probability measure on the
entire theory yielding PT. The way this is achieved in the distribution semantics
builds upon the observation that determining truth values of the probabilistic
facts uniquely determines the truth values of all atoms in the entire theory. In
our generalised setting, we similarly observe that determining which constraints
hold uniquely determines the truth values of all atoms in the entire theory.

To formalise this notion, we will make use of the set satisfiable(ωV), which
includes all constraints which are satisfiable given a valuation ωV of the random
variables. We can interpret this set as a partial logic program, by assuming that
each constraint occurs as instantiation of the predicate 〈〉.

Example 4.8
Suppose that ωV = (0, . . .), i.e. the first random variable V1 takes value 0. Then
satisfiable(ωV) does not include 〈V1 > 0〉, but does include for instance 〈V1 >
−1〉.

An element of the sample space ωV therefore yields a LP theory, which is the
combination of the logical rules provided by the theory T and all satisfiable con-
straints: L ∪ satisfiable(ωV). As discussed in Section 2.1.3, there are different
ways to assign models to logic programs, but the goal is usually to have a single
unique model. We abstract from which class of programs and which declara-
tive semantics of LP are used; it is only required that each program has a unique
model. Thus, in the following we use ML(ωV) to denote the model given the the-
ory, value assignments to random variables and the chosen semantics, although
not necessarily the least Herbrand model.

Example 4.9
Consider again the rules of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉

The definition of the atom saved implies that it is true if and only if the constraint
Time_Comp1 < 0.75 or both Time_Comp1 < 1.25 and Time_Comp1 + 0.25 ·
Time_Comp2 < 1.375 are satisfied.

The model ML
(
(1, 2)

)
does not include the constraints 〈Time_Comp1 < 0.75〉

and 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉, since these constraints are
not in satisfiable

(
(1, 2)

)
. 〈Time_Comp1 < 1.25〉 is included in the model, but

given the clauses above, saved is not included in ML
(
(1, 2)

)
. In contrast, the

model ML
(
(0.5, 1)

)
includes 〈Time_Comp1 < 0.75〉 and therefore saved as well.
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Given these notions, a probability measure PT can be defined on the extended
event space. The idea is to uniquely derive this measure from PV by mapping
elements of the entire event space to elements of the random variables’ event
space, such that truth values of logical atoms correspond to the unique models
ML(ωV), given by valuations of random variables ωV.

Definition 4.3 (Entire Theory Probability Measure). The probability measure on the
entire theory T’s event space is defined as:

PT(e)
def
= PV

(
{ωV | (ωV, ωL) ∈ e, ML(ωV) |= ωL}

)
Here we use elements ωL of the logical theory’s sample space as logical formulas, where
they represent conjunctions determining for each atom whether it is true or not. For
example, ωL = (0, 1, 0, . . .) means ¬a ∧ b ∧ ¬c ∧ · · · , where a, b, c, . . . are the atoms of
L.

It is ensured that events in this definition are in AV, because the restriction
ML(ωV) |= ωL is based on compositions of events from AV. We then extend
this to the probability of a query atom q given a probability measure PT as
follows.

Definition 4.4 (Query Probability). The probability of query q is defined as:

P(q) def
= PT

(
{(ωV, ωL) ∈ ΩT | ωL |= q}

)
Note that there is no need for a restriction on the values of random variables in
ωV in Definition 4.4, since Definition 4.3 ensures that valuations of random vari-
ables for which q does not hold do not contribute to the probability. We further
know that the event defined by the equation above is an element of the event
space AT, since we do not put any restrictions on values of random variables
and the event space concerning the logic atoms is defined as the powerset of the
sample space (Equation 4.2) thus each subset of the sample space is in the event
space.

Example 4.10
Consider again the rules of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉

Suppose that saved corresponds to the first dimension in ΩL, such that ωL |=
saved requires the first element of each sample to be true. Then by applying
Definition 4.4 we obtain:

P(saved) = PT
(
{(ωV, (saved, . . .)) ∈ ΩT | saved = true}

)
Then by applying Definition 4.3 we see that:

P(saved) = PV
(
{(ω1, . . .) |((ω1, . . .), (saved, . . .)) ∈ ΩT,

ML(ω1, . . .) |= (saved, . . .), saved = true}
)
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Given the clauses above and assuming Time_Comp1 and Time_Comp2 corre-
spond to the first two random variables, ML(ω1, ω2, . . .) entails saved if and only
if ω1 < 0.75 ∨ (ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375):

P(saved)

= PV
(
{(ω1, . . .) | ((ω1, . . .), (saved, . . .)) ∈ ΩT,

ω1 < 0.75 ∨ (ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375)}
)

= PV
(
{(ω1, . . .) ∈ ΩV | ω1 < 0.75 ∨ (ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375)}

)
As Time_Comp1, Time_Comp2 ∼ Exp(1), the probability P(saved) can be com-
puted as follows. We denote the associated PDF with f and the cumulative distri-
bution function (CDF) with F:

PV({(ω1, . . .) ∈ ΩV | ω1 < 0.75}) = F(0.75) = 1− e−0.75 ≈ 0.53

PV({(ω1, . . .) ∈ ΩV | ω1 < 0.75 ∧ ω1 + 0.25 ·ω2 < 1.375})

=
∫ 0.75

0
f (x)P(Time_Comp2 < 4 · 1.375− 4x)dx

=
∫ 0.75

0
f (x)F(5.5− 4x)dx =

∫ 0.75

0
e−x − e3x−5.5dx ≈ 0.52

PV({(ω1, . . .) ∈ ΩV | ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375})

=
∫ 1.25

0
e−x − e3x−5.5dx ≈ 0.66

With this, we can now compute the probability of saved as:

PV({(ω1, . . .) ∈ ΩV | ω1 < 0.75 ∨ (ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375)})
≈ 0.53 + 0.66− 0.52 = 0.67

By combining Definitions 4.3 and 4.4 we can determine a single event in the ran-
dom variables’ probability space with the same probability as a query q. Such
an event is referred to in the following as the solution event. In this way, a sep-
aration is achieved between the symbolic part – determining in which cases a
statement is true by logical reasoning – and the probabilistic part – determining
the probability that one of those cases occurs.

Definition 4.5 (Solution Event). The solution event of a query q is defined as:

SE(q) def
= {ωV ∈ ΩV | ML(ωV) |= q}

Lemma 4.1. The probability of a query q as defined by Definition 4.4 can be computed
using the solution event:

P(q) = PV
(
SE(q)

)
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All proofs are provided in Appendix A.
Definition 4.5 formulates the solution event in terms of samples. A different

formulation in terms of constraints is, however, more suited for the subsequent
formulation of conditions under which exact inference is feasible. Such a formu-
lation is provided by the following lemma.

Lemma 4.2. The solution event of a query q can be expressed as:

SE(q) = CSS
( ∨

ML [Φ]|=q
Φ⊆Constr

∧
ϕ∈Φ

ϕ
)

,

where Φ denotes subsets of the set of all constraints and ML[Φ] the model of the theory
L ∪

{
〈ϕ〉 | ϕ ∈ Φ

}
.

Intuitively, the disjunction represents the collection of all possible models in
which q is true in a logical sense, without dealing with the meaning of the con-
struct 〈〉. All constraints in each Φ must be true at the same time in order to make
q true as well. Thus using conjunctions, the sets of constraints are combined.

Example 4.11
Consider again the clauses of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉

Given these two clauses, there are two ways to prove saved. Each model includ-
ing saved therefore has to include all constraints enforced by the first or second
clause, which corresponds to the disjunction in Lemma 4.2. Actually, in the def-
inition above also all subsets of both cases are considered, which are however
redundant, given that they are combined as disjunction. The second clause re-
quires two constraints to hold, so they are combined using the conjunction in
Lemma 4.2. The solution event of saved therefore is {(ω1, ω2, . . .) ∈ ΩV | ω1 <
0.75 ∨ (ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375)}. Note that the event is the same as
used to compute the query probability in Example 4.10.

4.5.1.2 Exact Inference Conditions

The semantics introduced above is very general and powerful, but exact com-
putation of event probabilities is in general not possible. Practically useful lan-
guages always demand finding the proper balance between expressivity and
feasibility of inference. We therefore discuss ways to restrict the general seman-
tics in such a way that we can perform exact inference. The result provides a
basis for analysing in a structured way, which properties allow exact inference
for different languages.

Proposition 4.1. The probability of an arbitrary query can be computed exactly if the
following conditions hold:
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1. finite-relevant-constraints condition: There are only finitely many constraint
predicates (〈〉) relevant for determining truthfulness of each query atom. Formally,
a constraint predicate 〈ϕ〉 is relevant for a query atom q if there exists a set of
constraint predicates Φ, such that q ∈ M(Φ ∪ L) 6⇔ q ∈ M({〈ϕ〉} ∪ Φ ∪ L).
Intuitively, there exists a set of constraint predicates for which it matters whether
〈ϕ〉 is included in the program or not, meaning 〈ϕ〉 is relevant. We also assume
that finding such relevant constraints predicates and entailment checking can be
done in finite time.

2. finite-dimensional-constraints condition: Constraints occurring in clauses as
argument of the construct 〈〉 only concern a finitely-dimensional subset of the
sample space. This means the constraints’ solution spaces have the form:

{(ω1, . . . , ωn, ωn+1, . . .) ∈ ΩV | cond(ω1, . . . , ωn)},

where cond is an arbitrary predicate with n arguments, i.e. the constraint puts a
condition only on a finite number of variables.

3. computable-measure condition: The probabilities of finite-dimensional events,
in the sense of the previous condition, are computable.

The computable-measure condition implies that one can exactly compute finite-
dimensional integrals over employed PDFs, which is only possible under very
strong assumptions.

The conditions stated here are sufficient, but not strictly necessary, as we
do not restrict the kind of continuous distributions employed, for instance to
Gaussian distributions, which is often done in other work, as discussed in Sec-
tion 4.6. These conditions generalise the restrictions typically enforced by other
approaches based on the distribution semantics, as will be discussed below. The
following example illustrates the exact inference conditions.

Example 4.12
Consider again the clauses of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉

As shown in Example 4.11 the solution event can be derived in finite time (finite-
relevant-constraints condition) and is finite-dimensional, since all constraints in
the program above are finite-dimensional as well (finite-dimensional-constraints
condition). We can, as shown in Example 4.10, exactly compute that the proba-
bility of {(ω1, ω2, . . .) ∈ ΩV | ω1 < 0.75 ∨ (ω1 < 1.25 ∧ ω1 + 0.25 ·ω2 < 1.375)}
is 0.67 (computable-measure condition), thus P(saved) = 0.67. This is only pos-
sible, because we use exponential distributions. Employing other, possible dif-
ferent distributions, for the random variables, would however quickly break the
computable-measure condition.

An example of a program that breaks the exact inference condition is:

forever_sun(X)← 〈WeatherX = sunny〉, forever_sun(X + 1)
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The predicate forever_sun(X) intuitively represents that it is sunny forever from
day X on, assuming there are infinitely many days in the future. The prob-
ability of forever_sun(0) cannot be computed in finite time, since an infinite
number of days have to be considered, which means the finite-relevant-con-
straints condition is violated. One could usually say the limit of the probabil-
ity of forever_sun(0) would be 0, but this is not true for all possible probability
measures. Only assuming the computable-measure condition for the probability
measure one cannot draw that conclusion.

An alternative definition of the problem would be:

forever_sun← 〈∀i∈N Weatheri = sunny〉

Similarly, the probability of forever_sun might be computable with further as-
sumptions on the probability space, but generally this is not possible, since the
finite-dimensional-constraints condition is violated.

We briefly discuss those conditions in the context of existing languages. The
finite-relevant-constraints condition seems a very reasonable condition for al-
lowing exact inference and cannot be avoided. In Sato’s original semantics, a
condition called finite-support condition is required for probabilistic facts, which
is similar to the finite-relevant-constraints condition, although restricted to posi-
tive programs. Similarly, the finite-dimensional-constraints condition is enforced
in Sato’s semantics, if we interpret probabilistic facts in the program as con-
straints concerning only a single variable, i.e. a probabilistic fact is required to
be true or false; dependencies are expressed by the structure of rules. So actually
a stronger variant of the finite-dimensional-constraints condition is enforced, as
constraints only concern single variables. Finally, the computable-measure con-
dition depends on how the probability distribution is defined in a concrete lan-
guage. Most languages based on the distribution semantics satisfy this property
by assuming that all random variables are (mutually) independent. This means
that the probability measure is defined in terms of a single probability per vari-
able and consequently the probability of events consisting of only a finite num-
ber of variables can be computed in finite time. Again, this is done without loss
of generality, as dependencies can be introduced by the structure of the logic
program. The situation is more complex as soon as continuous distributions are
considered. A language allowing for continuous variables and nevertheless exact
inference is Hybrid ProbLog [60] which extends Sato’s semantics for continuous
variables. As in Sato’s semantics, Hybrid ProbLog only allows constraints on sin-
gle variables. This means that for instance 〈V1 > 0〉 is allowed, but 〈V1 ≥ V2〉 is
not. This restriction ensures that the computable-measure condition is fulfilled,
under the assumption that we can compute CDFs of the employed continuous
distributions. While in the binary case the restriction to constraints on single
variables does not restrict expressiveness of the language, in the continuous case
it does. A way to overcome these restrictions is discussed next.
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4.5.2 Defining Credal Sets

The aim of this section is to provide a new theory that supports exact infer-
ence also covering problems involving constraints with multiple variables. As
a consequence, only the finite-dimensional-constraints condition is required, as
introduced in the previous section. For example, we wish to allow the compar-
ison of real-valued random variables, while at the same time avoiding severely
restricting the kind of distributions to fulfil the computable-measure condition.
This problem is tackled by introducing credal sets, i.e. a set of probability dis-
tributions. We show that this idea makes it possible to compute bounds on the
probabilities of a query under conditions that are less strict than those assumed
before. We finally discuss an important application of the theory: the approxima-
tion of precise, continuous distributions.

4.5.2.1 Credal Set Specifications

As discussed before, the basic idea is to assign probability masses to sets of
values. Sets of values correspond to events and consequently credal sets are de-
fined in terms of probability-event pairs. We refer to this kind of definitions as
credal set specifications. Such specifications have the desirable property that they
are guaranteed to define non-empty credal sets, i.e. sets of probability measures.
Credal set specifications introduced in this section are between the purely se-
mantic level of credal sets and the concrete syntactic level, which is discussed
later.

Since the number of random variables in our semantics can be infinite, we
would have to allow potentially infinite sets of probability-event pairs. Such spec-
ifications would be hard to define directly and it is not clear how to construct
probability distributions consistent with such specifications. Therefore, we de-
fine credal set specifications by means of a sequence of countably, potentially
infinite number of specifications, each defining finite-dimensional credal sets
with increasing dimensionality. We have to make sure such specifications do not
contradict each other, which we ensure by a property called compatibility. This
allows us to use an existing construction theorem [110, III.3] to construct infinite-
dimensional probability distributions, consistent with a credal set specification
given.

Before we formally define the concept of credal set specifications we introduce
the concept of event projections. We denote the i-th event projection of event e,
where i is a natural number, with πi(e) and define it as:

πi(e)
def
=
{
(ω1, . . . , ωi) | (ω1, . . . , ωi, . . .) ∈ e

}
(4.5)

Event projections are also similarly defined for finite events.

Definition 4.6 (Credal Set Specification). A credal set specification C consists of a
countable number of finite-dimensional specifications C1, C2, . . .. Each Ck has the form
of a finite collection of probability-event pairs (p1, e1), (p2, e2), . . . , (pn, en) such that
for each Ck:
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1. The events are in a finite-dimensional event space Ak
V over the sample space

Ωk
V

def
= Range1 × Range2 × · · · × Rangek.

2. The sum of the probabilities is 1.0: ∑
(p,e)∈Ck

p = 1.0.

3. The events must not be the empty set: ∀(p,e)∈Ck
e 6= ∅.

Additionally, all finite Ck must be compatible, i.e. for all k: Ck = πk(Ck+1), where
πl(Ck) is defined as:

πl(Ck)
def
=
{
( ∑

πl(e)=e′
(p,e)∈Ck

p, e′) | e′ ∈ {πl(e) | (p, e) ∈ Ck}
}

One can look upon these credal set specifications as a way to split the probability
mass into portions which are assigned to specific non-empty events given a finite
set of random variables. As said, compatibility is used to inductively construct
consistent distributions over all random variables by ensuring that specifications
of different dimensionality do not contradict each other.

Example 4.13
Assume the first two random variables in the sample space have as range the set

{sun, rain} and C1 =
{(

0.2, {sun, rain}
)
,
(
0.8, {sun}

)}
. Suppose this means that

the probability that there is sun tomorrow is at least 80%.
Consider the following specification, concerning not only the weather of to-

morrow, but as well the weather of the day after tomorrow:

C2 =
{(

0.2, {(sun, sun), (sun, rain)}
)
,
(
0.8, {(sun, sun)}

)}
Both specifications are not compatible, as C2 fixes the probability that there is

sun tomorrow to 1.0, which conflicts with C1, i.e. π1(C2) =
{(

1.0, {sun}
)}
6= C1.

In contrast, an example of a compatible specification is:

C′2 =
{(

0.2, {(sun, sun), (sun, rain), (rain, sun)}
)
,
(
0.8, {(sun, sun)}

)}
Each Ck defines a set of probability measures, given by the following definition.

Definition 4.7 (Finite Credal Sets). The set of all probability measures Pk
V defined

by Ck includes all probability measures of Ak
V consistent with Kolmogorov’s probability

axioms, for which additionally the following condition holds. A probability measure PV
is in Pk

V if for each event e ∈ Ak
V:

∑
d⊆e

(p,d)∈Ck

p ≤ PV(e) ≤ ∑
d∩e 6=∅
(p,d)∈Ck

p



76 a new probabilistic constraint logic

The probabilities contributing to the lower bound are related to events which
are subsets of e, and therefore certainly have to contribute to the probability of
e as well. In contrast, the probabilities contributing to the upper bound relate to
events which are not disjoint with e, and therefore can possibly contribute to the
probability of e.

Example 4.14
For illustration, we give a two-dimensional specification with two variables with
range {sun, rain}:

C2 =
{(

0.2, {(sun, sun), (sun, rain)}
)
,
(
0.8, {(sun, sun), (sun, rain), (rain, sun)}

)}
Some distributions which are element of the resulting credal set are:

(sun, sun) (sun, rain) (rain, sun) (rain, rain)

P1
V 1.0 0.0 0.0 0.0

P2
V 0.0 1.0 0.0 0.0

P3
V 0.5 0.5 0.0 0.0

P4
V 0.2 0.3 0.5 0.0

P5
V 0.1 0.1 0.8 0.0

· · · · · · · · · · · · · · ·

With a more strict specification we restrict the possible measures further:

C2 =
{(

0.2, {(sun, sun), (sun, rain)}
)
,
(
0.8, {(sun, sun)}

)}
In this case for all PV in the credal set: PV

(
(rain, sun)

)
= PV

(
(rain, rain)

)
= 0.0,

0.0 ≤ PV
(
(sun, rain)

)
≤ 0.2 and PV

(
(sun, sun)

)
= 1− PV

(
(sun, rain)

)
.

Next, we show that a credal set specification C defines a credal set for the entire,
potentially infinite-dimensional, random variables’ sample space and show that
this set is convex and non-empty. To prove this fundamental property we show
all Ck of C define a non-empty set of probability spaces over the entire event
space AV, which satisfy Kolmogorov’s probability axioms.

Lemma 4.3. For each credal set specification C = {C1, C2, . . .} there exists a non-
empty credal set of probability measures PV on the entire space (ΩV,AV), such that all
measures PV in PV agree with (C1, C2, . . .) in the sense that for all events e and natural
numbers k:

∑
d⊆e

(p,d)∈Ck

p ≤ PV
(
πk(e)

)
≤ ∑

d∩e 6=∅
(p,d)∈Ck

p

We require the additional condition that the event space is chosen such that it is possible
to construct an infinite dimensional probability measure from an infinite number of finite
ones with increasing dimensionality.
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The technical condition which enables the construction of probability measures
poses no practical restriction. For instance, the condition is fulfilled in case the
event space for the random variables is built from Borel σ-algebras of Polish topo-
logical spaces [110, III.3]. This includes virtually all possible event spaces relevant
for practical applications, such as all subsets of spaces with discrete topology, for
instance integers or other sets of countably many constants, and all closed and
open intervals with rational bounds in the real numbers.

Moreover, the credal set on the random variables can be extended to a credal
set on the entire theory, by extending each element of the credal set as shown in
Section 4.5.1.1.

Theorem 4.1. Each credal set specification C defines a non-empty credal set of prob-
ability measures PT on the entire theory and a set of corresponding query probability
distributions P.

4.5.2.2 Probability Bounds

We have shown that a credal set specification defines a potentially infinite set of
probability spaces, which means that for a query one can compute a potentially
infinite number of probabilities. Instead, we are typically interested in the lower
and upper bounds on the probability of a query.

Definition 4.8 (Probability Bounds). We define the lower and upper probability bounds
of a query q as follows:

P(q) def
= min

P∈P
P(q)

P(q) def
= max

P∈P
P(q)

Furthermore, we introduce formulas for computing those bounds for finite-di-
mensional queries.

Proposition 4.2. The lower and upper probability bounds of a query q, fulfilling the
finite-dimensional-constraints condition and putting constraints only on the first k di-
mensions, can be computed by:

P(q) = ∑
e⊆SE(q)
(p,e)∈Ck

p

P(q) = ∑
e∩SE(q) 6=∅
(p,e)∈Ck

p

Example 4.15
Consider again the clauses of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉
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We give a finite credal set specification for the two variables occurring in the
clauses. This is done in such a way that it roughly matches the exponential dis-
tributions used in the example: Time_Comp1, Time_Comp2 ∼ Exp(1). How to
generate finite credal sets exactly matching continuous distributions in general
is discussed in Section 4.5.2.5.

C2 =
{ (

0.49, {(ω1, ω2) | 0 ≤ ω1 ≤ 1, 0 ≤ ω2 ≤ 1}
)
,(

0.14, {(ω1, ω2) | 1 ≤ ω1 ≤ 2, 0 ≤ ω2 ≤ 1}
)
,(

0.07, {(ω1, ω2) | 2 ≤ ω1 ≤ 3, 0 ≤ ω2 ≤ 1}
)
,(

0.14, {(ω1, ω2) | 0 ≤ ω1 ≤ 1, 1 ≤ ω2 ≤ 2}
)
,(

0.04, {(ω1, ω2) | 1 ≤ ω1 ≤ 2, 1 ≤ ω2 ≤ 2}
)
,(

0.02, {(ω1, ω2) | 2 ≤ ω1 ≤ 3, 1 ≤ ω2 ≤ 2}
)
,(

0.07, {(ω1, ω2) | 0 ≤ ω1 ≤ 1, 2 ≤ ω2 ≤ 3}
)
,(

0.02, {(ω1, ω2) | 1 ≤ ω1 ≤ 2, 2 ≤ ω2 ≤ 3}
)
,(

0.01, {(ω1, ω2) | 2 ≤ ω1 ≤ 3, 2 ≤ ω2 ≤ 3}
) }

The solution event of saved is {(ω1, ω2, . . .) ∈ ΩV | ω1 < 0.75 ∨ (ω1 < 1.25 ∧
ω1 + 0.25 · ω2 < 1.375)}, as shown in Example 4.11. The sample space together
with the events defined in the credal set specification is shown in Figure 4.4. The
solution event is visualised as line, where everything above the line is inside the
solution event.
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Figure 4.4: Two-Dimensional Sample Space with Credal Set Specification and Solution
Event

The first event in C2 – shown in the left upper corner in Figure 4.4 – is a subset
of the solution event. This intuitively means that no matter how we distribute the
probability mass of 0.49 inside the event, all of it will be inside the solution event.
Therefore P(saved) = 0.49. All events represented by grey areas in Figure 4.4 are
not disjoint with the solution event. This means that it is possible to distribute
the probability mass in such a way that all of it is inside the solution event. We
can conclude P(saved) = 0.49 + 0.14 + 0.07 + 0.14 + 0.04 = 0.88.

We can finally provide formulas for the probability bounds for the general case
that constraints are not finite-dimensional.
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Theorem 4.2. The lower and upper probability bounds of a query q can be expressed as:

P(q) = lim
k→∞

∑
e⊆SE(q)
(p,e)∈Ck

p

P(q) = lim
k→∞

∑
e∩SE(q) 6=∅
(p,e)∈Ck

p

We finally present a result about the relation between lower and upper bound,
which follows from this theorem and the sum rule for limits.

Corollary 4.1. The lower bound can be expressed in terms of the upper bound and vice
versa.

P(q) = 1− P(¬q)

P(q) = 1− P(¬q)

4.5.2.3 Dealing with Evidence

Making use of evidence is crucial for probabilistic reasoning. Taking evidence
into account means to exclude parts of the event space and renormalise the prob-
ability measure such that probabilities sum up to one. For a single probability
distribution the probability of a query q given evidence e denoted by P(q | e) can
be expressed in terms of non-conditional probabilities as P(q ∧ e)/P(e). In case
of a credal set we have to do this for all corresponding conditional probabilities
and find the minimum and maximum.

Definition 4.9 (Conditional Probability Bounds). We define the probability bounds
given evidence as:

P(q | e) def
= min

P∈P
P(q | e)

P(q | e) def
= max

P∈P
P(q | e)

Note that there are alternative definitions of conditional probabilities for im-
precise probability distributions. Weichselberger argues that different notions
of conditional probabilities should be used depending on the purpose they are
used for [157]. We here restrict to our definition above, which corresponds to
what Weichselberger calls the intuitive concept.

In contrast to the precise case we cannot define a normalisation factor – also
called partition function – which only depends on the evidence, but also have to
take the query into account. This is illustrated by the following example.

Example 4.16
Consider again the clauses of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉
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Consider an additional rule:

e← 〈Time_Comp2 < 1.5〉

Suppose we would like to compute P(saved | e). This is illustrated in Figure 4.5,
where the events represented by black areas are excluded from the event space.
All events in the right column certainly have to be excluded, since they are dis-
joint with the evidence. It depends on the probability measure chosen from the
credal set whether to exclude or not the events in the middle column. The choice
depends on whether we want to compute the lower or upper bound as is illus-
trated by the figure.
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(a) Lower Bound
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(b) Upper Bound

Figure 4.5: Two-Dimensional Sample Space with Credal Set Specification, Solution Event
(solid) and Evidence (dashed)

The probability mass of the upper middle event can only be included in the
partition function (within e) if also completely within saved. So excluding it min-
imises the probability. The remaining events in the middle column would only
contribute to the partition function of the lower bound. Excluding them would
increase the result. The events are consequently not excluded for computing the
lower bound, which is P(saved | e) = 0.49/(0.49 + 0.14 + 0.04 + 0.07 + 0.02) ≈
0.64.

For the upper bound events contributing to the numerator and denominator
of the probability have to be included, but events only contributing to the de-
nominator have to be excluded, in order to obtain the maximal probability. The
upper bound is thus P(saved | e) = (0.49 + 0.14 + 0.14 + 0.04)/(0.49 + 0.14 +
0.14 + 0.04 + 0.07) ≈ 0.92.

To compute conditional probabilities we have the following proposition that re-
lates joint probabilities to conditional probabilities.
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Proposition 4.3. The probability bounds of a query q given evidence e, as defined by
Definition 4.9, can be computed as follows:

P(q | e) =
P(q ∧ e)

P(q ∧ e) + P(¬q ∧ e)

P(q | e) =
P(q ∧ e)

P(q ∧ e) + P(¬q ∧ e)

4.5.2.4 Exact Inference Conditions

We introduce a variant of the exact inference conditions (Proposition 4.1) con-
cerning probability bounds instead of precise probabilities.

Theorem 4.3. The probability bounds of an arbitrary query can be computed in finite
time if the following conditions hold:

1. finite-relevant-constraints condition: There are only finitely many constraint
predicates (〈〉) relevant for determining truthfulness of each query atom and find-
ing such relevant constraint predicates and entailment checking can be done in
finite time. The condition is the same in Proposition 4.1.

