Risicobeoordeling en uitzetcriteria voor de uitheemse quaggamossel (*Dreissena rostriformis bugensis*) in Nederland

Risicobeoordeling en uitzetcriteria voor de uitheemse quaggamossel (*Dreissena rostriformis bugensis*) in Nederland

L. de Hoop\(^1\), M.C.M. Bruijs\(^2\), F.P.L. Collas\(^1\), L.M. Dionisio Pires\(^3\), M. Dorenbosch\(^4\), A. Gittenberger\(^5\), J. Matthews\(^1\), H.H. van Kleef\(^6\), G. van der Velde\(^1\), J.A. Vonk\(^7\), R.S.E.W. Leuven\(^1\)

22 december 2015

\(^1\)Radboud Universiteit Nijmegen (Instituut voor Water en Wetland Research), \(^2\)DNV GL, \(^3\)Deltares, \(^4\)Bureau Waardenburg, \(^5\)GiMaRIS, \(^6\)Stichting Bargerveen, \(^7\)Universiteit van Amsterdam (Institute for Biodiversity and Ecosystem Dynamics)

In opdracht van
Bureau Risicobeoordeling & Onderzoeksprogrammering Nederlandse Voedsel- en Warenautoriteit (NVWA)
Ministerie van Economische Zaken
Reeks Verslagen Milieukunde

Verslagen Milieukunde nr. 507

Titel: Risicobeoordeling en uitzetcriteria voor de uitheemse quaggamossel (Dreissena rostriformis bugensis) in Nederland

Omslagfoto’s: Begroeiing van inheemse zoetwatermossel door quaggamosselen in Maasplas nabij Katwijk (© Foto: Peter Klok, 4 oktober 2015)

Projectmanager: Dr. R.S.E.W. Leuven, Radboud Universiteit, e-mail: r.leuven@science.ru.nl

Projectnummer: RU/FNWI/FEZ-MK626460

 Cliënt: Nederlandse Voedsel- en Warenautoriteit, Postbus 43006, 3540 AA Utrecht

Inkoopnummer NVWA: 60005223 d.d. 9 juli 2015

Orders: Secretariaat afdeling Milieukunde, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Radboud Universiteit Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, e-mail: secre@science.ru.nl, o.v.v. Verslagen Milieukunde nr. 499

Trefwoorden: Beslisboom, biologisch bestrijder, ecologische effecten, fysiologische tolerantie, introductie, negatieve effecten, positieve effecten, verspreiding, vestiging

Geprint op milieuvriendelijk papier

Niets in deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt worden door middel van druk, fotokopie, microfilm, of welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de houder van het auteursrecht.
Inhoudsopgave

Samenvatting .. 3
Summary ... 6
1 Introductie ... 9
 1.1 Achtergrond en probleemstelling .. 9
 1.2 Onderzoeksdoelen .. 9
 1.3 Overzicht en samenhang van het onderzoek ... 9
2 Methoden ... 11
 2.1 Literatuurstudie en data acquisitie ... 11
 2.2 Risico-inventarisatie ... 11
 2.3 Effectbeoordeling en risicoclassificatie .. 12
 2.3.1 ISEIA-protocol ... 12
 2.3.2 Harmonia*-protocol ... 15
 2.3.3 Overige risicobeoordelingen ... 16
 2.4 Beoordelingsprotocol met criteria voor uitzetten .. 16
3 Risicobeoordeling ... 18
 3.1 Risico-inventarisatie ... 18
 3.1.1 Soortbeschrijving ... 18
 3.1.2 Waarschijnlijkheid van binnenkomst in Nederland ... 19
 3.1.3 Waarschijnlijkheid van vestiging ... 19
 3.1.4 Waarschijnlijkheid van secundaire verspreiding ... 28
 3.1.5 Risicovolle gebieden en habitats met hoge natuurwaarden in Nederland 31
 3.1.6 Effecten .. 32
 3.2 Effectbeoordeling en risicoclassificatie .. 46
 3.2.1 ISEIA-protocol ... 46
 3.2.2 Harmonia*-protocol ... 49
 3.2.3 Overige risicobeoordelingen ... 51
4 Uitzetcriteria quaggamossel ... 53
 4.1 Juridische achtergrond ontheffingsverzoek Flora- en faunawet 53
 4.2 Beslisboom ... 54
 4.2.1 Aanwezigheid quaggamossel op doellocatie .. 55
 4.2.2 Natuurdoelementen van watersysteem .. 55
 4.2.3 Hydrologische isolatie en introductie via verbonden wateren of vectoren 55
 4.2.4 Doelmatigheid van uitzetten quaggamossel .. 56
 4.2.5 Aanwezigheid en effecten op Ffw-doelsoorten ... 56
Samenvatting

De quaggamossel (*Dreissena rostriformis bugensis*) is een invasieve exoot die zowel in Nederland als in het buitenland steeds meer in de belangstelling staat als biologisch filter van (blauw)algen, pathogenen en zwevend stof dat verontreinigd kan zijn met gifstoffen of medicijnresten. Het gebruik van de quaggamossel als biologisch filter kent voor- en tegenstanders. De soort geeft zowel negatieve als positieve ecologische en sociaal-economische effecten. Voor het uitzetten van de quaggamossel is een ontheffing nodig in het kader van de Flora- en faunawet (Ffw) omdat het uitzetten van dieren in de vrije natuur (artikel 14, lid 1, Ffw) en doden van beschermde soorten of verstoren van hun voortplantings-, vaste rust- of verblijfplaatsen verboden is (artikelen 8-12 Ffw). Criteria om te beoordelen of een ontheffing wel of niet zou moeten worden aangevraagd en vervolgens afgegeven voor het uitzetten van deze soort als biologisch bestrijder of filter zijn nog niet beschikbaar.

Het doel van dit project is drieledig, namelijk 1) het uitvoeren van een risicobeoordeling van de quaggamossel in Nederland, 2) het opstellen van een protocol met beoordelingscriteria voor ontheffingsverzoeken ingevolge de Ffw voor het uitzetten van de quaggamossel in Nederlandse oppervlaktewateren, en 3) het realiseren van consensus over dit voorstel in een representatieve groep deskundigen (wetenschappers en belanghebbenden). De risicobeoordeling bestaat uit een risicoinventarisatie, effectbeoordeling en risicoclassificatie. Voor de risicoinventarisatie zijn literatuurgegevens verzameld over de kolonisatie, aanwezigheid, verspreiding, fysiologische toleranties en positieve en negatieve ecologische en sociaal-economische effecten van de quaggamossel. Deze gegevens zijn vervolgens gebruikt voor de effectbeoordeling en risicoclassificatie met behulp van twee protocollen.

Kolonisatie, aanwezigheid en verspreiding

De quaggamossel is inheems in twee rivieren van de Ponto-Kaspische regio die uitstromen in de Zwarte Zee, namelijk de Dnjepr en de Zuidelijke Boeg. Deze soort is in 2006 voor het eerst waargenomen in Nederland en is waarschijnlijk al in 2004 of eerder geïntroduceerd via ballast-, bilgen- en motorkoelwater van schepen. De introducties van de quaggamossel in stadsvijvers via begroeide kratten van ander locaties dragen sinds kort bij aan de kolonisatie van de soort in geïsoleerde (stedelijke) wateren.

De exoot heeft zich in Nederland snel verspreid en gevestigd op locaties die permanent in verbinding staan met het netwerk van vaarwegen, zoals de grote rivieren, kanalen en meren. Dit zijn onder andere habitats met hoge natuurwaarden (Natura 2000-gebieden). De hoge dispersiesnelheid wordt het meest waarschijnlijk gefaciliteerd door transport via waterstromingen (stroomafwaartse kolonisatie) en binnen scheepvaart (stroomopwaartse introductie). Talrijke andere menselijke vectoren zijn aanwezig, zoals aanhechting aan drijvende materialen die via water of over land in nieuwe gebieden terecht komen. Verspreiding van quaggamosselen naar hydrologisch geïsoleerde wateren door natuurlijke vectoren (predatoren) is mogelijk maar de kans daarop is relatief klein. De komende decennia wordt een verdere verspreiding verwacht in oppervlaktewateren die in verbinding staan met het netwerk van vaarwegen en wordt een toename in de dichtheid van quaggamosselen verwacht in zoete kalkhoudende watersystemen met geschikt substraat en weinig droogval. Het risico bestaat dat geïsoleerde wateren met hoge natuurwaarden gekoloniseerd worden na menselijke introductie.

Ecologische en sociaal-economische effecten

De quaggamossel is een ecosysteembouwer, omdat deze soort dikke matten op de bodem en dichte begroeiing op harde substraten kan vormen. De soort heeft bij hoge dichtheden in zoete
oppervlaktewateren door zijn sterke filtering van zwevende organische stoffen significante effecten op de integriteit van het ecosysteem door invloed op biotische factoren (bijvoorbeeld afname algenbiomassa) en abiotische factoren (bijvoorbeeld toename van doorzicht en accumulatie van organisch materiaal op de bodem). Afhankelijk van de populatiedichtheid en omgevingsfactoren veroorzaakt de quaggamossel in Nederlandse wateren een toename in helderheid, bloei van specifieke blauwalgen, woekering van ondergedoken waterplanten, voedselcompetitie met inheemse zoetwatermosseren (unioniden) door aanhechting op hun schelpen en een verschuiving in de samenstelling van vissoorten.

De quaggamosselen begroeien en verstoppen onder andere (koel)watersystemen, leidingen, pompen, gemalen en duikers. Naast de (gedreven) kosten door effecten op bedrijfsvoering, zijn er ook aanzienlijke kosten door maatregelen ter preventie van aanhechting en door schoonmaakacties om de aangroeï systeem te verwijderen. Daarnaast zijn er effecten van de quaggamossel op de volksgezondheid (bijvoorbeeld bij snijwonden van badgasten), visserij (begroeiing netten en fuiken; veranderingen in de visstand) en recreatie (bijvoorbeeld hinder van recreatievaart, surfers en zwemmers door ondergedoken waterplanten; hogere veiligheid door toename doorzicht). Een bijkomend economisch probleem zijn de mogelijke schadeclaims door naburige bedrijven bij de organisatie of opdrachtgever die de soort opzettelijk uitzet in watergebieden.

Effectbeoordeling en risicoclassificatie volgens het ISEIA- en Harmonia*-protocol
De geïnventariseerde risico’s van de quaggamossel zijn beoordeeld en geclassificeerd met behulp van twee protocollen: het Invasive Species Environmental Impact Assessment (ISEIA) en Harmonia+protocol. In tegenstelling tot het ISEIA-protocol bevat het Harmonia+protocol naast ecologische effecten tevens modulen voor de beoordeling van sociaal-economische effecten, gevolgen voor de volksgezondheid en gevolgen van klimaatverandering met betrekking tot de effecten.

De risicobeoordelingen van de quaggamossel door het panel van deskundigen met behulp van de ISEIA en Harmonia* protocollen en de beschikbare informatie uit de risico-inventarisatie resulteerden bij beide protocollen: het Invasive Species Environmental Impact Assessment (ISEIA) en Harmonia+protocol. In tegenstelling tot het ISEIA-protocol bevat het Harmonia*-protocol naast ecologische effecten tevens modulen voor de beoordeling van sociaal-economische effecten, gevolgen voor de volksgezondheid en gevolgen van klimaatverandering met betrekking tot de effecten.

Voorstel beoordelingsprotocol met uitzetcriteria (beslisboom)
Een voorstel voor een protocol met beoordelingscriteria voor ontheffingsaanvragen ingevolge de Ffw voor het introduceren van de quaggamossel in Nederlandse watersystemen is vormgegeven als een beslisboom met een nadere toelichting. Als dit protocol in de praktijk wordt gebracht, zal de initiatiefnemer bij het verzoek om ontheffing alle benodigde informatie voor het doorlopen van de beslisboom moeten aanleveren bij de beoordelende instantie van de aanvragen (RVO.nl), die vervolgens op basis van die informatie beoordeelt of ontheffing wel of niet kan worden verleend.

Het voorstel houdt in dat de initiatiefnemer de aanwezigheid van de quaggamossel in het watersysteem inventariseert. Afhankelijk van het resultaat van de toetsing aan de waterkwaliteit- en natuurdoeplastingen en de mate van hydrologische isolatie van het watersysteem zal de aanvrager vervolgens moeten aantonen dat het uitzetten van de quaggamossel doelmatig is. Als dit het geval is,
motiveert de initiatiefnemer of al dan niet sprake kan zijn van overtredingen van verboden in het
kader van de Ffw, zoals (in)directe effecten op (potentieel) aanwezige doelsoorten.

De beslisboom kan worden toegepast voor de watertypen die zijn vastgelegd in de Europese
Kaderrichtlijn Water (KRW). De verwachting van de opstellers is dat de beslisboom een belangrijke
zelfregulerende werking zal hebben en het aantal aanvragen voor ontheffingen zal beperken, omdat op
basis van de verzamelde informatie en beoordelingscriteria snel duidelijk wordt of een ontheffings-
verzoek kansrijk zal zijn.

Voor de toepassing van de beslisboom wordt onder andere aanbevolen dat de beoordelende instantie
(RVO.nl) bij indiening van een ontheffingsaanvraag nagaat en de initiatiefnemer op de hoogte stelt of
het uitzetten, lozen of faciliteren van de quaggamossel strijdig is met ander wettelijk instrumentarium
voor het betreffende oppervlaktewater en eventueel aanvullende instemming of vergunningen nodig
zijn waarvoor de initiatiefnemer informatie zal moeten aanleveren. Daarnaast zou, gelet op de
uitkomsten van de risicobeoordeling, ontheffing ingevolge de Ffw niet overwogen moeten worden
voor het uitzetten of lozen van de quaggamossel in wateren met (gewenste) hoge natuurwaarden, waar
de quaggamossel nog niet aanwezig is.
Summary

In the Netherlands and abroad, the quagga mussel (*Dreissena rostriformis bugensis*) is an invasive species that is increasingly regarded as a potential biological filter of (blue-green) algae, pathogens and suspended solids that may be contaminated with toxic substances or drug residues. The use of the quagga mussel as a biological filter has both supporters and opponents because introduction of the species can lead to negative as well as positive ecological and socio-economic effects. The Flora and Fauna Act (Ffw) prohibits the release of animals into the wild (Article 14, paragraph 1) and the killing of protected species or the disruption of their reproductive habitat, roosts or places of shelter (Articles 8-12 Flora and Fauna). Therefore, an exemption in the form of a permit is required before the quagga mussel can be released to nature. Criteria to assess whether an exemption may or may not be applied for and subsequently granted for the release of this species as a biological control mechanism or filter have not been established.

The goal of this project is threefold: 1) to perform a risk assessment of the quagga mussel in the Netherlands, 2) to establish a protocol with evaluation criteria for exemptions under the Flora and Fauna act for the release of the quagga mussel in Dutch surface waters, and 3) to achieve consensus from a representative group of experts (academics and stakeholders) on this proposal. The risk assessment consists of risk identification, effect assessment and risk classification. For the risk identification, data from the literature were collected on colonization, presence, distribution, physiological tolerances and positive and negative environmental and socioeconomic impacts of the quagga mussel. These data were subsequently used for an effect assessment and risk classification of the species using two protocols.

Colonization, presence and distribution

The quagga mussel is native to two rivers which flow into the Black Sea in the Ponto-Caspian region, namely the Dnieper and the Southern Bug. The species was first observed in the Netherlands in 2006, and was probably introduced in 2004 or earlier as a result of ballast, bilge and engine cooling water discharge of ships. The introduction of the quagga mussel to city ponds has contributed to the colonization of isolated (urban) waters by the species.