2. finite-dimensional-constraints condition: Events occurring in clauses as ar-
gument of 〈〉 only concern a finitely-dimensional subset of the sample space. The
condition is the same in Proposition 4.1.

3. disjoint-events-decidability condition: For each two finite-dimensional events
e1 and e2 in the event space AV one can decide whether they are disjoint or not
(e1 ∩ e2 = ∅).

Note that the disjoint-events-decidability condition means that we can also de-
cide whether one event is a subset of another, since e1 ⊆ e2 is equivalent to
e1 ∩ (ΩV \ e2) = ∅.

In the above condition we replaced the – in our view – too strict computable-
measure condition with the disjoint-events-decidability condition. It is fulfilled
for a wide class of possible ways to define events, e.g. linear inequalities on inte-
gers (excluding multiplication) [116] and inequalities on real numbers including
multiplication [36]. Although we are not able to define arbitrary distributions,
we can always define a set of distributions which includes any such distribu-
tion. For instance, queries of programs consisting of linear constraints on real
numbers distributed according to arbitrary continuous distributions, can be ap-
proximated with known maximal error, as will be shown next. Additionally, it
is possible to define imprecise distributions in case not enough knowledge is
available about what the actual distribution is.



82 a new probabilistic constraint logic

Example 4.17
Assume we have random variables V1 and V2 with the range of real numbers
and the corresponding credal set specification:{

(0.25, ω1 < 0 ∧ ω2 < 0), (0.25, ω1 < 0 ∧ ω2 > 0),

(0.25, ω1 > 0 ∧ ω2 < 0), (0.25, ω1 > 0 ∧ ω2 > 0)
}

Here we use a shorthand notation for events, only denoting the condition on
elements of the sample space. This credal set specification for instance includes
the case that ω1 and ω2 are independent and normally distributed with mean
0.0 and arbitrary standard deviation.

Suppose we want to compute the probability of the event 2ω1 > ω2. We can
decide that the following statements hold, since linear constraints on real-valued
variables are decidable (disjoint-events-decidability condition):

(2ω1 > ω2) + (ω1 < 0∧ω2 < 0)

(2ω1 > ω2) + (ω1 < 0∧ω2 > 0)

(2ω1 > ω2) ⊇ (ω1 > 0∧ω2 < 0)

(2ω1 > ω2) + (ω1 > 0∧ω2 > 0)

From this we can compute P(2ω1 > ω2) = 0.25. To determine the upper bound
we observe the following:

(2ω1 > ω2) ∩ (ω1 < 0∧ω2 < 0) 6= ∅

(2ω1 > ω2) ∩ (ω1 < 0∧ω2 > 0) = ∅

(2ω1 > ω2) ∩ (ω1 > 0∧ω2 < 0) 6= ∅

(2ω1 > ω2) ∩ (ω1 > 0∧ω2 > 0) 6= ∅

From this we can compute P(2ω1 > ω2) = 0.75.

4.5.2.5 Approximating Continuous Distributions Using Credal Sets

The examples in Section 4.3 contain continuous distributions, which would trans-
late to infinite credal set specifications, for which therefore exact inference would
not be possible. Credal sets can however be used to approximate combinations of
arbitrary continuous distributions with known CDF. This is done by associating
probabilities to intervals, defining a set of distributions including the actually
intended one. To do that one can divide the sample space of a single variable Vi
in n intervals (l1, u1), . . . , (ln, un) where for all j: lj ≤ uj, lj may be a real number
or −∞ and ui may be a real number or ∞. We can now define the following
one-dimensional credal set:

{P(l1 < Vi < u1) : l1 < Vi < u1, . . . , P(ln < Vi < un) : ln < Vi < un}

To compute probabilities of the integrals, we make use of the fact that one-
dimensional integrals over typical PDFs can be computed with negligible error,
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for example for normal distributions such integrals can be computed using CDFs
using the error function. The credal sets of independent random variables can be
combined by taking the product of the credal sets, which means using all com-
binations of elements, taking the product of probabilities and the intersection of
events. The same technique is also applicable for multivariate distributions by us-
ing hyperrectangles instead of intervals. For instance, in two dimensions ordinary
rectangles and in three dimensions rectangular cuboids can be employed.

Providing a specification with more intervals restricts the possible distribu-
tions more, which means that one can get a credal set arbitrarily close to an
arbitrary single distribution. However, since the credal set specification has to
be finite, it generally cannot be restricted to an arbitrary single distribution. The
probability bounds of each query can be used to determine the maximum er-
ror of the approximation. The number of intervals determine the precision, i.e.
the gap between the probability bounds one can compute. So the precision can
be increased arbitrarily. Figure 4.6 gives an example of a Gaussian distribution
divided into five intervals with equal probability.

ϕ(v)

v

Figure 4.6: Discretised PDF of a Gaussian Distribution (ϕ(v) is the density for the value
v; the dashed lines indicate the intervals the distribution is discretised into.)

4.5.3 PCLP Semantics

This section introduces the concrete semantics of PCLP. The structure of rules
is the same for the abstract semantics and PCLP. We therefore focus on how
the abstract concept of credal set specifications is realised by the definitions as
introduced in Section 4.4.
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4.5.3.1 Random Variable Definitions

We start showing that a PCLP program defines a countable sequence of finite
credal set specifications C1, . . . with the length of the number of random vari-
ables and therefore defines a credal set specification in the sense of Definition 4.6.

Definition 4.10 (Credal Set Specifications of a PCLP Program). We associate a
single random variable definition with each random variable, which is the first match-
ing definition occurring in the program. If there is no matching definition we associate
the specification {1.0 : true}, which assigns the entire probability mass to the constraint
which is always true, as this does not fix any information about the probability distribu-
tion. We fix the enumeration of random variables and denote the family of the definitions
for the first n random variables as Dn. From this we define the credal set specification
concerning the first n random variables Cn as:

Cn
def
=

{(
p, πn

(
CSS(ϕ)

))
| (p, ϕ) ∈ ˆ∏

d∈Dn

d
}

Here the product of two random variable definitions d×̂e is defined as:

d×̂e def
=
{
(pd · pe, ϕd ∧ ϕe) |

(
(pd, ϕd), (pe, ϕe)

)
∈ d× e

}
We take the product of the probabilities, since we assume them to be indepen-
dent, and map the constraints to events by making use of their solution space
(CSS). The projection to n dimensions (πn) is necessary, because random vari-
ables not under the first n are possibly included in case they are defined together
in the same definition with one of the first n.

Example 4.18
In Example 4.15 the two-dimensional credal set specification of the variables
Time_Comp1 and Time_Comp2 was given as:

C2 =
{ (

0.49, {(ω1, ω2) | 0 ≤ ω1 ≤ 1, 0 ≤ ω2 ≤ 1}
)
,(

0.14, {(ω1, ω2) | 1 ≤ ω1 ≤ 2, 0 ≤ ω2 ≤ 1}
)
,(

0.07, {(ω1, ω2) | 2 ≤ ω1 ≤ 3, 0 ≤ ω2 ≤ 1}
)
,(

0.14, {(ω1, ω2) | 0 ≤ ω1 ≤ 1, 1 ≤ ω2 ≤ 2}
)
,(

0.04, {(ω1, ω2) | 1 ≤ ω1 ≤ 2, 1 ≤ ω2 ≤ 2}
)
,(

0.02, {(ω1, ω2) | 2 ≤ ω1 ≤ 3, 1 ≤ ω2 ≤ 2}
)
,(

0.07, {(ω1, ω2) | 0 ≤ ω1 ≤ 1, 2 ≤ ω2 ≤ 3}
)
,(

0.02, {(ω1, ω2) | 1 ≤ ω1 ≤ 2, 2 ≤ ω2 ≤ 3}
)
,(

0.01, {(ω1, ω2) | 2 ≤ ω1 ≤ 3, 2 ≤ ω2 ≤ 3}
) }
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This credal set specification can be represented in PCLP as:

Time_Comp1 ∼ { 0.7 : 0 ≤ Time_Comp1 ≤ 1,

0.2 : 1 ≤ Time_Comp1 ≤ 2,

0.1 : 2 ≤ Time_Comp1 ≤ 3 }
Time_Comp2 ∼ { 0.7 : 0 ≤ Time_Comp2 ≤ 1,

0.2 : 1 ≤ Time_Comp2 ≤ 2,

0.1 : 2 ≤ Time_Comp2 ≤ 3 }

Lemma 4.4. A PCLP program defines a credal set over all random variables V1, V2, . . .
occurring in it.

To derive formulas for the probability bounds of a PCLP program, we first in-
troduce the concept of solution constraint, which is the equivalent of the solution
event expressed in terms of constraints (cf. Lemma 4.2).

Definition 4.11 (Solution Constraint). The solution constraint of a query q is defined
as:

SC(q) def
=

∨
ML [Φ]|=q
Φ⊆Constr

∧
ϕ∈Φ

ϕ

Example 4.19
Consider again the clauses of the running example (Section 4.3.3):

saved← 〈Time_Comp1 < 0.75〉
saved← 〈Time_Comp1 < 1.25〉, 〈Time_Comp1 + 0.25 · Time_Comp2 < 1.375〉

The solution constraint for the query saved is:

SC(saved) = Time_Comp1 < 0.75

∨ (Time_Comp1 < 1.25∧ Time_Comp1 + 0.25 · Time_Comp2 < 1.375)

The way to compute probabilities according to Proposition 4.2 requires deciding
disjointness of events. We substitute this by deciding satisfiability of constraints.
For this we introduce a function for checking satisfiability of constraints, which
has to be filled in by a constraint checker for a concrete implementation. We also
consider only partially decidable constraint theories. Non-linear constraints can
for instance often be solved, but not in general.

Definition 4.12 (Satisfiability Check). The function

check : Constr→ {sat, unsat, unknown},

checks satisfiability of constraints. The possible values of the function have the following
meaning:
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• sat: The constraint is certainly satisfiable, i.e. there is a solution.

• unsat: The constraint is certainly unsatisfiable, i.e. there is no solution.

• unknown: Satisfiability could not be decided, i.e. nothing is said about the con-
straint.

In case the function never yields unknown for any constraint, we call the constraint
theory fully decidable.

We can now express probability bounds of a query in a PCLP program using the
satisfiability check function.

Proposition 4.4. The lower and upper probability bounds of a query q, concerning only
the first n random variables, in a PCLP program, fulfilling the exact inference conditions,
can be computed as:

P(q) = ∑
check(ϕ∧¬SC(q))=unsat

(p,ϕ)∈Cn

p

P(q) = ∑
check(ϕ∧SC(q))=sat

(p,ϕ)∈Cn

p

Here Cn are the credal set specifications defined by the program (Definition 4.10).

Corollary 4.2. For PCLP programs, making use of partially decidable constraints, the
following holds:

P(q) ≥ ∑
check(ϕ∧¬SC(q))=unsat

(p,ϕ)∈Cn

p

P(q) ≤ ∑
check(ϕ∧SC(q)) 6=unsat

(p,ϕ)∈Cn

p

Corollary 4.3. Exact inference in PCLP(Constr) is possible for queries with a finite
number (finite-relevant-constraints condition) of finite-dimensional constraints (finite-
dimensional-constraints condition) and in case satisfiability can be decided for the con-
straint language Constr.

4.5.3.2 Inference Tasks

PCLP can be used for a number of inference tasks as summarised by Table 4.2. In
case we just have discrete, finite distributions we can compute the exact bounds
of a query, which is a point probability for precise distributions, using Proposi-
tion 4.4.

In the hybrid case we are able to compute bounds using Proposition 4.4 as
well. Such bounds are only approximations, since the random variable defini-
tions we use are only approximations of the actual continuous distributions. For
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the precise case we know that the bounds approximate a point probability and
therefore know the maximal error of the approximation. In the imprecise case
the difference between the lower and upper bound is partially explained by ap-
proximated continuous distributions and partially by the imprecise immanent
to the distributions. We therefore do not know how good the approximation is.
In both cases the approximation asymptotically equals the actual result in case
of infinite computation time.

Finally, in case we have a partially decidable constraint theory, we can still
determine approximations using Corollary 4.2. The achievable precision may
however be bounded by constraints which are not decidable.

Precise: P(q) Imprecise: P(q), P(q)

Discrete P(q) P(q), P(q)

Hybrid P(q)± ε
known, arbitrary ε

P(q)− ε, P(q) + ε
unknown, arbitrary ε, ε

Partially Decidable
Constraints

P(q)± ε
known, bounded ε

P(q)− ε, P(q) + ε
unknown, bounded ε, ε

Table 4.2: Overview of Inference Tasks

4.6 related work

There are various paradigms for probabilistic programming, which are related
to non-probabilistic programming paradigms. They range from graphical for-
malisms (e.g. BNs [119], multi-entity Bayesian networks [84]), imperative and object-
oriented languages (e.g. FACTORIE [94], Figaro [120]), a purely functional pa-
radigm (e.g. Church [57]), LP languages (e.g. independent choice logic (ICL) [122],
ProbLog [125]), to other logic-based languages (e.g. BLOG [102]). PCLP fits within
the LP paradigm, which has been shown to be a powerful knowledge-repre-
sentation tool for non-probabilistic problems. As a result, this is the first and
arguably best studied first-order probabilistic programming paradigm, with a
well-founded semantics.

In the following, rather than focusing on the underlying programming pa-
radigm, we discuss the expressivity of related languages, i.e. which kinds of
distributions can be represented. This is discussed along two dimensions: dis-
crete versus hybrid distributions and precise versus imprecise distributions. The
resulting classes of languages, together with some examples, are shown in Ta-
ble 4.3 and will guide the rest of this section. As the table illustrates, being
able to represent imprecise hybrid distributions is, to our knowledge, a unique
feature of PCLP. Exceptions are the very general probabilistic logics [6, 63], dis-
cussed in Section 3.1, about which the work is however merely theoretical and
does not provide a concrete inference method, let alone an implementation.
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Discrete Hybrid

Precise Bayesian Networks [119]

ProbLog [125]

PRISM [138]

Independent Choice
Logic [122]

Conditional Linear
Gaussians [85]

Hybrid Problog [60]

Distributional Clauses [61]

BLOG [102]

Imprecise Locally Defined
Credal Networks [31]

Probabilistic Logic
Programming [111]

Imprecise Probabilistic Horn
Clause Logic (Chapter 7)

Probabilistic Constraint
Logic Programming

Table 4.3: Related Languages

4.6.1 Precise Discrete Distributions

PCLP clearly subsumes languages allowing one to define discrete and precise
probability distributions including propositional ones, such as BNs, as well as
first-order languages, e.g. probabilistic logics based on Sato’s distributions se-
mantics. Examples are ICL [122], PRISM [138], ProbLog [125] and CP-logic [152].
Languages in which weights instead of probabilities are used, such as Markov
logic networks (MLNs) [44], have a very different nature compared to the above
approaches, in the sense that the parameters in such models do not necessarily
have a direct probabilistic meaning (cf. Section 3.3.2). A number of approaches
use constraints to model discrete distributions. This is done with advantages for
representation and learning in mind. There are a number of languages, which
are, as PCLP, based on deterministic CLP. One example of such language is
CLP(BN ) [30], which does not use constraints to denote events and define prob-
ability distributions, but considers probability distributions as constraints them-
selves. The idea is quite different than the distribution semantics, as illustrated
by some examples by Costa and Paes [29]. In particular, dynamic models, such
as Hidden Markov Models, can be represented by PRISM very compactly and
concisely, in contrast to CLP(BN ). This observation similarly holds for other ap-
proaches based on the distributions semantics, including PCLP. An approach,
similar to CLP(BN ), but more general, is clp(pdf(Y)) [2], which is however re-
stricted to discrete random variables, too. Another languages by Riezler [127],
sharing the name with PCLP, assigns probabilities to derivation choices. The
languages is developed with natural language processing applications in mind
and does not consider continuous distributions. Finally, Sato’s CBPMs [140] are
based on the idea that any discrete joint probability distribution can be expressed
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as independent binary random variables, constrained by arbitrary first-order logic
(FOL) formulas. Constraints in this setting are therefore purely logical, without
additional theories, and the method is restricted to discrete distributions, i.e. it
cover at most countably infinite domains, such as integers.

A limitation of PCLP and most other probabilistic LP languages is that they
do not directly support generative definitions, i.e. random variables cannot be
defined in terms of the value of other random variables. For finite, discrete dis-
tributions, this can be circumvented by introducing distinct random variables,
each related to a value of another one. However, this is not possible for infinite
distributions. One example where generative definitions are useful is modelling
an unknown number of objects, as shown by the work on BLOG [102]. The num-
ber of objects can for instance be modelled by a Poisson distribution, which is
discrete, but not finite. Such generative processes could theoretically be mod-
elled in PCLP, yet the number of relevant constraints would not be finite, and
therefore exact inference may not be possible in PCLP (Theorem 4.3).

4.6.2 Imprecise Discrete Distributions

Formalisms dealing with imprecise probabilities can typically represent more
complex imprecise distributions than PCLP, for example [149, 111]. Specifically,
PCLP cannot express qualitative relations between probabilities of events, e.g.
express that the probability of event a is greater than the probability of event
b. However, the restricted way of how imprecise probabilities are defined in
PCLP guarantees that definitions cannot be inconsistent (Theorem 4.1). Some
languages that do guarantee consistency such as LDCNs [31] and relational vari-
ants [32] are still more expressive than PCLP, since they can express conditional
credal sets. This comes with the price of increased inference complexity (cf. Sec-
tion 5.3). PCLP can also not express open probability intervals, which is e.g.
realised for imprecise probabilistic Horn clause logic (IPHL) (Chapter 7) by using
infinitesimal probabilities.

4.6.3 Precise Hybrid Distributions

All approaches we discuss are not as general as PCLP, in the sense that contin-
uous distributions are restricted to real-valued random variables. The semantic
foundation of PCLP makes use of a more general notion of continuous distri-
butions, concerning random variables with arbitrary uncountable ranges. There
are in general roughly two different ways to deal with continuous distributions:
computing posterior continuous distributions of continuous random variables
or computing probabilities of events.

Examples of the first approaches are conditional linear Gaussian (CLG) mod-
els [85] or the related first-order approach in [71], which is based on the distribu-
tion semantics as well. The approach provides more information about the con-
tinuous distributions as possible with probabilities of events alone. This can for
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instance be used for computing expectations and decision making. However, the
method requires a way to represent resulting PDFs of distributions. Those could
be combinations of Gaussian distributions or other ways to represent functions
as mixtures of truncated basis functions [83] and piecewise polynomials [136], which
can approximate usually employed distributions, though no strong guarantees
can be given that the approximation is close to the true distribution. Summarised,
determining result distributions can only be achieved by severely restricting the
distributions allowed (e.g. to CLG distributions) or by using an approximate
representation.

The second approach to deal with continuous distributions – as adopted by
PCLP – focuses on computing probabilities of events involving continuous vari-
ables. It is still powerful enough for decision making in case of discrete decisions.
Within this category, most probabilistic languages based on imperative, object-
oriented and functional approaches support hybrid distributions. A hybrid ex-
tension of a LP based language is Hybrid ProbLog [60], which allows real-valued
random variables, but restricts their use to one dimensional constraints, for in-
stance X > 0. This framework is therefore less expressive than PCLP. One of the
most general extensions of logical semantics are distributional clauses (DC) [61],
which supports arbitrary constraints on real-valued random variables and gen-
erative definitions, e.g. the variance of a distribution could depend on the value
of another one. Such generative definitions cannot be expressed by PCLP. How-
ever, incorporating generative definitions within the context of the distribution
semantics complicates the semantics and puts a burden on the user of the lan-
guage by requiring a number of very technical requirements for a program to be
valid [61, Definition 3]. Our extension of the distribution semantics is – in our
view – more close to the original idea and provides the necessary properties for
our analysis of the exact inference conditions and our credal set extension.

4.7 conclusions

We introduced PCLP, based on a generalised distribution semantics, making
it possible to use random variables with arbitrary ranges. The semantics illus-
trate that the integration of various known techniques can provide a powerful
formalism. In particular, we combine the ability of logic to represent relational
knowledge, probability theory to deal with uncertainty and constraints represent-
ing conditions on variables with various ranges.

As commonly known, exact probabilistic inference is only possible under con-
ditions which pose strong restrictions on distributions. As an alternative to many
other approximation methods, we propose to use a framework based on credal
sets where lower and upperbounds on posteriors can be guaranteed. Placing
the method in the theory of imprecise probabilities provides a clear view on
the approach, allowing one to explore its properties and to compare with other
approaches. In particular, a unique property of PCLP compared to other proba-
bilistic logic languages defining credal sets, is that it guarantees that definitions
remain consistent, i.e. the credal set defined is guaranteed to contain at least
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one element. Also, powerful applications of the approach can straightforwardly
be defined, for instance approximating probabilities of events with known and
arbitrarily small maximum error in hybrid distributions.





5
I N F E R E N C E B Y G E N E R A L I S E D W E I G H T E D M O D E L
C O U N T I N G

We have shown in the previous chapter that under certain conditions we can
perform exact inference for Probabilistic Constraint Logic Programming (PCLP) in
two steps: determining the solution constraint (Definition 4.11) and computing its
probability using Proposition 4.4. Both steps have exponential time complexity
if done in a naive way. The solution constraint can be determined by considering
all subsets of constraints in the support set of the query. Then, probabilities can
be computed by summing over all possible choices of which there are exponen-
tially many in terms of the number of elements in independent random variable
definitions.

Inference can often be done more efficiently by making use of the problem’s
structure. We show how this can be done for the first step (Section 5.1) and
develop a novel algorithm for the second step (Section 5.2). We consider the
theoretical properties of the proposed algorithm in terms of its complexity as
key result for showing its potential and discuss those results in Section 5.3. We
further experimentally evaluate our theoretical claims in Section 5.4.

5.1 determining the solution constraint

We only briefly describe how we derive the solution constraint, since it is a
variation of existing techniques. The algorithm is based on selective linear definite
clause (SLD) resolution, which is a well-known way to derive proofs of queries
in logic programming (LP). We deal with constraints in bodies in the same way as
the operational semantics of constraint logic programming (CLP) does: we collect
all constraints we encounter during an SLD derivation [74]. A derivation proves
the query in case all collected constraints are true, i.e. if the conjunction of these
constraints is true. This means a query can be derived if the conjunction of
constraints derived from at least one of the derivations is true. The solution
constraint is therefore the disjunction of those conjunctions, which relates to the
definition of solution constraints (Definition 4.11). The main advantage of SLD
resolution is that it restricts the subsets of constraints that need to be considered
to only those that prove the query. Note that this coincides with the way in
which proofs are collected in the first implementation of ProbLog [125], where
the constraints are probabilistic facts rather than general constraints.

93
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Negation can be added in a straightforward way, but simple SLD resolution
is not sufficient in case cycles are present. There are however solutions to the
problem: either by translating cyclic rules to acyclic ones [76] or using tabled
SLD resolution [91]. We do not go into detail here and assume it is possible to
efficiently derive the solution constraint for each query. Possible optimisations
applied for CLP, such as pruning derivations if the imposed constraints become
inconsistent, are not discussed either.

5.2 computing probabilities

The proposed algorithm for computing the probability of a solution constraint,
is a generalisation of probabilistic inference by weighted model counting (WMC).
We first discuss this way of inference before introducing our generalisation.

5.2.1 Probabilistic Inference by Weighted Model Counting

Real problems often possess a lot of structure that can be exploited to speed up
inference. Various inference methods have been developed to take advantage of
certain kinds of structure. Examples are variable elimination [123] and recursive
conditioning [34]. We focus on performing probabilistic inference by translation
to a WMC problem. This has been shown to be an efficient inference method
for propositional formalisms such as Bayesian networks (BNs) [22] and as well to
be applicable to probabilistic logics based on the distributions semantics [48]. The
approach exploits not only topological structure, but also local structure such as
determinism [77] and context-specific independence [16].

The problem of model counting basically means to find the number of models
of a propositional knowledge base. WMC is a generalisation of the problem, where
each model has a weight. Those weights are defined in terms of weights attached
to the literals. The weight of a model is then the product of the weights of all
literals included in the model.

Efficient WMC algorithms are based on the observation that counts of com-
ponents sharing no atoms can be computed independently [7]. Model counting
then proceeds as follows. We assume the theory is expressed in conjunctive nor-
mal form (CNF). In case the disjunctions in the CNF can be split such that they
share no atoms, weights can be computed independently and the weight of the
entire CNF is the product of those weights; this step is referred to as decomposi-
tion. Otherwise, a case distinction has to be made for a single atom. Then one gets
two CNFs: one with the assumption this atom is false and another one with the
assumption it is true. The weight is then computed as the sum of the weights
of both CNFs, which represent theories with disjoint models. It can happen that
due to the structure of the problem, such as determinism, this choice leads to
a theory which can be simplified and potentially includes fewer atoms or even
becomes true or false, which means determinism in the problem can be exploited.
The choice of atom order is essential for the efficiency of the algorithm. Different
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possible heuristics for this choice are for instance discussed by Sang et al. [134,
Section 3.2].

Example 5.1
We illustrate with this example the basic idea of binary model counting using the
algorithm explained above. The example will later be used to compare with the
generalised WMC algorithm. We only show splitting and omit decomposition as
the latter is identical in the generalised version.

We start with the solution constraint of Example 4.19 and convert it to CNF:

SC(saved) =

Time_Comp1 < 0.75∨
(Time_Comp1 < 1.25∧ Time_Comp1 + 0.25 · Time_Comp2 < 1.375)

=

(Time_Comp1 < 0.75∨ Time_Comp1 < 1.25)∧
(Time_Comp1 < 0.75∨ Time_Comp1 + 0.25 · Time_Comp2 < 1.375)

In the following, we abbreviate the primitive constraints as follows:

ϕ1 = Time_Comp1 < 0.75

ϕ2 = Time_Comp1 < 1.25

ϕ3 = Time_Comp1 + 0.25 · Time_Comp2 < 1.375

To illustrate the binary version in comparison with the generalised one, we fur-
ther assume for now that ϕ1, ϕ2 and ϕ3 represent independent binary random
variables. WMC then proceeds by choosing an atom to split on, which means
to continue with two branches with the assumption the atom is true and false
respectively. This is illustrated in Figure 5.1.

Note that assuming the truth values of literals makes it always possible to
immediately simplify the constraint, which is not the case in the generalised
version as shown later. The computation stops in case true or false is derived.

Suppose ϕ1, ϕ2 and ϕ3 have independent probabilities 0.1, 0.2 and 0.3 respec-
tively. To compute probabilities we put the probability corresponding to the
choice at each edge and replace true by 1.0 and false by 0.0, as shown in Fig-
ure 5.2. The probabilities of the remaining nodes are computed bottom-up by
taking the sum of the probability associated to the children weighted by the
probability associated to the edges. Then, the probability of the root node is the
probability of the query q.

5.2.2 Generalised Weighted Model Counting Involving Constraints

For the general case, we no longer restrict to binary atoms. This makes decid-
ing whether constraints have solutions more complex and for this we therefore
employ so-called satisfiability modulo theories (SMT) solvers. The SMT problem
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(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)

(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3) | ϕ1 = true

ϕ1

(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3) | ¬ϕ1 = ϕ2 ∧ ϕ3

ϕ2 ∧ ϕ3 | ϕ2 = ϕ3

ϕ3 | ϕ3 = true

ϕ3

ϕ3 | ¬ϕ3 = false

¬ϕ3

ϕ2

ϕ2 ∧ ϕ3 | ¬ϕ2 = false

¬ϕ2

¬ϕ1

Figure 5.1: Binary WMC Example (Deriving Possible Models)

is the problem of deciding whether a given first-order logic (FOL) theory includ-
ing additional background theories is satisfiable. SMT solver technology can be
used to efficiency decide whether two events are disjoint or not, i.e. whether the
conjunction of the constraints representing them is satisfiable or not. Very effi-
cient SMT solvers for e.g. linear arithmetic are currently available [39, 46]. Since
we use those solvers without modifications, we do not discuss the algorithms
employed to decide satisfiability.