The quagga mussel has spread rapidly to locations that are permanently connected to the freshwater network of larger waters in the Netherlands, such as rivers, canals and lakes. These include habitats of high conservation value (Natura 2000 areas). The high dispersal rate is most likely facilitated by transport via water currents (downstream colonization) and inland shipping (upstream introduction). Numerous other human dispersal means are present, such as floating artificial materials with attached mussels that are transported to new areas in water or overland. The risk of spread of quagga mussels to hydrologically isolated waters by natural vectors (predators) is relatively small. It is expected that further spread to surface waters that are connected to the freshwater network will occur in the coming decades and an increase in the density of quagga mussels is expected in calcareous freshwater bodies where there is appropriate hard substrate and a low risk of desiccation. It is possible that isolated waters with high conservation value will be colonized as a result of human mediated introductions, such as recreational boats.

Ecological and socio-economic impacts

The quagga mussel is classified as an ecosystem engineer as it is able to colonize hard substrates at high densities and to form thick mats. Due to a highly efficient filtering capacity, high densities of the
species exert significant influence on the integrity of the ecosystem by affecting biotic factors (e.g. decrease in algal biomass) and abiotic factors (e.g. increase in transparency and an accumulation of benthic organic matter by (pseudo)faeces). Depending on population density and environmental factors, the quagga mussel may cause for instance an increase in water clarity and blue-green algal blooms, an overgrowth of submerged aquatic plants, a shift in fish species composition and a threat to native freshwater mussels (unioniden) by attachment to their shells resulting in increased competition for food.

Quagga mussels are able to colonize and clog, among other things, (cooling) water systems, piping, pumps, pumping stations and culverts. Besides the costs resulting from efficiency reductions, there are also significant costs resulting from measures preventing attachment and from the removal of mussels. In addition, the quagga mussel affects public health (e.g. cuts to swimmers who come into contact with the sharp edged shells), fisheries (choked fishing nets and traps, changes in fish stocks) and recreation (e.g. hindrance to recreational vessels, surfers and swimmers by submerged aquatic plants that benefit from the increased water transparency, and on the other hand increased safety through increased transparency). Further economic problems are the possible claims that neighbouring companies may make against the parties responsible for the intentional release of the species in the case that damage occurs.

Risk assessment and classification according to the ISEIA- and Harmonia+ protocol

The identified risks of the quagga mussel to water bodies in the Netherlands have been assessed and classified using two protocols: the Invasive Species Environmental Impact Assessment (ISEIA) and the Harmonia+ protocol. Unlike the ISEIA protocol, the Harmonia+ protocol includes modules for assessing socioeconomic impacts, public health impacts and the consequences of climate change, in addition to ecological impacts.

The quagga mussel risk assessment, carried out by the panel of experts by applying the available information from the risk inventory to the ISEIA and Harmonia+ protocols, resulted in a high risk classification for invasiveness and ecological consequences in both cases (Workshop 1). The quagga mussel was classified as an A-3 species according to the BFIS list system (used in Belgium) in the ISEIA protocol. The overall risk scores were 0.72 and 1.00 respectively, when using an average and maximum effect score for each risk category in Harmonia+ . In addition, the risk of socioeconomic effects, assessed using the Harmonia+ protocol, is high. These results are in line with risk assessments carried out for Great Britain and North American states, and are also supported by experts (scientists and associated stakeholders) that carried out an independent review of the risk assessment (Workshop 2).

Proposal for an evaluation protocol with criteria for exemption from the Flora and Fauna Act

A protocol with assessment criteria is proposed to determine exemptions under the Flora and Fauna Act allowing introductions of the quagga mussel to the Dutch water system. The protocol consists of a decision tree with accompanying explanatory notes. If the protocol is put into practice, the applicant will be required to provide all necessary information to the agency that evaluates the application (Netherlands Enterprise Agency, i.e. RVO.nl). Subsequently, the RVO.nl evaluates whether the exemption may be granted based on the information obtained from the applicant.

The protocol requires, as a minimum, that a survey of the water system is undertaken by the applicant for the presence of the quagga mussel. Depending on the results of a review of the water quality, conservation requirements and the degree of hydrological isolation of the water system, the applicant
must demonstrate that the release of the quagga mussel will be effective for the initial management aims. If this is the case, the applicant provides information on whether violations of the Flora and Fauna Act will occur as a result of quagga mussel release, such as (in)direct effects on (potential) key species. The protocol can be applied to all types of water body classified under the European Water Framework Directive (WFD) or Habitats Directives. The expectation of the authors is that the protocol will have a major self-regulating function, and that the number of applications for exemptions will be limited, as the basic information required to complete the protocol will give the applicant a good indication of the chance of a successful application prior to submission to the NVO.

It is recommended that the agency which evaluates applications of exemption verifies if the release, discharge or facilitation of the quagga mussel contravenes other laws and rules for the surface water involved. Furthermore, the agency should check whether the applicant should deliver more information for additional approval or permits. Given the high risk classification of this species, exemption under the Flora and Fauna Act for release of the quagga mussel where the species is not yet present should not be considered in waters with high conservation value, or if there is a requirement to increase conservation value in the future.
1 Introductie

1.1 Achtergrond en probleemstelling

De quaggamossel (Dreissena rostriformis bugensis) is een invasieve exoot die zowel in Nederland als in het buitenland steeds meer in de belangstelling staat als biologisch filter van (blauw)algen, pathogenen en zwevend stof dat verontreinigd kan zijn met gifstoffen of medicijnresten (Matthews et al., 2012; Van der Jagt et al., 2014). De quaggamossel is door sommige gemeente en water-verantwoordelijke (kunst)werken, (koel)watersystemen, schepen en allerlei onderwaterapparatuur. Het gebruik van de quaggamossel als biologisch filter kent zowel voor- als tegenstanders.

Voor het uitzetten van de quaggamossel is een ontheffing nodig in het kader van de Flora- en faunawet (Ffw) omdat het uitzetten van dieren in de vrije natuur (artikel 14, lid1, Ffw) en doden van beschermde soorten of verstoren van hun voortplantings-, vaste rust- of verblijfplaatsen verboden is (artikelen 8-12 Ffw) (Dienst Regelingen, 2013). Criteria om te beoordelen of een ontheffing nodig is of niet zou moeten worden aangevraagd en vervolgens afgegeven voor het uitzetten van deze soort als biologisch bestrijder of filter zijn nog niet beschikbaar.

In opdracht van het Bureau Risicobeoordeling en Onderzoeksprogrammering (BuRO) van de Nederlandse Voedsel- en Warenautoriteit (NVWA) is het voorliggende onderzoeksproject gericht op het beoordelen van de risico’s van de quaggamossel, gevolgd door het opstellen van een voorstel voor criteria die door de beoordelende instantie van de aanvragen (Rijksdienst voor Ondernemend Nederland; RVO.nl) gebruikt kunnen worden bij het beoordelen van ontheffingsverzoeken ingevolge de Ffw voor het uitzetten van de quaggamossel in Nederlandse wateren.

1.2 Onderzoeksdoelen

De hoofddoelen van dit onderzoeksproject zijn:
1. Het uitvoeren van een risicobeoordeling van de quaggamossel in Nederland;
2. Het formuleren van criteria en het opstellen van een beoordelingsprotocol voor ontheffingsverzoeken ingevolge de Ffw voor het uitzetten van de quaggamossel in Nederlandse oppervlaktewateren;
3. Het realiseren van consensus over dit voorstel in een representatieve groep wetenschappers en belanghebbenden.

1.3 Overzicht en samenhang van het onderzoek

Hoofdstuk 2 beschrijft de methoden van de data acquisitie, het literatuuronderzoek voor de risico-inventarisatie en de workshops met deskundigen voor de effectbeoordeling en –classificatie van de quaggamossel. Hoofdstuk 3 beschrijft de resultaten van de risicobeoordeling van de quaggamossel (risico-inventarisatie, effectbeoordeling en risicoclassificatie). De inventarisatie omvat informatie
over de soort en een overzicht van: 1) de waarschijnlijkheid van binnenkomst, vestiging en verspreiding in Nederland, 2) risicovolle gebieden en habitats met hoge natuurwaarden in Nederland en 3) positieve en negatieve effecten op onder andere het milieu, de volksgezondheid en sociaal-economische factoren (§ 3.1). Tevens zijn uitkomsten van beschikbare risicobeoordelingen uit andere landen beschreven (§ 3.2). De effectbeoordelingen en -classificaties zijn uitgevoerd aan de hand van de risico-inventarisatie en twee protocollen: Invasive Species Environmental Impact Assessment (ISEIA) en Harmonia+ (§ 3.2). Hoofdstuk 4 beschrijft het voorstel voor een beoordelingsprotocol met criteria (beslisboom) voor het uitzetten van de soort als biologisch filter in oppervlaktewateren in Nederland. De risicoclassificaties en het protocol met uitzetcriteria zijn opgesteld op basis van consensus van een groep deskundigen. Hoofdstuk 5 bediscussieert de resultaten en bespreekt relevante onzekerheden en hiaten in de kennis. In hoofdstuk 6 worden conclusies getrokken en aanbevelingen gedaan voor verder onderzoek. De samenhang tussen de verschillende onderdelen van het onderzoeksproject is schematisch weergegeven in Figuur 1.1.

Figuur 1.1: Samenhang van verschillende componenten van de risicobeoordeling en het voorstel voor een beoordelingsprotocol met criteria (beslisboom) voor het uitzetten van de quaggamossel.
2 Methoden

2.1 Literatuurstudie en data acquisitie

Bij de start van dit onderzoeksproject was relatief veel kennis over de quaggamossel aanwezig in verscheidene rapporten en wetenschappelijke artikelen. In 2012 hebben veldon onderzoek, experimenten en de literatuur geresulteerd in een overzicht van de huidige en potentiële verspreiding, de ecologische en economische effecten en effectieve beheersmaatregelen voor de soort (Matthews et al., 2012). In aanvulling op deze rapportage is een literatuurstudie uitgevoerd naar aanvullende actuele informatie voor de effectbeoordeling en risicoclassificatie van de quaggamossel. Gegevens over de taxonomie, habitatvoorkeur, dispersie mechanismen en negatieve en positieve effecten voor onder andere het milieu, de economie en de volksgezondheid is gezocht in wetenschappelijke tijdschriften, boeken en rapporten met behulp van zoekmachines (ISI Web of Knowledge, Google Scholar en Google.nl) op academische, (niet) gouvernementele en commerciële websites. Daarnaast is ook gebruik gemaakt van informatie over de soort in databanken van uitheemse soorten, zoals het GB Non-native Species Secretariat, Invasive Alien Species Belgium, DAISIE, NOBANIS, Global Non-native Species Database.

Op basis van de literatuurstudie en data acquisitie zijn de risico’s geïnventariseerd van de aanwezigheid van de quaggamossel in Nederland. Deze gegevens zijn gebruikt voor de onderbouwing van de effectbeoordelingen en risicoclassificaties met de ISEIA- en Harmonia”-protocollen. Uiteindelijk is met de resultaten van de risicobeoordeling (risico-inventarisatie, effectbeoordelingen en risicoclassificaties) een protocol met criteria opgesteld voor het beoordelen van ontheffingsverzoeken ingevolge de Ffw voor het uitzetten van de soort als biologisch bestrijder van algenbloei in oppervlaktewateren of filter van (verontreinigd) zwevend stof bij afvalwaterlozingen.

2.2 Risico-inventarisatie

Een overzicht is opgesteld van de benodigde informatie voor het uitvoeren van een effectbeoordeling en risicoclassificatie met de ISEIA en Harmonia” protocollen. De mogelijke risico’s van de quaggamossel voor de mens en natuur zijn onderverdeeld in verschillende categorieën:
1. De waarschijnlijkheid van binnenkomst;
2. De waarschijnlijkheid van vestiging, inclusief een overzicht van de huidige verspreiding in Nederland en de wereld, informatie over de habitat en de fysiologische toleranties van de soort en een vergelijking van het Nederlandse klimaat en de biogeografische regio met het oorspronkelijke en uitheemse verspreidingsgebied van de soort;
3. De waarschijnlijkheid van secundaire verspreiding binnen Nederland, inclusief een overzicht van de mogelijke vectoren en mechanismen die hiertoe bijdragen;
4. Mogelijke vestiging in risicovolle gebieden en habitats met hoge natuurwaarden in Nederland;
5. Positieve en negatieve effecten van de soort op de natuur (zoals inheemse soorten en het ecosysteem) en de mens (zoals de economie, volksgezondheid en infrastructuur).

Voor categorie 2 zijn verspreidingskaarten van de quaggamossel in Nederland en in Europa gemaakt op basis van de meest recente verspreidingsgegevens (september 2015) met behulp van de methode van Matthews et al. (2014) en de database van Collas et al. (2015). De verspreidingsgegevens bestaan niet uit locaties waar de soort is verdwenen. Voor de Europese en Nederlandse verspreidingskaart in
2015 zijn respectievelijk 787 en 470 waarnemingsdata gebruikt. De risico-inventarisatie is waar nodig aangevuld met beschikbare kennis bij de projectpartners.

2.3 Effectbeoordeling en risicoclassificatie

De geïnventariseerde effecten en risico’s van de quaggamossel zijn vervolgens beoordeeld en geclassificeerd met behulp van twee protocollen: het Invasive Species Environmental Impact Assessment (ISEIA) protocol (Branquart, 2007) en het Harmonia+-protocol (D’hondt et al., 2014). Het ISEIA-protocol beoordeelt alleen de risico’s met betrekking tot dispersiepotentieel, invasiviteit en ecologische effecten. In tegenstelling tot het ISEIA-protocol bevat het Harmonia+-protocol tevens modulen voor de beoordeling van sociaal-economische effecten, gevolgen voor de volksgezondheid en de invloed van klimaatverandering op effecten.

De risicoclassificaties van de quaggamossel werden uitgevoerd door een team van vijf deskundigen (F.P.L. Collas, L. de Hoop, R.S.E.W. Leuven, J. Matthews en G. van der Velde). Elke deskundige heeft eerst de resultaten van de risico-inventarisatie bestudeerd (§ 3.1) en vervolgens onafhankelijk van andere deskundigen formulieren ingevuld voor risicoclassificaties van de quaggamossel (Tabel 2.1 en Figuur 2.2). Hierbij is aandacht besteed aan de huidige als toekomstige situatie. Na deze individuele risicoclassificaties is een workshop met alle deskundigen georganiseerd, waarin de argumenten voor de risicoscores zijn toegelicht en verschillen in beoordelingen zijn bediscussieerd. Deze discussies hebben geresulteerd in overeenstemming over de risicoscores voor de criteria van beide protocollen en de (wetenschappelijke) argumentatie daarvoor. Vervolgens zijn de resultaten van de risicoclassificaties voorgelegd aan een panel van onderzoekers en waterbeheerders voor een onafhankelijke review (Bijlage 1).

Het ISEIA- en Harmonia+-protocol zijn procedures voor risicoscreening. Dergelijke methoden zijn daarom alleen ontwikkeld voor het beoordelen van negatieve effecten van uitheemse soorten en laten eventuele positieve effecten buiten beschouwing. In de huidige rapportage is de beschikbare informatie over positieve effecten echter wel meegenomen, namelijk bij de risico-inventarisatie en de consensusvorming tijdens de workshop met deskundigen.