An SMT solver is used as an implementation of the function check (Defini-
tion 4.12). Even if the constraint theory is theoretically decidable, in practice a
decision procedure might not be implemented. We refer to solvers which can-
not decide satisfiability for all instances, i.e. for some cases return unknown, as
incomplete solvers. Incomplete solvers have the same consequences for inference
as discussed for partially undecidable constraint theories in Section 4.5.3.2.

As a way to implement elements of credal set specifications we, instead, make
use of choices for the random variables, which are defined as follows.

Definition 5.1 (Choice). A choice ψ is a function which selects for each random vari-
able Vi a probability-constraint pair from its definition.

Without loss of generality, we can restrict ourselves to those random variables
that actually occur in the solution constraint of a query, as all other random
variables have no influence on the probability of that query.

We generalise the two steps of WMC, which are case distinction and decompo-
sition. The resulting algorithm (Algorithm 1) can be used to compute the bounds
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0.1 · 1.0 + 0.9 · 0.06 = 0.154

1.0

0.1

0.2 · 0.3 + 0.8 · 0.0 = 0.06

0.3 · 1.0 + 0.7 · 0.0 = 0.3

1.0

0.3

0.0

1.0− 0.3 = 0.7

0.2

0.0

1.0− 0.2 = 0.8

1.0− 0.1 = 0.9

Figure 5.2: Binary WMC Example (Computing Probabilities)

of a query’s q probability as GWMC(SC(q), true) and is discussed below. In case
the SMT solver is incomplete we get bounds as given in Corollary 4.2.

Algorithm 1: Generalised Weighted Model Counting Algorithm (GWMC)
Input : Constraint ϕ in CNF and partial choice constraint Ψ
Result: (P(ϕ | Ψ), P(ϕ | Ψ))

1 simplify ϕ assuming Ψ
2 if ϕ = false then return (0.0, 0.0)
3 else if ϕ = true then return (1.0, 1.0)
4 else if there are independent CNFs ϕ1, ϕ2 in ϕ then
5 return GWMC(ϕ1, Ψ) ·GWMC(ϕ2, Ψ)
6 else if there is some random variable Vi in ϕ, not occurring in Ψ then
7 return ∑

ψ(Vi)=(p,Ψ′)
p ·GWMC(ϕ, Ψ ∧Ψ′)

8 else return (0.0, 1.0)

5.2.2.1 Case Distinction

We first discuss how the process of distinguishing the cases that atoms are true
or false is generalised. Instead of only two cases we have to consider all possible
choices for the random variable at each level, as illustrated by the following
example.
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Example 5.2
We use the same solution constraint as in Example 5.1:

SC(saved) =

(Time_Comp1 < 0.75∨ Time_Comp1 < 1.25)∧
(Time_Comp1 < 0.75∨ Time_Comp1 + 0.25 · Time_Comp2 < 1.375)

ϕ1 = Time_Comp1 < 0.75

ϕ2 = Time_Comp1 < 1.25

ϕ3 = Time_Comp1 + 0.25 · Time_Comp2 < 1.375

This time we treat ϕ1, ϕ2 and ϕ3 as constraints instead of binary literals, which
has as consequence that we cannot split on the two cases of the literal being
true and false, but have to consider the choices given by the random variable
definitions. We use the random variable definitions of Example 4.18:

Time_Comp1 ∼ { 0.7 : 0 ≤ Time_Comp1 ≤ 1,

0.2 : 1 ≤ Time_Comp1 ≤ 2,

0.1 : 2 ≤ Time_Comp1 ≤ 3 }
Time_Comp2 ∼ { 0.7 : 0 ≤ Time_Comp2 ≤ 1,

0.2 : 1 ≤ Time_Comp2 ≤ 2,

0.1 : 2 ≤ Time_Comp2 ≤ 3 }

We denote the choices for Time_Comp1 with ψ11, ψ12 and ψ13 and the choices
for Time_Comp2 with ψ21, ψ22 and ψ23. We then at each level split on the choices
of one variable as shown in Figure 5.3.

The important difference with binary WMC is that the constraint cannot always
immediately be simplified. Simplification is only possible in case part of the
constraint or its negation is a consequence of the choices. Therefore, for some
branches choices for all random variables have been made, but still it cannot be
decided whether the constraint is true or false. This corresponds to probability
mass contributing to the upper, but not to the lower bound.

On the other hand, as for binary WMC, there are cases for which examining all
choices is not necessary. For example, for the right-most branch beneath the root
node in Figure 5.3, the choice ψ13 imposes 2 ≤ Time_Comp1 ≤ 3 which implies
that ϕ1 (Time_Comp1 < 0.75) and ϕ2 (Time_Comp1 < 1.25) are false and
therefore that the entire solution constraint is false. This shows that the order
in which variables are chosen matters and – more importantly – that in this
generalised setting we can still make use of determinism. The tree in Figure 5.3
would have 9 leaves if all choices were examined, but we can make use of the
structure to reduce that to 7.

In general, if a subconstraint ϕ of the CNF is a consequence of the choices Ψ
made so far (Ψ |= ϕ) it can be replaced by true. Similarly, if its negation is a
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(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)

(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)
| ψ11
= ϕ1 ∨ ϕ3 | ψ11

ϕ1 ∨ ϕ3
| ψ11, ψ21
= true

ψ21

ϕ1 ∨ ϕ3
| ψ11, ψ22

ψ22

ϕ1 ∨ ϕ3
| ψ11, ψ23

ψ23

ψ11

(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)
| ψ12
= ϕ2 ∧ ϕ3 | ψ12

ϕ2 ∧ ϕ3
| ψ12, ψ21

ψ21

ϕ2 ∧ ϕ3
| ψ12, ψ22

ψ22

ϕ2 ∧ ϕ3
| ψ12, ψ23
= false

ψ23

ψ12

(ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)
| ψ13
= false

ψ13

Figure 5.3: Generalised WMC Example

consequence of the choices (Ψ |= ¬ϕ), it can be replaced by false. The SMT solver
can be used to check the conditions by making use of the fact that Ψ |= ¬ϕ is a
consequence of check(ϕ ∧ Ψ) = unsat and Ψ |= ϕ a consequence of check(¬ϕ ∧
Ψ) = unsat. A subconstraint ϕ could for instance be a single primitive constraint
in the CNF or the constraint represented by the entire CNF. After substitution
the CNF can be simplified by the usual logical rules. The simplified CNF may
enable further decomposition, since random variables may be removed.

To compute probability bounds we proceed as for binary WMC, except that
we use probability pairs to represent the lower and upper bound. Leaves cor-
responding to true contribute to both bounds and are substituted by (1.0, 1.0),
leaves corresponding to false contribute to neither and are substituted by (0.0, 0.0)
and finally the leaves for which it is undecided contribute only to the upper
bound and are substituted by (0.0, 1.0). Each bound is then computed similar to
the binary case.

Example 5.3
We continue computing probability bounds using the tree of Example 5.2, shown
in Figure 5.3. In Figure 5.4 we illustrate how this computation is done. The result
equals the bounds computed in Example 4.15, where we apply the semantic
definition.

This idea is exploited in Algorithm 1 in Lines 1–3. We use Ψ to denote a par-
tial choice, which is a conjunction of constraints chosen from random variable
definitions, but possibly not from all relevant random variables yet. At Line 1

the current solution constraint is simplified as discussed above. Note that it is
not efficient to always check all possible subconstraints at each step. There are
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(0.49, 0.88)

(0.7, 1.0)

(1.0, 1.0)

0.7

(0.0, 1.0)

0.2

(0.0, 1.0)

0.1

0.7

(0.0, 0.9)

(0.0, 1.0)

0.7

(0.0, 1.0)

0.2

(0.0, 0.0)

0.1

0.2

(0.0, 0.0)

0.1

Figure 5.4: Generalised WMC Example (Computing Probabilities)

several strategies for which subconstraints to check, e.g. only checking primitive
constraints for which all choices have been made and only checking the entire
solution constraint at certain steps. In the implementation we use for the exper-
iments we check all primitive constraints for which all choices have been made
at each step. This strategy, in combination with logical simplifications, is often
already sufficient to prove the solution constraint to be false or true. Only if this
is not the case and all variables in the solution constraint have been chosen, our
implementation checks the entire solution constraint.

If the constraint can be simplified to true or false, the branch of the computation
is finished (Lines 2, 3). If a case distinction has to be made (Lines 6, 7) the effi-
ciency of the further computations depends on the order variables are selected
at Line 6. The main objective is to eliminate random variables to enable further
decomposition, which is the same for binary WMC. In the generalised setting,
the order of variables also determines how well determinism is exploited. As
GWMC terminates in case an inconsistency can be found, a simple heuristic is
to order random variables such that Vi < Vj if Vi occurs in an (in)equality con-
straint with fewer variables on average than Vj. For example, in the constraint
X > 0 ∧ X + Y > 0 we first select choices for X as some of these choices might
make the whole constraint inconsistent.

In the implementation, which we use for the experiments, we prioritise exploit-
ing independencies and use a simple counting heuristic for choosing variables.
Concretely, we count the number of disjunctions in which a random variable oc-
curs since, intuitively, eliminating variables occurring in more disjunctions gives
more opportunities for decomposition. This heuristic is similar to the dynamic
largest combined sum heuristic for the binary case [134, Section 3.2]. In case ran-
dom variables have the same count we try to exploit determinism by choosing
the variable occurring in a primitive constraint with the least number of other
random variables together.
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5.2.2.2 Decomposition

In the spirit of the well-known RelSAT algorithm [7] for WMC, we can also
observe that in many cases the problem can be decomposed into subconstraints
which do not share any random variables.

Example 5.4
Consider the solution constraint V1 > 0 ∧ V2 > 0 and let |ΨVi | denote the
number of choices for the random variable Vi. In this case P(V1 ∧V2) = P(V1 >
0) · P(V2 > 0), which can be computed by examining |ΨV1 |+ |ΨV2 | choices only,
whereas naively |ΨV1 | · |ΨV2 | would have to be examined. The same is true for
the lower bound.

In Algorithm 1 we decompose if possible (Line 4) and recursively compute the
bounds for both CNFs (Line 5).

5.2.2.3 Other Optimisations

We discuss some further optimisation, resulting in the refined Algorithm 2. Some
optimisations for binary WMC can straightforwardly be generalised. Consider
for example caching. For binary WMC, in case the same CNF is encountered
twice, it has the same count. So computing such subproblems multiple times can
be avoided using caching. In our generalised setting the CNF may still contain
random variables for which a choice is already made, which means the same
CNF can have different counts. We can, however, still make use of caching by
reusing results for equal CNFs in combination with equal choices made for all
random variables occurring in the CNF. So we first check whether a result is
already cached (Line 3), otherwise we compute the result and store it in the
cache (Line 17).

The characteristics of our generalised problem require additional optimisa-
tions. The fact that after making choices for random variables, the truthfulness
of constraints involving them may still be undetermined, can dramatically hin-
der opportunities for decomposition. To counter this we implemented two opti-
misations eliminating such undetermined constraints. First, in case all variables
occurring in a disjunction of the CNF are chosen, but the disjunction is still un-
determined, the lower bound of the CNF is 0.0: even if all other components of
the CNF will reduce to true, this single disjunction will lead to an undetermined
CNF. Conversely, for determining the upper bound we assume the disjunction
holds, which is realised by adding it to the constraints imposed by the choices,
as formalised in Lines 6–8 of Algorithm 2. This leads to elimination of the dis-
junction and, therefore, a simplified CNF. It can be easily shown that the upper
bound for the original CNF equals the upper bound for the simplified CNF with
the additional assumption included in Ψ. Secondly, in case all disjunctions in
the CNF have an undetermined constraint in common, it follows that the up-
per bound is 1.0. This is because the constraint alone can make the solution
constraint true and the common constraint will never proven to be false, as the
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Algorithm 2: Optimised Generalised Weighted Model Counting Algorithm
(OGWMC)

1 Assuming an initially empty global cache map: cache
Input : Constraint ϕ in CNF and partial choice constraint Ψ
Result: (P(ϕ | Ψ), P(ϕ | Ψ))

2 simplify ϕ assuming Ψ
3 if (ϕ, Ψ) in cache then return cache(ϕ, Ψ)
4 else if ϕ = false then return (0.0, 0.0)
5 else if ϕ = true then return (1.0, 1.0)
6 else if there is a disjunction ϕ′ in ϕ and all variables in ϕ′ also occur in Ψ then
7 lower, upper = OGWMC(ϕ, Ψ ∧ ϕ′)
8 result = (0.0, upper)
9 else if there is a primitive constraint ϕ′ occurring in all components of ϕ and all

variables occurring in ϕ′ occur in Ψ as well then
10 lower, upper = OGWMC(ϕ, Ψ ∧ ¬ϕ′)
11 result = (lower, 1.0)
12 else if there are independent CNFs ϕ1, ϕ2 in ϕ then
13 result = OGWMC(ϕ1, Ψ) ·OGWMC(ϕ2, Ψ)
14 else if there is some random variable Vi in ϕ, not occurring in Ψ then
15 result = ∑

ψ(Vi)=(p,Ψ′)
p ·OGWMC(ϕ, Ψ ∧Ψ′)

16 else return (0.0, 1.0)
17 cache(ϕ, Ψ)← [ result
18 return result

choices for all variables occurring in it are already made. In this case, the lower
bound equals the lower bound of the CNF assuming the negation of the con-
straint. This is formalised in Lines 9–11 of Algorithm 2.

5.3 complexity analysis

To obtain insight into the complexity of the inference problem of PCLP, we anal-
yse the main source of computational complexity, which is the computation of
probabilities from a solution constraint. Very often, imprecise probabilistic infer-
ence is in general much more complex than precise probabilistic inference. For
instance, obtaining a bound on a marginal probability given a locally defined credal
network (LDCN) is NPPP-complete, while it is PP-complete for BNs [37]. In order
to compare the complexity of PCLP to LDCNs, we first show that the decision
problem associated with PCLP inference is similar to BN inference for most
practical constraint theories, i.e. it is in PP rather than NPPP-hard. This reduced
complexity comes at the cost of expressiveness, as discussed in Section 4.6.2.
Subsequently, it is proven that PCLP also has complexity properties similar to
BN inference and WMC if the treewidth of the problem is bounded.
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5.3.1 Worst-case Complexity

By Corollary 4.1 it is clear that computing the lower and upper bound of a PCLP
query has the same complexity. Furthermore, we turn the problem into a deci-
sion problem to ease complexity analysis, as is commonly done in the context
of analysing the complexity of probabilistic inference. Therefore, the problem
we consider is, given the solution constraint of a query q and any probability
p, whether P(q) > p. We first show that, given the complexity of constraint
checking C, this problem is in PPC.

Theorem 5.1. Given a PCLP program Prog and a solution constraint ϕ for a particular
query q, determining a bound on P(q) is in PPC, where C is the complexity of checking
satisfiability of sets of constraints in Prog.

If the complexity of SMT solving is polynomial, i.e. C = P, then the problem is in
PP. Furthermore, proving PP-hardness is trivial as MAJSAT (deciding whether
at least half of assignments to a propositional formula satisfy it) is PP-complete
and can obviously be reduced to bound on the probability of a solution con-
straint. This shows that the main PCLP inference problem is as complex as
precise, discrete probabilistic inference if checking constraints is tractable, even
though we can deal with random variables of arbitrary domains and perform a
particular kind of imprecise inference.

In the following, we will abstract from the complexity of SMT solving. For
many interesting constraint domains such as equalities for discrete constraints
and inequalities on sums and differences of real numbers, the complexity of
SMT solving is polynomial [45, 79]. In other theories it is often desirable to use
incomplete solvers, e.g. polynomial algorithms for theories where the satisfiabil-
ity problem is NP-complete (e.g. arithmetic with integers [116]), even harder (e.g.
real number arithmetic including multiplication [36]) or undecidable in general
(e.g. arithmetic with integers including multiplication [93]). Finally, note that for
typical problems the size of constraints is small compared to the size of the entire
probabilistic inference problem.

5.3.2 Parametrised Complexity in Terms of Treewidth

Inference algorithms exploit the structure of problems. For example, the upper
bounds of inference in BNs can more precisely be expressed in terms of the
network’s treewidth t [13], as O(ct), where c is the maximum cardinality of the
variables. Instead of the cardinality of variables, we use the maximum number
of choices d in the context of PCLP. The number of choices d is bounded by 2cn

,
where n is the number of variables. It is however usually much smaller, which is
the strength of PCLP, especially in case c is infinitely large.

The treewidth measures how tree-like a graph is. In case a BN is a tree, in-
ference can be done in linear time. A formal definition of treewidth is given
below. In our context, we want to bound complexity in terms of a property of
the input CNF. There are different kinds of graphs representing the structure
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of CNFs. For different kinds of those graphs, algorithms for determining the
model count of CNFs are known, of which the complexity is bounded in terms
of the graph’s treewidth [132]. We here focus on the primal graph, which is the
undirected graph with all CNF’s atoms as nodes in which all nodes occurring
together in a disjunction of the CNF are connected.

For the PCLP inference problem we slightly adapt the definition of a primal
graph. First, we have to use random variables instead of atoms. Secondly, we
also have to consider additional dependencies between random variables. Those
dependencies emerge from the fact that it may not be possible to eliminate con-
straints, in spite of the fact that choices for all random variables occurring in
them have been made, as discussed in Section 5.2.2.

We refer to imprecise constraints as constraints ϕ for which there is a choice
Ψ for all variables occurring in ϕ, which cannot be used to simplify ϕ. That is
neither Ψ |= ϕ nor Ψ |= ¬ϕ.

Definition 5.2 (Constraint Primal Graph). The constraint primal graph of a CNF
with constraints as leaves, is the undirected graph with all random variables occurring
in the CNF as nodes. Two nodes X and Y are connected if and only if one of the following
conditions hold:

1. X and Y occur together in a disjunction of the CNF.

2. X occurs together in a disjunction with an imprecise constraint ϕ, Y occurs to-
gether in a disjunction with an imprecise constraint χ, and ϕ and χ share random
variables.

Example 5.5
As an example consider the following CNF:

(X > 0∨ Y > 0) ∧ Y > Z

The constraint primal graph for the case none of the constraints is imprecise is
given in Figure 5.5a. In case the constraint Y > Z is imprecise, an additional
edge has to be added as shown in Figure 5.5b.

X Y Z

(a)
X Y Z

(b)

Figure 5.5: Example Constrained Primal Graphs

To measure the complexity of the constraint primal graph, we introduce the
existing notions of tree decomposition and treewidth.
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Definition 5.3 (Tree Decomposition [43]). A tree decomposition of an undirected
graph G = (V, E) is a tree T = (W, H), with nodes x1, . . . , xn, where each xi is a
subset of V, satisfying:

1. T includes only and all nodes of G.

2. All nodes connected by edges in G occur together in at least one node of T.

3. If two vertices of T contain a vertex of G, then all nodes of the tree in the path
between those vertexes contain this vertex of G as well.

Definition 5.4 (Treewidth [43]). The treewidth of a graph is the width of its tree
decomposition with minimal width. The width of a tree decomposition is the size of its
largest node minus 1.

Example 5.6
A tree decomposition with minimal width for the graph shown in Figure 5.5a, is
given in Figure 5.6a. Therefore, the treewidth of this graph is 1. For the graph of
Figure 5.5b only one tree decomposition is possible, shown in Figure 5.6b. The
treewidth is increased to 2.

{X, Y} {Y, Z}

(a)

{X, Y, Z}

(b)

Figure 5.6: Example Tree Decompositions

Determining the treewidth of a given graph is NP-complete [4]. However, for a
fixed treewidth a tree decomposition can be constructed in linear time [12].

Finally, we present the main result of this section, which relates the treewidth
of the input CNF’s constraint primal graph to the complexity of inference.

Theorem 5.2. Given an input CNF of bounded treewidth t, the complexity of Algo-
rithm 2 with proper variable order is O(m t dt), ignoring constraint checking, where m
is the number of nodes of the tree decomposition and d is the maximal number of choices
for a single random variable.

We emphasize that this complexity is similar to the results for ordinary model
counting, for instance the complexity in terms of the primal graph found by
Samer and Szeider is O(o m t 2t), where o is the maximum number of occurrences
over all variables [132].
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5.3.3 Making use of Additional Structure

Chavira et al. [22] argue that standard algorithms have complexity Θ(ct), i.e.
not only the worst-case, but as well the best-case complexity, is bounded expo-
nentially by the treewidth. In contrast, probabilistic inference based on WMC
can make use local structure, such as determinism [77] and context-specific in-
dependence [16], and can therefore in some cases perform better. Superiority of
WMC-based inference has experimentally been shown as well [135]. The same
is true for our generalised WMC algorithm. Example 5.2 for instance shows that
branches can be pruned, which means not all exponentially many choices have
to be examined. This is further evaluated experimentally in the following.

5.4 experiments

In this section, we provide some insight into the behaviour of the proposed
algorithm. In particular, we show that our inference algorithm is competitive
with existing approaches for discrete problems, i.e. the overhead of handling
constraints and computing bounds instead of single probabilities is negligible.
We further investigate scalability of the algorithm and show that our algorithm
can make use of determinism. The implementation is available at http://www.

steffen-michels.de/pclp. It makes use of YAP Prolog 6.2.2 and the SMT solver
Yices 2.0.1 [46], which supports linear arithmetic. The experiments are run under
Ubuntu 14.04 on a Laptop with an Intel Core i3 2.4 GHz processor and 4GB of
RAM. All runtimes are averaged over 10 runs.

5.4.1 Comparison with Other Implementations

We compare our PCLP implementation with implementations based on similar
inference algorithms. Such implementations are limited to precise distributions
and mostly to discrete variables. We therefore use a precise, discrete problem to
compare. The question we want to answer with the experiment is how scalabil-
ity of our generalised inference algorithm compares to existing approaches. We
expect some overhead for computing bounds instead of point probabilities and
handling constraints. Note that, in this case computing bounds is superfluous,
as the bounds will be equal. However, scalability of the generalised algorithm
should be similar.

We compare to ProbLog 1 [125] and ProbLog 2 [48]. The first version of Prob-
Log works similar to our implementation. First, all explanations are collected
using SLD resolution, resulting in a formula similar to what we call the solu-
tion constraint. The models of such formula are then counted by compilation
to binary-decision diagrams (BDDs) [18]. ProbLog 2 uses a different approach. All
grounded rules are translated to equivalent propositional formulas, which de-
fines the WMC problem. This can yield more compact CNFs, but requires in-
clusion of all head atoms in the CNF, instead of only the probabilistic facts, as

http://www.steffen-michels.de/pclp
http://www.steffen-michels.de/pclp
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in the formerly mentioned proof-based approach. The CNF is then compiled to
deterministic decomposable negation normal form (d-DNNF) [33]. Because the per-
formance of this approach mainly depends on the d-DNNF compiler used, we
provide results for two difference compilers: C2D [35] and the DSHARP com-
piler [106]. A fair comparison with PRISM is not possible, as it makes the strong
assumption that bodies of the same head are exclusive. It therefore does not
solve the difficult problem of computing probabilities of possibly overlapping
bodies, according to the inclusion-exclusion principle, as the formerly mentioned
approaches do.

For the experiment we use a version of the fruit selling problem, which we
introduced in Section 4.3.1. In the original version we compare the actual price
with the price customers are willing to pay:

buy(Fruit)← price(Fruit, P), 〈P ≤ Max_price(Fruit)〉

We replace this with discrete random variables, indicating whether the customer
is willing to pay the price with and without government support:

Buys_with_support(Fruit) ∼ {0.3 : yes, 0.7 : no}
Buys_without_support(Fruit) ∼ {0.6 : yes, 0.4 : no}

The definition of buy becomes then:

buy(Fruit)← 〈Support(Fruit) = yes〉, 〈Buys_with_support(Fruit) = yes〉
buy(Fruit)← 〈Support(Fruit) = no〉, 〈Buys_without_support(Fruit) = yes〉

In the experiment we query buy(fruit1) ∨ · · · ∨ buy(fruitn) with increasing n and
evaluate inference time. Ideally, inference time should scale linearly, since the
query is a disjunction of n independent formulas. This however requires an effi-
cient caching and elimination mechanism.

The result is shown in Figure 5.7. It clearly shows that PCLP is competitive, in
spite of the overhead of calling the SMT solver and computing bounds instead
of point probabilities. However, we do not achieve a linear complexity as would
be ideally expected. Only C2D scales linearly; it is superior for very large n (not
plotted in the graph), although for small n all other implementations perform
better.

We adapt the problem and introduce a continuous random variable for the
fruit’s price. The price the customer is willing to pay is still not uncertain, which
makes the constraint one-dimensional. This means it can be dealt with by Hybrid
ProbLog [60], which is integrated in the ProbLog 1 implementation we used in
the former experiment. For our PCLP implementation we discretise continuous
distributions at the points of those constants, which guarantees a precise distri-
bution. ProbLog 2 cannot deal with the problem, so we cannot include it in this
comparison.
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Figure 5.7: Comparison of PCLP with other Implementations for a Discrete Problem

The price of a kind of fruit is defined as in the example in Section 4.3.1:

Yield(Fruit) ∼ N (12 000.0, 1000.0)

Support(Fruit) ∼ {0.3 : yes, 0.7 : no}

basic_price(Fruit, 250− 0.007 · Yield(Fruit))

price(Fruit, BPrice + 50)← basic_price(Fruit, BPrice), 〈Support(Fruit) = yes〉
price(Fruit, BPrice) ← basic_price(Fruit, BPrice), 〈Support(Fruit) = no〉

For the price customers are willing to pay we just use a constant. The rule defin-
ing buy becomes then:

buy(Fruit)← price(Fruit, P), 〈P ≤ 100.0〉
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We again evaluated inference time for the query buy(fruit1) ∨ · · · ∨ buy(fruitn)
with increasing n. The result in Figure 5.8 shows again that the performance of
PCLP is competitive. The fact that PCLP is superior confirms the better results
in the previous experiment. As the time for handling continuous distributions
is negligible for this problem, the result reflects the higher overhead of the BDD
package, used by ProbLog 1.
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Figure 5.8: Comparison of PCLP with Hybrid ProbLog for a Continuous Problem

5.4.2 Scalability

We now consider the original problem as in Section 4.3.1, which means we use
the following rule to model whether customers buy a certain kind of fruit:

buy(Fruit)← price(Fruit, P), 〈P ≤ Max_price(Fruit)〉
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Inference for this problem cannot be performed by any of the frameworks we
compared to previously, and to our knowledge PCLP is the only framework that
can provide approximations with known error. To perform inference with PCLP,
we discretise continuous distributions as described in Section 4.5.2.5 by naively
choosing n intervals with equal probability, using inverse cumulative distribution
functions (CDFs). In the experiments we increase n to decrease the maximal er-
ror of the approximation, which increases inference time. Note that this naive
discretisation scheme is used on purpose, since we focus on evaluating the gen-
eralised WMC algorithm and showing its potential. Much better performance
can be achieved by more sophisticated discretisation, as will be shown in Chap-
ter 6.

As before we compute P(buy(fruit1) ∨ · · · ∨ buy(fruitn)), but this time deter-
mine approximations. The result is shown in Figure 5.9, where we show the
relationship between inference time and maximum error for varying n.

0

500

1000

1500

2000

0 0.01 0.02 0.03 0.04

In
fe

re
nc

e
Ti

m
e

(m
s)

Maximum Error

n = 1
n = 2
n = 4
n = 5
n = 10

Figure 5.9: Inference Time vs Maximum Error for Query buy(fruit1) ∨ · · · ∨ buy(fruitn)
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The result shows an interesting non-monotonic behaviour: while for n = 2,
inference is more expensive than for n = 1, for larger n the efficiency of infer-
ence increases with increasing n. For n = 10 we achieve a substantially better
performance than for small n.