2.3.1 ISEIA-protocol

Het ISEIA-protocol bevat tien criteria die overeenkomen met de laatste stappen van het invasieproces (de potentie van verspreiding, vestiging en negatieve effecten op inheemse soorten en ecosystemen). Deze criteria zijn onderverdeeld in vier risicosecties (Tabel 2.1), waarbij secties 3 en 4 zijn opgedeeld in vier sub-secties (Branquart, 2007):

1. Dispersie potentieel of invasiviteit;
2. Kolonisatie van waardevolle en / of beschermd natuurgebieden;
3. Negatieve effecten op inheemse soorten door:
 a. predatie / herbivorie;
 b. verstoring en competitie;
 c. overdracht van ziektes naar inheemse soorten (parasieten of pathogenen);
 d. genetische effecten zoals hybridisatie en introgressie met inheemse soorten;
4. Wijzigen van ecosysteemfuncties door:
 a. modificaties aan nutriëntencycli of andere hulpbronnen;
b. fysieke habitatmodificatie (veranderingen in hydrologische regimes, toename in de troebelheid van water, lichtonderschepping, verandering van de morfologie van oevers, vernietiging van broed- of kraamgebieden, etc.);

c. modificatie van natuurlijke successie processen;

d. verstoring van voedselwebben (zoals een verandering op lagere trofische niveaus door begrazing of predatie (top-down regulatie) die resulteert in een onevenwichtig ecosysteem).

Tabel 2.1: Definities van de scores per risicosectie van het ISEIA-protocol (Branquart, 2007).

1. Dispersie potentieel of risico invasiviteit

<table>
<thead>
<tr>
<th>Laag</th>
<th>Matig</th>
<th>Hoog</th>
</tr>
</thead>
<tbody>
<tr>
<td>De soort verspreidt zich niet in de omgeving door een lage dispersiecapaciteit en een lage potentiële reproductie.</td>
<td>Behalve wanneer bijgestaan door de mens, is de soort niet in staat afgelegen gebieden te koloniseren. Natuurlijke dispersie bedraagt zelden meer dan 1 km per jaar. De soort kan mogelijk lokaal invasief worden door een sterke reproductie.</td>
<td>De soort is zeer vruchtbaar, kan zich makkelijk actief of passief verspreiden over afstanden van meer dan 1 km per jaar en kan nieuwe populaties vestigen. Hierbij valt te denken aan plantensoorten die gebruik maken van anemochorie, hydrochorie en zoöchorie via insecten of vogelsoorten.</td>
</tr>
</tbody>
</table>

2. Kolonisatierisico van waardevolle en/of beschermde natuurgebieden

<table>
<thead>
<tr>
<th>Laag</th>
<th>Matig</th>
<th>Hoog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populaties van de uitheemse soort zijn beperkt tot door de mens gemaakte habitats (lage natuurwaarde).</td>
<td>Populaties van de uitheemse soort zijn meestal beperkt tot habitats met een lage of matige natuurwaarde en koloniseren incidenteel waardevolle en/of beschermde habitats.</td>
<td>De uitheemse soort koloniseert vaak waardevolle en/of beschermde habitats (bijvoorbeeld, de meeste plekken van een bepaald habitat worden waarschijnlijk gemakkelijk gekoloniseerd door de soort wanneer bronpopulaties in de omgeving aanwezig zijn) en vormt daardoor een mogelijke bedreiging voor Rode Lijst soorten.</td>
</tr>
</tbody>
</table>

3. Risico op negatieve effecten op inheemse soorten

<table>
<thead>
<tr>
<th>Laag</th>
<th>Matig</th>
<th>Hoog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data over de invasiegeschiedenis suggereren dat de negatieve effecten op inheemse populaties verwaarloosbaar zijn.</td>
<td>Het is bekend dat de uitheemse soort lokale veranderingen (< 80%) in populatiegrootte, groei of verspreiding van een of meerdere inheemse soorten teweeg kan brengen. Vooral bij algemene en ruderale soorten. Het effect wordt meestal beschouwd als omkeerbaar.</td>
<td>De ontwikkeling van de uitheemse soort veroorzaakt vaak ernstige lokale afnames (> 80%) van populaties en vermindert de lokale soortenrijkdom. Op een regionale schaal wordt het beschouwd als een factor die aanzet tot de achteruitgang van (zeldzame) soorten. Die uitheemse soorten vormen langdurige populaties en hun effecten op de inheemse biodiversiteit worden beschouwd als moeilijk omkeerbaar. Voorbeelden zijn een sterke interspecifieke competitie in plantengemeenschappen gemedieerd door allelopathische chemicaliën, intra-gilde predatie wat leidt tot lokale extinctie van inheemse soorten en overdracht van nieuwe dodelijke ziektes op inheemse soorten.</td>
</tr>
</tbody>
</table>

4. Risico op het wijzigen van eкосysteemfuncties

<table>
<thead>
<tr>
<th>Laag</th>
<th>Matig</th>
<th>Hoog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Het effect op ecosysteemprocessen en -samenstelling wordt als verwaarloosbaar beschouwd.</td>
<td>Het effect op ecosysteemprocessen en -samenstelling is matig en wordt als gemakkelijk omkeerbaar beschouwd.</td>
<td>Het effect op ecosysteemprocessen en -samenstelling is groot en moeilijk ongedaan te maken. Voorbeelden zijn veranderingen van de fysisch-chemische eigenschappen van water, het faciliteren van rivieroevererosie, het voorkomen van natuurlijk regeneratie van bomen, verstoring van het voedselweb en vernietiging van rivieroevers, rietvelden en / of viskraamgebieden.</td>
</tr>
</tbody>
</table>

Elk criterium van het ISEIA-protocol is beoordeeld met risicoscores op een schaal van drie punten: 1 (laag risico), 2 (matig risico) en 3 (hoog risico). Tabel 2.1 geeft de definities voor laag, matig en hoog risico, volgens de vier secties van het protocol. Deze classificatie is gebaseerd op Nederlandse
documentatie of op literatuur uit andere landen met soortgelijke klimaatregio’s. Bij onvoldoende kennis op basis van de literatuurstudie is de beoordeling gebaseerd op het oordeel en veldobservaties van de deskundigen en uitgedrukt in een score 1 (onwaarschijnlijk) of 2 (waarschijnlijk). Indien een beoordeling van bepaalde criteria niet mogelijk is vanwege ontbrekende informatie, is er geen score toegerekend (DD: datadeficiëntie). Tenslotte is de hoogste score binnen de vier risicosecties gebruikt om de totaalscore voor de soort te berekenen.

De risico’s zijn geclasseerd voor de huidige en toekomstige situatie in Nederland. Bij de toekomstige situatie is in beschouwing genomen dat de habitatgeschiktheid in Nederland kan veranderen door klimaatverandering. Daarnaast is er vanuit gegaan dat geen specifieke beheersmaatregelen worden getroffen voor de preventie van de introductie, verspreiding en vestiging van de soort. Consensus van de betrokken deskundigen over de risicoscore van elke sectie is bereikt door middel van een hierarchische methode waarbij prioriteit is gegeven aan wetenschappelijke informatie over de Nederlandse situatie boven wetenschappelijke gegevens over effecten die buiten Nederland plaatsvinden.

Vervolgens is het lijstsysteem van het Belgische Forum Invasieve Soorten (BFIS) gebruikt om de betreffende soort te classificeren (Branquart, 2007). Dit lijstsysteem is een tweedimensionale ordening van het milieueffect en invasiestadium (Figuur 2.1). Het is gebaseerd op de richtlijnen van de Conventie over Biologische Diversiteit (CBD besluit VI/7) en de strategie van de Europese Unie voor invasieve uitheemse soorten. Het milieueffect van de soort wordt geclasseerd aan de hand van de totale risicoscore: 4-8 (C: soort komt niet in aanmerking voor Zwarte-, Monitor- of Aandachts-lijst), 9-10 (B: Monitorlijst) en 11-12 (A: Zwarte-lijst). De lijstletter wordt vervolgens gecombineerd met een nummer van 0 tot en met 3 dat het invasiestadium weergeeft (0: afwezig, 1: geïsoleerde populaties, 2: beperkte verspreiding, en 3: wijd verspreid). Een soort die afwezig is en een totale risicoscore heeft van 9 tot 12 wordt geplaatst op de Aandachts-lijst.

Figuur 2.1: BFIS-lijstsysteem ter identificatie van soorten die preventieve en mitigerende maatregelen vereisen (Branquart, 2007).

![BFIS-lijstsysteem](image-url)
2.3.2 Harmonia+-protocol

Voor de risicoclassificatie van de quaggamossel met Harmonia+ is gebruik gemaakt van de online-versie van het protocol (D’hondt et al., 2014). De meest recente internetversie van het Harmonia+-protocol bevat procedures voor de risicoclassificatie van uithemse planten en dieren (onderdeel A) en pathogenen (onderdeel B). Voor de risicoclassificatie van de quaggamossel is alleen onderdeel A relevant. Dit onderdeel bevat in totaal 41 vragen die zijn geordend in tien categorieën, namelijk: A01-05: Context; A06-08: Introductie; A09-10: Vestiging; A11-12: Verspreiding; A13-15: Potentiële milieueffecten (biodiversiteit en ecosystemen); A19-23: Effecten voor de plantenteelt, A24-26: Effecten voor veeteelt en dierenwelzijn; A27-29: Gevolgen voor volksgezondheid; A30: Overige effecten, zoals aantasting van infrastructuur; A31-33: Effecten op ecosysteemdiensten en A34-41: Gevolgen van klimaatverandering voor effecten.

Iedere (sub)categorie bevat meerdere beoordelingsvragen en geeft voor iedere vraag ook de opties voor risicoscores. Tevens zijn alle vragen voorzien van een toelichting en voorbeelden die dienen als referentie bij het bepalen van de risicoscores. Bij de gevolgen van klimaatverandering zijn bijvoorbeeld positieve secundaire effecten op de quaggamossel niet meegenomen. Voor deze categorie is een kwalitatieve inschatting gemaakt van de effecten van klimaatverandering op de quaggamossel. Voor een volledige lijst met beoordelingsvragen, -criteria, toelichtingen en voorbeelden wordt verwezen naar de website: http://ias.biodiversity.be/protocols/form/83077c6a7-4352-bf24-a27eb00b8424.

Figuur 2.2: Concept en definities voor risicoclassificatie van uithemse soorten met het Harmonia+-protocol (D’hondt et al., 2014).

<table>
<thead>
<tr>
<th>Concept</th>
<th>Invasie = (f(\text{Introductie; Vestiging; Verspreiding; Effecten}_a \cdots g))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risico = Blootstelling x Kans x Effect</td>
<td></td>
</tr>
<tr>
<td>Invasie = risico?</td>
<td></td>
</tr>
<tr>
<td>Blootstelling = (f_1(\text{Introductie; Vestiging; Verspreiding}) = \text{Invasiescore})</td>
<td></td>
</tr>
<tr>
<td>Kans x Effect = (f_2(\text{Effect}_a; \text{Effect}_b; \text{Effect}_c; \text{Effect}_d; \text{Effect}_e; \text{Effect}_f) = \text{Effectscore})</td>
<td></td>
</tr>
<tr>
<td>a: milieu (biodiversiteit en ecosystemen); b: plantenteelt; c. veeteelt; d. volksgezondheid; e: overige; f: ecosysteemdiensten; g:klimaatverandering</td>
<td></td>
</tr>
<tr>
<td>Totale risicoscore = (\text{Blootstelling} \times \text{Kans} \times \text{Effect} = f_3(\text{Invasiescore}; \text{Effectscore}) = \text{Invasie})</td>
<td></td>
</tr>
<tr>
<td>Berekeningsmethodieken</td>
<td></td>
</tr>
<tr>
<td>(f_1): (gewogen) geometrisch gemiddelde of het product</td>
<td></td>
</tr>
<tr>
<td>(f_2): (gewogen) rekenkundig gemiddelde of het maximum</td>
<td></td>
</tr>
<tr>
<td>(f_3): product</td>
<td></td>
</tr>
</tbody>
</table>

Met de online-versie van Harmonia+ zijn alle risicoscores berekend. Figuur 2.2 toont de methoden voor de berekening van verschillende risicoscores. Voor de berekening van de invasiescore is het product van de introductie-, vestiging- en verspreidingsscore gebruikt. Voor de berekening van een effectscore van een specifieke subcategorie is het gemiddelde en de maximale waarde gebruikt. Ook voor de berekening van de geaggregeerde effectscores zijn zowel de gemiddelden als het maximum van de verschillende effectscores gebruikt. De invasiescore en de geaggregeerde effectscore zijn vermenigvuldigd om de totale risicoscore te bepalen.
Het protocol biedt de mogelijkheid om weegfactoren toe te kennen aan verschillende typen risico’s of effecten, namelijk binnen en tussen risicocategorieën. Bij de risicoclassificatie van de quaggamossel zijn de default waarden 1 voor alle weegfactoren gebruikt. Dit wil zeggen dat bij de berekeningen van de risicoscore verschillende typen effecten binnen en tussen risicocategorieën gelijk zijn gewogen.

Bij alle beoordelingsvragen bestaat tevens de mogelijkheid om de mate van zekerheid van het antwoord te vermelden. De mate van zekerheid wordt op een consistente wijze gerapporteerd met ‘laag’, ‘matig’ of ‘hoog’ voor respectievelijk 0-33%, 33-66% en 66-100% waarschijnlijkheid (Mastandrea et al., 2010; Mastandrea et al., 2011). De gehanteerde klassengrenzen en kleurcodes voor risico- en zekerheidsscores bij de risico classificatie zijn weergegeven in Tabel 2.2. In Harmonia® zijn de scores 0, 0.5 en 1 toegekend aan respectievelijk laag, matig en hoog risico (en eveneens voor de zekerheid). In de voorliggende risicobeoordeling zijn ook de rekenkundige gemiddelden van deze scores per risicocategorie berekend.

<table>
<thead>
<tr>
<th>Kleurcode risico</th>
<th>Risico-classificatie</th>
<th>Risicoscore</th>
<th>Kleurcode zekerheid</th>
<th>Zekerheid-classificatie</th>
<th>Zekerheidscore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groen</td>
<td>Laag</td>
<td><0,33</td>
<td>Groen</td>
<td>Laag</td>
<td><0,33</td>
</tr>
<tr>
<td>Blauw</td>
<td>Matig</td>
<td>0,33 ≤ RS ≤ 0,66</td>
<td>Blauw</td>
<td>Matig</td>
<td>0,33 ≤ ZS ≤ 0,66</td>
</tr>
<tr>
<td>Rood</td>
<td>Hoog</td>
<td>>0,66</td>
<td>Rood</td>
<td>Hoog</td>
<td>>0,66</td>
</tr>
</tbody>
</table>

2.3.3 Overige risicobeoordelingen

Een literatuurstudie is uitgevoerd om overige risicobeoordelingen van de quaggamossel te verwerven. In de zoekmachine Google.nl zijn de termen ‘Risk assessment’ en ‘Risk classification’ in combinatie met ‘Dreissena rostriformis bugensis’ en ‘quagga mussel’ ingevoerd. De eerste 50 resultaten van elke zoekopdracht zijn onderzocht op mogelijke risicobeoordelingen. Ondanks het feit dat de risicobeoordeling van de quaggamossel in de staat New York van de Verenigde Staten niet resulteerde uit de zoekopdracht, is deze wel meegenomen in het overzicht van overige risicobeoordelingen.

2.4 Beoordelingsprotocol met criteria voor uitzetten

Een voorstel is opgesteld voor een beoordelingsprotocol met criteria (beslisboom) voor ontheffingsaanvragen ingevolge de Ffw voor het uitzetten van de quaggamossel als biologisch bestrijder of filter in Nederlandse oppervlaktewateren. Hierbij is rekening gehouden met de volgende aspecten:

- Aanwezigheid van de soort en vectoren voor verspreiding;
- Verschillende waterkwaliteits- en natuurdoelstellingen voor watertypen en natuurgebieden (volgens de Europese Kaderrichtlijn Water en Habitatrichtlijn);
- Open versus hydrologisch geïsoleerde watersystemen;
- Toetsen van doelmatigheid van het uitzetten van de quaggamossel (reden slechte waterkwaliteit, mogelijkheid tot aanpakken oorzaak, beschikbare alternatieven, mate waarin uitzetten quaggamossel een oplossing biedt voor het probleem);
- Geschiktheid van het habitat bepaald aan de hand van zoutgehalte, stroomsnelheid, zuurgraad, zwevend materiaal (seston) en substraat;
- Aanwezigheid en effecten op beschermde planten- en dierensoorten onder de Ffw;
- Mate van maatschappelijk belang, aanwezigheid van reële alternatieven en mogelijkheid tot mitigatie en compensatie van mogelijke effecten.
Deze uitzetcriteria zijn geïntegreerd in een beslisboom waarmee de initiatiefnemer kan bepalen welke informatie nodig is voor een zorgvuldige ontheffingsaanvraag en de ontheffingsverlener kan beoordelen of een ontheffing wel of niet kan worden verleend. De beslisboom is opgesteld aan de hand van de resultaten van de risicobeoordeling (risico-inventarisatie, effectbeoordelingen en risicoclassificaties). Tijdens een workshop hebben deskundigen (wetenschappers en belanghebbenden) een onafhankelijke review van de risicobeoordeling uitgevoerd en bijdragen geleverd voor het opstellen van het protocol en de uitzetcriteria (beslisboom). De lijst met deelnemers aan de workshop is weergegeven in Bijlage 1. De definitieve beslisboom is gebaseerd op consent tussen de betrokken wetenschappers en belanghebbenden.
3 Risicobeoordeling

3.1 Risico-inventarisatie

3.1.1 Soortbeschrijving

De quaggamossel is een zoetwatermossel die behoort tot de familie Dreissenidae, orde Veneroida, klasse Bivalvia en stam Mollusca. De soort is een filter-feeder, dat wil zeggen dat algen, bacteriën en detritusdeeltjes uit het water worden gefilterd waarna feces en ongebruikt materiaal (pseudofeces) worden uitgescheiden (Noordhuis et al., 1992). De levenscyclus van dreisseniden geeft meer inzicht in de verspreidingsmogelijkheden van de quaggamossel in het milieu. De quaggamossel is verwant aan de driehoeksmossel (*Dreissena polymorpha*) en heeft een soortgelijke levensduur (meer dan 2 jaar) en levenscyclus (Figuur 3.1) (Claudi & Mackie, 1994; Lvova, 2004; Hubenov & Trichkova, 2007; Matthews et al., 2012). Beide soorten zijn van gescheiden geslacht, dus mannelijk of vrouwelijk, die respectievelijk zaadcellen en eicellen loslaten in het water tussen april en september (Bij de Vaate, 2015). Beide geslachten zijn meestal binnen een jaar geslachtsrijp. Een bevruchte eicel (zygoot) doorloopt een aantal larvale stadia (zoals de trochophoor en veliger; Figuur 3.1) voordat het individu zich na ongeveer een maand zal vestigen (Ackerman, 1995; Mackie & Schloesser, 1996; McMahon, 2002; Stoeckmann, 2003; Keller et al., 2007; Matthews et al., 2012). Dreisseniden worden maximaal 4 cm lang en dichtheden kunnen oplopen tot tienduizenden exemplaren per m² (Mills et al., 1996; Van der Velde et al., 2010b; Leuven et al., 2014).

De vroege larvale stadia verplaatsen zich passief in het water wat stroomafwaarts een snelle verspreiding mogelijk maakt (Ackerman, 1995). Over het algemeen zijn de larvale en adulte stadia van de mosselen niet in staat om zich tegen de stroom in voort te bewegen. In tegenstelling tot inheemse zoetwatermosselen (zoals unioniden) uit Noord-Amerika en Europa beschikken juveniele en adulte dreisseniden over een gespecialiseerd orgaan voor de secretie van chitine-achtige byssusdraden waarmee ze zich aan harde substraten hechten (Bonner & Rockhill, 1994; Clarke & McMahon, 1996; Matthews et al., 2012). Dreisseniden die vastzitten aan vaartuigen kunnen daardoor stroomopwaarts of over land worden getransporteerd naar gebieden die waarschijnlijk niet via natuurlijke verspreidingsmechanismen kunnen worden bereikt (Johnson & Carlton, 1996).

![Levenscyclus van dreisseniden](https://example.com/image.png)

Figuur 3.1. De levenscyclus van dreisseniden (Rajagopal, 2011; Matthews et al., 2012).
3.1.2 Waarschijnlijkheid van binnenkomst in Nederland

De quaggamossel is inheems in twee rivieren van de Ponto-Kaspische regio die uitstromen in de Zwarte Zee, namelijk de Dnjepr en de Zuidelijke Boeg. In Nederland werd de quaggamossel voor het eerst geobserveerd in 2006 in het Hollandsch Diep, een riviermonding van de Rijn en Maas (Bij de Vaate, 2006; Bij de Vaate & Jansen, 2007; Molloy et al., 2007; Schonenberg & Gittenberger, 2008; Matthews et al., 2012). De afmetingen van de verzamelde exemplaren indiceerden dat meerdere individuen van de betreffende populatie locatie ouder waren dan twee jaar. Dit betekent dat de soort vermoedelijk al in 2004 of eerder is geïntroduceerd in het gebied. De introductie van de quaggamossel in het Hollandsch Diep is hoogstwaarschijnlijk veroorzaakt door het transporteren en lozen van ballast-, bilgen-, of motorkoelwater door schepen in het gebied (Bij de Vaate, 2010b; Bij de Vaate et al., 2014). Na deze waarneming werden in Nederland al snel meer introducties vastgesteld, namelijk in de grotere rivieren (Nederrijn, IJssel, Waal, Bovenrijn en Maas), kanalen (Pannerdensch kanaal, Rijn-Schelede kanaal, Amsterdam-Rijn kanaal, Wilhelmina kanaal, Bathse spuikanaal) en meren (IJsselmeer, Markermeer, Friese meren en Volkerak-Zoommeer) (Soes, 2008; Bij de Vaate, 2009; Bij de Vaate & Jansen, 2009; Bij de Vaate, 2010a; Raad, 2010; Bij de Vaate & Jansen, 2011; Bij de Vaate et al., 2011; Matthews et al., 2012). Deze introducties waren het gevolg van verspreiding via natuurlijke en menselijke vectoren (zie § 3.1.4). Daarnaast is de quaggamossel door sommige gemeentes (Breda, Utrecht en Nijmegen) bewust geïntroduceerd in vijvers en plassen om het troebele effect van eutrofiëring tegen te gaan (Brabantse Delta, 2013; Van der Jagt et al., 2014; Dutch Water Tech, 2015).

Conclusie

In 2006 is de quaggamossel voor het eerst waargenomen in Nederland en is waarschijnlijk in 2004 of eerder geïntroduceerd. Inmiddels komt de soort in veel rivieren, kanalen en meren voor. De opzettelijke introducties van de quaggamossel in stadsvijvers via begroeide kratten van elders dragen sinds kort bij aan de kolonisatie van de soort in stedelijke wateren.

3.1.3 Waarschijnlijkheid van vestiging

Huidige verspreiding in Nederland

Een ruimtelijke analyse van de beschikbare waarnemingsgegevens van de quaggamossel toont aan dat de soort nu voorkomt in de grote rivieren en meren in Nederland (Figuur 3.2). De quaggamossel is voornamelijk aanwezig op locaties die permanent in verbinding staan met het waternetwerk en in mindere mate op locaties die alleen tijdens hoge waterstanden in verbinding staan met waterwegen (Matthews et al., 2012). De soort heeft momenteel een verspreidingsgebied van het Prinses Margriet kanaal in de provincie Friesland tot aan de Maas bij de Nederlands-Belgische grens. In grote delen van de provincies Groningen, Drenthe en Zeeland komen echter nog geen populaties voor. Voornamelijk meer geïsoleerde watersystemen (zoals in het binnenland gelegen meren en plassen) en zijrivieren zonder scheepvaart zijn nog niet gekoloniseerd (Matthews et al., 2012). Sinds 2012 is de mossel voornamelijk in Friesland en Zuid-Holland verder verspreid (Figuur 3.2).

Huidige wereldwijde verspreiding
Trot de jaren dertig kwam de quaggamossel alleen voor in de riviermondingen van twee Oekraïense rivieren die uitstroomen in de Zwarte Zee, namelijk de Dnjepr en de Zuidelijke Boeg (Son, 2007; Van der Velde et al., 2010a). De uitbreiding van het verspreidingsgebied bleef tot de jaren tachtig beperkt tot bepaalde westelijke riviergebieden in Rusland (Orlova et al., 2004; Zhulidov et al., 2005). Sinds 1980 is de soort op steeds meer plaatsen voor het eerst waargenomen: het Erie-kanaal in de Verenigde Staten in 1991 (May & Marsden, 1992; Brown & Stepien, 2010), de Donau in Roemenië in 2004 (Micu & Telembici, 2004; Popa & Popa, 2006), het Hollandsch Diep in Nederland in 2006 (Bij de Vaate, 2006; Molloy et al., 2007), de Main en de Bovenrijn in 2007 en de Nederrijn in 2008 in Duitsland (Martens et al., 2007; Van der Velde & Platvoet, 2007; Haybach & Christmann, 2009), het Albert-kanaal in 2009 en stroomopwaartse migratie in de Maas in 2010 in België (Sablon et al., 2010; Marescaux et al., 2012), de Moezel in Frankrijk in 2011 (Bij de Vaate & Beisal, 2011), de Wraysbury rivier nabij de Thames in Groot-Brittannië eind 2013 of begin 2014 (Aldridge et al., 2014) en de Szczecin lagune in Polen in 2014 (Wawrzyniak-Wydrowska et al., 2015).
Het is mogelijk dat de soort al enige tijd is gevestigd in een gebied voordat deze wordt waargenomen. In 2014 gaf een genetische analyse van ingevroren monsters van dreisseniden uit de Duitse milieumonsterbank (Umweltprobenbank) meer inzicht in de kolonisatiegeschiedenis van de quaggamossel in de Rijn, Donau en Elbe in Duitsland (Paulus et al., 2014). Het onderzoek wees uit dat de quaggamossel in 2004 al bij Koblenz in de Rijn aanwezig was. Dit suggereert dat de soort enkele jaren voor de eerste waarnemingen in 2006 en 2007 zich in West-Europa al had gevestigd. Uit alle waarnemingen blijkt dat de quaggamossel zich in West-Europa snel heeft verspreid sinds het begin van de 20ste eeuw (Matthews et al., 2012; 2014).

De beschikbare data geven echter geen eenduidige conclusie over de verspreidingsroutes van de quaggamossel in Europa. De soort is voor het eerst waargenomen in de Rijndelta en daarna in de Main en het noordelijke Main-Donau kanaal. De mossel kan bijvoorbeeld vanuit de Rijndelta of vanuit de Donau benedenstrooms via scheepvaart naar de Main getransporteerd. Het is mogelijk dat daarnaast nog andere introductieroutes en meervoudige introducties hebben plaatsgevonden (Marescaux et al., 2015c).

Figuur 3.3 toont de locaties waar de quaggamossel is waargenomen in Europa tot september 2015. Daarnaast geeft Figuur 3.4 een overzicht van de landen waar de soort wereldwijd momenteel voorkomt.

Figuur 3.3: Huidige verspreiding van de quaggamossel in Europa (september 2015), waarbij het oorspronkelijke verspreidingsgebied is aangegeven met een cirkel (Matthews et al., 2014; Collas et al., 2015).
De soort is zeer waarschijnlijk verspreid door het transporteren van ballast-, bilgen-, en motorkoelwater, ankers en schoonmaakwerktuigen van schepen via het netwerk van vaarwateren en kanalen naar West-Europa (Van der Velde et al., 2010a; Matthews et al., 2012). Al voordat het verspreidingsgebied van de quaggamossel toenam, bestond er een uitgebreid netwerk van bevaarbare waterwegen in Europa. De belangrijke laatste stap voor de verbinding van de Rijn met het Europees-Aziatische netwerk van binnenlandse waterwegen was de verbinding met de Donau na de opening van het Main-Donaukanaal in 1992. Paulus et al. (2014) onderschreven met hun genetische onderzoek van dreisseniden de hypothese dat de quaggamossel eerder met vectoren via het Main-Donaukanaal West-Europa is binnengekomen dan direct vanuit het oorspronkelijke verspreidingsgebied door de Donau zelf. De verbondenheid van waterwegen, zoals de heropening van het Main-Donaukanaal, is een belangrijke factor bij de verspreiding van de quaggamossel via vectoren zoals scheepvaart. Momenteel bestaat het binnenlandse netwerk van waterwegen uit ongeveer 28.000 km van bevaarbare rivieren en kanalen die 37 landen in Europa en daarbuiten met elkaar verbinden (Leuven et al., 2009).

Habitat en fysiologische toleranties

Tabel 3.1 geeft de fysiologische en chemische toleranties van de quaggamossel weer zoals beschreven in Matthews et al. (2012, 2014).
Tabel 3.1: De range van fysisch-chemische eigenschappen van drie watertypes die de quaggamossel heeft gekoloniseerd in Nederland in vergelijking tot de fysisch-chemische toleranties van de quaggamossel (aanpassing uit Matthews et al., 2012, 2014).

<table>
<thead>
<tr>
<th>Fysisch-chemische eigenschap</th>
<th>Grote rivieren</th>
<th>Kanalen</th>
<th>Meren</th>
<th>Gecombineerd</th>
<th>Fysisch-chemische toleranties</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (mg l⁻¹)</td>
<td>35,0–92,1</td>
<td>39,2–105,0</td>
<td>39,7–99,0</td>
<td>35,0–105,0</td>
<td>> 12</td>
<td>1</td>
</tr>
<tr>
<td>Nitraat (mg l⁻¹)</td>
<td>1,1–4,4</td>
<td>0,8–8,7</td>
<td>0,01–0,5</td>
<td>0,01–8,7</td>
<td>Geen data</td>
<td></td>
</tr>
<tr>
<td>Totaal fosfaat (mg l⁻¹)</td>
<td>0,04–1,9</td>
<td>0,02–1,3</td>
<td>0,02–0,5</td>
<td>0,02–1,9</td>
<td>Geen data</td>
<td></td>
</tr>
<tr>
<td>Zuurstofsaturatie (mg l⁻¹)</td>
<td>3,2–14,8</td>
<td>5,18–12,8</td>
<td>8,7–15,9</td>
<td>3,2–15,9</td>
<td>> 0,47</td>
<td>2, c</td>
</tr>
<tr>
<td>pH</td>
<td>7,3–8,5</td>
<td>7,2–8,3</td>
<td>8,3–10,4</td>
<td>7,2–10,4</td>
<td>Min: 7,4 Max: 9,3</td>
<td>3-5, c-d</td>
</tr>
<tr>
<td>Zoutgehalte (%)</td>
<td>0,0–0,4</td>
<td>0,2–0,6</td>
<td>0,3–0,4</td>
<td>0,0–0,6</td>
<td>< 6 - 8</td>
<td>6-10, e</td>
</tr>
<tr>
<td>Temperatuur (°C)</td>
<td>1,1–26,8</td>
<td>0,6–24,1</td>
<td>0,2–21,0</td>
<td>0,2–26,8</td>
<td>0-36,4</td>
<td>6, 11-16</td>
</tr>
<tr>
<td>Stroomsnelheid (cm s⁻¹)</td>
<td>1–2,2 / 117</td>
<td>3–7</td>
<td>N.V.T.</td>
<td>1–117</td>
<td>0–140</td>
<td>17-18</td>
</tr>
</tbody>
</table>

a Maximale snelheid zonder invloed van scheepvaart.

b Een levende quaggamossel gevonden op deze locatie, maximale snelheid veroorzaakt door passerende schepen.

d pH > 8 voor quaggamossel en driehoeksmossel optimaal (Mackie, 2005).

e Reproductie quaggamossel komt voor bij < 2-3‰ (Rosenberg & Ludynskiy, 1994), er is geen productie van byssusdraden in adulten bij 4% (Grutters et al., 2012), maar 0,1% van juveniele quaggamossen overleefden bij 8‰ (Wright et al., 1996). Een zoutgehalte van 8‰ is getest als de maximale lethale waarde (Orlova et al., 2005).

f 20-100 cm s⁻¹ is de range waarbij de quaggamossel voorkomt in een aquaduct in Arizona, Verenigde Staten (Nelson & Nibling, 2013), 9 cm s⁻¹ is voor de quaggamossel en driehoeksmossel optimaal volgens (Ackerman, 1999) en de maximale stroomsnelheid van 140 cm s⁻¹ is geobserveerd in de lagere Niagara rivier in Noord-Amerika (persoonlijke communicatie K. Mehler, Great Lakes Center).