The efficiency decreases between n = 1 and n = 2, because in general in
higher dimensional spaces, a finer discretisation is necessary to achieve the same
precision. So with a naive inference approach, the maximum error would always
be higher with larger n given the same inference time. However, by making use
of the problem’s structure the inference time is sub-exponential in the size of the
choice space, in particular because subconstraints are independent. That effect
dominates for larger n and the error can even decrease given the same inference
time.

The experiment shows the potential of this inference method. Due to the struc-
ture of problems, often sub-problems concerning continuous variables only have
to be estimated with low precision in order to achieve a satisfiable precision for
the entire problem.

5.4.3 Exploiting Determinism

We finally show that the inference algorithm can make use of determinism by
comparing inference times of the query buy(apple) ∧ 〈Crop(apple) > X〉 for var-
ious X. The topological structure of the problems is the same, but with larger
X the query can already be determined to be unsatisfiable, only based on the
choice for the random variable Crop(apple). The result is shown in Figure 5.10,
where we show again the relationship between inference time and maximum
error.

For X = 10 000 the result is similar to the result for the query buy(apple), as the
probability of the excluded subspace Crop(apple) ≤ 10 000 is very small. With
higher X however, the inference efficiency drastically increases, i.e. to achieve
a certain precision less inference time is needed. The experiment confirms that
the inference algorithm exploits determinism, similar to WMC algorithms in the
binary case.

5.5 related work

In this subsection, we will consider related methods for probabilistic inference,
subdivided by exact, approximate, and lifted inference.

5.5.1 Exact Inference

There are various algorithms for exact probabilistic inference, most of them de-
signed for BNs. Examples are variable elimination [123] and recursive condition-
ing [34]. As discussed, we base our work on the method of translating inference
to WMC problems [22], since this method makes it possible to exploit struc-
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Figure 5.10: Inference Time vs Maximum Error for Query buy(apple)∧ 〈Crop(apple) > X〉
with Varying X

ture as determinism [77] and context-specific independence [16], which often
occurs in logical theories. Exact inference is also possible for hybrid models with
restricted types of distributions, for example conditional linear Gaussian (CLG)
models [85]. Another hybrid formalism for which exact inference is possible is
Hybrid ProbLog [60]. Since in this language constraints are one-dimensional, dis-
tributions can be discretised at all points occurring in inequalities in the proofs
of a query, which turns inference into a discrete problem.

A more general related approach to inference with probabilities and con-
straints is by Dechter [42], which focuses on algorithms for various inference
problems. All considered problems share the property that the structure of prob-
lem instances can be represented as graphs. Examples of such problems include
probabilistic reasoning and constraint satisfiability, which are exactly the prob-
lem also unified in our approach. A particular algorithm for performing prob-
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abilistic inference modulo theories is presented in [41]. It is closely related to
our method, but restricted to exact inference. Still this work may be the basis of
interleaving probabilistic reasoning and constraint checking in a more efficient
way in PCLP inference, based on a uniform representation combining both as-
pect of the inference problem. In our current approach, the probabilistic part of
inference only uses the information which random variables occur in primitive
constraints, but does not make use of the structure of constraints.

Exact inference algorithms have also been developed for the imprecise case.
Since these problems are often strictly more complex than the precise case, meth-
ods for the precise case are not applicable. For instance, one has to resort to
methods as multi-linear programming [32]. An exception is imprecise probabilistic
Horn clause logic (IPHL), introduced later in this thesis (Chapter 7), providing an
imprecise formalism for which complexity is as hard as for the precise case. How-
ever, IPHL restricts the language to binary random variables and Horn clauses,
whereas PCLP does not impose such restrictions.

5.5.2 Approximate Inference

For BNs one class of approximation algorithms is based on Pearl’s belief propa-
gation algorithm [119], which computes posterior probabilities by passing mes-
sages between nodes. However, the algorithm only terminates and produces cor-
rect probabilities for networks which are polytrees, for which inference can be
done in polynomial time. For the general case, the algorithm also often converges
to a good approximation of the correct probabilities. A lot of work has been done
about convergence and quality of such approximations [107, 159, 146, 105], but
hard guarantees about the quality of the result cannot always be provided, in
contrast to our inference method.

Similarly to PCLP, there is work on approximation schemes providing hard
guarantees for discrete distributions by simplifying the problem [121]. Recently,
the effectiveness of this kind of method in combination with state-of-the-art
knowledge compilation techniques has been shown [128, 129, 153]. The main
difference between PCLP and this work is that PCLP can be used to model
and reason with continuous and imprecise distributions, whereas the former ap-
proaches are aimed at approximate inference for discrete and precise problems.

For continuous distributions, another inference method is to use approximate
representations of distributions, which are typically mixtures of functions. Ex-
amples of such representations are mixtures of truncated basis functions [83] and
piecewise polynomials [136]. Such approximation functions can be used to compute
posterior probabilities, but no hard guarantees about the quality of the result can
be given. The accuracy of the approximation is usually measured in terms of the
Kullback-Leibler divergence [82] between the distributions, which does not directly
relate to the error of the computed probabilities. This makes it hard to draw con-
clusions on the quality of probabilities and expectations derived from the results,
which is essential for decision making.
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Methods which put virtually no restrictions on the distributions used are
based on Markov chain Monte Carlo (MCMC) sampling. Those methods can be
very effective, but often have to be hand-tailored for specific problems. There
are however frameworks providing MCMC inference for generic relational prob-
abilistic languages [5, 114]. Recently significant progress has been made to im-
prove upon known problems of MCMC methods, such as slow convergence for
high-dimensional distributions [69] and distributions with near deterministic
probabilities [88]. Despite those improvements, there is a qualitative difference
between sampling methods and the method proposed in our work. No hard
guarantees can be given about the error of a sampling estimation. Even under
perfect circumstances, that is detailed knowledge about the approximated dis-
tributions is available, guarantees for approximations obtained by MCMC algo-
rithms can only be given in terms of for instance the Monte Carlo standard error,
with gives a probabilistic, but no hard guarantee. Even worse, in realistic cases,
nothing is known about the distributions, so no guarantees can be given at all.
The approximation might pseudo convergence, which means that is seems to have
converged to a solution, which is actually not the case. Determining whether
a Markov chain converged is only possible under complicated theoretical condi-
tions [124]. In general, there is no known way to be sure a Markov chain actually
converged (see e.g. [17, p. 21]). In contrast, PCLP pushes expressivity as far as
possible, but still allows one to measure the quality, making it possible to decide
whether more computation time or effort to acquire evidence should be invested
to compute better results.

5.5.3 Lifted Inference

Another method to deal with intractability of probabilistic problems is lifted in-
ference. The idea is that symmetries in inference problems, which are especially
present in first-order models, can be exploited to significantly improve efficiency
of inference. A survey of lifted inference approaches is provided by Kersting [80].
Lifted inference can also be applied to continuous distributions, which has been
shown by Choi et al. [25]. PCLP inference may also profit from lifted inference,
but this is beyond the scope of this thesis.

5.6 conclusions

We showed that for PCLP we can perform exact inference with similar complex-
ity as for the precise case, which is a quite unique property for an imprecise
formalism. We developed a concrete inference algorithm, based on a generali-
sation of WMC. The algorithm is able to exploit the same kinds of structure as
ordinary WMC, which is the state-of-the-art of precise probabilistic inference.
This shows the benefit of our general semantic foundation integrating existing
artificial intelligence (AI) approaches. The language can straightforwardly be ex-
tended with arbitrary constraint theories, such as ordinary CLP. Furthermore,
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for performing inference we can make use of existing algorithms from the field
of LP and constraint satisfaction, in particular modern SMT solvers, and generalise
probabilistic inference by WMC, inheriting the method’s strengths.





6
E F F E C T I V E A P P R O X I M AT I O N O F H Y B R I D D I S T R I B U T I O N S
W I T H B O U N D E D E R R O R

In this chapter we propose an efficient approximation algorithm for computing
marginal probabilities for hybrid problems, based upon the work presented in
the previous chapters.

6.1 exploiting logical structure for finding effective approxi-
mations

We have shown in Chapter 4 that one can approximate with bounded error a
wide class of hybrid probabilistic inference problems in terms of imprecise distri-
butions and in Chapter 5 that one can compute such approximations efficiently
given a discretisation of the continuous distributions. What is missing to make
such approximation practical is a way to obtain effective discretisations.

In this chapter we present a novel approximate inference algorithm, called the
iterative hybrid probabilistic model counting (IHPMC) algorithm, yielding approxi-
mations with bounded error, by incrementally refining discretisations. Effective
discretisations are found by exploiting the logical structure of problems, by adopt-
ing a coarse-to-fine approach, which means to exploit information from previous
iterations to effectively decrease the error of approximations.

A comparison is made with sampling methods. Such methods are known to
converge slowly when dealing with (near) deterministic probabilities and cannot
handle observed rare events well. Some other approximate inference methods
that are able to handle continuous distributions, e.g. [136], also suffer from rare
observed events. All such methods share the drawback that they only provide
weak guarantees about the quality of the estimates. In the worst case, one gets an
approximation that seems to be near the exact result, but is completely wrong, a
phenomenon that for sampling is known as pseudo convergence. In domains such
as diagnosis and crisis management, where wrong decisions may have a huge
impact, guarantees about the quality of approximations are desirable. The need
to deal with rare events is also characteristic for such domains. We show that,
in spite of the much stronger guarantees IHPMC provides on the quality of the
result, our method is competitive and even superior for hybrid problems that
possess a rich logical structure and concern observed rare events.

We first provide a motivating example to illustrate the importance of our work
in Section 6.2. Then, in Section 6.3 we will define the probabilistic inference

117



118 effective approximation of hybrid distributions with bounded error

task considered. Subsequently, the novel IHPMC algorithm is introduced in Sec-
tion 6.4. Finally, we experimentally evaluate the algorithm by comparing it with
sampling-based methods (Section 6.5). Sections 6.6 and 6.7 discuss related work
and conclude the chapter.

6.2 motivating example

As part of a model-based diagnostic system, we model the event of a failed
component. Usually, the component is cooled down, but the cooling can also
fail, modelled by the boolean random variable NoC. Suppose the environment
temperature is modelled with continuous variable T ∼ N (20.0, 5.0). We can
then express that the component can bear a higher temperature with cooling by
modelling the event of failure with a Probabilistic Constraint Logic Programming
(PCLP) program as:

fail← 〈T > 20.0〉, 〈NoC = true〉
fail← 〈T > 30.0〉

The probability of failure can be computed exactly if it is assumed that the cumu-
lative distribution function (CDF) of the Gaussian distribution can be computed
exactly, thereby ignoring the potential error of typical implementations of such
functions, as such errors are typically negligible and predictable.

As already discussed in Section 4.5.1.2, the situation is different in case we
want to compute the probability of a constraint between a number of continuous
random variables with potentially different kinds of distributions. For example,
in case the temperature the component can bear is uncertain as well, we may
want to compute the probability of T > L, where L represents the temperature
limit of the component. In this case exact computation of the probability is im-
possible and one has to resort to approximating this probability. Such methods
are either based on sampling or some approximate representation of CDFs that
supports exact inference. If at all, only probabilistic guarantees for the quality
of such approximations can be given. However, in case the probability of the
evidence is very low, i.e. one observes a rare event, the quality of approximations
decreases, and one may get a completely wrong result without realising it.

This is problematic in case one wants to base a decision on such probabili-
ties. For instance, the decision whether or not to stop a machine and check a
particular component may be based on the trade-off between the costs of stop-
ping the machine, on the one hand, and machine failure, on the other hand with
associated uncertainties. The work in this chapter provides a way to compute
approximations with bounded, known error for such problems, which allows
one to always find the best decision with certainty.
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6.3 probabilistic inference task

As in Chaper 5, we will use a representation, in which events are represented by
propositional logic formuals extended with constraints, as in satisfiability modulo
theories (SMT) problems. Distributions are however precise, in contrast to the in-
ference setting in Chaper 5. This can be seen as a general assembly language for
hybrid probabilistic inference. How to convert PCLP programs to such represen-
tation was discussed in Section 5.1.

6.3.1 Logical Representation Language

The representation language is based on the key insight that any marginal proba-
bility can be mapped to a probability of an event defined on independent random
variables only, expressed by a logical formula. Dependencies in the original dis-
tribution are reflected through the logical structure.

We use the following representation language as a basis. We consider a finite
number of random variables V1, . . . , Vn which have a support, i.e. the range of
values on which the distribution is defined. The support of each random vari-
able forms a measurable sub-space. These supports are in principle arbitrary;
we in this chapter consider binary and real-valued random variables as typical
representatives of discrete and continuous variables. The method can however
be applied to a wide range of possible kinds of supports.

To each random variable V we associate an event space AV. Such event spaces
are the basis for the events that can be represented. For the boolean variables, the
events space is obviously the power set of the supports and for the real variables
we consider the set of all open and closed intervals with rational bounds.

Furthermore, we assume that all random variables are distributed indepen-
dently and that we can compute the probability of all events. For the continu-
ous variables, as discussed, we assume that their CDFs can be computed exactly,
thereby ignoring the potential error of typical implementations of such functions,
as such errors are typically negligible and predictable.

This together defines a probability space in the sense of Kolmogorov’s probabil-
ity theory [81]. The measure’s sample space Ω is the product of all random vari-
ables’ supports and its event space A the tensor-product σ-algebra of the random
variables’ event spaces. The probability measure P is defined by the independent
probability measures.

To represent events in a structured way we use logical formulas with con-
straints on the variables. The basic building block of formulas are primitive
constraints. For the boolean variables, the possible constraints are equality and
its negation (=, 6=) between other boolean variables and the constants true and
false. For the real-valued variables, we consider linear arithmetic constraints (e.g.
2X ≤ Y + 2). The method can be applied to arbitrary ranges and associated
constraint theories, given that satisfiability of constraints is decidable.
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Events in the combined probability space are represented by formulas, which
are compositions of primitive constraints by arbitrary propositional logical con-
nectives (∧, ∨, ¬, . . . ).

Example 6.1
Consider again the PCLP program from Section 6.2:

fail← 〈T > 20.0〉, 〈NoC = true〉
fail← 〈T > 30.0〉

The event that the component fails can be represented by the formula:

(NoC = true∧ T > 20.0) ∨ T > 30.0

6.3.2 Inference Problem

We split the random variables into discrete ones V1, . . . , Vl and continuous ones
Vl+1, . . . , Vn and denote the spaces of all possible valuations as ΩD , which is
the product of all discrete random variables’ supports, and ΩC , which is the
product of all continuous random variables’s supports. The probability of any
event e, represented as logical formula, is then defined as:

P(e) def
= ∑

v1,...,vl∈ΩD

∫
· · ·

∫
ΩC

1e(v1, . . . , vn)
l

∏
i=1

Pi(vi)
n

∏
i=l+1

pi(vi)dvl+1, . . . , vn

Here 1e is an indicator function, indicating whether a valuation is an element
of the event represented by e or not, Pi is the discrete probability measure of Vi
and pi is the probability density function (PDF) of continuous random variable Vi.

The inference task we consider in the remainder is computing the probability
of an event e given observations o:

P(e | o) =
P(e ∧ o)

P(o)
,

where both e and o are expressed as logical formulas. Computing P(e) and P(e |
o) is in general not possible, as it may require to compute infinite sums and
uncomputable integrals.

6.4 iterative hybrid probabilistic model counting

In this section we discuss the novel IHPMC algorithm.
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6.4.1 Hybrid Probability Trees

Probability trees are a basic concept to compute marginal event probabilities [142]
and were already employed in Chapter 5. In short, these trees represent a partic-
ular choice for the value of a particular random variable at every edge such that
the paths through the tree constitutes the sample space. Such trees can be used
to compute probabilities of an event by considering the paths of the tree where
this event occurs. The idea is related to that of logic semantic trees [131], where
a particular value of an atom is chosen at each edge and the formula is condi-
tioned on the choices made, which can be repeated until the formula simplifies
to ⊥ or >. In this chapter, we use a combination of both, where nodes contain
logical formulas and where the children of a node represent a partitioning of
possible worlds. Furthermore, these trees can be used to compute the probability
of events, expressed by logical formulas.

The main idea is similar to the principles used in solvers for binary weighted
model counting (WMC) [133]. However, whereas in previous work this is applied
to discrete, finite ranges, we extend the concept to continuous random variables.
In order to do so, at each node we split the variable’s range into two parts and
allow for a further split at a deeper level. Then, for each choice taken at a cer-
tain child, the probability is assigned that the random variable takes a value in
the chosen partition, conditioned on the range chosen for the random variable
earlier on the path. As discussed, such probabilities can be computed for contin-
uous random variables by their CDFs, because of the initial independence of the
random variables.

Definition 6.1 (Hybrid Probability Trees). A hybrid probability tree (HPT) is a
binary tree with at each node n a propositional formula ϕn and for all random variables
X a range denoted by range(n, X). If r is the root node, it holds that range(r, X) equals
the support of X. Now let n be some node with children {c1, c2}. To each edge n → ci,
i ∈ {1, 2}, a particular range τni is associated to a fixed random variable Y such that
τn1 ∪ τn2 = range(n, Y) and τn1 ∩ τn2 = ∅. It holds that range(ci, Y) = τni and
range(ci, Z) = range(n, Z) if Y 6= Z, with i ∈ {1, 2}. Furthermore, the formula ϕi
associated to ci equals ϕn simplified by the restrictions on the range on Y at ci, i.e. by
observing that some primitive constraints can be replaced by > or ⊥. Furthermore, to
each edge n→ ci, with i ∈ {1, 2}, a probability pni is assigned, such that pni = P(Yn ∈
τni | Yn ∈ range(n, Y)). Finally, if l is a leaf node, then it holds that ϕl = > or ϕl = ⊥.

Given a particular HPT, it is straightforward to compute the probability of
the event represented by the formula at the root node. First, the probability of
a leaf is by definition 0 or 1. Furthermore, due to the properties of the tree it
is easy to show that for each non-leaf node n the probability of ϕn, given the
ranges of random variables, can be computed by pn = pn1 · p1 + pn2 · p2, where
p1 and p2 are the probabilities associated to n’s children. So the probabilities can
be computed from the bottom to the top of the tree.
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Example 6.2
Consider again the event that a component fails, as represented in Example 6.1:

(NoC = true∧ T > 20.0) ∨ T > 30.0

Suppose continuous variable T ∼ N (20.0, 5.0) is used to model the temperature.
Whether the cooling fails is modelled by the boolean random variable NoC ∼
{0.01 : true, 0.99 : false}.

A possible HPT is given in Figure 6.1. At each node we simplify the formula
as much as possible given the choices made. The probabilities for the continuous
variables are rounded to four decimals. Note that the probability assigned to the
edge with choice T ∈ (−∞, 20] is not P

(
T ∈ (−∞, 20]

)
= 0.5, as the range of T

is already restricted on the path before. Therefore, it is P
(
T ∈ (−∞, 20] | T ∈

(−∞, 30]
)
≈ 0.5116. From this tree, the probability of component failure can be

computed by 0.9772 · 0.01 · 0.4884 + 0.0228 ≈ 0.0276.

(NoC = true∧ T > 20.0) ∨ T > 30.0

NoC = true∧ T > 20.0

⊥

NoC ∈ {false}
0.99

T > 20.0

⊥

T ∈ (−∞, 20]
0.5116

>

T ∈ (20, 30]
0.4884

NoC ∈ {true}
0.01

T ∈ (−∞, 30]
0.9772

>

T ∈ (30, ∞)
0.0228

Figure 6.1: Example HPT

6.4.2 Partially Evaluated Hybrid Probability Trees

The concept of HPTs is restricted to problems for which exact inference is pos-
sible. For continuous events, which cannot be represented by hyperrectangles, we
can never simplify all leaves to ⊥ or >. We tackle this problem by using partially
evaluated hybrid probability trees (PHPTs). The only difference between HPTs and
PHPTs is that for PHPTs we drop the requirement that all leaves must contain
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⊥ or > and allow arbitrary formulas. One can therefore further extend a PHPT
either ad infinitum or until one finds a HPT. In the next section we show how
PHPTs can be used to compute approximations with known maximal error.

Example 6.3
Suppose the limit of the temperature the component can bear is uncertain as
well, modelled by L ∼ N (30.0, 5.0). A PHPT for the event that the temperature
is above the limit is depicted in Figure 6.2. It is impossible to define a finite HPT
for this problem, as the event does not have the shape of a hyperrectangle. Note
that the formula T > L often cannot be simplified directly, so the information
about all chosen ranges upwards on the path is required. This is in contrast to
binary versions of model counting algorithms, for which the choices of variable
values are completely reflected in the simplified formula.

T > L

T > L

T > L

L ∈ (−∞, 20]
0.9772

⊥

L ∈ (20, ∞)
0.0228

T ∈ (−∞, 20]
0.5

T > L

>

L ∈ (−∞, 20]
0.9772

T > L

T > L

T ∈ (20, 23.3724]
0.5

T > L

T ∈ (23.3724, ∞)
0.5

L ∈ (20, ∞)
0.0228

T ∈ (20, ∞)
0.5

Figure 6.2: Example PHPT

6.4.3 Approximating Probabilities by Partially Evaluated Hybrid Probability Trees

We here show how probabilities are approximated by employing PHPTs.

6.4.3.1 Bounds on Event Probabilities

Each leaf of a PHPT with a formula which is not ⊥ or > corresponds to an area
of the sample space which is only partially part of the event associated to the
root node. While this does not provide an exact probability of this event, it does
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provide a bound on this probability by assuming the probability of such areas
is 0.0 or 1.0 respectively. In this way, PHPTs can be used to compute probability
bounds, denoted by P and P.

Example 6.4
The PHPT in Figure 6.2 contains only one leaf with >, whereas all other leaves
contribute at most partially to the event’s probability. The lower bound of the
event’s probability is therefore the probability associated to this single leaf: P(T >
L) = 0.5 · 0.9772 = 0.4886. Analogously, as there is only one path which cer-
tainly does not contribute to the probability, the probability’s upper bound is
P(T > L) = 1− 0.5 · 0.0228 = 0.9886.

Lemma 6.1. For any event e and PHPT for e:

P(e) ≤ P(e) ≤ P(e)

Furthermore, we can always achieve arbitrary precisions, by evaluating the
PHPT sufficiently deep.

Lemma 6.2. For every event e and every maximal error ε, there is a PHPT, such that:

P(e)− P(e) ≤ ε ∧ P(e)− P(e) ≤ ε

6.4.3.2 Bounds on Conditional Event Probabilities

Conditional probabilities are defined as P(e | o) = P(e ∧ o)/P(o). As this defini-
tion requires the non-conditional probabilities of two events, we cannot compute
bounds on this probability using a single PHPT, but have to use a second one.
We can furthermore compute tighter bounds by making use of the fact that the
bounds of e ∧ o and e are not independent: an area cannot at the same time be
outside of e, but within e ∧ o. This can be exploited by expressing the bounds of
conditional probabilities in terms of bounds on two non-conditional probabili-
ties, as we have shown in Chapter 4 (Proposition 4.3):

P(q | e) =
P(q ∧ e)

P(q ∧ e) + P(¬q ∧ e)

P(q | e) =
P(q ∧ e)

P(q ∧ e) + P(¬q ∧ e)

Also for conditional probabilities we can therefore achieve arbitrary precisions.

Proposition 6.1. For all events e, o and maximal error ε, there are PHPTs, such that:

P(e | o)− P(e | o) ≤ ε ∧ P(e | o)− P(e | o) ≤ ε



6.4 iterative hybrid probabilistic model counting 125

6.4.4 Anytime Inference by Iterative Hybrid Probability Tree Evaluation

The anytime approximation IHPMC algorithm based on PHPTs is given in Algo-
rithm 3. We start with two PHPTs with initial root nodes e ∧ o and ¬e ∧ o, which
we use to compute in each iteration an approximation according to Proposi-
tion 4.3. In case no evidence is present, we can use a single PHPT with formula
e. In the general case, at each iteration we first choose one of the two PHPTs
and then, in this PHPT, we choose a non-evaluated node to evaluate further.
From the formula of this node we choose a random variable that will be used
for splitting and finally we choose a partitioning for this random variable.

Algorithm 3: IHPMC Algorithm
Input : Events e and o, maximal error ε
Result: Approximation of P(e | o) with maximal error ε

1 phpt_pos = PHPT with single root node e ∧ o
2 phpt_neg = PHPT with single root node ¬e ∧ o
3 p_min = 0.0
4 p_max = 1.0
5 while (p_max− p_min)/2 > ε do
6 phpt_to_eval = choose_phpt(phpt_pos, phpt_neg)
7 node_to_eval = choose_node(phpt_to_eval)
8 rvar_to_branch = choose_rvar(node_to_eval)
9 (rvar_part_l, rvar_part_r) = choose_part(rvar_to_branch, node_to_eval)

10 add children to node_to_eval according partition (rvar_part_l, rvar_part_r)
11 p_min = lower(phpt_pos) /(lower(phpt_pos) + upper(phpt_neg))
12 p_max = upper(phpt_pos)/(upper(phpt_pos) + lower(phpt_neg))
13 return (p_min + p_max)/2

Note that we could also in the algorithm compute components of the formula
independently in case they do not share any variables, as usually done in WMC
solvers, which we however leave out here for brevity. While the basic algorithm is
straightforward, there are four non-deterministic choices at each iteration which
largely determine the effectiveness of the algorithm. Of course, depending on
the problem at hand, there will be different choices of heuristics that will be
useful. In the following, we describe general heuristics which seem to be very
effective for most problems.

As the first choice, we pick the PHPT which has the highest difference be-
tween lower and upper bound, i.e., the largest error. Second, we choose the
non-evaluated node which represents the sub-space with the highest probability
mass, as these nodes have the most potential for reducing the error. A more so-
phisticated heuristic, that tries to predict how much effort is required to reduce
the error of the node’s formula, offered no improvement in experiments. The
reason is that an accurate prediction takes as much time as just trying to reduce



126 effective approximation of hybrid distributions with bounded error

the error and continuing with another branch if the error for the firstly chosen
one cannot be reduced quickly.

In contrast to the choice of the node, the heuristic for choosing a random vari-
able must be a good predictor for how much this simplified the formula, as this
choice influences all descendants of the node in the tree. The issue is similar to
choosing a variable in binary model counting, but the concept has to be gen-
eralised for continuous variables. We use a heuristics based on the observation
that variables occurring more frequently simplify larger parts of the formula.
This heuristic is similar to the dynamic largest combined sum heuristic, commonly
used by binary model counters [134, Section 3.2] and used for the GWMC algo-
rithm (Section 5.2.2.1). For continuous variables however we have to adapt the
heuristic to make sure that random variables are not selected repeatedly without
an opportunity to eliminate a primitive constraint, and thereby simplifying the
formula.

Finally, we need to pick a partitioning of the variable. For the binary variables
there is obviously only a single partitioning possible ({true} and {false}). The
partitioning of a continuous random variable amounts to picking a point x ∈
range(n, Y) of the range of the random variable Y at node n, which provides
two sub-intervals (−∞, x] ∩ range(n, Y) and (x, ∞) ∩ range(n, Y). Initially, we
find points that can lead to a simplified sub-formula. For instance, in Figure 6.2
the choice of the point 20 in the left branch, leading to the restriction L ∈ (20, ∞),
can be used to simplify the formula to ⊥, given the choice for T above in the tree.
In case there are multiple of those points, we count how many sub-formulas can
be simplified by choosing this point. There are also cases in which there is no
such point, as at the top or the rightmost evaluated node in Figure 6.2. In this
case we use a heuristic trying to maximise the probability of the path eliminating
the constraint.

Theorem 6.1. IHPMC (Algorithm 3) terminates, i.e. it always finds an approximation
with the desired error bound in finite time, given the heuristics as described above.