1 (Jones & Ricciardi, 2005), 2 (Mihuc et al., 1999), 3 (Ramcharan et al., 1992), 4 (Neary & Leach, 1992), 5 (Bowman & Bailey, 1998), 6 (Karatayev et al., 1998), 7 (Spidle et al., 1995), 8 (Wright et al., 1996), 9 (Orlova et al., 2005), 10 (Garton et al., 2014), 11 (Bij de Vaate, 2008), 12 (Mills et al., 1996), 13 (Verbrugge et al., 2012), 14 (Mackie & Claudi, 2010), 15 (Claxton & Mackie, 1998), 16 (Domm et al., 1993), 17 (Nelson & Nibling, 2013), 18 (Ackerman, 1999).

Substraattype

Matthews et al. (2012) observeerden tijdens een veldstudie dat juveniele en adulte quaggamossen zich aan natuurlijke en kunstmatige materialen kunnen hechten, zoals hout, planten, stenen, plastic, rubber en metalen (zie ook § 3.1.4). De mate van hechting aan een substraat is onder andere afhankelijk van de compositie van het materiaal en de ruwheid van de oppervlakte. Uit een onderzoek bleek dat de hechting van mosselen aan natuurlijke materialen beter of even goed was als aan metalen en PVC, maar dat de hechting aan bepaalde gladde plastics (zoals teflon en plexiglas) het slechtste was (Ackerman et al., 1996; Matthews et al., 2012).

In de veldstudie van Matthews et al. (2012) was het meest voorkomende substraat de stenen van de kunstmatige kribben in de Rijn en steenhopen en zand op de bodem van rivieren en meren. Vaste substraten in de bovenste laag van een zachte bodem, zoals oude schelpen en stenen, faciliteren de vestiging van quaggamossen in het IJsselmeer, Markermere en Volkerakmeer (Bij de Vaate & Jansen, 2011; Bij de Vaate et al., 2011). Figuur 3.5a en b tonen de vorming van grote kluiten van quaggamossen op kleine stenen en schelpen in ondiep water in de Bizonbaai. Kleine kluitjes
Quaggamosselen kunnen zich uiteindelijk uitbreiden naar grotere moshelbedden, zoals in 2011 is ontdekt in het Markermeer (Bij de Vaate & Jansen, 2011) en in de Maasplazen (persoonlijke communicatie P. Klok) (Matthews et al., 2012). Mosseltapijten komen voornamelijk voor in dieper water. De Maasplazen bevatten een mosseltapijt tot zes meter diepe met lobben tot acht meter (Figuur 3.5c en d). In ondiepe meren, zoals het Markermeer, beperken anaerob sediment en sedimentatie van fijnstof door waterturbulentie veroorzaakt door scheepvaart en wind de kolonisatie van quaggamosselen (Matthews et al., 2012). Echter, in het zuidelijke deel van het Markermeer is de kolonisatie hoog (persoonlijke observatie H.G. van der Geest & J.A. Vonk).

![Figuur 3.5](https://example.com/image)

Figuur 3.5: Verschillende stadia van matvorming door quaggamosselen: a) & b) vorming van grote kluiten van quaggamosselen in de Bizonbaai door het begroeien van harde substraten zoals stenen en andere schelpen (© Foto’s: Rob Leuven); c) Vorming van grote kluiten, en d) matvorming van quaggamosselen in de Maasplazen in 2011 (© Foto: Peter Klok).

Temperatuur en saliniteit

Een experimenteel onderzoek met de driehoeks- en quaggamossel bij verschillende watertemperatuur (5, 15 en 25°C) en saliniteit (0,2, 2 en 9‰) toonde aan dat de driehoeksmosselen iets meer byssusdraden vormden bij nagenoeg alle condities, maar dat beide soorten in principe hetzelfde vermogen hadden tot een nieuwe aanhechting. Een test met constante temperatuur (15°C) en verschillende saliniteit (0,3; 1,1; 2,1; 4,1; 6,2; 9,3 en 12,4‰) toonde aan dat beide soorten geen byssusdraden meer produceerden bij een saliniteit hoger dan 4‰ (Grutters et al., 2012). Slechts 0,1% quaggamossellarven van 3 tot 5 dagen oud overleefden een saliniteit van 8‰ (Wright et al., 1996).

De laagst gemeten temperatuur waarbij quaggamosselen overleven in het veld is 0 °C en voor groei en reproductie is een temperatuur van 4-5 °C nodig (Mackie & Claudi, 2010). Een temperatuur tussen 4-
9 °C is belangrijk voor de voortplanting (Claxton & Mackie, 1998) en 15-18 °C om de levenscyclus af te kunnen ronden (21-30 dagen) (Mackie, 2005). De quaggamossel is tolerant voor een maximale temperatuur van 36,4 °C in een experimentele omgeving (Domm et al., 1993).

Diepte

De quaggamossel kan tot op grote diepte voorkomen in meren en reservoirs. Factoren die hierbij een rol spelen zijn zuurstof en een lage watertemperatuur. Een typische diepwatervorm profunda is beschreven die onder andere voorkomt in reservoirs in Rusland en de Grote Meren in de Verenigde Staten (Nalepa et al., 2014). Deze vorm is nog niet in Nederland aangetroffen of als zodanig herkend. In tegenstelling tot observaties in Noord-Amerika (Mills et al., 1996), was in een veldexperiment de mortaliteit van de quaggamossel op 17 m diepe hoger dan de mortaliteit van de driehoeksmossel op dezelfde diepte. Dit onderzoek impliceerde een lagere tolerantie van de quaggamossel voor grotere dieptes in Nederlandse zoetwatermeren (Matthews et al., 2012; Verhofstad et al., 2013).

Droogval

Droogval gedurende vijf dagen bij temperaturen van -3.6 tot -7.2 °C in de winter van 2012 veroorzaakte massamortaliteit van dreisseniden in de Nederrijn (Leuven et al., 2014) (Figuur 3.6 en Figuur 3.7). Na 18 maanden werd dezelfde dichtheid als in 2012 gehaald, maar een volledig herstel van de populatiestructuur werd geschat op twee of drie jaar. Een studie met soortgevoeligheidsdistributies (SSDs) toonde aan dat droogval tijdens een periode van lage waterafvoer een belangrijke stressor is voor de quaggamossel (Collas et al., 2014). De invloed van droogval zal worden beïnvloed door erg lage (bevriezing) of hoge temperaturen (uitdroging). Inheemse zoetwatermosselen (Unionidae) zijn aangepast aan lage waterstanden in de rivier in de winter en hebben dus minder last van tijdelijke droogval (Leuven et al., 2014). De quaggamossel is minder tolerant voor droogval dan de driehoeksmossel (Ricciardi et al., 1995a; Ussery & McMahon, 1995).

Figuur 3.6: Drooggevallen driehoeksmosselen en quaggamosselen in de Maas nabij Yvoir (België) na het openen van de sluizen voor onderhoudswerkzaamheden in 2012 (© Foto: Frank Collas).
Vergelijking met de driehoeksmossel

De quaggamossel kent een aantal verschillen met de driehoeksmossel. In vergelijking tot de driehoeksmossel kan de quaggamossel een lagere reproductie vertonen, maar een hogere groeisnelheid. De hoge vruchtbaarheid van vrouwelijke exemplaren van de driehoeksmossel resulteerde in het vrijlaten van meer dan een miljoen eicellen per keer in het Eriemeer op de grens van westelijk Verenigd Staten en Canada. Bij de quaggamossel lag dit aantal 3 tot 4 keer zo laag (Stoeckmann, 2003). Een veldstudie in de Maas in België en Frankrijk toonde een snellere groeisnelheid en/of eerdere voortplanting aan voor de quaggamossel dan de driehoeksmossel. Dit kan leiden tot grotere schelpgrootte en een hoger lichaamsgewicht voor de quaggamosselen dan voor de driehoeksmosselen (Marescaux et al., 2015a).

In Noord-Amerika is voor de driehoeksmossel een hogere maximum temperatuurtolerantie beschreven (29-32 °C) dan voor de quaggamossel (28 °C) (Tabel 25.1 uit Garton et al., 2014). Daarnaast kan de quaggamossel zich bij een lagere temperatuur (9 °C) voortplanten dan de driehoeksmossel (12 °C). Dit suggereert een betere adaptatie van de quaggamossel aan koud water. Driehoeksmosselen vertonen een hogere tolerantie voor zout (< 6-12‰) en kunnen zich handhaven bij een lagere concentratie calciumionen (> 8 mg l⁻¹) dan quaggamosselen (< 6-8‰ en > 12 mg l⁻¹) (Jones & Ricciardi, 2005; Garton et al., 2014). De quaggamossel is minder tolerant voor droogval dan de driehoeksmossel (Ricciardi et al., 1995a; Ussery & McMahon, 1995).

Vergelijking klimaat en biogeografische regio’s

Het klimaat en de biogeografische regio’s van Nederland zijn vergeleken met het oorspronkelijke en uitheemse verspreidingsgebied van de quaggamossel (een beperkt deel van rivieren de Dnjepr en de Zuidelijke Boeg in het Ponto-Kaspisch gebied) (Figuur 3.8). Hiervoor is gebruik gemaakt van kaarten met de Koppen-Geiger klimaatclassificatie die zijn gebaseerd op data van de Duitse weerdienst (Global Precipitation Climatology Centre; GPCC) en de Climatic Research Unit (CRU) van de Universiteit van East Anglia (Verenigd Koninkrijk) (Peel et al., 2007; Rubel & Kottek, 2010).
Nederland ligt grotendeels in de Cfb-regio, die wordt gedefinieerd als warm gematigd met een hoge luchtvochtigheid en een temperate zomer (Figuur 3.9). Een klein gebied in het oosten van Nederland is gegelegen als Cfb-regio (sneeuw, hoge luchtvochtigheid en met een temperate zomer) en komt wat betreft klimaatomstandigheden overeen met het oorspronkelijke verspreidingsgebied. Binnen het oorspronkelijke verspreidingsgebied is ook nog een regio met tegenstrijdige omstandigheden te onderscheiden. Uiteindelijk is er zowel een klimaat- als een milieumatch tussen Nederland en het oorspronkelijke verspreidingsgebied, omdat de regen-, sneeuw-, droogte- en temperatuuromstandigheden in Nederland binnen de bandbreedte vallen van de klimaatregio’s in het Ponto-Kaspische gebied. Daarnaast is de quaggamossel invasief in gebieden met een droger en warmer klimaat dan Nederland, zoals in het westen van de Verenigde Staten waar het heet is met een neerslagpatroon van de woestijn en steppe. Toekomstige veranderingen in het klimaat, zoals hetere en drogere zomers, zullen waarschijnlijk een aanvullend effect hebben op de vestiging van de soort in Nederland.

Figuur 3.8: Klimaat van het oorspronkelijke verspreidingsgebied (kleine zwarte cirkel) van de quaggamossel in vergelijking met Nederland en andere gebieden waar de soort met zekerheid is ingeburgerd (gestippelde ovale cirkels). Gewijzigd naar (Peel et al., 2007).
Conclusie

De quaggamossel komt voor in de grote rivieren en meren in Nederland. De soort is voornamelijk aanwezig op locaties die permanent in verbinding staan met het waternetwerk en in mindere mate op locaties die alleen tijdens hoge waterstanden in verbinding staan met waterwegen. De verbondenheid van waterwegen in Europa, zoals de opening van het Main-Donaukanaal, is een belangrijke factor bij de Europese verspreiding van de quaggamossel. In de komende decennia wordt een toename in de dichtheid van quaggamosselen verwacht in watersystemen met geschikt substraat en weinig droogval.

Het klimaat en het milieu in Nederland en het oorspronkelijke verspreidingsgebied, een onderdeel van de rivieren de Dnjepr en de Zuidelijke Boeg uit het Ponto-Kaspisch gebied, komen overeen. Toekomstige veranderingen in het klimaat, zoals hetere zomers, zullen waarschijnlijk geen aanvullend effect hebben op de vestiging van de soort in Nederland.

3.1.4 Waarschijnlijkheid van secundaire verspreiding

De verbondenheid van waterwegen en de aanwezigheid van vectoren of mechanismen die bijdragen aan verspreiding hebben invloed op de mate van kolonisatie van quaggamosselen in Nederlandse wateren. Zowel menselijke als natuurlijke vectoren kunnen de mosselen verspreiden. Binnenschepvaart wordt gezien als primaire verspreidingsvectoren in Nederland, gezien de aanwezigheid van de mosselen in bevaarbare wateren en waarnemingen van vastgehechte mosselen aan scheepsrompen in Nederland (Mayer et al., 2009; Matthews et al., 2014). Daarnaast hebben binnenvaartschepen apparatuur voor reiniging van de romp aan boord die een waterrestant met larven kan bevatten en daarmee kan dienen als verspreidingsvector. Door de beroeps- en recreatievaart wordt de quaggamossel uiteindelijk geïntroduceerd in watergebieden die stroomopwaarts niet gekoloniseerd waren. Na deze eerste verspreiding kan passieve verspreiding via waterstromingen zorgen voor verdere kolonisatie van de soort stroomafwaarts (Tabel 3.2).
Naast beroeps- en recreatievaart en waterstromingen dragen verscheidene andere vectoren (in mindere mate) ook bij aan de verspreiding van de quaggamossel (Tabel 3.2). Ten eerste kunnen mosselen zich over korte afstanden verplaatsen door gebruik te maken van bewegingen van de voet of schelp. Al zal de stroomopwaartse verplaatsing hierdoor per jaar minder dan 100 meter blijven (Kappes & Haase, 2012; Matthews et al., 2014). Ten tweede kunnen dreisseniden zich hechten aan drijvende materialen, zoals planten, afval (Figuur 3.10a) en hout (b-d). Dit houdt ook in dat quaggamosselen die zich hechten aan drijvende vaartuigen, boeien, drijvers (e en f) en pontons (g en h) via transport over land naar nog niet gekoloniseerde gebieden kunnen worden gebracht. Ten slotte kunnen predatoren, zoals vissen, watervogels, muskus- en bruine ratten, of dieren met een hard substraat, zoals de Chinese wolhandkrab en rivierkreeften, de quaggamossel ook over land of via water verspreiden. De feces van migrerende vissen, zoals de meerval Ictalurus furcatus, kan bijvoorbeeld nog levende drieheksmosselen bevatten (Gatlin et al., 2013). Of quaggamosselen transport over land overleven is afhankelijk van hun weerstand tegen uitdroging en de duur van het transport, temperatuur en luchtvochtigheid (zie §3.1.3).

De geschatte snelheid waarmee de quaggamossel zich verspreidt in grote Nederlandse rivieren, meren en kanalen varieert tussen de 23 en 105 km/jaar (Matthews et al., 2014). Deze berekende snelheden zijn representatief voor stroomopwaartse verspreiding in stromende rivieren en kanalen via scheepvaart en verspreiding in relatief stilstaande grote wateren zoals het IJsselmeer en het Prinses Margriet-kanaal. In Europa varieert de geschatte dispersiesnelheid van de quaggamossel tussen de 23 en 243 km/jaar, met een gemiddelde van 120 km/jaar (Matthews et al., 2014).

Tabel 3.2: Mogelijke vectoren en mechanismen voor de verspreiding (SA: stroomafwaarts, SO: stroomopwaarts, L: lateraal, V: verticaal, OL: over land) van dreisseniden

<table>
<thead>
<tr>
<th>Vector / mechanisme</th>
<th>SA</th>
<th>SO</th>
<th>L</th>
<th>V</th>
<th>OL</th>
<th>Voorbeelden en relevante informatie</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voortbeweging met voet en schelp</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Veroorzaakt door veranderingen in de habitat</td>
<td>1</td>
</tr>
<tr>
<td>Waterstoming</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>Passieve seizoens drift van veligers en losgeraakte adulten</td>
<td>2, 3</td>
</tr>
<tr>
<td>Drijvende materialen (hout, planten en afval)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Gedreven door waterstrooming en wind</td>
<td>4, 7</td>
</tr>
<tr>
<td>Commerciële en recreatie scheepvaart</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Gehecht aan scheepsrompen, in ballastwater (zeeschepen), etc.</td>
<td>4, 7, 9-10, 16</td>
</tr>
<tr>
<td>Transport over het land van drijvende vaartuigen, pontons en boeien of visuitrustingen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>Gehecht aan o.a. scheepsrompen en verstrikt in vegetatie aan vaartuigen of boeien</td>
<td>4, 7, 11, 13, 17-26</td>
</tr>
<tr>
<td>Verschillende diersoorten</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Via predatoren (vissen, watervogels, muskusratten en bruine ratten) en gehecht aan krabben en rivierkreeften</td>
<td>26-30</td>
</tr>
</tbody>
</table>

*a Aanvulling op (Matthews et al., 2012; Matthews et al., 2014) uit (Leuven et al., 2015).
*b Referenties: 1 (Kappes & Haase, 2012); 2 (Johnson & Padilla, 1996); 3 (Stoeckel et al., 1997); 4 (Carlton, 1993); 5 (Horvath & Lambert, 1997); 6 (Wilson et al., 1999); 7 (Matthews et al., 2012); 8 (Keevin et al., 1992); 9 (Nehring, 2002); 10 (Slyanko et al., 2002); 11 (Bij de Vaate et al., 2002); 12 (Olenin, 2002); 13 (Minchin et al., 2003); 14 (Carlton & Geller, 1993); 15 (Endresen et al., 2004); 16 (Holeck et al., 2004); 17 (Padilla et al., 1996); 18 (Buchan & Padilla, 1999); 19 (Kraft & Johnson, 2000); 20 (Allen & Ramcharan, 2001); 21 (Johnson et al., 2001); 22 (Kraft et al., 2002); 23 (Minchin et al., 2002); 24 (Pollux et al., 2003); 25 (Bidwell, 2010); 26 (Banha et al., 2015); 27 (Johnson & Carlton, 1996); 28 (Bossenbroek et al., 2001); 29 (Karataev et al., 2003); 30 (Gatlin et al., 2013).
Figuur 3.10: Drijvende materialen met aangehechte quaggamosselen: a) autoband in een meer van een uiterwaard; b) tak in een watergang; c) en d) drijfhout op de rivieroever; en aangehechte driehoeksmosselen e) en f) drijvers in de Rijkerswoerds plassen; g) en h) metalen ponton (Foto’s a, c en d: Rob Leuven; b: Peter Klok; e-h: Jonathan Matthews) (Matthews et al., 2012).

Conclusie

De hoge dispersiesnelheid van de quaggamossel wordt het meest waarschijnlijk gefaciliteerd door binnenscheepvaart en waterstromingen. De beroeps- en recreatievaart kunnen de quaggamossel introduceren in watergebieden stroomopwaarts die nu nog geen populaties bevatten. Passieve verspreiding via waterstromingen kan zorgen voor snelle stroomafwaartse kolonisatie. Andere
vectoren die bijdragen aan de verspreiding van de quaggamossel zijn dezelfde als die bij de driehoeksmossel (bijvoorbeeld aanhechting aan drijvende materialen die via water of over land in nieuwe gebieden terecht komen). In Nederland zijn talrijke menselijke vectoren aanwezig waardoor een hoge kans bestaat op secundaire verspreiding van de quaggamossel. Verspreiding van quaggamossen naar hydrologisch geïsoleerde wateren door natuurlijke vectoren is mogelijk maar de kans daarop is relatief klein.

3.1.5 Risicovolle gebieden en habitats met hoge natuurwaarden in Nederland

![Diagram](image)

Een vergelijking tussen de waargenomen locaties in 2015 (Figuur 3.2) en de Natura 2000-gebieden in Nederland (Figuur 3.11) geeft aan dat de quaggamossel voorkomt in een aantal beschermd Natura 2000-gebieden, zoals de grote rivieren (hoofdstrom, nevengeulen en uiterwaardplassen) en grote meren (IJsselmeer, Markermeer, Friese meren, Noord- en Zuid-Hollandse meren). De quaggamossel zal niet voorkomen in kalkarme en zure wateren op de hoger gelegen zandgronden en in zoute of sterk brakke polderwateren (Matthews et al., 2012).
Conclusie
De quaggamossel komt voor in habitats met hoge natuurwaarden en het risico bestaat dat meer van deze wateren gekoloniseerd worden door de soort.

3.1.6 Effecten
De kolonisatie en toename van de quaggamossel in zoetwatergebieden kan positieve en negatieve effecten hebben op inheemse aquatische soorten. Positieve gevolgen voor de ene soort kunnen echter weer negatief uitpakken voor een andere soort. Door het veranderen van zowel biotische als abiotische factoren heeft de quaggamossel een aanzienlijke invloed op de integriteit van ecosystemen. Tabel 3.3 geeft een overzicht van de effecten op 1) het milieu, 2) de plantenteelt, 3) gedomesticeerde dieren, 4) volksgezondheid en 5) overige, zoals de economie, recreatie en infrastructuur. Deze effecten zijn afhankelijk van de dichtheid van de quaggamossel in het verspreidingsgebied. Voor elke categorie zijn de effecten in deze paragraaf nader toegelicht.

1. Het milieu
De quaggamossel heeft op veel soortgroepen invloed en kan daardoor indirect bijdragen aan wijzigingen in ecosysteemfuncties, zoals de modificatie van nutriëntencycli, de helderheid van het water en uiteindelijk voedselketens. De quaggamossel is door zijn bijdrage aan veranderingen in habitats als ecosysteembouwer te definiëren (Matthews et al., 2012). Figuur 3.12 toont een schematisch overzicht van de directe en indirecte gevolgen van een toename van quaggamosselen in een ecosysteem. Per soortgroep is een korte toelichting gegeven van de te verwachten effecten en ten slotte is er ingegaan op wijzigingen van ecosysteemfuncties.

Figuur 3.12: Schematische weergave van de afname en toename van biotische en abiotische factoren in een oppervlaktewatersysteem bij de toename van quaggamosselen (aanpassing van (Bij de Vaate, 2015; Dionisio Pires, 2015; Van Emmerink, 2015). De toename van quaggamosselen als voedsel voor macrofauna, vissen en watervogels en de toename van zoöplankton door een toename van mossellarven is niet weergegeven. Zie Tabel 3.3 voor meer details.
Tabel 3.3: Overzicht van de positieve en negatieve effecten van de quaggamossel op de omgeving*

<table>
<thead>
<tr>
<th>Effecten op</th>
<th>Positief</th>
<th>Negatief</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Milieu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zwevend organisch materiaal</td>
<td>Afname slibdeeltjes in water; toename helderheid water</td>
<td>Toename helderheid water kan negatief zijn voor bepaalde soorten (bijvoorbeeld snoekbaars en brasem)</td>
<td>1-4</td>
</tr>
<tr>
<td>Toxische stoffen</td>
<td>Verbetering waterkwaliteit door wegvangen en accumuleren zwevende stof verontreinigd met gifstoffen of medicijnenresten</td>
<td>Accumulatie toxische stoffen in bodemcompartiment door uitscheiding (pseudo)feces mosselen, accumulatie in mosselvlees</td>
<td>1, 5</td>
</tr>
<tr>
<td>Nutriënten</td>
<td>Vastlegging van zwevend organisch materiaal in bodem</td>
<td>Toename nutriënten op bodem door feces mosselen en eventueel toename in waterkolom door afname fytoplankton; toename door massamortaliteit</td>
<td>6-7</td>
</tr>
<tr>
<td>Fytoplankton</td>
<td>Wegfilteren specifieke blauwalgen; totale biomass algen omlaag</td>
<td>Toename specifieke blauwalgen (zoals Microcystis); door afname fytoplankton eventueel lagere opname nutriënten uit waterkolom</td>
<td>2, 8-11</td>
</tr>
<tr>
<td>Aquatische planten</td>
<td>Toename waterplanten dichtheid en diversiteit door helderder water</td>
<td>Helderder water met eutrofe omstandigheden kan leiden tot woekerende monoculturen van waterplanten; toename van exotische plantensoorten; mosselen hechten aan sommige plantensoorten</td>
<td>12-14</td>
</tr>
<tr>
<td>33 Zoöplankton</td>
<td>Deels toename biomass zoöplankton door toename mossellarven en grazers op planten</td>
<td>Afname biomass / dichtheden filter-feeding zoöplankton door afname voedsel (fytoplankton en zoöplankton)</td>
<td>15</td>
</tr>
<tr>
<td>Macrofauna</td>
<td>Habitat voor substraat minnende soorten; mosselen dienen als voedsel voor kreeften en krabben; door meer grazers meer voedsel voor macrofauna; schuilplaatsen tussen mosselen</td>
<td>Vorming toxische pseudofeces door mosselen; door afname zoöplankton minder voedsel voor macrofauna; begroeiing unionide zoetwatermosselen door quaggamossel; matvorming op bodem, faciliteren habitat voor uitheemse soorten</td>
<td>4, 16-21</td>
</tr>
<tr>
<td>Vissen</td>
<td>Door toename aquatische planten meer planten minnende vissoorten; mosselen dienen als voedsel</td>
<td>Door toename helderheid water meer kans voor rovers op zicht; minder pelagische vissoorten; door mogelijke afname zoöplankton minder voedsel voor juveniele vissen; door matvorming mindere bereikbaarheid benthos; door afname zoetwatermosselen minder voortplantingsmogelijkheden voor de bittervoorn</td>
<td>3, 22-26</td>
</tr>
<tr>
<td>Vogels</td>
<td>Mosselen zijn stapelvoedsel (voorale tijdens overwintering)</td>
<td>Bioaccumulatie metalen mogelijk</td>
<td>2, 27-31</td>
</tr>
<tr>
<td>Parasieten / bacteriën</td>
<td>Filtert ziekteverwekkers</td>
<td>Gastheer voor ziekteverwekkers</td>
<td>32-33</td>
</tr>
<tr>
<td>Hele ecosysteem</td>
<td>Veranderingen in het voedselweb en habitat</td>
<td>Veranderingen in het voedselweb en habitat</td>
<td></td>
</tr>
<tr>
<td>2. Plantenteelt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geen</td>
<td>Geen</td>
<td></td>
</tr>
</tbody>
</table>

* Naar blog van B.-L. Blom, 2017 (http://www.blnaturel.net/).
<table>
<thead>
<tr>
<th>Effecten op</th>
<th>Positief</th>
<th>Negatief</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Gedomesticeerde dieren</td>
<td></td>
<td></td>
<td>8, 34-36</td>
</tr>
<tr>
<td></td>
<td>Geen</td>
<td>Geen</td>
<td></td>
</tr>
<tr>
<td>4. Volksgezondheid</td>
<td>Hogere veiligheid door grotere helderheid water</td>
<td>Mogelijke toename van giftige blauwalgen (Microcystis); veroorzaken snijwonden bij badgasten en zwemmers door (lege) schelpen op bodem en stranden</td>
<td>36-37</td>
</tr>
<tr>
<td></td>
<td>Aangroei aan objecten (ladders, aanlegsteigers, vlanders, buitenboordmotoren, etc.); toename ondergedoken waterplanten onprettig voor zwemmers en surfers, mosselen veroorzaken snijwonden</td>
<td>Hoge kosten door schoonmaken van biofouling (o.a. met chemicaliën); aantasting materialen door toegenomen corrosie waardoor vervanging nodig van wanden, steigers en duikers</td>
<td>10, 38-41</td>
</tr>
<tr>
<td>5. Overige</td>
<td>Helderheid water</td>
<td>Schoonmaakkosten; vector voor verspreiding van de quaggamossel; extra brandstofverbruik (plezier)vaartuigen</td>
<td>37</td>
</tr>
<tr>
<td>Recreatie</td>
<td>Onder andere inzetaar bij afvalwaterzuivering van bedrijven en algenbestrijding in vijvers</td>
<td>Filteren van water</td>
<td>42</td>
</tr>
<tr>
<td>Infrastructuur / bedrijven</td>
<td>Foulimg schepen</td>
<td>Bedrijven die de soort uitzetten</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nutriënten
Een toename van quaggamosselen kan op meerdere manieren de nutriëntenhuishouding van een watersysteem beïnvloeden. De quaggamossel filtert materiaal uit de waterkolom waarna het materiaal via trilharen over de kieuwen wordt geleid en geselecteerd op eetbaarheid. De eetbare deeltjes worden naar de mond geleid, verteerd en uitgescheiden als feces. De niet eetbare deeltjes worden met slijm samengeklit en als pseudofeces via een klepbeweging geloosd. Feces en pseudofeces dienen als voedsel voor macro-vertebraten. Het vastleggen van zwevend organisch materiaal in feces en pseudofeces draagt bij aan een toename van nutriënten op en in de bodem. Daarbij leveren quaggamosselen mogelijk ook een bijdrage aan het verwijderen van microplastics uit de waterfase, maar hier is tot nu toe weinig onderzoek naar gedaan.

De kans bestaat dat minder nutriënten uit de waterkolom worden opgenomen door fytoplankton als het fytoplankton uit het water wordt gefilterd door quaggamosselen. Een toename van nutriënten in de waterkolom kan weer positief zijn voor de groei van fytoplankton en het in stand houden van de voedselkringloop, maar bij hoge nutriëntenconcentraties kunnen negatieve effecten optreden zoals algenbloei. Een veldexperiment in het Sulejow bassin in Polen toonde een afname in de stikstof:fosfor ratio (N:P) en ammoniak:fosfaat ratio (NH₄:PO₄) in het water door de excretie van driehoeksmosselen. In de behandeling met driehoeksmosselen maakte fosforrijk water de plotselinge groei van Chlorophyta mogelijk met bloei van waternetje (Hydrodictyon reticulatum) tot gevolg. De resultaten gaven aan dat driehoeksmosselen de symptomen van eutrofiëring in water verergeren en zo bijdragen aan de bloei van bepaalde fytoplanktonsoorten (Wojtal-Frankiewicz & Frankiewicz, 2011). Het is waarschijnlijk dat de excretie van quaggamosselen bijdraagt aan soortgelijke effecten op de nutriëntenhuishouding van een watersysteem.