6.5 experiments

We implemented the algorithm in the functional programming language Haskell.
The implementation is available at http://www.steffen-michels.de/ihpmc. We
compare IHPMC to sampling approaches, as sampling is the commonly used
inference method for hybrid distributions. We compare to the sampler imple-
mentations of BLOG 0.81 [102] and distributional clauses (DC)2 [61]. Both are
optimised for problems with logical structure. BLOG provides several sampler
implementations. We compare to the Likelihood weighted (BLOG LW) and the
naive rejection sampler (BLOG RJ). The Markov chain Monte Carlo (MCMC) sam-
pler of BLOG fails completely on the problem presented. To allow a comparison,
we first ignore the bounded error guarantee of IHPMC and just consider the

1 http://bayesianlogic.github.io
2 https://code.google.com/p/distributional-clauses

http://www.steffen-michels.de/ihpmc
http://bayesianlogic.github.io
https://code.google.com/p/distributional-clauses
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error of approximations. We measure the squared error and for the sampling
approaches the mean squared error over 50 runs versus inference time. All ex-
periments were run on a laptop with a Intel Core i3 2.4 GHz processor and 4GB
of RAM.

6.5.1 Benchmark Problem

We use an abstract diagnostic problem, which is a typical example of a domain
were events (failures) are rare. Also such problems possess a rich logical struc-
ture and are of hybrid nature. Our model includes three kinds of reasons why
a component can fail: discrete reasons occurring with some probability, contin-
uous reasons meaning that a continuous variables exceeds some limit which is
uncertain itself (e.g. the temperature got too high), and another failing compo-
nent. In our abstract model the failure of a component i > 0 is modelled as:

failsi ↔ DCausei = true∨ CCause > Limiti ∨ failsi−1

For i = 0, the component does not depend on other components, so it can only
fail because of the first two reasons. The number of components n and probabil-
ity p of DCausei are varied in the experiments. For the continuous variables we
use the following distributions: CCause ∼ N (20.0, 5.0) and Limiti ∼ N (µ, 5.0),
where µ is a parameter we also vary during the experiments. Note that since we
use the same continuous cause variable for all components, dependencies are
created such that probabilities cannot be computed exactly in a straightforward
way. Also note that variables are all normally distributed for simplicity. The IH-
PMC algorithm can also deal with mixtures of different distributions, which can
be achieved by just using different CDFs.

6.5.2 Results

Here we discuss the results of exploring the performance of the algorithms with
varying parameters.

6.5.2.1 Non-Conditional Probabilities With Varying Parameters

The results depicted in Figure 6.3 are based on a run with parameters where the
continuous cause has a high probability. It is much higher than for a realistic
diagnostic problem, but is used to illustrate behaviour of the algorithm. In the
first milliseconds the error of IHPMC is very unstable, as the bound on the error
is still relatively large. Actually, it takes about 2.6 seconds before the error is
guaranteed to be below 0.01. Decreasing the error bound can temporally result
in an increased error. As the error of the sampling algorithms are averaged over
several runs, their error decreases more or less monotonically. IHPMC can profit
from the case in which the discrete cause has more impact, as shown by the
experiment in Figure 6.4. The error bound drops below 0.01 already after about
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6 milliseconds. The sampling algorithms can also profit from the discrete struc-
ture, but are clearly outperformed by IHPMC. Also, IHPMC can profit when
the continuous part of the event is more rare, which is more realistic for a di-
agnostic problem (Figure 6.5). Here is takes about 28 milliseconds to get an
error bound of 0.01. In this case, IHPMC cannot make use that much of the dis-
crete structure, but in the first iterations a single path with a high probability is
found that implies DCause0 = false ∧ CCause ≤ Limit0 ∧ · · · ∧DCausen−1 =
false∧CCause ≤ Limitn−1. This disproves failsn−1, which means the upper prob-
ability bound jumps to a small value.
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Figure 6.3: Approximation Errors (P(fails9), n = 10, p = 0.01, µ = 30.0)

6.5.2.2 Scalability

To show scalability of IHPMC, we performed an experiment with a larger set
of components (n = 100), where it takes about 2.3 seconds to get a guaranteed
error below 0.01. As the results in Figure 6.6 show, in the beginning two of the
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Figure 6.4: Approximation Errors (P(fails9), n = 10, p = 0.3, µ = 30.0)

sampling implementations outperform IHPMC, as sampling algorithms by their
nature do not suffer from a high number of dimensions. However, recall that
IHPMC is outperformed by algorithms providing much less information, as no
guarantees about the error are provided by the sampling algorithms. After about
1.5 second however the results of IHPMC become competitive.

6.5.2.3 Computing Probabilities Conditioned on Rare-Event

Finally, in Figure 6.7, we show that IHPMC is superior if probabilities condi-
tioned on rare events are computed. The inference task is quite natural for a
diagnostic setting: the failure of some component is observed and one wants to
know whether the failure is caused by some subcomponent. The performance
of IHPMC is also affected by conditioning on the rare event; it takes about 250
milliseconds to guarantee an error below 0.01, while for the probability of the
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Figure 6.5: Approximation Errors (P(fails9), n = 10, p = 0.01, µ = 60.0)

evidence only this takes about 15 milliseconds. The performance of the samplers
however decreases significantly more.

Error measures only tell half of the story as IHPMC provides a different kind
of result as sampling methods. This is illustrated in Figure 6.8, where the bounds
computed by IHPMC have been visualised together with point approximations
produced by a sampler. Each point represents a single run of the sampler, which
can or cannot be within the bounds computed by IHPMC. However, as a user of
a sampling method one only obtains a single point and there is no way to tell
whether this is a good approximation or not.

6.6 related work

Recently, an exact inference algorithm which exploits the logical structure of
problems by employing constraint solvers, in this case for bounded integers, has
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Figure 6.6: Approximation Errors (P(fails99), n = 100, p = 0.01, µ = 60.0)

been proposed [41]. Compared to the work presented in this chapter, this method
does not work for unbounded integers and continuous distributions, which is a
major restriction.

There are several approximation methods for hybrid problems that use ap-
proximate representations for continuous distributions for which exact inference
is possible. Examples of such representations are mixtures of truncated basis func-
tions [83] and piecewise polynomials [136]. Recently such ideas have also been
combined with ideas from logical WMC, similar to the work presented in this
chapter [8]. These methods have in common that they do not provide guarantees
about the error of computed posterior probabilities with respect to the original
distribution. It may seem that approximate representations, such as piecewise
polynomials, can resemble intended distributions very closely, but conditioning
on evidence with small probability can significantly increase the error made
when computing marginal probabilities.
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Figure 6.7: Approximation Errors (P(fails9 | fails0), n = 10, p = 0.0001, µ = 60.0)

Another class of approximation methods, virtually putting no restrictions on
the type of probability distribution and evidence, are based on sampling. While
the performance of straightforward sampling methods decreases dramatically
when conditioning on rare events, MCMC methods can be very effective if they
are hand tailored for specific problems. However, generic MCMC frameworks
are usually suboptimal [5, 114], while it is desirable to have a general tool to
perform inference on various models, as IHPMC does. Despite of many improve-
ments solving many issues with sampling methods, such as slow convergence
for high-dimensional distributions [69] and distributions with near deterministic
probabilities [88], there is a qualitative difference between sampling methods and
the method proposed in this chapter: even under perfect circumstances, when de-
tailed knowledge about the approximated distributions is available, guarantees
for approximations obtained by MCMC algorithms can only be given in terms
of for instance the Monte Carlo standard error, which gives a probabilistic, but no
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Figure 6.8: Probability Approximations (P(fails9 | fails0), n = 10, p = 0.0001, µ = 60.0)

hard guarantee, as the work in this chapter provides. Even worse, in realistic
cases, nothing is known about the distributions, so no guarantees can be given
at all. The approximation might pseudo converge, which means that is seems
to have converged to a solution, which is actually not the case. Determining
whether a Markov chain converged is only possible under complicated theoreti-
cal conditions [124]. In general, there is no known way to be sure a Markov chain
actually converged (see e.g. [17, p. 21]).

Recent hashing-based sampling methods, which exploit logical structure of
problems, have been extended for hybrid distributions [9, 24] as well. Such meth-
ods provide a guarantee on the quality of approximations, but this remains a
probabilistic guarantee on non-conditional probabilities. In contrast, the algo-
rithm presented in this chapter, provides a hard guarantee for computed con-
ditional probabilities. Moreover, the methods mentioned above are restricted to
exactly computable representation of continuous distributions (piecewise poly-
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nomials [9] and uniform distributions [24]), while we provide inference for arbi-
trary PDFs with computable CDFs.

Several approximation methods have been proposed that provide hard guar-
antees for discrete distributions [121]. Recently, the effectiveness of these kind of
methods in combination with state-of-the-art knowledge compilation techniques
has been investigated [128, 129, 153]. In contrast to IHPMC, these algorithms are
restricted to discrete problems and do not handle evidence, which are significant
limitations in practice.

6.7 conclusions

In this chapter, we have introduced the first practical hybrid inference algorithm
which provides a hard bound on the error of approximations of marginal prob-
abilities with evidence. An important feature of the algorithm is that it exploits
the logical structure of the problem, which makes it suitable for both proposi-
tional and first-order formalisms, such as logic-based formalisms for statistical
relational learning (SRL) [54].

The proposed algorithm is applicable to a wide range of probabilistic infer-
ence problems provided that it can be decided whether primitive constraints
on random variables are true or not given restrictions on the ranges of random
variables, which is needed for building a PHPT. There are obviously theoreti-
cal limitations on this decision procedure; however, it is straightforward if the
range-restrictions are modelled as intervals and events are modelled using linear
constraints as illustrated in the examples.

For very high dimensional continuous problems with many dependences and
little structure, the IHPMC algorithm may perform worse than sampling meth-
ods, which are not sensitive to high dimensional dependences. Many realistic
problems stemming from SRL are however characterised by a moderate number
of dimensions with a significant amount of structure. For such problems IHPMC
is competitive with state-of-the-art sampling algorithms, in spite of the fact that
it provides much stronger guarantees. It outperforms sampling methods by far
if rare events with deterministic structure are provided as evidence. Moreover,
even for problems for which our algorithm converges slowly, this is visible for
the user and can therefore prevent wrong conclusions, which is in general not
the case for MCMC methods.
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I M P R E C I S E P R O B A B I L I S T I C H O R N C L A U S E L O G I C

With the work on Probabilistic Constraint Logic Programming (PCLP), we have
shown that one can employ imprecise reasoning with little additional cost in
terms of inference efficiency. However, PCLP focuses on independent imprecise ran-
dom variable definitions, while its expressivity is limited for conditional random
variable definitions, e.g. compared to locally defined credal networks (LDCNs). In
this chapter we introduce imprecise probabilistic Horn clause logic (IPHL), which
aims towards imprecise knowledge representation involving conditional defini-
tions, but as well avoids to increase inference complexity.

After explaining the basic properties of IPHL (Section 7.1), we first provide
a motivating example demonstrating knowledge representation capabilities and
limitations of other approaches in Section 7.2. Then the language is defined for-
mally (Section 7.3) and the inference method is presented (Section 7.4). Finally,
related work is discussed in Section 7.5 and Section 7.6 concludes the chapter.

7.1 imprecise knowledge-representation without additional

cost

As discussed before, there is in reality often not only uncertainty about what is
true in the world, but also uncertainty about the exact probability distribution
of how the world behaves. This hinders employing languages defining a precise
probability distribution, as forcing to specify precise probabilities, not justified
by the knowledge, can lead to conclusions that might be sound given the model,
but not sound given the knowledge available. Such ignorance about how the
world behaves can be expressed qualitatively with non-probabilistic logics, such
as first-order logic (FOL), which allows one to leave the truth of statements open.
Alethic modal logics provides more expressive means to represent ignorance by
so-called modalities. Such modality can for instance express that a statement is
possibly true. Modal logics allow dealing with uncertainty in a more powerful,
but still merely qualitative way. As discussed, imprecise probability theory (Sec-
tion 2.2.3) and in particular probabilistic logics defining credal sets (Section 3.2)
allow one to express ignorance about probability distributions, but still make
it possible to draw certain quantitative conclusions. Although PCLP can deal
with imprecise probabilities, it is not as expressive as most other imprecise for-
malisms, as it does not support conditional definitions and is restricted to closed
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probability intervals. In particular, it cannot express alethic modal concepts as a
special case.

In this chapter we propose a new language, IPHL, that integrates qualitative
and quantitative uncertainty knowledge representation and reasoning. The se-
mantics of IPHL is based on imprecise probability intervals, of which the bounds
can be open or closed. This allows one to exactly define the semantics of qual-
itative modalities and also provides precise probabilistic logic as a special case.
There are however restrictions in the structure of theories, as the language is
designed with particular guarantees for computational tractability in mind. In-
ference complexity for IPHL is even lower than inference complexity for PCLP.
Specifically, inference for IPHL has the same complexity as corresponding pre-
cise probabilistic inference problems, without the cost of an increased treewidth
as for PCLP. IPHL is the first imprecise probabilistic language that offers such
guarantees. We further propose a concrete inference mechanism based on the
translation to an ordinary weighted model counting (WMC) problem. This confirms
the lower inference complexity compared to PCLP, that requires the generalised
GWMC algorithm with increased parametrised complexity.

7.2 motivating example

We first show knowledge representation capabilities and limitations of other
logical languages by means of a motivating example.

7.2.1 Logic Programming

We start with an attempt to model the problem of the motivating example in logic
programming (LP) (Section 2.1.3). In this chapter we restrict all rules to being Horn
clauses, which means that there is no negation, so we can assume the traditional
least model semantics of LP.

Example 7.1
Consider the following problem from the maritime safety and security domain.
Suppose we want to model in which cases a vessel poses an environmental
hazard and may for instance not enter certain restricted areas. One reason for
a vessel being an environmental hazard is that it has some chemical substances
loaded. We could model this using LP as:

env_hazard← chemicals

The problem is that the model actually expresses, that in case we know that the
vessel has chemicals loaded, it certainly is an environmental hazard and other-
wise it is certainly not, assuming the closed world assumption of LP. Clearly, there
are vessels with chemicals, which are no environmental hazard, for instance be-
cause the amount is not significant, and ships without chemicals on board, which
still are an environmental hazard.
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7.2.2 Modal Logic

The idea of modal logics is to lift the restrictions that propositional statements are
certainly true or false, by including operators that express modalities. Several
practical implementations of programming languages based on modal logics are
available [115]. There are different ways to define and interpret those modalities,
but we restrict to classical alethic modalities, which express that something is
possibly (♦) or necessarily true (�).

Example 7.2
Example 7.1 can be made more precise using modal operators. For example, we
could model the fact that having chemicals loaded makes it possible that the
vessel is an environmental hazard with:

♦env_hazard← chemicals

However, assuming the closed world assumption of LP, this rule alone implies
that if the vessel has no chemicals on board, then it is not an environmental
hazard. While we could try to sum up all the reasons for a vessel being an
environmental hazard, it is a reasonable assumption that in reality we can never
observe or even know all of those reasons. A possible solution is to state that a
vessel always possibly poses an environmental hazard:

♦env_hazard← >,

where > denotes true. This is not useful in practice, since there are no cases for
which we can draw a qualitatively different conclusion, which would be that the
vessel certainly is a hazard. The rules above imply that env_hazard is possible
whether or not the vessel is carrying chemicals. The knowledge that chemicals
are a risk factor, increasing the likelihood of environmental hazard, cannot be
expressed in the language.

Generally, modal logics can only be used to represent and reason about qualita-
tive uncertainty, whereas the available quantitative knowledge cannot be used.

7.2.3 Probabilistic Logic Programming

We use a special probabilistic LP language for illustration, with support for prob-
abilistic rules. This language serves as a basis for the work described in this
chapter. The semantics of this language is a variant of Sato’s distribution seman-
tics (Section 3.4.2), extended with probabilities on rules instead of facts only.

Example 7.3
To include degrees of uncertainty, we extend Example 7.2 with probabilities as
follows:

0.1 : env_hazard← >
0.4 : env_hazard← chemicals
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This states that, if a vessel has chemicals loaded, it will cause an environmental
hazard with a probability of 0.4. The first rule represents other causes we do not
model explicitly with a low probability.

We formally introduce the language. A theory consists of a set of probability-rule
pairs R:

p1 : (h1 ← b11, . . . , b1m1)

· · ·
pn : (hn ← bn1, . . . , bnmn)

Then to each subset S ⊆ R, a probability is assigned:

PS
def
= ∏

p : (h←b1,...,bn)∈S
p ∏

p : (h←b1,...,bn)∈R\S
1− p (7.1)

In this chapter, we assume that there is a finite number of ground terms, which
means that we can look upon each program as a propositional one by replacing
all variables by all ground terms. As a result, there will be a finite number of
subsets; however, the approach can be generalised to the full first-order case
with an infinite number of ground terms, as shown in the original distribution
semantics [137] and the work on PCLP in this thesis (Chapter 4).

For each such subset we can determine whether a query q holds (S |= q)
under the least model semantics of LP. Then, the probability of a query q given
the rules of a program R, is defined as the sum of the probabilities of all rule
subsets for which the query can be derived:

PR(q)
def
= ∑

S|=q
S⊆R

PS (7.2)

Example 7.4
The query env_hazard can be derived for the following subsets of rules in Exam-
ple 7.3 assuming chemicals is true:

S1 =
{

0.1 : env_hazard← >
}

S2 =
{

0.4 : env_hazard← chemicals
}

S3 =
{

0.1 : env_hazard← >,

0.4 : env_hazard← chemicals
}

We have the following probabilities: PS1 = 0.1 · (1− 0.4) = 0.06, PS2 = 0.36 and
PS3 = 0.04. Therefore PR(env_hazard) = 0.06 + 0.36 + 0.04 = 0.46. This actually
corresponds to the noisy-or combination of both rules’ probabilities.

A limitation of such probabilistic approaches is that they require the precise
quantification of likelihoods. This is often infeasible, for instance in domains
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dealing with very rare events, which are not observed often. For example, esti-
mations of the probability that a vessel without chemicals on board is an environ-
mental hazard are unreliable, as there are few of such cases. The consequence is
that predictions suggest more precision than can be provided by the knowledge
available, which may lead to wrong decisions.

7.3 imprecise probabilistic horn clause logic

We first introduce the idea behind IPHL and then formally develop its semantics.

7.3.1 Basic Idea

Imprecise probability intervals can be seen as a way to unify the qualitative
approach to deal with uncertainty of alethic model logic and the quantitative
approach of probabilistic LP. The basic idea of IPHL is therefore to extend LP
with probability interval annotations, such as probabilistic LP extends LP with
point probabilities. Our language supports two possible interpretations of rules
as:

p : h← b1, . . . , bn,

where p is a probability interval, which can be closed, open, or half-closed. We
refer to those different interpretations as different kinds of imprecisions: rule-
imprecisions and head-imprecisions. The kind of imprecision determines how prob-
abilities of multiple rules with the same head are combined. Formally, we say
an IPHL program T = (RR, RH), consists of rules with rule-imprecisions RR
and rules with head-imprecisions RH . The heads occurring in RR and RH are
disjoint.

Rules in RR are denoted as:

p : (h← b1, . . . , bn),

with p a probability interval. The interpretation of these rules is that the prob-
ability that b1, . . . , bn leads to h is in p, which corresponds to the semantics of
precise probabilistic programming as given in Section 7.2.3. Multiple rules with
the same head are combined using a noisy-or operator for probability intervals.

Example 7.5
Consider an imprecise version of Example 7.3:

[0.05, 0.15] : (env_hazard← >)
[0.4 , 0.6 ] : (env_hazard← chemicals)

This means that carrying chemicals causes a vessel to be an environmental haz-
ard with probability between 0.4 and 0.6, while it is unlikely that other reasons
cause a ship to be an environmental hazard.
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In case a vessel has no chemicals on board the probability of it being an en-
vironmental hazard is between 0.05 and 0.15. Otherwise, we consider the proba-
bilities one gets for all possible choices of probabilities from the intervals given
the semantics of point probabilities (Section 7.2.3). These probabilities are within
the interval [0.43, 0.66].

Rules in RH are denoted as:

(p : h)← b1, . . . , bn

As indicated by the brackets, in this case, the probability interval only applies
to the head. The rules are interpreted as follows: in case b1, . . . , bn holds, the
probability of h is in p. This means that rules do not represent independent
causes for the head, but conditions under which the knowledge about the head’s
probability becomes more precise. If no rule applies, there is complete ignorance
about the head’s probability, i.e. it is in [0.0, 1.0]. Note that this kind of rules
can lead to inconsistent definitions, whereas rules with rule-imprecisions cannot.
While the interpretation of head-imprecisions makes no sense for the precise
case, it can conveniently express certain kinds of imprecise knowledge.

Example 7.6
Suppose we have statistical knowledge about tankers, for example because all
tankers have to register their cargo due to safety regulations, and can estimate
the likelihood of tankers having chemicals loaded as 0.3. For all other vessels,
we do not have that information, because we do not have data about all ships,
and only express that it is possibly carrying chemicals. We interpret this as the
probability interval (0.0, 1.0], i.e. the probability is greater 0.0. This knowledge
can be modelled with head-imprecisions:(

(0.0, 1.0] : chemicals
)
← >(

[0.3, 0.3] : chemicals
)
← tanker

Given the rules above, if we do not know that the ship is a tanker, its probability
of having chemicals on board is in (0.0, 1.0]. In the case it is a tanker, it is in
(0.0, 1.0] and in [0.3, 0.3], which means it is in (0.0, 1.0] ∩ [0.3, 0.3] = [0.3, 0.3].

7.3.2 Qualitative Interpretation

Given the basic language defined above, we can give various intervals a quali-
tative interpretation. For example, special cases of intervals include determinism
([0.0, 0.0] and [1.0, 1.0]), complete ignorance as in 3-valued logics ([0.0, 1.0]) and
precise probabilities ([p, p] with p some probability).

IPHL can also be seen as a basic language to define various modalities in
terms of probability intervals. For example, the interval [1.0, 1.0] corresponds to
the modality that something is necessarily true: �. Furthermore, the modality
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♦, expressing that some statement is possible, in its least strict interpretation,
means that the probability is greater than 0.0, i.e. it is in the interval (0.0, 1.0].
Analogously, the modality ♦¬ corresponds to the interval [0.0, 1.0). One could
alternatively more carefully only consider statements possible in case their prob-
ability is above a certain threshold and define for instance ♦0.05 as (0.05, 1.0]. Also
linguistic modalities, such as unlikely with the possible meaning of [0.05, 0.15],
can be introduced in the framework of IPHL. Note that in order to differentiate
between complete ignorance ([0.0, 1.0]) and possibility ((0.0, 1.0]) the distinction
between open and closed intervals is necessary, which cannot be made in com-
monly used imprecise formalisms, such as LDCNs [31].

Similar to a qualitative specification of the IPHL program, probability intervals
of queries can also be given a qualitative interpretation, which implies that the
language supports qualitative reasoning as a special case. For example, a proba-
bility interval of [1.0, 1.0] means a particular statement is necessarily true and a
probability greater 0.0 implies that the statement is possible. Furthermore, given
the lower bound of a probability interval, we may conclude whether or not the
probability is possibly or necessarily larger than a given threshold. Finally, one
can also qualitatively compare the likelihood of two statements. For instance, in
case the probability intervals of two statements are disjoint, one can determine
which one is more likely than the other.

7.3.3 Semantics

In accordance with probabilistic logics programming, the semantics of IPHL pro-
grams is defined in terms of the marginal probability intervals of arbitrary query
atoms. The semantics is defined incrementally, by first extending the semantics
for precise logic programs given in Section 7.2.3 for rules with rule-imprecision.
Then, we also show how to deal with head-imprecisions.

7.3.3.1 Rules with Rule-Imprecisions

We first develop a semantics, assuming the program only consists of rules with
rule-imprecisions. The semantics of rules with rule-imprecisions is defined in
terms of a set of programs obtained by replacing the intervals with point prob-
abilities. In other words, we consider all programs for all possible choices of
probabilities for each interval.

Definition 7.1 (Equivalent Set of Programs for Rule-Imprecisions). Let RR be a
set of rules with rule-imprecisions. Then, the equivalent set of programs T contains all
possible probabilistic logic programs, in which for each rule p : (h ← b1, . . . , bn) in RR
a rule p : (h← b1, . . . , bn) is included, such that p ∈ p.

We can then define the probability interval of a query q given a program.
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Definition 7.2 (Query Probability with Rule-Imprecisions). Let T be the equivalent
set of programs of a set of IPHL rules RR. The probability of a query q given such IPHL
theory is:

P(q)
def
∈ {PR(q) | R ∈ T },

where PR(q) is defined as in Equation 7.2.

This set of probabilities is convex and can therefore be expressed as interval.

Example 7.7
Consider again the imprecise program of Example 7.5:

[0.05, 0.15] : (env_hazard← >)
[0.4 , 0.6 ] : (env_hazard← chemicals)

An example of an element of T is:

0.1 : env_hazard← >
0.4 : env_hazard← chemicals

Actually, all uncountably many programs with the following structure form T :

p : env_hazard← >
q : env_hazard← chemicals

where 0.05 ≤ p ≤ 0.15 and 0.4 ≤ q ≤ 0.6.
Then P(env_hazard) ∈ [0.05, 0.15], since there is no rule with head chemicals.

Therefore, the probability of chemicals is 0.0 and the second rule never applies.
In case we assume, that we know that the vessel is carrying chemicals and add:

[1.0, 1.0] : (chemicals← >),

the probability for env_hazard is in [0.43, 0.66]. Those bounds correspond to the
noisy-or combination for the bounds of both rules.

7.3.3.2 Rules with Head-Imprecisions

Next, we extend the semantics with head-imprecisions. Probability intervals on
heads have a different characteristic than probability intervals on rules. Head-
imprecisions can be looked upon as constraints that exclude programs for which
the probability distribution does not obey the specified bounds, in contrast to
rules which rule-imprecisions, which generate programs. Therefore, we first
generate rules allowing for all possible probabilities and then enforce the con-
straints on the set of programs. To allow all possible probabilities for rules with
head-imprecision, we add for each head h occurring in the rules RH a rule
[0.0, 1.0] : (h← >) to RR and call the resulting set of rules R′R.
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We can now consider a set of programs T with point probabilities generated
by R′R, under the semantics of rule-imprecisions. To incorporate the constraints,
given by the probability intervals on heads, we define a set of programs T ′ by
including only those programs obeying all constraints given by RH .

Definition 7.3 (Equivalent Set of Programs for General IPHL Theory). Given
an equivalent set of programs T generated by R′R constructed from an IPHL theory
T = (RR, RH), the set of programs T ′ equivalent to T is:

T ′ def
= {R ∈ T | ∀

(p : h)←b1,...,bn∈RH
PR(h | b1, . . . , bn) ∈ p}

In case T ′ becomes the empty set, the entire program is called inconsistent. For
consistent theories, the probability of a query q is defined as in Definition 7.2
using T ′ instead of T .

Example 7.8
As example, we use the following program, which is a combination of the rules
of Examples 7.5 and 7.6:

RR =
{

[0.05, 0.15] : (env_hazard← >)
[0.4, 0.6 ] : (env_hazard← chemicals)

}
RH =

{ (
(0.0, 1.0 ] : chemicals

)
← >(

[0.3, 0.3 ] : chemicals
)
← tanker

}
From this we get the following transformed set of rules:

R′R =
{
[0.05, 0.15] : (env_hazard← >)
(0.4, 0.6 ] : (env_hazard← chemicals)

[0.0, 1.0 ] : (chemicals ← >)
}

The equivalent set of programs T ′ given the set of programs T generated by R′R
is then:

T ′ = {R ∈ T | PR(chemicals | tanker) = 0.3 ∧ 0.0 < PR(chemicals)}

From this we can conclude that the probability for env_hazard is strictly greater
than 0.05. This is because the probability of chemicals is above 0.0, which causes
env_hazard with a probability above 0.0, meaning that a non-zero probability is
added to the 0.05 originating from the first rule. In case we assume tanker, the
probability for chemicals is 0.3. Then P(env_hazard) ≥ 1− (1− 0.05) · (1− 0.4 ·
0.3) = 0.164, which is obtained by computing the noisy-or combination.