Fytoplankton
De quaggamossel voedt zich onder andere met planktonische groenalgen, diatomееën en cyanobacteriën (blauwalgen), en voor een kleiner deel ook met zoöplankton. De totale biomassa van fytoplankton zal, net als bij de driehoeksmossel, afnemen bij de aanwezigheid van quaggamosselen in wateren. De filtratiecapaciteit van driehoeksmosselen worden namelijk geacht de primaire reden te zijn voor een toename in helderheid van water in eutrofe Nederlandse meren (Bij de Vaate et al., 2014). Door de afname van fytoplankton kan de nutriëntenopname uit de waterkolom afnemen. Dit kan mogelijk gecompenseerd worden door opname door planten of andere primaire producenten.

In sommige gebieden leidt het selectieve filtergedrag van dreisseniden, afhankelijk van de veldcondities, eventueel tot een toename in cyanobacteriën (blauwalgen). Dit is onder andere afhankelijk van de hoeveelheid nutriënten in het watersysteem. In een veldexperiment in Gull Lake in Michigan, Verenigde Staten was het effect van driehoeksmosselen op de blauwalg Microcystis...
aeruginosa gerelateerd aan de fosforconcentratie in het water (Sarnelle *et al.*, 2012). Bij lage nutriëntconcentraties was de *M. aeruginosa* biomassa (µg/L) hoger bij de aanwezigheid van driehoeksmosselen, maar bij hoge nutriëntconcentraties was de biomassa juist lager bij de aanwezigheid van de mosselen. Hierbij werd gesuggereerd dat de recycling van fosfaat door de mosselen een grotere impact had op de groei van de blauwalg bij nutriëntarme condities dan bij hoge nutriëntenconcentraties (Sarnelle *et al.*, 2012). Blauwalgensoorten variëren onder andere in de mate van kolonievorming en giftigheid. De resultaten van onderzoek naar *Microcystis* kunnen hierdoor niet direct worden vertaald naar andere blauwalgen soorten. Een experimentele studie met zebramosselen uit het IJsselmeer resulteerde in een hogere clearance rate van de dradenvormende *Planktothrix* dan van de kolonievormende *Microcystis* (Dionisio Pires *et al.*, 2005).

Blauwalgen van het genus *Microcystis* kunnen naast schuimvorming op de wateroppervlakte ook peptiden (microcystine) produceren die toxic zijn voor dieren en mensen (Sarnelle *et al.*, 2012). In Nederland dragen deze blauwalgen vaak bij aan de algenbloeï in oppervlaktewateren (Waajen *et al.*, 2014). In 2014 werd de blauwalgenbloeï in het Eemmeer gekoppeld aan de intrede van de quaggamosselen in het gebied (Van der Kamp & Penning, 2015). Er is echter nog relatief weinig bekend over de effecten van selectief filtergedrag van de quaggamossel op de toename of afname van blauwalgen in Nederland. In projecten met biologische filters lijken quaggamosselen te foerageren op alle algen, inclusief toxische blauwalgen (persoonlijke communicatie Martijn Dorenbosch). In stadsvijvers Fort de Bilt in Utrecht en de Linievijver in Breda had de introductie van de quaggamossel een positief effect op de soortensamenstelling en biomassa van fytoplankton (Van der Jagt *et al.*, 2014; Van der Kamp & Penning, 2015). De hoeveelheid blauwalgen in het water is namelijk afgenomen, maar de looptijd van deze projecten is nog te kort om hieruit conclusies te kunnen trekken (persoonlijke communicatie W. Lengkeek en G. Waajen).

Macrofyten

In het Oneidameer in de Verenigde Staten zijn directe nadelige effecten van dreisseniden (driehoeksmosselen) op macrofyten gemeten, namelijk een verminderte fotosynthetische capaciteit door hechting aan bladeren (Zhu *et al.*, 2007). Bladeren van aarvenderkruid (*Myriophyllum spicatum* L.) begroeid met mosselen toonden een lagere fotosynthetische activiteit en lagere chlorofyl

Mosselen

Dreisseniden hebben de voorkeur om te hechten aan harde substraten zoals stenen van kunstmatige kribben (§3.1.3). In gebieden waar geen harde substraten aanwezig zijn, zal de kolonisatie van quaggamosselen beperkt zijn tot hechting aan levende of lege schelpen van zoetwatermosselen, zoals inheemse unioniden en matten van driehoeksmosselen, of mariene schelpen, zoals de strandgaper (*Mya arenaria*) in het IJsselmeer en Markermeer (Noordhuis *et al.*, 2010; Matthews *et al.*, 2012). Daarnaast zorgen levende individuen en lege schelpen van de quaggamossel zelf ook voor een oppervlakte toename van hard substraat. Uiteindelijk kunnen zich matten gaan vormen die de gehele bodem bedekken, zoals als in het Markermeer en de Maasplassen (§3.1.3).

Een studie in meren van Wit-Rusland en twee meren in Michigan, Verenigde Staten toonde dat de mate van kolonisatie op unioniden afhankelijk is van meerdere factoren, zoals de dichtheid van de dreisseniden, de tijdsduur sinds de invasie van het water door de mosselen, de biomassa van aangehechte dreisseniden en het type bodemsediment (Burlakova *et al.*, 2000). Daarnaast suggereerde een studie met de driehoeksmossel in het Balaton meer, Hongarije dat de mate van aangehechte mosselen op unioniden ook afhankt van temporele variatie (Bódis *et al.*, 2014).
De kolonisatie van watersystemen door de quaggamossel heeft ook gevolgen voor de driehoeksmossel. Tussen 2007 en 2010 nam het percentage quaggamosselen van de totale hoeveelheid dreisseniden toe van 1% tot gemiddeld 85% in het IJsselmeer en 60% in het Markermeer (Bij de Vaate et al., 2014). Ook in rivieren zoals de Main en Rijn is de dichtheid van dreisseniden verschoven van driehoeksmosselen richting quaggamosselen. Op bepaalde locaties in Europa nam van de totale populatie dreisseniden de dichtheid van quaggamosselen met 26% per jaar toe (Heiler et al., 2013). Aan de Canadese zijde van het Ontariomeer bestond in 2003 al ongeveer 66% van de bodem bij de oever uit matten van quaggamosselen (Wilson et al., 2006). Bewijs voor de vervanging van de driehoeksmossel blijft echter gelimiteerd door een gebrek aan temporele trends die zijn vergeleken met de totale dichtheid van driehoek- en quaggamosselen (Matthews et al., 2014). Daarnaast gaven Matthews et al. (2012) aan dat de quaggamossel in de meeste gevallen niet meer impact heeft dan de driehoeksmossel wanneer hij de driehoeksmossel vervangt. De quaggamossel kan zich wel in koudere watersystemen handhaven dan de driehoeksmossel, maar de driehoeksmossel heeft een hogere zouttolerantie en kan voorkomen bij een lagere hoeveelheid calciumionen in het water (Garton et al., 2014).

Hybridisatie van de quaggamossel met inheemse zoetwatermosselen is niet mogelijk, maar bijvoorbeeld wel met andere dreisseniden, zoals de driehoeksmossel. In een laboratoriumstudie werden kruisingen tussen driehoeksmosselen en quaggamosselen gecreëerd door het samenvoegen van gameten na blootstelling aan serotonine (Nichols & Black, 1994; Mills et al., 1996). In een studie met dreisseniden in het Ontariomeer en Eriemeer op de grens van westelijk Verenigde Staten en Canada werden geen kruisingen tussen de quaggamossel en driehoeksmossel gevonden, waarmee werd gesuggereerd dat in de Great Lakes hybridisatie zeer zeldzaam is. Meer onderzoek naar hybridisatie van quaggamosselen is (nog) niet gedocumenteerd.

Macrofauna

Een afgenomen fytoplanktonbiomassa door een toegenomen hoeveelheid quaggamosselen in het watersysteem kan leiden tot een lagere voedselbeschikbaarheid voor het zoöplankton. Echter, een afname van zoöplankton door een gebrek aan voedsel kan mogelijk weer gecompenseerd worden door een toename van grazers op waterplanten die gefaciliteerd worden door een toegenomen helderheid in de waterkolom. Hierdoor is de invloed van de zoöplanktonbeschikbaarheid als voedsel voor macrofauna moeilijk in te schatten.

Bij een toename van quaggamosselen kan een toename ontstaan van de soortenrijkdom en dichtheden van bepaalde benthische macro-vertebraten (Matthews et al., 2012). Dreisseniden vormden in experimenten en veldstudies in Noord-Amerika voedsel voor bijvoorbeeld bloedzuigers en
platwormen en een schuilkplaats voor slakken, eendagsvliegen en gammaride vlokreeften (Stewart & Haynes, 1994; Ward & Ricciardi, 2007; Bij de Vaate, 2009). Daarnaast kan feces en pseudo-feces van mosselen dienen als voedsel voor detritivore evertebraten, zoals de larven van chironomiden (Paratanytarsus sp.) (Ricciardi et al., 1997). De resultaten uit Noord-Amerika zijn onderbouwd door een veldexperiment in de Maas in België en Frankrijk. Locaties met grote hoeveelheden dreisseniden werden geprefereerd door vlokreeften (Chelicorophium en Dikerogammarus), slakken en insectenlarven (Trichoptera en Odonata) (Marescaux et al., 2015b).

Sommige groepen van macro-vertebraten die op de bodem leven ondervinden echter een sterk nadeel bij een toename van dreisseniden. Dichtheden van sommige chironomiden, kokerjuffers (Polycentropodidae) en gravende vlokreeften (Diporeia spp.) kunnen afnemen, omdat zij bijvoorbeeld concurreren met de mosselen om voedsel zoals is aangetoond in studies in de St. Lawrance rivier op de grens van de Verenigde Staten en Canada en in Lake Michigan in de Verenigde Staten (Ricciardi et al., 1997; Nalepa et al., 2009). Daarnaast ontstaat concurrentie om de beschikbare ruimte op de bodem en wordt de bodem door een mat van dreisseniden afgesloten wat graven hindert en anaerobe omstandigheden onder de mat kan veroorzaken.

Vissen

Een toename van de quaggamossel kan positieve effecten hebben op vissen. Voor vissoorten die dreisseniden eten neemt de voedselbeschikbaarheid toe (Bij de Vaate, 2009). Dit is geobserveerd voor de blankvoorn (Rutilus rutilus) in het Śniardwymeer in Polen (Prejs et al., 1990), de brasem (Abramis brama) in het Kuchurganmeer in Moldavië en het Kanevskoe bassin in Oekraïne, de paling (Anguilla anguilla) in het Tjeukemeer in Nederland (Nie, 1988), de karper (Cyprinus carpio) in de Mississippi rivier in de Verenigde Staten (Tucker et al., 1996) en de zwartbekgrondel (Neogobius melanostomus) in de Detroit rivier op de grens van de Verenigde Staten en Canada (Ray & Corkum, 1997) en in de Waal (Schiphouwer, 2011). Onder andere neemt een deel van de zoöplanktonbiomassa toe door een toename aan mossellarven, maar het is niet bekend hoeveel de larven bijdragen aan de totale zoöplanktonbiomassa.

Een ongewenst gevolg is de directe concurrentie tussen de mosselen en larvale vissen (en zoöplankton) om voedsel. Een afname in de totale zoöplanktonbiomassa werkt door in een afname van planktivore vissen (Van Emmerink, 2014). Daarnaast verdwint voor de beschermde bittervoorn (Rhodeus amarus) het substraat om zijn eitjes af te zetten wanneer quaggamosselen inheemse zoetwatermosselen (unioniden) wegconcurreren (paragraaf ‘Mosselen’) (Leuven et al., 2015). Als de quaggamosselen maten gaan vormen op de bodem is het graven de benthos moeilijker bereikbaar voor vissen aangezien de benthische evertebraten zich schuillhlenen tussen de mosselen en de bodem.
moeilijk kan worden doorwoeld (González & Downing, 1999; Cobb & Watzin, 2002; Beekey et al., 2004).

Naast veranderingen in de voedselbeschikbaarheid en voortplantingsmogelijkheden kan een toename in waterhelderheid en plantendichtheid leiden tot een verschuiving in de aanwezige vissoorten in het ecosysteem. In het Volkerak-Zoommeer was de brasem (A. brama) in 2007-2008 de dominante vissoort, maar na de opkomst van de quaggamossel was de soort in 2010-2011 sterk in aantal afgeweken. Brasem woelt in de bodem door happen zand te nemen en te filteren waarna het zand via de kieuwen weer wordt geloosd en draagt door dit gedrag bij aan mobilisatie van nutriënten en troebelheid van water. Baars, paling en snoekbaars zijn er nu de meest voorkomende vissoorten wat als een gunstige ontwikkeling in de visstand kan worden gezien (De Vries & Postma, 2013).

Vogels
Quaggamosselen worden gegeten door benthivore watervogels in het IJsselmeer en Markermeer, zoals de kuifeend (Aythya fuligula), toppereend (Aythya marila) en de brilduiker (Bucephala clangula) (Noordhuis et al., 2010; Van Eerden & De Leeuw, 2010; Bij de Vaate et al., 2014). De mosselen zijn vooral overwinteringsvoedsel maar vormen momenteel volgens Noordhuis et al. (2015) geen substantieel deel meer van het voedsel van vogels.

Matthews et al. (2012) vermoedden dat de metaalconcentraties in Nederlandse wateren in de toekomst zullen afnemen aan een strenger controle op watervervuiling. De metalenconcentraties in beide soorten dreissen in Nederlandse rivieren en meren waren in 2012 al veel lager dan de concentraties van één of twee decennia geleden in de driehoeksmossel. Hierdoor wordt niet verwacht dat de huidige metaalconcentraties in de quaggamossel een verhoogd risico vormt voor predatoren (Matthews et al., 2012).

Sessiele soorten
Quaggamosselen kunnen sterven doordat andere sessiele organismen, zoals zoetwatersponzen (Ephydatia fluviatilis en Spongilla lacustris), ze overgroeien en verstikken. Dit verschijnsel is waargenomen in een recreatieplas die verbond is met de Maas (Matthews et al., 2012) en in het zuidelijk deel van de Markermeer (persoonlijke communicatie H.G. van der Geest) (Figuur 3.14).
Sponzen sterven in de herfst en winter af waarbij ze gemmulae produceren, waardoor de mosselen geen verstikking meer ondervinden. Hierdoor kunnen sponzen en dreisseniden naast elkaar voortbestaan (Lauer & Spacie, 2004).

Figuur 3.14: Overgroeiing en verstikking van quaggamosselen door zoetwatersponzen; *Ephydatia fluviatilis* (links) in een meer die in verbinding staat met de Maas bij Katwijk in 2011 (© Foto: Peter Klok) en *Spongilla lacustris* (rechts) in het Markermeer bij IJburg (© Foto: Harm van der Geest).