7.4 inference

In this section, an inference mechanism is introduced, which translates the prob-
lem of computing the lower or upper bound respectively to a precise proba-
bilistic inference problem without changing inference complexity. We only deal
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with exact inference, as approximate inference could change the qualitative na-
ture of the answer. For instance, there is a qualitative difference of a probability
greater zero and greater or equal to zero, which cannot be made by sampling
algorithms. Similarly to the semantics, we introduce the inference method incre-
mentally, starting with point probabilities.

7.4.1 Rules with Point Probabilities

We already discussed probabilistic inference by WMC in Sections 5.1 and 5.2.1.
Here we however introduce a concrete translation to a WMC problem, which
serves as a basis for the inference method for IPHL. The issue here is that WMC
is defined for propositional knowledge bases without the closed world assumption.
The rules therefore have to be translated to propositional logic by making the
head literals equivalent to the disjunction of all rules defining it to capture the
closed world assumption. This is known as Clark’s completion [26] and a similar
approach for probabilistic inference is taken by ProbLog [48].

Probabilities are added by introducing auxiliary atoms for each rule. So in the
first step each rule R = p : (h ← b1, . . . , bn) is translated to h ← auxR, b1, . . . , bn,
before Clark’s completion is performed. The weight p is assigned to auxR and
1 − p to its negation. All other literals get weight 1. We denote the resulting
weighted knowledge base with ∆R. The probability can then be computed as
PR(q) = WMC(∆R ∧ q).

Example 7.9
Consider the following rules:

0.1 : env_hazard← >
0.4 : env_hazard← chemicals

We furthermore assume that the vessel is carrying chemicals (1.0 : chemicals ←
>). The resulting weighted knowledge base ∆R is:(

env_hazard↔ aux1 ∨ (aux2 ∧ chemicals)
)
∧ chemicals

Note that for brevity we added chemicals as fact instead of making it equivalent to
an auxiliary literal with weight 1.0. The weights are: w(aux1) = 0.1, w(¬aux1) =
0.9, w(aux2) = 0.4, w(¬aux2) = 0.6, w(env_hazard) = w(¬env_hazard) = 1.0,
w(chemicals) = 1.0 and w(¬chemicals) = 0.0.

To compute the probability of env_hazard, we consider the models of the knowl-
edge base in which env_hazard holds, with corresponding weights, computed as
the product of all weights of literals included:

0.04 : env_hazard, aux1, aux2, chemicals

0.06 : env_hazard, aux1,¬aux2, chemicals

0.36 : env_hazard,¬aux1, aux2, chemicals
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The sum of those weights is 0.46, which corresponds to the probability according
to the semantic definition as illustrated in Example 7.4.

7.4.2 Imprecise Inference

Given the fact that we only make use of intervals, the set of probabilities of a
query is always convex. We can therefore represent the semantically infinite set
of probabilities by its extreme points. We denote the lower and upper bounds
of the result probability as P(q) and P(q) respectively. The basic idea of the in-
ference algorithm is to translate the problem to a precise probabilistic inference
problem, for both bounds. An algorithm for the lower bound is given in Algo-
rithm 4. Inference for the upper bounds can be done analogously.

Algorithm 4: Imprecise Inference (lower bound)

Input : Query q and IPHL program (RR, RH)
Result: The lower probability bound of q

1 R = ∅
2 for

(
p : (h← b1, . . . , bn)

)
∈ RR

3 R← [
(
lower(p) : (h← b1, . . . , bn)

)
4 for all heads h in RH
5 for {b1, . . . , bn} ⊆ B, with B all body atoms defining h
6 R← [

(
subset_lowerh

(
{b1, . . . , bn}

)
: (h← b1, . . . , bn)

)
7 return WMC(∆R ∧ q)

7.4.2.1 Inference for Rule-Imprecisions

The fact that we use Horn clauses, thus bodies consisting of positive atoms only,
makes it possible to locally determine the extreme points of each rule indepen-
dent of the query. In fact, choosing the minimum or maximum probability for
all rules determines the minimal or maximal probability for all possible queries,
respectively. This is the key insight which makes the inference problem as com-
plex as the precise counterpart: without the restriction to Horn clauses, the com-
bination of all rules’ extreme points would have to be considered. This requires
considering an exponential number of precise probabilistic programs, which in-
creases the complexity of the inference problem. For PCLP, elimination of im-
precise constraints possibly has to be postponed during inference, as it cannot be
decided to which value of related random variables the imprecise probability mass
has to be assigned in order to minimize or maximise the probability of the query.
This increases parametrised complexity of PCLP inference. For IPHL we do not
have to postpone that decision, as assigning the imprecise probability mass to
true maximises all probabilities and assigning the mass to false minimises them.
Therefore, for the IPHL rules with rule-imprecision the translation for comput-
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ing the lower bound is done by for each rule using its lower bound probability
(Algorithm 4, Lines 2, 3).

In order to represent open as well as closed intervals, we make use of a cal-
culus for hyperreal numbers [56]. For instance, the interval (0.2, 0.7) can be rep-
resented by the extreme points 0.2 + d and 0.7− d, where d represents an in-
finitesimal number. WMC can be extended with hyperreal weights, by making
use of addition and multiplication as defined for the hyperreal calculus. In Al-
gorithm 4, the function lower(p), is defined as min(p) in case the lower bound
is closed and sup(p) + d otherwise.

Example 7.10
Consider the following rules:

(0.1, 0.2 ) : (chemicals ← >)
[0.05, 0.15] : (env_hazard← >)
[0.4, 0.6 ] : (env_hazard← chemicals)

For each query the lower bound of the probability is the probability given the
following precise probabilistic logic program:

0.1 + d: chemicals ← >
0.05 : env_hazard← >
0.4 : env_hazard← chemicals

Lemma 7.1. For any IPHL program T = (RR,∅) and any query q, Algorithm 4
computes the correct probability lower bound of q, according to Definition 7.2.

Lemma 7.2. For any IPHL program T = (RR,∅), the computational complexity of
computing any query is the same as for a probabilistic logic program consisting of RR,
in which all intervals are replaced by point probabilities.

In practice, inference could even be less expensive if the extremes of some inter-
vals are 0.0 and 1.0, introducing additional determinism, which can be exploited
by WMC algorithms.

7.4.2.2 Inference for Head-Imprecisions

The translation of rules with head-imprecision is more involved (Algorithm 4,
Lines 4 – 6). For each head h (Line 4) we have to consider all cases of truth
assignments to all atoms in the bodies of the rules defining h (Line 5). Each
of those cases corresponds to a subset B of those atoms. We can define the
probability interval for h by the intersection of all intervals of rules which apply
given such B:

Ph(B)
def
=

⋂
{b1,...,bn}⊆B

(p : h)←b1,...,bn∈Rh

p, (7.3)
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where Rh are all rules with head h. Ph(B) is never the empty set for consistent
programs.

Naively translating to rules with all possible B as body and using the lower
bounds of such intervals, i.e. lower(Ph(B)) : (h ← B), results in incorrect proba-
bilities, since all rules with a subset of B as body also contribute to the probabil-
ity of h in case B holds. To solve that problem we make use of the property that
with increasing cardinality of B, the number of satisfied bodies only increases.
Therefore with increasing cardinality of B the probability is restricted to a more
tight interval, as it is restricted to the intersection of all such rules’ intervals. This
implies that the lower bound monotonically increases with the cardinality of B.

For the correct transformation of the probabilities we use in Line 6 of Algo-
rithm 4 the function subset_lower, which computes the correct probabilities for
each subset B. The idea is to consider the probability already given by the rules
corresponding to proper subsets of B and only add as much probability mass as
is needed to get the desired lower bound of the probability Ph(B):

subset_lowerh(B)
def
= 1− 1− lower(Ph(B))

∏
B′⊂B

1− subset_lowerh(B′)
, (7.4)

where the denominator is 1 for the empty set.

Proposition 7.1. For any IPHL theory T and any query q, Algorithm 4 computes the
correct lower probability bound of q, as defined by Definitions 7.2 and 7.3.

Example 7.11
Consider the following rules with head-imprecision:(

(0.0, 1.0] : chemicals
)
← >(

[0.3, 0.3 ] : chemicals
)
← tanker

For inference they are translated to the following rules with rule-imprecision:

d : (chemicals← >)
1− (0.7/(1− d)) : (chemicals← tanker)

In case tanker holds, the probability of chemicals according to Equation 7.2 is
(1− (0.7/(1− d)))d + (0.7/(1− d))d + (1− (0.7/(1− d)))(1− d) = 0.3, which
equals the lower bound for that case, as defined by the rules above.

A similar transformation of rules with head-imprecision is incorrect for the up-
per bound, because the upper bound decreases with larger cardinality of B and
additional rules of which the body holds can only increase, but not decrease, the
probability. This problem is solved by actually computing the lower bound of
the query’s negation and computing the upper bound of the original query as
P(q) = 1− P(¬q). To compute the lower bound of the negation we transform
the knowledge base, such that each atom actually represents its negation. This
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can be achieved by swapping ∧ and ∨ in Clark’s completion and use as weight
for auxiliary atoms 1− upper(p).

To characterize the computational complexity of a full IPHL program, it makes
no sense to speak about a corresponding precise probabilistic logic program
for IPHL programs with head-impressions as in Lemma 7.2, since it makes no
sense to replace all probabilities with point probabilities for such rules. However,
we still get the following guarantee in terms of complexity of programs with a
similar structure.

Theorem 7.1. Inference for a IPHL programs has the same complexity in terms of the
treewidth, as a corresponding precise probabilistic logic program, in which each head is
defined in terms of the same body atoms as in the IPHL program.

7.5 related work

Several approaches have been proposed to combine probability theory and qual-
itative modalities. One example is the logic of Bacchus [6], which makes it pos-
sible to put constraints on probabilities as ‘the agent believes ϕ with probability
greater than 0.5’. The connection to imprecise probability theory is however not
made in this work. There are also languages allowing one to express higher-
order probabilistic statements [64], such as ‘the probability that the probability
of ϕ is larger 0.5 is 0.9’. This work is mainly theoretical in nature and efficient
inference mechanisms are not provided.

The epistemic logic languages of Milch and Koller [101] and Shirazi and
Amir [143], deal with beliefs of multiple agents and also higher-order beliefs
about beliefs, and therefore have a different goal than our approach. They pro-
vide mechanisms for exact inference, based on Bayesian networks (BNs). How-
ever, in their work probabilistic inference is only a subroutine of the complete
inference method whereas the complete inference is strictly more complex than
ordinary probabilistic inference.

There is some work on inference for imprecise formalisms such as LDCNs [31].
All exact approaches, such as [20, 47], suffer from the worst-case complexity of
the problem. We do not discuss approximate methods here, since they are not
suited for qualitative inference, as we discussed before.

7.6 conclusions

We introduced an imprecise probabilistic logic language based on Horn clauses,
which makes it possible to express and unambiguously define qualitative state-
ments with varying level of precision, with as special cases complete ignorance,
point probabilities and determinism. This is made possible by a solid semantic
foundation based on imprecise probability theory. We have furthermore shown
that it is possible to provide inference for an imprecise language, which is as ex-
pensive as its precise counterpart, while in general imprecise inference problems
are more complex. Also, as the work on PCLP and GWMC in this thesis, the re-
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sult shows that it is possible to employ state-of-the-art probabilistic inference
methods for imprecise problems.





8
A P P L I C AT I O N T O M A R I T I M E S A F E T Y A N D S E C U R I T Y
TA S K S

This chapter discusses an application of Probabilistic Constraint Logic Programming
(PCLP) to the realistic problem of maritime safety and security.

8.1 automated support for maritime sas tasks

We present a particularly challenging application for which probabilistic reason-
ing, beyond the propositional case, is essential and show that probabilistic logics
and in particular PCLP is very suited to tackle the challenges emerging from
the application domain. The domain we consider are maritime safety and security
(SaS) tasks, involving the continuous monitoring of vessels to detect and predict
events such as accidents or illegal activities.

A great deal of research in the past has been devoted to fusing sensor data
to track object motion [52, 59]. Measurements of quantities, such as positions,
which are relevant for this task, are available from sensors under own control
with known range and error characteristics. For SaS tasks, however, the ultimate
goal is to provide situational awareness, which requires the identification of mon-
itored objects and the understanding of their behaviour. This is a challenging and
complex problem for human operators as they need to deal with:

• Large amount of monitored objects: There is a huge and increasing num-
ber of vessels active in the world. For instance, around 2 000 ships are
active daily off the coast of the Netherlands alone. There are additionally
many small boats, which are hard to detect and often used for illegal ac-
tivities. Moreover, considering other involved parties such as companies,
insurances and persons is essential.

• Rare and diverse relevant behaviour: Only very few vessels show be-
haviour that requires action. Furthermore, the nature of such behaviour
is very diverse, so there is not a single indicator for relevant behaviour.
Examples of such behaviour include environmental pollution, smuggling
and behaviour increasing the risk of accidents. Moreover, perpetrators of-
ten do their best to make their behaviour look as much as possible like the
harmless behaviour of the majority of other vessels.

151
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• Huge amount of uncertain data: There is a huge amount of data available,
which is however very heterogeneous, as each source represents informa-
tion in different formats and at various levels of detail. Additionally, data
comes with different kinds of uncertainties, such that it cannot straight-
forwardly be used to detect relevant behaviour. The most severe cause of
uncertainty is that, due to the limited sensor placement at sea, directly
observable information is very limited. One can neither observe relevant
behaviour directly, nor can be sure of objects’ identities, which is essential
to link objects with other information available. The data available is fur-
thermore of varying quality, because data comes from diverse sources such
as ship transmitters, websites or commercial databases. Data from the var-
ious sources all contain erroneous information to different extends, either
accidentally, intentionally or because data is outdated.

The main consequence of the characteristics of the domain is that one has to ac-
cept and be able to deal with uncertainty to an extend beyond what is required
for traditional sensor fusion. High certainty can only be achieved by close inspec-
tion, which is too costly to do for all vessels, so the goal is to inspect those vessels
with the highest chance of behaviour which is relevant for the current SaS task’s
goal. Such likelihood estimates have to be obtained by using indirectly related
information. For example, even if one cannot determine the identity with high
certainty, one could draw conclusions based on a number of possible identities.
Uncertainty is reduced most by using as much relevant data as possible. The
more uncertain the data is, the more data is required to come to good estimates.

Summarised, the maritime SaS task requires to reason about an amount of
uncertain information, that is as large as possible, at the same time has complex
relations and is only indirectly related to the facts reasoned about. This has to
be done for a huge number of ships simultaneously. For humans this leads to
information overload, with the risk of missing obviously relevant behaviour. This
motives why automated support is needed. Note that the aim of such support
systems currently can only be to support the operator to focus on potentially
interesting vessels, but cannot replace decision making based on human judge-
ment.

Automating support of this task is very challenging. A support system has
to coordinate complex tasks such as collecting data, deciding when and how to
reason about which behaviour of which vessels and communicating the results
to the user. Reasoning about the information available is however a central task
and we focus on this aspect. The most important requirements for the reasoning
component are:

• Data and knowledge-based model: The reasoning model must be based
on a combination of data and knowledge, which excludes pure machine
learning methods. Data directly related to the aims of reasoning is rare, as
discussed above. There may be enough data to build a model of how the
category of a vessel relates to its tonnage, but data that relates behaviour
to other factors is hardly available. That part of the model can therefore
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only be built by making use of expert knowledge. Also new insights may
have to be quickly incorporated into the model, with no time to first collect
enough data, as strategies of criminals often change quickly.

• Relations between dynamic numbers of objects: As there is a lot of dy-
namics in the domain, the model must express complex relations between
a non-fixed number of objects. It is not known in advance how many pieces
of possibly relevant information is found or how many possibly identities
have to be considered. So the modelling language employed must be ex-
pressive enough to support formalising general knowledge, applicable to
a dynamic number of objects.

• Quantitative uncertainty reasoning: The method employed has to be able
to deal with uncertainty in a quantitative way. There are very few facts,
which are known for sure and very likely contradictions between pieces of
information. The consequence is that most kinds of formalisms, not being
able to deal with quantitative uncertainty, fail. One also wants to compare
in a fine-grained way how much chance of success a certain action has on
different vessels, which is not possible based on qualitative judgements.

• Hybrid reasoning: The method employed has to be able to deal with dis-
crete as well as continuous variables, because in this domain continuous
factors are too important to be ignored. All information that is initially
known about an object at sea with high certainty is based on radar data
and is numeric. Concretely, the speed and dimensions of the object are
usually known and can e.g. already show that it is very unlikely that the
pretended identity of an object is the actual one.

• Exposing internal reasoning information: The reasoning system should
expose as much information about its internal state as possible. Such infor-
mation is very important for the working of the complex system in which
the reasoner is embedded, also including human experts. There are several
important aspects information should be exposed about:

– Reasoning status & result quality: It is hard to estimate how long
computing probabilities takes given a collection of information, due
to the complexity characteristics of the problem. Small changes to the
input or the model can lead to orders of magnitude different compu-
tation times. Anytime algorithms, producing intermediate approxima-
tions, can solve that problem, but only in case they provide informa-
tion about the quality of approximations.

– Structure of the model: The structure of the model and therefore also
of the knowledge should not be a black box. This is important to
provide to the reasoner information, which is most relevant for the
current reasoning goal.

– Conclusions rationale: It is very important for human operators to
get their own understanding of the situation before they take serious
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action. To what extend this is possible influences acceptance of the
entire system (see also [19, 90]). So the reasoner should expose how
it came to its conclusions, which should be double checked by hu-
man experts, as the model is necessarily limited and only meant as
support. Finally, understanding how the reasoner reached incorrect
conclusions, is very valuable for improving the model.

While recent systems, developed e.g. in projects such as Poseidon1 and DeMa-
rine2, allow automatic identification of abnormalities, they lack capabilities for
real-time prioritisation of the application tasks, selection and alignment of rel-
evant information, and efficient reasoning at a situation level. Such intelligent
capabilities are embedded in the innovative system developed within the METIS
project [65, 151] based on the employment and integration of state-of-the-art ar-
tificial intelligence (AI) approaches. In this chapter, we describe in particular the
application of PCLP to address the aforementioned challenges for automated
reasoning for maritime SaS tasks. Concretely, we discuss a model we employed
as essential part of the METIS prototype system and especially focus on why
PCLP is especially suited for building and integrating such model.

We focus on the first requirements stated above, which are related to mod-
elling. Inference related issues were already discussed in this thesis before. The
inference method introduced in Chapter 6 is particularly suited for automated
reasoning in the this context, as the current maximal error is guaranteed and thus
one can judge whether the current approximation produced is good enough to
take a decision. PCLP models also make it possible to expose the structure of
knowledge and reasoning. The details are out of the scope of this thesis, but in
other work we show that information derived from PCLP models can be used to
dynamically reconfigure the information retrieval process based on the current
mission [151]. Similarly, we show elsewhere, in collaboration with visualisation
experts, that it is possible to make visible for human experts how the reasoning
systems came to its conclusions [151, 141].

In this chapter we first discuss some domain knowledge in detail (Section 8.2)
and then introduce a probabilistic PCLP model, which we built for supporting
the SaS task in Section 8.3. We then, in Section 8.4, evaluate the model’s perfor-
mance qualitatively and quantitatively and also show applicability in the context
of a complex support system. Finally, related work is discussed in Section 8.5 and
the chapter is concluded in Section 8.6.

8.2 maritime safety and security domain knowledge

We discuss the characteristics of the domain and the knowledge we used to
build the model. First, we give some qualitative knowledge, which we obtained
from freely available sources and the collaboration with our industrial partner

1 http://www.esi.nl/poseidon
2 http://www.ceon-bremen.de/Maritime_Safety_and_Security

http://www.esi.nl/poseidon
http://www.ceon-bremen.de/Maritime_Safety_and_Security
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and then some quantitative statistical knowledge obtained from data and expert
knowledge.

8.2.1 Qualitative Knowledge

Identifying a vessel is not straightforward. Traditionally vessels have a name,
painted on its hull, which is however not a perfect identifier, as it is not unique.
Also vessels change their names, usually in case they are sold to another owner.
Still, the name is very relevant as it is often mentioned in news articles and can
visually be read from the hull. A better identifier is the Maritime Mobile Service
Identity (MMSI), which identifies ships, but also other radio stations e.g. at the
coast, in digital communication. A desirable property is that MMSIs are unique
at least at one point in time, but they are not stable over the entire vessel’s
lifetime. It actually identifies the radio station rather than the vessel itself, and
is therefore comparable to a telephone number of a person, which can not only
change, but can also be reassigned to a different person after some time. The
vessel’s flag is also encoded in this number, so a flag change always results in a
changed MMSI as well. The only unique and stable identifier is the International
Maritime Organization (IMO) number, which is however only assigned to large
vessels, concretely to cargo vessels with at least 300 gross tons and passenger
vessels of at least 100 gross tons.

Another important property of vessels is their category, of which the most
important ones are tankers, container, passenger and fishing vessels. Obviously,
the category is related to the physical properties such as size, gross tonnage
and maximum speed, but also to vessels’ behaviour. The category furthermore
determines to what extend a vessel poses a threat in the current context. For in-
stance, a tanker is a potential threat particularly in an environmentally sensitive
area. Additionally, as with SaS tasks in general, in the maritime domain the be-
haviour of the objects of interest plays a crucial role in detecting abnormal events.
It is known, for example, that vessels being involved in illegal activities, such as
smuggling or hijacking, may try to hide their identity by repainting the vessel
on sea.

Knowledge of the characteristics of information provided by various sources,
is in this domain at least as important as knowledge about vessels themselves.
Radars detect only the existence of objects and their movement, but provide
no information about the objects’ identities. The most accessible source for that
extra information is the Automatic Identification System (AIS). It is an interna-
tional standard for communication of vessel information, including important
identity attributes such as the MMSI, the IMO number, the name and the cate-
gory. Currently, most vessels broadcast this information using the AIS system.
Despite its wide availability, AIS information is unreliable. A ship can send er-
roneous information or no AIS signal at all, especially if the ship has a reason
to hide its identity. There is a substantial number of vessels that provide incom-
plete information, e.g. they provide no names, or information contradicting with
other sources in their AIS messages. We confirmed this by analysing a dataset of
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logged AIS messages sent by vessels in the Dutch exclusive economic zone, which
was provided by the Maritime Research Institute Netherlands (MARIN). However,
information provided by AIS can be evaluated and enriched by using informa-
tion from additional sources such as IHS Fairplay3, a commercial database con-
taining detailed vessel information, and MarineTraffic4, a free-to-use website that
provides real-time ship tracking information. We found many contradictions of
the data from these sources with AIS data, e.g. there were different names for
the same MMSI, but also contradictions between those additional sources.

The way experts judge the quality of information is not only determined by
the sources, but also by the intentions of involved parties. For instance, a vessel
hiding its identity, more likely transmits incorrect information via AIS. So evi-
dence about behaviour and intentions influence how information is judged and
vice versa, meaning that the reasoning task involves weighing many factors.

8.2.2 Quantitative Knowledge

As discussed, quantitative, statistical knowledge about behaviour and intentions
of vessels is barely available and we have to rely on expert estimates. Still, we
used the discussed AIS dataset to also get some statistical knowledge about
physical attributes, as category and tonnage. Even though certain errors exist
in AIS data, we assume that these errors do not significantly bias estimates, e.g.
though some ships may have wrongly reported categories, the overall distribu-
tion of categories can be estimated from the data. We used data of three days,
each including about 2 000 vessels and restrict ourselves to the MMSI, the IMO,
the name and the category in the following. We found out that about half of
the vessels have no IMO and the number of names is about 80% of the number
of vessels. For the category of vessels we estimated the following distribution:
{0.4 : cargo, 0.2 : tanker, 0.05 : passenger, 0.05 : fishing, 0.3 : other}. We also ob-
tained distributions for numeric attributes, such as the gross tonnage and maxi-
mal speed, for the different categories, which we however not use in this chapter.
The total number of used MMSIs could not be estimated using AIS data of three
days only, but we used the total number of active ships – 380 000 – as an esti-
mation5. The error rates of the sources used cannot directly be estimated from
the data since the ground truth is unknown, but we use estimates based on the
knowledge of maritime experts: the error rate of AIS is 5% in case a vessel is not
hiding its identity, 1% for IHS Fairplay, 2% for websites and visual observations
are completely trusted.

8.2.3 Maritime Example Scenario

A coast guard operator has obtained an intelligence report that within two days
a vessel named “Black Pearl” is about to enter the zone under surveillance with

3 https://www.ihs.com
4 http://www.marinetraffic.com
5 Number of registered ships on http://www.fleetmon.com (April 2013)

https://www.ihs.com
http://www.marinetraffic.com
http://www.fleetmon.com
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smuggling goods on board. This sets the operator to start carefully examining
the vessels within the area of interest. The problem is that there can be multi-
ple vessels with this name and the smuggling vessel might hide its identity by
transmitting a wrong one.

Suppose that the operator examines the smuggling vessel, without, of course,
knowing that it is the smuggling one. The vessel has the following true identity
information:

mmsi = 123456789, name = “Black Pearl′′

The vessel however transmits an AIS message with the following information:

ais : mmsi = 123456789, name = “Dutchman′′

To verify this pretended identity, the operator retrieves additional information
from IHS Fairplay (ihs) and MarineTraffic (mt):

ihs : mmsi = 123456789, name = “Black Pearl′′

mt1 : mmsi = 987654321, name = “Dutchman′′

mt2 : mmsi = 123456789, name = “Black Pearl′′

There is obviously a contradiction between the names reported by AIS and by
IHS Fairplay, and there might be several possible interpretations, e.g. (i) the
vessel might send out a wrong name, intentionally or due to an input error, (ii)
the name in the IHS Fairplay record is wrong, or (iii) the MMSI sent out by
the vessel is wrong and the IHS Fairplay record is about a different ship. On
the other hand, the first MarineTraffic record is not that likely about the vessel
under examination, since there may be multiple vessels named “Dutchman”. The
second MarineTraffic record confirms the IHS Fairplay information.

Given this information, the operator suspects that the vessel is trying to hide
its identity by sending a wrong name, and thus the vessel might be involved
in smuggling. Information from IHS Fairplay is usually very reliable, although
uncertainty about correctness of that information always remains as well. To ver-
ify these hypotheses, the operator requires a patrolling boat to visually observe
the vessel at distance. The information reported back is that the vessel has been
repainted at sea, which gives the operator further support for the hypotheses
that this vessel is trying to hide its identity and is smuggling.

Although this scenario is a simplified version of reality, it clearly illustrates the
complexity of maritime SaS tasks and the realistic problem of reasoning about
objects under surveillance using all available information at once.

8.3 a pclp model for maritime sas tasks

We here present the main concepts of the PCLP model, which we built for mar-
itime SaS tasks, referred to as the Probabilistic Maritime Safety and Security Model
(PMSM) hereafter. Since the capabilities of the model have to fit the intended
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environment and purpose for which it is employed, we note that the solutions
presented here were mostly driven by the context of the METIS project. Alterna-
tive solutions may be needed in other contexts, even when modelling the same
domain. We therefore focus on the main ideas of our approach to information fu-
sion and give some examples of how we filled in details, with the main purpose
of demonstrating the applicability and benefits of PCLP.

8.3.1 Syntactic Sugar

We use PCLP as modelling language, but add some syntactic sugar for defining
distributions, to increase readability. First, there are some abbreviations we use
to denote distributions used often:

const(C) ≡ {1.0 : C}
flip(P) ≡ {P : true, 1− P : false}

uniform([V1, . . . , Vn]) ≡ {1/n : V1, . . . , 1/n : Vn}

We furthermore use sugar for mixtures of distributions:

mix(p1 : Dist1, . . . , pn : Distn),

where p1 + · · ·+ pn = 1.0 and Dist1, . . . , Distn are distribution definitions them-
selves. This mixes the given distributions weighted by the associated probabili-
ties.

Also we add syntax for conditional definitions to increase readability. As dis-
cussed, in an imprecise setting one cannot express conditional probabilities in
PCLP, but we build a precise model here. Approximation of precise probabili-
ties for models with conditional definitions by imprecise bounds is still possible
with arbitrary precision, as shown in Chapter 6. Conditional definitions have the
form:

V ∼ Def1 ← Cond1

V ∼ Def2 ← Cond2

· · ·
V ∼ Defn

Each definition Defi is an arbitrary distribution definition and each condition
has the same form as a logic programming (LP) rule’s body. It therefore represents
a conjunction of literals: l1, . . . , ln. The semantic of such definition is that V is
defined by the first definition, of which the condition holds. The last definition is
a default case, applied in case none of the conditions of the rules before applies.
We provide sugar for the special conditional case hat a random variable equals
another one:

Y ∼ equals(X) ≡ Y ∼ const(V)← 〈X = V〉 for all values V in the range of X
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8.3.2 Modelling The Domain Entities and Their Properties

Although the presented modelling approach applies in the same way to various
kinds of objects, e.g. vessels, persons, companies, we restrict here to vessels in
favour of a concise description of the model. A schematic representation of the
domain concepts is given in Figure 8.1.
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attr1 attr2 attr3

a 15 b

vessel2
attr1 attr2 attr3

c 10 d

a 12 b

attr1 attr2 attr3

rec1
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attr1 attr2 attr3

rec2
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attr1 attr2 attr3

rec3
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erroneous observation
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Figure 8.1: Relationships Between Vessels, Records and Sources

We assume a fixed set of vessels in the real world, represented by labels
vessel1, . . . , vesseln, where we estimated n based on data, as described in Sec-
tion 8.2. We model general knowledge about vessels as first-order rules, parame-
trised by such labels in PCLP. This allows us to model vessels’ attributes and the
observed information about them in the same uniform way.

Each of the vessels under surveillance is described by the same attributes
attr1, . . . , attrm. Attributes can be low-level information like names or high-level
information concerning intentions, e.g. indicating that a ship is smuggling. Al-
though the two attribute levels are semantically different, in this model we do
not make a distinction between them and represent them in the same way. In par-
ticular, the value of the attribute Attr of vessel Vessel is defined as a parametrised
random variable:

Attr(Vessel, Attr)

For the label of attributes we use names from the domain’s data model, e.g.
category and name. An important common property is that all attributes behave
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like functions, which means each vessel attribute can only have one value at a
time.

A source reports a number of records rec1 . . . , reck and the fact that a record Rec
is reported by a source Src is represented by:

source(Rec, Src)

We use a predicate instead of a random variable here, as we assume there is no
uncertainty about the source we get a record from. Furthermore, we assume that
each record is always related to a single vessel. For example, in Figure 8.1 rec1
and rec2 are about vessel1 and rec3 is about vessel2. Attribute values in records
are observations of the vessels’ actual attribute values, but records do not have
to provide values for all attributes. The record rec2 for instance does not provide
a value for attribute attr2. Records can report erroneous attribute values, which
means that the value is not equal to the observed vessel’s actual one. For instance,
rec1 reports that the value of attr2 for vessel1 is 12, although the attribute’s actual
value for that vessel is 15. Again a parametrised random variable definition
represents the values of attributes in records:

RecAttr(Rec, Attr)

We use the convention that the label of each record consists of the source name
with an attached numeric identifier, e.g. a record with a label intel1 is provided
by an intelligence report. Other examples are ais1, fairplay1 and marinetraffic1.

The fact that values are missing (not reported) can itself be useful input infor-
mation for the probabilistic model. Representing missing information is in itself
a complex modelling task, where different types of missingness need to be con-
sidered, e.g. whether there was no attempt to retrieve information or whether
there was an attempt but the source did not provide it. While this is a valu-
able research direction, for the purpose of this work, we focus only the values
available (reported) in records.

8.3.3 Modelling Vessels’ Attributes

The basis of the PMSM is a sub-model of the properties and behaviours of ves-
sels, represented by their attributes. This sub-model does not dependent on ob-
served information, as we follow an approach of causal modelling: the observa-
tions are effects of the true vessel attributes. The relations within the sub-model
are essential for interpreting observations because many attributes cannot be ob-
served directly but only through observations of other attributes. For instance,
the observation that a vessel is a tanker also reveals something about its tonnage.
In addition, it is often only possible to draw conclusions about intention-related
attributes based on observations of low-level attributes.

Concretely, the sub-model of vessel attributes takes the form of a probability
distribution on the attributes. Such distribution can be modelled by conditional
PCLP definitions of the random variables Attr(Vessel, Attr), for different ground-
ings of Attr. We always quantify over the variable Vessel, as we build a general
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model valid for all vessels. The distributions may dependent on other random
variables with label Attr, but not on records and sources. Thanks to the expres-
sive power of PCLP we can use any kind of range, discrete or continuous, to
model the different attributes and specify conditions in a natural way, as illus-
trated by the following example. We do not consider machine learning in this
thesis, but obviously distributions learned from data about physical attributes,
as the tonnage depending on the category, can be incorporated here.

Example 8.1
The prior probability that a ship is smuggling with a probability of 1% can be
represented as:

Attr(Vessel, smuggling) ∼ flip(0.01)

The probability that a vessel is hiding its identity is much higher in case it is
smuggling. This can be expressed by:

Attr(Vessel, hidesIdentity) ∼ flip(0.7 )← 〈Attr(Vessel, smuggling) = true〉
Attr(Vessel, hidesIdentity) ∼ flip(0.01)

We model gross tonnage as a continuous variable with two different distribu-
tions, one for tankers and one for all other vessels:

Attr(Vessel, grossTonnage) ∼ gamma(0.72, 36 000.0)

← 〈Attr(Vessel, category) = tanker〉
Attr(Vessel, grossTonnage) ∼ gamma(0.76, 3 300.0)

Even though we aim to express all knowledge required in a natural way, prac-
tical model construction sometimes requires certain workarounds to obtain a
workable model. An advantage of an expressive modelling languages as PCLP
is however that such workarounds can be expressed concisely in the language
itself.

An example of this is that we need a special construct for attributes with huge
cardinality. Examples for this are the IMO number and the name of vessels. Note
that, although the IMO is a number, we should not model it as integer variable
with a known distribution. We should instead treat is as 10 000 000 distinct la-
bels, without any order. So we model it in principle as a finite distribution over
discrete constants. This is however problematic, as the number of states is too
high for the inference algorithm we use. For the name attribute an additional
complication is the fact that we do not know all possible names in advance.

We handle this complexity by not reasoning about all vessels at the same time,
but about each vessel separately. We refer to the single ship we currently reason
about as vessel of interest (VoI) and denote it with the special constant voi. This
is also necessary to reduce the amount of information we reason about, as we
also cannot reason about all available pieces of information at the same time.
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By reasoning about a single vessel at a time we can restrict to a small subset of
the information available, which is potentially relevant for the current VoI. The
method to represent distributions of attributes with huge cardinality is based
on the idea that most values are indistinguishable with respect to the VoI (e.g.
all IMO numbers that do not occur in the information reported) and we can
summarise them with a special constant, we call other.

To model such distributions we make use of a special predicate, which is used
to generate the actual distribution:

dynamicRange(Attr, FixedPart, TotalNr)

The starting point here is a uniform distribution, where each element has a
probability of 1/TotalNr, where TotalNr is the total number of distinct values for
this attribute, and other gets the rest of the probability mass. For some attributes
we however have to consider some additional special values and mix another
distribution to the uniform one, which is given as FixedPart. This parameter
has to be a probability-distribution pair or none in case no such distribution is
required.

Thanks to the first-order nature of PCLP, the actual distribution can automati-
cally be generated from such specifications, using general rules. The rule for the
case that there is no FixedPart distribution specified is:

Attr(Vessel, Attr) ∼ mix( NrObs/NrTotal : uniform(Values),

1−NrObs/NrTotal : const(other) )

← dynamicRange(Attr, none, NrTotal),

observedValues(Attr, Values),

length(Values, NrObs)

We assume that the predicate observedValues is defined such that it indicates
the observed values for the attribute, i.e. the values that have to be treated in
a distinct way. Each of such value gets a probability mass of 1/NrTotal and the
rest of the probability mass is assigned to the special value other. This is achieved
by mixing a uniform distribution over all observed values with the distribution
with constant value other, using for the latter the weight NrObs/NrTotal, where
NrObs is the total number of such observed values. Analogously, a rule can be
defined for the case an additional distribution is mixed in, which is omitted here.

Example 8.2
The distribution for vessels’ names is specified as follows:

dynamicRange(name, none, 380 000 · 0.8)

This defines a uniform distribution over 380 000 · 0.8 = 304 000 distinct names
(see Section 8.2). For instance, in case the names “Dutchman′′ and “Black Pearl′′

are observed, this yields the following distribution:

{1/304 000 : “Dutchman′′, 1/304 000 : “Black Pearl′′, 303 998/304 000 : other}
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Half of the vessels do not have an IMO number. We represent this case with the
constant noIMO. The distribution is therefore specified as:

dynamicRange(imo, 0.5 : const(noIMO), 380 000 · 0.5)

In case we observe the IMOs 1234567 and 7654321 this yields:

{ 0.5 · 1/190 000 : 1234567, 0.5 · 1/190 000 : 7654321,

0.5 · 189 998/190 000 : other, 0.5 : noIMO }

8.3.4 Relating True and Observed Vessel Information

As discussed in the introduction one of the main challenges for automated rea-
soning in the maritime SaS tasks is the uncertainty in the observed vessel in-
formation. The probabilistic nature of the model is imposed due to the uncer-
tainty in the relationships between the vessels’ actual attribute values and the
values reported by the records. This uncertainty has two main sources. First,
the reported information can be erroneous or not. The binary random variables
Error(Rec, Attr) indicates whether the attribute Attr, reported by the informa-
tion record Rec, is erroneous. Second, it is unknown to which actual vessel the
records belong. This aspect is related to the problem of entity resolution [68, 104]
and more complex than the first one. About which vessel a record provides in-
formation, is represented by the random variables About(Rec).

The goal of the PMSM is to predict the VoI’s true attributes using potentially
relevant observations. To achieve this goal, we use two rules, one for erroneous
and one for non-erroneous information, to relate the true and observed vessel
attributes:

RecAttr(Rec, Attr) ∼ equals(attr(Vessel, Attr))←
〈Error(Rec, Attr) = false〉, 〈About(Rec) = Vessel〉

RecAttr(Rec, Attr) ∼ Dist←
〈Error(Rec, Attr) = true〉, 〈About(Rec) = Vessel〉,
errorDist(Vessel, Attr, Dist)

In case the information is correct, the value reported equals the actual attribute’s
value of the vessel that the record is about, as expressed by the first rule. For the
opposite case, it is necessary to determine a distribution, modelling the charac-
teristics of errors, which is done by errorDist.

The issue of erroneous information is strongly related to classical information
fusion, where measures of the same quantity of interest are used to obtain a
prediction of that magnitude, based on a model of the sensors’ error character-
istics. However, PCLP allows and the domain requires to consider relations be-
tween intentions and the probability of erroneous information, whereas classical
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information fusion often only considers non-intentional errors due to noisy mea-
surements. While in practice a simple model, e.g. for discrete values a uniform
distribution leaving out the correct value, has shown to be sufficient to model
erroneous values, it is essential to relate the probability of erroneous informa-
tion to various factors. We therefore do not give details of the rules defining
errorDist here and restrict to illustrating how the error rate can be modelled by
the following example.

Example 8.3
Suppose we judge the error rate of all records from the IHS Fairplay database to
be 2% This can be expressed by:

Error(Rec, Attr) ∼ flip(0.02)← source(Rec, fairplay)

AIS messages are handled in a special way. First, we know for sure that they
are about the VoI, though of course all information provided may be completely
wrong. In case the VoI is hiding its identity it will certainly send out a wrong
name, since the name is always mentioned in news articles and other reports.
There is also a high chance that a wrong MMSI and IMO is sent. There are not
many reasons to hide other attributes like the category, since they cannot be
used to identify a vessel. Finally, the last rule represents the case that there is
no attempt to hide a vessel’s identity. Still, information can be erroneous due to
unintentional mistakes with a chance of 5%:

Error(ais, name) ∼ const(true)← 〈Attr(voi, hidesIdentity) = true〉
Error(ais, mmsi) ∼ flip(0.6) ← 〈Attr(voi, hidesIdentity) = true〉
Error(ais, imo) ∼ flip(0.7) ← 〈Attr(voi, hidesIdentity) = true〉
Error(ais, _) ∼ flip(0.1) ← 〈Attr(voi, hidesIdentity) = true〉
Error(ais, _) ∼ flip(0.05) ← 〈Attr(voi, hidesIdentity) = false〉

This demonstrates that PCLP allows to express complex dependencies in an
intuitive manner.

Modelling the relation between true and observed vessel information is chal-
lenging and the solution presented here demonstrates the capabilities of PCLP
to allow for an elegant representation of complex relationships with inherent
uncertainty. The solution presented, based on the random variables About(Rec),
is a unique result of the work presented in this chapter.

The random variable About(Rec) can straightforwardly be defined for infor-
mation records we certainly know are about the VoI. There always has to be
such information, as otherwise it is impossible to draw any specific conclusions
about a vessel. An example is that we know a vessel sends out an AIS message
and have some radar information about its size. For all other records, for in-
stance from databases, we use a very small prior probability that it is about the
VoI, which is one divided by the estimated number of vessels in the domain.
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The posterior however can be much higher, because matching attribute values
increase the chance that the record is about a vessel.

If we would reason about all vessels at the same time, we could use the same
prior for all of them. As this is not practical, we use a similar workaround as for
attributes and introduce special labels that represent sets of indistinguishable
vessels. This can again be realised by concise rules in the model itself, thanks to
the expressive power of PCLP. We however omit the details here.

8.4 model application and evaluation

To get insights about the applicability and performance of the proposed PMSM,
we applied it to the scenario from Section 8.2.3 and conducted experiments with
simulated and real-world vessel data. Finally, we give some results of how the
model performs embedded in a complex prototype system for maritime SaS
tasks, which we tested with real data.

8.4.1 Application to the Maritime Scenario

We apply our model to the maritime scenario presented earlier (Section 8.2.3).
The observations are represented by the evidence:

RecAttr(ais, mmsi) = 123456789,

RecAttr(ais, name) = “Dutchman′′,

RecAttr(ihs, mmsi) = 123456789,

. . .

We demonstrate how the amount of available evidence changes the reasoning
result by using three evidence sets: only the AIS and IHS Fairplay information
(ihs), the AIS and IHS Fairplay information with added information from Marine-
Traffic (ihs+mt) and finally we add the visual observation (vis) that the vessel has
been repainted (ihs+mt+vis):

RecAttr(visualsign, repainted) = true

Table 8.1 reports the query probabilities. The values of 0.000 and 1.000 indicate
rounded very small and large probabilities. We abbreviate queries of the form
Attr(voi, Attr) = Value with Attr = Value.

The intuitive line of reasoning for the scenario is that the vessel seems to send
the wrong name “Dutchman” in order to hide its identity, which is confirmed by
the model if sufficient information is available. With IHS Fairplay information
only, the probability that the real name is “Black Pearl” is only about 85%, though
we trust IHS Fairplay much more than AIS information. This is because it is not
certain whether the record is about the ship of interest, since the matching MMSI
is the only link between the ship and the record. With an increasing amount of
information available, the probabilities change to the expected result. Another



166 application to maritime safety and security tasks

Query ihs ihs+mt ihs+mt+vis

mmsi = 123456789 1.000 0.964 0.992

mmsi = 987654321 0.000 0.035 0.007

mmsi = other 0.000 0.001 0.001

name = “Dutchman′′ 0.146 0.037 0.008

name = “Black Pearl′′ 0.845 0.963 0.992

name = other 0.009 0.000 0.000

smuggling = true 0.037 0.042 0.335

hides_identity = true 0.083 0.094 0.806

Table 8.1: Results for the Example Scenario

interesting observation is that information about the behaviour influence the
probability distributions of the low-level attributes and vice versa.

8.4.2 Quantitative Evaluation Using Simulated Data

We quantitatively evaluate the PMSM by showing that it can correct errors in
simulated AIS data by using additional information. We simulate 1 000 vessels
according to the prior distribution we estimated analysing the data. For each
source, we generate a record corresponding to a vessel and randomly introduced
errors with a fixed error rate for each attribute; thus, we create erroneous obser-
vations (cf. Figure 8.1). The record is then saved to a database, without any link
between the object and the record. Similarly, we generate AIS messages for each
vessel with randomly generated errors. The errors are generated in such a way
that the chance to accidentally report another vessel attribute’s value matches
the estimations. In the experiments we vary the error rate of AIS messages from
0.0 to 1.0 and denote it with εais

A . An error rate of 0.0 means that values reported
in AIS messages are correct for all attributes, whereas an error rate of 1.0 means
all values are incorrect.

We evaluate the error of the prediction, which is the most likely value accord-
ing to the result of the PMSM with the AIS message and additional information
as input. The additional information used by the PMSM model is retrieved from
the database using the values of the MMSI and IMO in the AIS message. Due
to the errors there may be multiple records that include the same MMSI or IMO
or no record including a sent MMSI or IMO at all. Clearly, because of this there
was a varying number of relevant records per vessel.

We measure the performance of the predictions in terms of the error per at-
tribute A:

εPMSM
A =

incorrectly predicted values for A
total number of vessels
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In the experiment, we explore whether sources with high error rates are still
useful to correct errors and whether the error reduction increases with the num-
ber of distinct noisy sources. We choose an error rate for the sources of 20%
(ε = 0.2), which could be considered as very noisy in practice, and vary the
number of sources from 1 to 3. As baseline we use a single source, providing
perfect information (ε = 0.0). This case is still not trivial, since, due to errors in
the AIS data, the record corresponding to the current ship of interest might not
be found and instead records about other vessels are used as evidence.

Since we obtain similar results for all attributes, for clarity we discuss only the
ones for the vessel’s name; see Figure 8.2, where we plot the error of the input
AIS data (εais

A ) against the error of the prediction εPMSM
A . A first observation is

that for moderate error rates of up to 20% for the AIS messages, a single noisy
source can not or hardly correct for errors. Adding a second and a third source
decreases the error rate of the predicted attributes. In the latter case, the errors
are reduced nearly as much as using a source without errors. With an increasing
error rate in the AIS message, the difference between the predicted error rates
decreases. However, those high error rates are very unlikely to occur in practice.

We can draw the following conclusions. First, our approach is capable of cor-
recting errors in AIS data to a certain extent. Second, for AIS error rates of up
to 20%, which are not expected to be higher in practice, most errors could be
corrected given reliable additional information. Finally, we confirmed that our
model can make good use of very noisy information sources. The low quality of
information can be compensated by the amount of information used. This result
is similar to typical results for ordinary multi-sensors fusion. It however con-
firms that our method is in a similar way capable of correcting errors by relating
information from external databases.

8.4.3 The Model Embedded in a Real Maritime System

Within the METIS project, a proof of concept system was developed, tackling all
aspects of automating the maritime SaS task, including data collection, dynamic
reconfiguration and visualisation, next to reasoning. The PMSM is however an
integral part of the entire system, so the prototype illustrates the applicability
of the PMSM in a real-world setting. The prototype system was deployed as a
plugin for Thales’s command-and-control industrial platform Tacticos. Figure 8.3
depicts the main working principles of the prototype. A detailed description of
the system’s general architecture is furthermore given in [65].

Initially, the operator or the system selects a single vessel of interest, whose
AIS identity information, as given in the scenario, is used to retrieve data from
additional sources. All the information retrieved is then aligned to a common in-
formation model6. The aligned information serves as an input to the PMSM, of
which the results are then visualised for the operator as shown in Figure 8.4. Dy-

6 https://www.niem.gov/communities/maritime

https://www.niem.gov/communities/maritime
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Figure 8.2: Prediction Error of the PMSM for Names

namic reconfiguration can decide to do the process over again, using additional
information sources.

A 24/7 system, driven by live AIS data distributed by AIS Hub7 and contin-
uously (re)deployed with the latest state-of-the-art METIS technologies, started
at the beginning of 2014 to continuously monitor all ship activities within the
Dutch exclusive economic zone. To give an insight in the system’s performance
we give a short summary of its results. For the period May 18–21 the METIS sys-
tem has monitored around 9 400 ships. Information about vessels from sources
such as AIS, IHS Fairplay and the Press Association8 was constantly collected and
fused to reason about vessels’ identities and intents such as reckless behaviour,
smuggling and environmental hazard. The process of data collection and reason-
ing took on average a few seconds per vessel, affirming the real-time operation

7 http://www.aishub.net
8 https://www.pressassociation.com

http://www.aishub.net
https://www.pressassociation.com
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Figure 8.3: Operational Scheme of the METIS Prototype System

of the METIS system. The system made use of an alert rate, which is based on the
probability of relevant hypothesis. For 99% of the monitored ships, the system
reported an alert rate of less than 10% for any of the intents. For the remaining
ships, 0.94% had an alert rate of up to 41% mostly due to a high (prior) chance
for reckless behaviour. Only for two ships, the alert rates were 78% and 92% due
to news evidence about reckless behaviour. These results demonstrate the poten-
tial of the system to filter out a significant part of the ships entering a monitored
area.

8.5 related work

The distinction we make between low-level attributes, such as physical and iden-
tity attributes, and high-level attributes, related to intentions, is also commonly
made in the context of information fusion. For instance, Waltz and Llinas dis-
cuss the distinction between low-level processing and high-level processing [155]. As
discussed, the problem of low-level processing for kinematic properties is well
studied [52, 59], but by its nature involves less kinds of uncertainty.

Other work exclusively focuses on the high-level processing task, using results
of low-level processing as input, assuming that such inputs are generated from
sensors under own control, of which the error characteristics are independent
of high-level intentions. Such low-level information never reveals the identity of
objects. Early works only aimed at inferring a possible single threat from low-
level data, e.g. oil spills [78]. Later work aimes at providing a more complete
picture and is as our work also based on first-order probabilistic languages: the
work in [21, 28] is based on multi-entity Bayesian networks [84] and the work
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Figure 8.4: Screenshot of the METIS Prototype System

in [144] on Markov logic networks (MLNs) [44]. An approach taking into account
the behaviour of vessels over a period of time is presented in [49] and applies
Dynamic Bayesian Networks [108]. An example of similar work outside of the
maritime domain is [147].

There are also other systems, aiming at an integration of all aspect of SaS sup-
port systems, as we did in the METIS project. One example of such work that
deals with the interpretation of uncertain and missing information is presented
in [109]. The reasoning engine is based on Dynamic Bayesian Networkss, while a
situation recovery component provides the final decision-making. The disadvan-
tage of the employed tool, however, is its propositional nature that does not allow
dealing with a varying number of entities as existing in the maritime domain. In
[23], the authors report about the GeMASS system that uses genetic algorithms to
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discover knowledge from historical AIS and local port management data about
common and exceptional events of ships’ kinematic behaviour.

8.6 conclusions & future work

We have developed a model for decision support for maritime SaS tasks based
on PCLP. In contrast to previous work we deal with the challenging problem
of reasoning about vessels’ identities, which is essential for utilising information
from external sources. This kind of reasoning comes with the additional uncer-
tainty that error characteristics of information sources, not under own control,
may depend on vessels’ intentions, which implies complex relations between
vessels and pieces of information.

PCLP has shown to be a very powerful tool to deal with such complex rela-
tions between dynamic amounts of information and a dynamic number of ves-
sels. The representation of domain knowledge makes exposition of this knowl-
edge possible in several ways. This is very important, because an important les-
son learned in the course of the METIS project, is that there is no single best way
of doing things, but the capabilities of the model and used input information
have to fit the intended environment and purpose for which it is employed. Of-
ten more simple sub-models of certain aspects of the domain can provide results
that are good enough, while a too complex model hinders maintainability and
increases inference time. Also the model is part of a complex support system,
for which interfacing with human experts is crucial.

The model is capable of fusing information by relating information from het-
erogeneous sources to objects under surveillance. We verified that the model can
correct errors in the information transmitted by vessels using information pro-
vided by external sources, which are unreliable as well. The number of sources
increase the reliability of the model’s prediction. We have finally shown that our
solution is applicable in the context of a realistic support system prototype.

We believe that the general structure of the model, that is the relation of ob-
jects of interest and reported information, to be widely applicable. The pattern
of having a complex interplay between properties of a dynamic number of enti-
ties of interest and uncertain information about such entities, originating from
sources with different characteristics, occurs in many potential application areas.

Some technical improvements are possible in the future. The workaround to
deal with large ranges, using the special value other, works similar to lifted in-
ference methods. The method has therefore to be seen as a workaround for a
weakness shared by all non-lifted inference algorithms. So improved inference
algorithms may automate this workaround, making an even cleaner and more
declarative model possible.





9
D I S C U S S I O N A N D C O N C L U S I O N S

This thesis covers the whole spectrum of work around the development of prob-
abilistic logics: from language design, to an investigation of the theoretical prop-
erties of the designed languages, the development of efficient probabilistic rea-
soning algorithms and their implementation, and finally the development of an
application. We conclude the thesis by discussing the achievements and lessons
learned from the work. Furthermore, some future research opportunities are
proposed.

9.1 achievements

The different aspects of what has been achieved by the work presented in this
thesis is discussed in the following.

9.1.1 Theoretical Contributions

We propose Probabilistic Constraint Logic Programming (PCLP), a language which
possesses a novel balance between expressiveness, consistency properties and
inference complexity. The language supports reasoning about imprecise distribu-
tions, where the distributions are guaranteed to remain consistent. In addition,
inference is made possible with a generalised version of a state-of-the-art infer-
ence algorithm based on weighted model counting (WMC), inheriting many of the
advantages of this method. At the same time, only a small price has to be paid
in terms of inference complexity. The work on imprecise probabilistic Horn clause
logic (IPHL) offers another alternative by limiting the expressiveness in terms
of the problem’s structure, eliminating the increase in terms of parametrised
complexity.

The results illustrate the complex interplay between expressiveness, suitabil-
ity for knowledge representation and inference complexity for probabilistic logic
languages. On the one hand, it is possible to soundly reason about problems with
underspecified probabilistic knowledge and problems for which exactly comput-
ing probabilities is impossible by only considering an imprecise approximation.
On the other hand, reasoning about imprecise knowledge in general increases
inference complexity and only carefully chosen properties of languages, as those
of PCLP and IPHL, can avoid that increase.

173
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9.1.2 Implementation & Experiments

We developed a reference implementation of the generalised WMC algorithm,
which we used to illustrate that the overhead of computing bounds instead of
point probabilities is negligible. It was also shown that additional exploitation of
structure in problems can reduce the inference time essentially, similarly to using
optimisations in the context of exact inference. Furthermore, we implemented an
algorithm based on the ideas of generalised WMC, aiming at efficiently comput-
ing bounds for precise, but hybrid, problems. An additional aspect, tackled by
this work, is how to discretise the continuous random variables to achieve quick
convergence of the probability bounds for the entire problem.

This illustrates that the theoretical insights can be transferred to practical
implementations. Those implementations are only possible by incorporating in-
sights from existing algorithms, in this case WMC algorithms, and also by reusing
implementations, in this case satisfiability modulo theories (SMT) solvers.

9.1.3 Successful Applications

The language was successfully deployed for building a model of safety and secu-
rity tasks in the maritime domain. This shows that PCLP is suitable as a knowl-
edge representation language in domains for which data is scarce. Furthermore,
the properties of PCLP offered the possibility of integration into a complex pro-
totype system for maritime situational awareness, as the logic-based approach
provides useful information about the internal state of reasoning.

This also reveals the practical benefits of using methods based on logic. The
properties provided by such methods are essential for incorporating knowledge
and integrating reasoning capabilities into a complex system that includes hu-
man operators.

9.2 limitations

A limitation of PCLP is that it is based on an extended version of the distribution
semantics, inheriting some of the typical limitations of languages that employ
such semantics. The language is limited to closed universe models, while the
ideas behind PCLP could probably also be used for open universe models, as
for example realised by BLOG [102]. In general, the continuous distributions
that can be approximated are restricted to non-parametric ones. For instance,
one cannot use the value of a continuous random variable to determine the
parameter of another one.

9.3 further research

In the future the most important aspect to make PCLP practically useful is to
supply the system with efficient inference mechanisms. This mainly means in-
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corporating more results from recent research on precise inference. Concretely,
this would imply using recent knowledge compilation techniques and to incor-
porate results from research about lifted inference. Inference for IPHL could
benefit similarly. A possible remedy when continuous, approximate inference
by discretisation fails, might be to combine this way of inference with sampling
based approaches, to get the best of both worlds. The PCLP language could
also be made more powerful by allowing parametric continuous distributions
and open universe models. Also computing more than probabilities, for instance
expectation values or best decisions, is a possible direction for future research.
Finally, it is important to find more application domains for PCLP and IPHL to
prove their practical applicability.
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Proof of Lemma 4.1. We show that the equation P(q) = PV
(
SE(q)

)
is equivalent

to Definition 4.4 (P(q) def
= PT

(
{(ωV, ωL) ∈ ΩT | ωL |= q}

)
):

P(q) = PT
(
{(ωV, ωL) ∈ ΩT | ωL |= q}

)
= PV

(
{ωV | (ωV, ωL) ∈ ΩT, ML(ωV) |= ωL, ωL |= q}

)
(Definition 4.3)

The condition ML(ωV) |= ωL, ωL |= q is equivalent to ML(ωV) |= q, since
ML(ωV) uniquely determines ωL. Therefore:

P(q) = PV
(
{ωV | (ωV, ωL) ∈ ΩT, ML(ωV) |= q}

)
= PV

(
{ωV ∈ ΩV | ML(ωV) |= q}

)
= PV

(
SE(q)

)
(Definition 4.5)

Proof of Lemma 4.2. By applying Definitions 4.5 and 4.1 we have to prove that:

{ωV ∈ ΩV | ML(ωV) |= q} =
{

ωV ∈ ΩV |
∨

ML [Φ]|=q
Φ⊆Constr

∧
ϕ∈Φ

ϕ(ωV)
}

(⊆) Assume we have an ωV, which is element of the left-hand set, i.e. for which
ML(ωV) |= q. We choose Φ such that ML[Φ] = ML(ωV). Since for ωV all con-
straints in Φ are satisfiable,

∧
ϕ∈Φ ϕ(ωV) holds and therefore ωV is element of

the right-hand set as well.
(⊇) Assume we have an ωV, which is element of the right-hand set, i.e. for which
there is a Φ, such that ML[Φ] |= q and

∧
ϕ∈Φ ϕ(ωV). Because of the latter, we

know that ML(ωV) includes 〈ϕ〉 for all constraints ϕ ∈ Φ. From ML[Φ] |= q we
can therefore conclude ML(ωV) |= q, due to monotonicity of first-order logic.
This means ωV is element of the left-hand set, too.

Proof of Proposition 4.1. Assuming the three conditions hold, we prove that it is
possible to compute the probability of an arbitrary query q as analytic expression.
We show that the solution event of q is finite-dimensional, which means it has a
finite representation, and can be computed in finite time. The probability of q
can then be computed according to Lemma 4.1 assuming the computable-measure
condition.
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The solution event lemma (Lemma 4.2) makes use of subsets of the constraint
language and derives unique models from that. The finite-relevant-constraints con-
dition means that, in order to find all Φ for which ML[Φ] |= q, we only have to
consider a finite number of occurrences of 〈〉, which implies a finite number of
constraints. We therefore only have to consider a finite number of subsets of the
event space, built from the solution space of the combination of that finite number
of constraints. The solution event can consequently be computed in finite time.
Moreover, since all constraints in the construction of the solution event are finite-
dimensional (finite-dimensional-constraints condition), the solution event is finite
as well.

Proof of Lemma 4.3. We show that there is at least one element PV in PV by con-
structing it from the finite-dimensional Pk

V. The proof is by induction, assuming
the number of random variables is infinite. Obviously the proof also holds for a
finite number of random variables. We show that (1) there is at least one P1

V
in P1

V given an arbitrary C1 and (2) that given a Pk
V consistent with Ck there is

always a compatible Pk+1
V consistent with Ck+1 given that Ck and Ck+1 are com-

patible. That Pk
V and Pk+1

V are compatible means that for any k-dimensional event
e: Pk+1

V (πk+1(e)) = Pk
V(e). We therefore get an infinite sequence of compatible,

finite-dimensional probability distributions from which we can construct a prob-
ability measure on the entire event space, given the basic assumptions we made
in the lemma.

In the following, we do not give a complete construction of probability mea-
sures, because there are in general multiple distributions with the required prob-
ability. Therefore, we only fix the probability of a number of disjoint events in a
way that makes it possible to construct a valid probability measure. We assign
all probability mass to those disjoint events and no probability mass to the rest
of the probability space. All possible measures assigning probabilities to events in
this way clearly assign 1 to the entire space, are countably additive and therefore
valid probability measures.
(1) The disjoint events we use to construct P1

V are the intersections and relative
complements of the events of C1, except the empty set. We then make sure that
all those events are disjoint by restricting them to the minimal ones, i.e. the ones
who have no subset in the collection. Intuitively, this can be seen as all areas
of a Venn diagram which do not include other areas. We denote those events by
f1, . . . , fn and assign for each (pi, ei) ∈ C1 probability pi to an f j ⊆ ei. There is
always at least one such f j. In case we choose the same f j for multiple ei we sum
the probabilities.

What remains to be shown is that a measure P1
V constructed in this way obeys

the inequalities of Definition 4.7, i.e. that for all events e:

∑
d⊆e

(p,d)∈C1

p ≤ P1
V(e) ≤ ∑

d∩e 6=∅
(p,d)∈C1

p

First we prove that the lower bound holds. For each event e we consider all sub-
sets of e in C1: e1, . . . , em. In the construction of P1

V all probability mass assigned
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to all such e1, . . . , em must be assigned to subsets f1, . . . , fm′ of those e1, . . . , em,
which are in turn subsets of e as well. Therefore:

∑
d⊆e

(p,d)∈C1

p ≤ P1
V(e)

Similarly, the probability mass of each ei for which ei ∩ e = ∅ can only be as-
signed to an f j for which f j ∩ e = ∅, which means:

∑
d∩e=∅
(p,d)∈C1

p ≤ 1− P1
V(e) ⇐⇒ P1

V(e) ≤ ∑
d∩e 6=∅
(p,d)∈C1

p

(2) We assume that we have given a Pk
V obeying the specification Ck and a Ck+1

compatible with Ck. From this we construct a probability measure Pk+1
V , which

is compatible with Pk
V.

For each (p, e) in Ck there are (p1, e1), . . . , (pn, en) in Ck+1, for which each
πk(ei) = e, 1 ≤ j ≤ n and the sum of all pi equals p, because Ck and Ck+1 are
compatible. Further, for each e there is an f to which the probability mass p was
assigned in the construction of Pk

V. We assign probability masses p1, . . . , pn to the
intersections and relative complements of e1∩ f , . . . , en ∩ f . Such intersections are
disjoint and non-empty and we denote them with f1, . . . , fm.

We have to make sure Pk+1
V is compatible with Pk

V. For each k-dimensional
f there are a number of k + 1-dimensional f1, . . . , fm and for all those events
Pk

V
(
πk( f j)

)
= Pk

V( f ). Therefore, it is possible to construct Pk+1
V in such a way

that it assigns the same probabilities to all gk+1 where g ⊆ f as Pk
V assigns to

g. This makes both measures compatible, since all fi cover the entire probability
space to which any probability mass is assigned.

The constructed probability measure obeys the bounds defined in Definition 4.7
with similar arguments as for P1

V. For each event ei in Ck+1 there are disjoint
events f1, . . . , fm to which some probability mass is assigned. All events in Ck+1
which are subsets of any f1, . . . , fm certainly contribute to the probability of e,
while disjoint events do certainly not contribute to it.

Proof of Theorem 4.1. The theorem follows directly from Lemma 4.3, Definition 4.3
and Definition 4.4.

Proof of Proposition 4.2. Bounds for the probabilities of any event are defined by
Definition 4.7. The theorem above puts those bounds on the query’s solution
event SE(q), whose probability is equal to the query’s probability (Lemma 4.1).
To show that the bounds are actually the minimum and maximum of the set of
all probabilities, and therefore the most tight bounds, we show for each query q
that there is a probability distribution in P such that the probability of q equals
the lower (1) and a distribution such that the probability equals the upper bound
(2).

We proof this by a construction similar to the proof of Lemma 4.3. The con-
struction below applies to the construction of P1

V as well as to the constructions
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of Pk+1
V . We assign probability masses to disjoint events f1, . . . , fn for each e in

Ci, but we do not assign the probability mass to arbitrary events as in the proof
of Lemma 4.3. The events f1, . . . , fn are as before the minimal intersections and
relative complements of all events in the credal set specification. Additionally, we
split events fi which are not subset of or disjoint with the solution event into
two: fi ∩ SE(q) and fi \ SE(q).
(1) For each e in Ci, which is not a subset of the solution event, we assign the
probability mass to an event from f1, . . . , fn, which is disjoint with the solution
event. Such event always exists, since all f1, . . . , fn which are subset of e, but
not of SE(q), are split into a part which is disjoint with the solution event and
a part which is not. This means only es which are subsets of the solution event
contribute to the probability, which consequently equals the lower bound as
defined by the proposition.
(2) We do the same kind of construction, but this time assign always to events
which are subsets of the solution event if possible. This leaves out all events in Ci,
which are disjoint with the solution event and the probability equals the upper
bound as defined by the proposition.

Proof of Theorem 4.2. Using Proposition 4.2, we get the bounds given a finite-di-
mensional Ck. If we increase k, some of the events e in Ck may split into subsets
of e. Events e of which the probability contributes to the lower bound in k di-
mensions will do so as well in higher dimensions, since all events, e is possibly
split into, are subsets of e. Some subsets of events, which do not contribute to the
lower bound in k dimensions, may do so in higher dimensions. This means the
lower bound is never overestimated for finite k and can only come closer to the
actual lower bound for higher dimensions. Similarly, the upper bound is never
underestimated for finite k and with increasing k the probability comes closer to
the actual upper bound.

In case the bounds are underestimated or overestimated, this is always caused
by the fact some event will be split for higher k, so for each event this can be
compensated by increasing to that higher k. This means one can get arbitrarily
close to the actual bounds.

Proof of Corollary 4.1. This follows directly from Theorem 4.2, the sum rule of
limits, the fact that probabilities of credal set specifications sum up to 1.0 (Defi-
nition 4.6) and the fact that SE(q) is disjoint with SE(¬q) and SE(q) ∪ SE(¬q) =
ΩV.

Proof of Proposition 4.3. We prove the equation for the upper bound. The proof
for the lower bound is similar. We know that P(q | e) = P(q ∧ e)/P(e), therefore
P(q | e) = P(q ∧ e)/Z where Z is the partition function which maximises P(q |
e). The same partition function minimises P(¬q | e), therefore P(¬q | e) =
P(¬q∧ e)/Z. By equivalence transformations and substitution of Z we get P(q∧
e)P(¬q | e) = P(¬q ∧ e)P(q | e). By using Corollary 4.1 (P(¬q | e) = 1− P(q | e))
we can substitute P(¬q | e) and get P(q ∧ e)(1− P(q | e)) = P(¬q ∧ e)P(q | e),
which is equivalent to the equation in the lemma.
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Proof of Theorem 4.3. In the proof of Proposition 4.1 we show that we can deter-
mine a finite-dimensional solution event in case the finite-relevant-constraints
condition and the finite-dimensional-constraints condition hold.

The bounds can be computed using Proposition 4.2. The equations in Proposi-
tion 4.2 require summing over all elements of a Ck. This k has to be chosen such
that all variables restricted by the solution event are included. A finite k can be
found, because the finite-dimensional-constraints condition is fulfilled.

We finally can decide in finite time whether the event contained in each ele-
ment of the finite-dimensional credal set specification is disjoint with or a subset
of the solution event (disjoint-events-decidability condition).

Proof of Lemma 4.4. This follows directly from the fact that the finite credal set
specifications are compatible and Lemma 4.3.

Proof of Proposition 4.4. The proof is a variation of the proof of Proposition 4.2.
Disjointness of events corresponds to unsatisfiability of the corresponding con-
straints’ conjunction and that an event is a subset of another corresponds to
satisfiability of the implication (ϕ1 → ϕ2), which is equivalent to unsatisfiability
of ϕ1 ∧ ¬ϕ2.

Proof of Corollary 4.2. This follows from Definition 4.12 and Proposition 4.4.

Proof of Corollary 4.3. This follows directly from Theorem 4.3, because the dis-
joint-events-decidability condition corresponds to decidable satisfiability of con-
straints, as shown in Proposition 4.4.

Proof of Theorem 5.1. We focus on the problem of deciding whether P(ϕ) > p,
with probability 0 ≤ p ≤ 1. To prove membership in PPC, we show that this
can be decided by a probabilistic Turing machine M in polynomial time, given
an oracle for checking satisfiability of constraints. M computes the joint prob-
ability over choices and constraints in ϕ. First, M iterates over each variable
Vi and chooses a particular constraint for that variable conform the probabil-
ity mass associated to that constraint. Each computation path then corresponds
to a specific choice Ψ for Prog. Then, M computes check(Ψ ∧ ¬ϕ) = unsat. If
true, the state is accepted with probability 1

2 + (1− p) · ε, and with probability
1
2 − p · ε otherwise. The probability of entering an accepting state is therefore
P(ϕ) · ( 1

2 + (1− p)ε) + (1− P(ϕ)) · ( 1
2 − p · ε) = 1

2 + P(ϕ) · ε − p · ε. Now, the
probability of arriving in an accepting state is strictly larger than 1

2 if and only if
P(ϕ) > p.

Proof of Theorem 5.2. We assume that we have given a tree decomposition with
treewidth t and use it to determine a variable order. Suppose we start at an
arbitrary node s of the tree and make case distinctions for all variables in that
node. The number of resulting conjunctive normal forms (CNFs) is bounded by dt,
as the size of the node is bounded by t and for each random variable at most
d choices can be made. Furthermore, the number of choice constraints, each of
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those CNFs is conditioned on, is bounded by t. The complexity of the computa-
tion is therefore O(t dt), if we do not consider the recursive calls to OGWMC for
the decomposed sub-CNFs. The reason why we do not consider recursive calls
in first instance, is that not all sub-CNFs are different and we can exploit that
using caching (Line 3 of Algorithm 2). We make use of the fact that the number
of distinct sub-CNFs is bounded.

All sub-CNFs passed to further recursive calls do not include any of the vari-
ables of s. Either they are eliminated by simplification or they were included
in an imprecise constraint. In the latter case, for each disjunction in which such
imprecise constraints are included, choices for all random variables included are
made and the optimisation in Lines 6–8 of Algorithm 2 can be applied. For each
sub-CNF passed to recursive calls, a new tree decomposition can be assigned,
after decomposition is applied (Line 13 of the algorithm). We eliminate s and all
variables in s from the tree and get a number of disconnected subtrees. To each
sub-CNF exactly one such subtree can be assigned, such that the same random
variables are included in the sub-CNF as well as in the subtree. The subtrees
do not share variables (Property 3 of Definition 5.3) and each random variable
still remaining in the passed sub-CNFs is present in one of such subtree (Prop-
erty 1 of Definition 5.3). This means that each such random variable is present
in exactly one subtree. Furthermore, for each sub-CNF there is exactly one tree
decomposition including all variables in that sub-CNF, because of Property 2

of Definition 5.3 and the definition of the constraint primal graph (Definition 5.2).
We therefore have a single tree decomposition available to determine the variable
order for each recursive call.

Because we apply caching, the number of consecutive computations is bounded
by the number of different inputs of the algorithm. We only have to consider the
number of distinct CNFs, since all variables occurring in choices have been re-
moved, as discussed before. For each of such subtrees the number of distinct
corresponding CNFs is bounded by dm, where m is the number of variables the
subtree and the node n chosen in the previous step have in common. If we now
for each such CNF make case distinctions for all variables in the node of the
subtree, originally connected to n, we have at most t − m variables remaining.
Therefore, the complexity for each single CNF is O(t dt−m) and we have at most
dm different CNFs, which means that the complexity for all CNFs associated to
that subtree is O(t dt).

This can be repeated, until all m tree nodes are eliminated. At least then com-
putation terminates (Lines 4, 5, or 16 of the algorithm). We can conclude that the
total complexity is O(m t dt).

Proof of Lemma 6.1. We first show that a partially evaluated hybrid probability tree
(PHPT) represents a partition of the entire sample space Ω, which is the product
of all random variables’ supports. To each node n of the PHPT we associate a
subset of Ω:

Ωn =
⋃

X∈V
range(n, X),
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where V is the set of all random variables. Obviously, the sample space of the
root node equals the problem’s sample space Ω. At each branch of the tree, the
space is split into two subspaces, which are exclusive and exhaustive (Defini-
tion 6.1). Therefore, the set of all leaves’ sample spaces forms a partition of Ω.

The probability of space P(Ωn), is the product of the probabilities of the path
to n, because of the independence assumption we make.

The probability lower bound P(e), can also be written as sum of the proba-
bilities of the space, associated to all leaf nodes labelled with >. The PHPT just
provides a more compact representation of this sum. Then we have:

P(e) = ∑
n∈T

P(Ωn),

where T is the set of all leaf nodes which are labelled with >. We know that
each Ωn is a subset of e or in a logical sense that the formula representing e is
a consequence of the statement that the space is restricted to Ωn. From this and
the fact that the spaces of all nodes in T are part of a partition of Ω, we can
conclude:

P(e) = ∑
n∈T

P(Ωn) ≤ P(e)

For the upper bound we consider the set of all leaf-nodes labelled with ⊥ for
which we have:

P(e) = 1− ∑
n∈F

P(Ωn)

For each n ∈ F we know that Ωn ∩ e = ∅, therefore:

∑
n∈F

P(Ωn) + P(e) ≤ 1 ⇐⇒ P(e) ≤ P(e)

Proof of Lemma 6.2. We can first eliminate all boolean variables by making a PHPT
that splits into all possible value assignments for such variables.

Each path that is not terminated by a > or ⊥ contributes to the error. We can
always reduce such error by evaluating the path further and can find a bound
n of the number of levels we have to evaluate each branch further until we can
terminate at least one path. The bound n depends on the problem: if we split
each variable, certainly at least one primitive constraint can be reduced by > or
⊥. As we have a finite number of random variables, as well as a finite number
of primitive constraints in the formula, we can therefore find a finite bound n.

If pε is the probability mass of the original non-terminated path, we can find
a f ≤ 1.0 such that f pε ≥ pt, where pt is the probability mass of the terminated
path found. Such f exists, because we can at each split, split into parts with
equal probability mass, so f = 0.5n. This means that the error, that the further
evaluated sub-tree contributes, is at most 1 − f pε. As the infinite product of
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1− f converges to 0 for a constant f and there are only a finite number of paths
contributing to the error in each PHPT, also the total error converges to 0, if we
evaluate all of those finite branches further.

The proof can straightforwardly be extended for infinite and discrete as well
as for mixtures of discrete and continuous distributions.

Proof of Proposition 6.1. This is a consequence of Lemma 6.2 and Proposition 4.3.

Proof of Theorem 6.1. Given the proof of Lemma 6.2, the first requirement for ter-
mination is that we eventually continue evaluating all paths, of both PHPTs. The
heuristics to choose the PHPT (choose_phpt) and node (choose_node) with the max-
imal error ensure that, as the error converges to 0. So the error of each branch
will become eventually smaller than that of any other, when evaluated further.
The variable choice heuristic (choose_rvar) ensures that within a bounded number
of steps, always a terminating node is found. The same variable cannot be cho-
sen again, before a primitive constraint in which the variable occurs cannot be
eliminated and only variables occurring in still non-eliminated constraints can
be chosen. Finally, the partition heuristics (choose_part) ensures a lower bound
on how much the error is reduced, as the probability mass is either split, using
a heuristic which is more effective than splitting into two equal parts (as in the
proof of Lemma 6.2), or otherwise a primitive constraint is eliminated, which
reduces the error even more.

Proof of Lemma 7.1. As all heads occur only positively in all bodies, decreasing
the probability of a rule being true can only decrease the probability of all possi-
ble queries. Therefore choosing the lower probability bounds for all rules, results
in all query probabilities becoming the lower bounds of the probability set in
Definition 7.2.

Proof of Lemma 7.2. The lemma obviously holds as replacing imprecisions with
point probabilities is a linear transformation, not changing the complexity of
inference.

Proof of Proposition 7.1. We have already shown that the probabilities for heads
with rule-imprecision is correct (Lemma 7.1). What remains to be shown is that
the translation of head-imprecisions to rule-imprecisions in Algorithm 4 is cor-
rect as well. For that we have to show that the lower probability of the trans-
lated rule, in case a set of defining atoms B are true and all others not, equals
lower(Ph(B)), as defined in Equation 7.3. The probability of any rule with body
B′ ⊆ B is given by subset_lowerh(B′). In total, the probability of h given B is the
noisy-or combination of all those probabilities, which is:

1−
(

∏
B′⊆B

1− subset_lowerh(B
′)
)
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We denote the set of all atoms in the bodies of rules defining head h with Bh. We
then have:

PR(h | ∧a∈Bh if a ∈ B then a else ¬a)

= 1−
(

∏
B′⊆B

1− subset_lowerh(B
′)
)

= 1−
(

∏
B′⊂B

1− subset_lowerh(B
′)
)(

1− subset_lowerh(B)
)

= 1−
(

∏
B′⊂B

1− subset_lowerh(B
′)

)(
1−

(
1−

1− lower
(
Ph(B)

)
∏

B′⊂B
1− subset_lowerh(B′)

))

= 1−
(

∏
B′⊂B

1− subset_lowerh(B
′)

)(
1− lower

(
Ph(B)

)
∏

B′⊂B
1− subset_lowerh(B′)

)
= 1− 1 + lower

(
Ph(B)

)
= lower

(
Ph(B)

)

Proof of Theorem 7.1. This follows from the fact that the correct (Proposition 7.1)
translation of Algorithm 4 has polynomial complexity and does not change the
program’s treewidth.
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S U M M A RY

Building systems that can automatically reason about situations and take deci-
sions, in spite of uncertainty about such situations, is an important goal in arti-
ficial intelligence (AI). Probabilistic logics aim at combining the properties of logic,
that is they provide a structured way of expressing knowledge and a mechanical
way of reasoning about such knowledge, with the ability of probability theory to
deal with uncertainty. Such probabilistic logics can serve as a basis to automate
uncertainty reasoning, based on a structured and interpretable representation of
knowledge.

There is a wide spectrum of probabilistic logic languages, which differ in the
fundamental balance between how expressive a language is and how hard it is to
reason about knowledge expressed in the language. On the one hand, a language
should be expressive enough to allow one to express all knowledge required to
model a problem at hand. On the other hand, it should still be possible to draw
useful conclusions in reasonable time.

In this thesis we propose probabilistic logics with a unique balance between
expressiveness and hardness of reasoning, which perfectly matches the require-
ments for many problem domains. On the expressivity side, we want to support
hybrid models, which means that not only discrete factors, such as whether
it is sunny, rainy or snowing, can be incorporated, but also continuous ones,
such as the temperature. The ability to support hybrid models is essential to
express virtually any non-trivial knowledge about the physical world. On the
reasoning side, we want to preserve soundness of reasoning, which means that
conclusions drawn from knowledge agree with that knowledge. This may seem
a basic requirement, but all common inference methods for hybrid models are
either restricted to only a small class of such models, or provide only unsound
reasoning. The latter are based on approximations, which usually provide good
results, but that come without any guarantees. This is problematic for domains
in which wrong decisions may have a huge impact.

This thesis covers a wide range of results. We provide a theoretical basis for
probabilistic logics with the properties outlined above, but we also consider the
problem of how much time reasoning takes. We propose a way to structure prob-
abilistic knowledge that allows for efficient reasoning, comparable to common,
less expressive probabilistic logic languages. This is approached both theoreti-
cally and also practically, illustrated by concrete reasoning algorithms, which we
evaluate experimentally. We also design practical languages, suitable for knowl-
edge representation, and show applicability using a challenging real-world prob-
lem. This was done in the context of an industrial project, in which we built a
model to reason about malicious behaviour of vessels.
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S A M E N VAT T I N G

Het ontwikkelen van systemen die automatisch over situaties kunnen redeneren
en daarbij beslissingen kunnen nemen, ondanks de onzekerheid over die sit-
uaties, is een belangrijk doel van de kunstmatige intelligentie (KI). Probabilistische
logica’s combineren eigenschappen van logica, in het bijzonder om kennis op een
gestructureerde manier uit te kunnen drukken en ermee op mechanische wijze
te kunnen redeneren, met de mogelijkheden van kansrekening om met onzeker-
heid om te gaan. Probabilistische logica’s kunnen daarom dienen als een basis
voor het automatisch redeneren met onzekerheid gegeven een gestructureerde
en interpreteerbare representatie van de kennis.

Er is een breed spectrum aan probabilistische logische talen; zij verschillen in
de fundamentele balans tussen expressiviteit en de moeilijkheid om over kennis,
uitgedrukt in de taal, efficiënt te kunnen redeneren. Enerzijds moet een taal vol-
doende expressief zijn om alle voor een probleem relevante kennis uit te kunnen
drukken. Anderzijds moet het mogelijk zijn om in redelijke tijd de computer een
conclusie te laten trekken.

In dit proefschrift worden probabilistische logica’s geïntroduceerd die een
unieke balans bezitten tussen expressiviteit en de computationele moeilijkheid
van redeneren. De gekozen balans past goed bij de eisen van veel probleem-
domeinen. Wat betreft de expressiviteit worden hybride modellen ondersteund,
wat wil zeggen dat niet alleen maar discrete variabelen, zoals of het zonnig is,
regent of sneeuwt, kunnen worden gemodelleerd, maar ook continue variabelen,
zoals de omgevingstemperatuur. Deze ondersteuning voor hybride modellen is
essentieel om kennis over de fysieke wereld op een natuurlijke manier uit te
kunnen drukken. Er wordt een vorm van redeneren ondersteund die de correc-
theid (gezondheid) van de redeneren garandeert. Dit wil zeggen dat conclusies
die worden getrokken op basis van kennis uit deze kennis volgen. Dit lijkt miss-
chien een voor de hand liggende eis, maar alle veelgebruikte inferentiemethodes
voor hybride modellen zijn beperkt tot een kleine klasse van dit soort mod-
ellen of ondersteunen slechts een niet-gezonde manier van redeneren. Er wordt
dan gebruik gemaakt van benaderingen, die geen garantie voor nauwkeurigheid
opleveren. Dit is problematisch in domeinen waar foute beslissingen grote con-
sequenties kunnen hebben.

Dit proefschrift bevat een diversiteit aan resultaten. Eerst wordt een theoretis-
che basis ontwikkeld voor probabilistische logica’s met eigenschappen zoals hi-
erboven besproken. Ook wordt aandacht gegeven aan het probleem van de ho-
eveelheid computationele tijd dat redeneren nodig heeft. Een methode wordt
ontwikkeld om probabilistische kennis zodanig te structureren dat efficiënt re-
deneren mogelijk gemaakt wordt, vergelijkbaar met veel gebruikte, minder ex-
pressieve probabilistische logica’s. Dit wordt zowel theoretisch als ook praktisch
geïllustreerd aan hand van redeneeralgoritmen die ook experimenteel worden
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geëvaluerd. Daarnaast worden ook praktische talen voor kennisrepresentatie on-
twikkeld. Aan de hand van een uitdagend realistisch probleem wordt aange-
toond dat deze talen ook praktisch bruikbaar zijn. Ook de industriële toepas-
baarheid is met een computermodel, dat ondersteuning biedt om over verdacht
gedrag van schepen te redeneren, aangetoond.
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