Parasieten

Introductie van de quaggamossel kan mogelijk leiden tot een toename van parasieten en bacteriën in watersystemen (Dionisio Pires, 2015). Quaggamosselen kunnen mogelijk parasieten bij zich dragen die overeenkomen met de parasieten op driehoeksmosselen, zoals endoparasieten (platworm *Aspidogaster limacodes*, darmparasieten van zoogdieren zoals *Cryptosporidium parvum* en *Giardia lamblia*), ectoparasieten (watermijten *Unionicola*, bloedzuigers *Caspiobdella fadejevi* en *Helobdella stagnalis*) en schimmels van het genus *Acremonium* (Popova & Biochino, 2000; Graczyk et al., 2003; Matthews et al., 2012). De platworm *Bucephalus polymorphus* komt voor in de driehoeksmossel en kan mogelijk ook de quaggamossel infecteren. Deze platworm parasiteert op de geslachtsklieren waardoor de mossel zich niet meer kan voortplanten (Ackerman et al., 1995). Daarnaast kunnen sporenvormende bacteriën in dreisseniden leiden tot de vergiftiging van visetende vogels. Mosselen die *Clostridium botulinum* type E neurotoxine accumuleren vanuit sediment worden mogelijk gegeten door vissen, zoals de zwartbekgrondel (*N. melanostomus*), die vervolgens kan dienen als voedsel voor vogels (Yule et al., 2006). Predatie van de zwartbekgrondel was als reden aangewezen voor hoge mortaliteit van watervogels in het Eriemeer in de Verenigde Staten (Yule et al., 2006). Daarnaast creëren dreisseniden goede leefomstandigheden voor *C. botulinum* door het uitscheiden van grote hoeveelheden feces. Evertebraten kunnen de sporen meedragen naar verschillende dieptes waarmee de bacteriën worden verspreid naar benthivore vissen, salamanders en watervogels (Pérez-Fuentetaja et al., 2006; Matthews et al., 2012).

Het risico op het overbrengen van parasieten naar andere soorten die dienen als gastheer kan mogelijk toenemen als dreisseniden zich verder verspreiden en de dichtheid in Nederland toeneemt (Matthews et al., 2012). Echter, in gebieden waar de driehoeksmossel al voorkomt, zal deze soort deze parasieten al hebben overgebracht op andere soorten.

Wijzigingen van ecosysteemfuncties

De introductie en toename van quaggamosselen in een zoetwatersysteem heeft effecten op de integriteit van het ecosysteem door invloed op biotische factoren, zoals hierboven beschreven, en in
Abiotische factoren, zoals de nutriëntenhuishouding en de helderheid van het water. Dreisseniden worden daarom gezien als ecosysteembouwers of sleutelsoorten (Higgins & Vander Zanden, 2010).

Door het filteren van de waterkolom neemt de hoeveelheid zevend organisch materiaal en fytoplankton in het water af. De helderheid van het water neemt toe en daarmee ook de vestiging en groei van aquatische planten, zoals gezien in het Nederlandse Rijnland. De zuurstofconcentratie in het water gaat daarbij omhoog en de voedselketen verschuift naar planten- en zuurstofminnende soorten. Ondanks dat de helderheid van het water toeneemt, kan de nutriëntenconcentratie in het water en de bodem nog hoog zijn. Aanvullend valt door een afname in fytoplankton de opname van nutriënten uit het water weg en scheidden de quaggamosselen de opgenomen fytoplankton, inclusief nutriënten, deels uit als (pseudo)feces naar de bodem. In een helder maar voedselrijk watersysteem zijn de risico’s moeilijk te overzien. Het is mogelijk dat door selectief filtergedrag van de mosselen bepaalde blauwalgensoorten gaan bloeien. Een waterbodem met zacht substraat kan door matvorming van mosselen verschuiven naar een hard substraatbodem die andere leefgemeenschappen faciliteert. Bij perioden van zuurstofloosheid of droogval, al dan niet gecombineerd met hoge of extreem lage temperaturen, kan massasterfte van de quaggamossel optreden (Leuven et al., 2014), wat mogelijk weer kan leiden tot een (tijdelijke) omslag naar een troebel watersysteem doordat opgeslagen nutriënten vrijkomen uit het mosselvlees.

2. & 3. Plantenteelt en gedomesticeerde dieren
Voorspelzorg zijn er geen effecten geconstateerd op de plantenteelt en het dierenwelzijn of -productie van gedomesticeerde dieren door de overdracht van parasieten of pathogenen. Een effect kan misschien ontstaan bij het verplaatsen van bagger met quaggamosselen naar een grondgebied met veeteelt, waardoor dieren in aanraking kunnen komen met mosselen die besmet zijn met parasieten of verontreiniging hebben geaccumuleerd. Dit is echter niet gedocumenteerd.

4. Volksgezondheid
Gevolgen van de quaggamossel voor de volksgezondheid zijn gerelateerd aan de mogelijke afname of toename van toxische blauwalgen zoals Microcystis in oppervlaktewateren. Blauwalgen komen al voor in Nederland en de quaggamossel kan mogelijk zorgen voor een blauwalgenbloei door selectief filtergedrag. Microcystine was in meerdere gevallen betrokken bij de vergiftiging van mensen en dieren en epidemiologische onderzoeken wezen uit dat het de ontwikkeling van leverkanker bevordert (Labine & Minuk, 2009; Sarnelle et al., 2012). Daarnaast kunnen de scherpe schelpen snijwonden veroorzaken bij strandgasten en zwemmers in recreatieplassen (Raaphorst, 2015). In hoeverre de quaggamossel menselijke darmparasieten bij zich draagt en verspreidt is niet bekend.

5. Overige effecten
Quaggamosselen beïnvloeden het beheer en onderhoud van installaties, infrastructuur en kunstwerken. Figuur 3.15 toont de aanhechting van de mosselen bij het boezemgemaal in Gouda. Hier wordt vanuit de Hollandse IJssel water ingelaten in het beheergebied van Rijnland (Van der Kamp & Penning, 2015). Een overzicht van de economische kosten door de invasie van de quaggamossel in Nederland ontbreekt (Van der Weijden et al., 2007). In de Verenigde Staten heeft de bestrijding van de quaggamossel en de driehoeksmossel tien jaar geleden 1 tot 3 miljard dollar per jaar gekost (Pimentel et al., 2005). In de Ebrodelta lagen de kosten vijf jaar geleden rond de 4,5 miljoen euro per jaar (Perez & Moreu, 2009; geciteerd in (Sundseth, 2014)).
De quaggamosselen begroeien en verstoppen niet alleen waterinlaten en duikers, maar ook (grootschalige) onttrekkers van oppervlaktewater zoals bluswaterpompen en bluswaterleiding-systemen, koel- en proceswatersystemen ten behoeve van energiecentrales en industrieën, drinkwaterbedrijven en andere installaties (Pimentel et al., 2005; Matthews et al., 2012). Jonge mosselen komen met het ingenomen water mee en passeren makkelijk de filtersystemen, waardoor ze in de pompen en systemen zoals pompkelders terechtkomen waar ze zich hechten aan de wanden van installatieonderdelen en leidingen. De mosselen kunnen zich goed in leidingsystemen vestigen doordat de condities binnen die systemen de aanhechting en groei bevorderen, zoals bescherming tegen predatoren, stroming, zuurstof en voedsel (Jenner & Janssen-Mommen, 1992; Bruijs et al., 2010). Bij elektriciteitscentrales in industrieën blokkeren mosselschelpen condensorpijpen waardoor warmteoverdracht vermindert en erosie-corrosie kan toenemen (Jenner et al., 1999) (Figuur 3.16).

Naast de (gedeelde) kosten door de impact op bedrijfsvoering, zijn er ook aanzienlijke kosten door maatregelen ter preventie van aanhechting en schoonmaakacties om de aangroei fysiek te verwijderen (Figuur 3.16). De kosten kunnen zeer hoog zijn als een installatie ongepland uit bedrijf moet worden genomen (Bruijs et al., 2010). Naast het kostenaspect is er door aangroei van mosselen ook een verhoogd risico met betrekking tot de beschikbaarheid en bedrijfszekerheid van installaties, bijvoorbeeld bij brandblusinstallaties en energievoorzieningen. Daarnaast kunnen schelpen van dode mosselen in buizen tot verstopping leiden bij rigoureuze bestrijdingsacties waarbij grote hoeveelheden schelpen loskomen. Hoe groter de foulingdruk door mosselen, hoe meer inspanning het kost voor bijvoorbeeld drinkwaterbedrijven om hun processen optimaal te laten verlopen (Van Mook, 2014).

Informatie over de kosten is voor relatief veel Nederlandse bedrijven niet goed bekend noch publiekelijk toegankelijk (persoonlijke mededelingen A. Gittenberger, 2015; M. Bruijs, 2015). In Noord-Amerika werd tussen 1989 en 2004 een geschat bedrag van 267 miljoen dollar besteed aan het voorkomen en mitigeren van dreisseniden aangroei in energiecentrales en waterzuiveringsinstallaties (Connelly et al., 2007). Dit bedrag is echter niet te vertalen naar de kosten in Nederland vanwege verschillen in type en de locatie van de bedrijven.
Figuur 3.16. Overzicht van kosten-items gerelateerd aan biofouling voor elektriciteitscentrales (aangepast naar persoonlijke communicatie M. Bruijs).

Aangroei van ongewenste organismen wordt door een groot scala aan bestrijdingstechnieken voorkomen. De toe te passen techniek is afhankelijk van kosten en technische mogelijkheden voor een specifieke installatie. Chloorbleekloog is wereldwijd een veelgebruikt biocide om ongewenste aangroei te bestrijden en te voorkomen, zo ook in Nederland, maar ook andere chemische en fysieke methoden worden toegepast (Bruijs & Jenner, 2006; Bruijs et al., 2010; Van Mook, 2014). Door de invasie van nieuwe soorten organismen kan het zo zijn dat de beschikbare technieken onvoldoende effectief blijken om deze nieuwe organismen te bestrijden. De quaggamossel wijkt bijvoorbeeld af wat betreft de voorplantingsperiode en schelpgrootte ten opzichte van de driehoeksmossel, waardoor de bestrijding in veel gevallen anders ingericht moet worden.

De quaggamossel kan nuttig zijn voor het filteren van vervuild water, zoals bij waterzuiveringsbedrijven. Onderzoek toonde aan dat quaggamosselen kunnen overleven en groeien in het effluent van een rioolwaterzuivering, mits de zuurstofconcentratie hoog genoeg is (Van der Jagt et al., 2014). Een bijkomend economisch probleem zijn de mogelijke schadeclaims door naburige bedrijven bij de organisatie of opdrachtgever die de soort opzettelijk uitzet in watergebieden, vanwege de impact van quaggamosselen op de bedrijfsvoering van installaties (persoonlijke mededeling A. Gittenberger, 2015). Grootschalige onttrekkers van oppervlaktewater zijn voornamelijk gelegen aan stromende (Rijks)wateren vanwege de beschikbaarheid van voldoende (koel)watercapaciteit. Op de meeste van deze locaties lijkt de quaggamossel inmiddels al aanwezig te zijn. Voor oppervlaktewatergebruikers kunnen in de toekomst problemen ontstaan op locaties waar de quaggamossel nog niet is geïntroduceerd, zowel in natuurlijke als kunstmatige wateren (persoonlijke mededeling M. Bruijs, 2015).

Conclusie
Quaggamosselen zijn ecosysteembouwers in zoetwatersystemen. De introductie en toename van quaggamosselen in een watergebied heeft effecten op de integriteit van het ecosysteem door invloed op biotische en abiotische factoren. Veel van deze effecten zijn afhankelijk van de dichtheid van de mosselen in een watersysteem. In Nederland zijn meerdere effecten in het milieu waargenomen bij een toename van quaggamosselen, afhankelijk van de omgevingsfactoren, zoals de toename in helderheid van water, blauwalgenbloei, aanhechting op inheemse unioniden, wegringen van de driehoeksmossel en een verschuiving in vissoorten. Andere effecten van dreisseniden zijn voornamelijk geobserveerd in het noordoosten van Noord-Amerika, zoals verandering in fytoplanktonsoortensamenstelling door selectief filtergedrag van quaggamosselen, voor- en nadelen voor macro-vertebraten en de vergiftiging van watervogels door het overbrengen van sporenvormende bacteriën.

Het klimaat op de grens van de Verenigde Staten en Canada komt overeen met dat in het oorspronkelijke verspreidingsgebied in de Ponto-Kaspische regio. Binnen de bandbreedte van deze klimaatregio’s vallen ook de sneeuw-, regen-, en temperaturomstandigheden van Nederland, waardoor te verwachten is dat de effecten op ecosystemen die geobserveerd zijn in Noord-Amerika ook in Nederland kunnen plaatsvinden. In vergelijking met Noord-Amerika zijn echter relatief weinig meetdata beschikbaar over de exacte effecten van de quaggamossel op watersystemen in Nederland. Hierdoor is belangrijk dat de mogelijke verschillen in watersystemen, zoals diepe, koude meren in de Verenigde Staten en ondiepe, warmere meren in Nederland, worden meegenomen in de beoordeling van ecologische risico’s.

Overige effecten van de quaggamossel vinden onder andere plaats op de volksgezondheid, industrie, visserij, infrastructuur en recreatie. De quaggamosselen begroeien en verstoppen onder andere (koel)watersystemen, leidingen, pompen, gemalen en duikers. Naast de (gederfde) kosten door de impact op bedrijfsvoering, zijn er ook aanzienlijke kosten door maatregelen ter preventie van aanhechting en door schoonmaakacties om de aangroei fysiek te verwijderen. Een bijkomend economisch probleem zijn de mogelijke schadeclaims door naburige bedrijven bij de organisatie of opdrachtgever die de soort opzettelijk uitzet in watergebieden.
3.2 Effectbeoordeling en risicoclassificatie

3.2.1 ISEIA-protocol

Huidige situatie in Nederland

Met behulp van het ISEIA-protocol heeft het deskundigenpanel een effectbeoordeling en risicoclassificatie uitgevoerd op basis van alle beschikbare kennis over de effecten van de quaggamossel in Nederland en het buitenland zoals aangegeven in de risico-inventarisatie (§3.1). Dit protocol is alleen gericht op de beoordeling van de negatieve effecten. De resultaten van de beoordeling en classificatie zijn samengevat in Tabel 3.4.

Tabel 3.4: Consensus risicoscores en -classificatie van de quaggamossel voor de huidige en toekomstige situatie in Nederland.

Dispersie potentieel / invasiviteit	3
Kolonisatie van waardevolle habitats	3
Directe en indirecte negatieve effecten op inheemse soorten	3
1. Predatie/begrazing	3
2. Verstoring en competitie	3
3. Overdracht van parasieten en ziektes	DD
4. Genetische effecten (hybridisatie / introgressie met inheemse soorten)	NR*
Directe of indirecte verandering van ecosysteem functies	3
1. Modificatie van nutriëntencyclus of voorraad hulpbronnen	3
2. Fysische modificatie van habitat (hydraulisch regiem, turbiditeit, licht interceptie, vernietiging kraamkamers vis etc.)	3
3. Modificatie van natuurlijke successie	3
4. Ontwrichting voedselketens	3
Totaal score	12
Verspreiding	Wijd verspreid
Risicoclassificatie	A3

DD: datadeficiëntie; NR: niet relevant; *: mogelijk wel hybridisatie met uitheemse driehoeksmossel

Dispersiepotentieel en invasiviteit

Voor dit criterium is de quaggamossel door het deskundigenpanel beoordeeld als een soort met een ***hoog risico*** (score 3). De quaggamossel heeft zich in Nederland en enkele andere West-Europese landen in een periode van tien jaar zeer snel en wijd verspreid en is zich nog steeds aan het uitbreiden. De geschatte dispersiesnelheid van de quaggamossel is veel groter dan 1 km per jaar (namelijk 23 - 105 km per jaar bij stroomopwaartse verspreiding). De soort kan zich passief verspreiden via waterstromingen en aanhechting aan allerlei materialen. Daarnaast zijn ook talrijke vectoren voor de verspreiding van de quaggamossel bekend. De snelle verspreiding stroomopwaarts in vaarwegen toont bijvoorbeeld dat de soort zich ook via menselijke vectoren kan verspreiden (zoals de beroeps- en recreatiescheepvaart). Kolonisatie van hydrologisch geïsoleerde gebieden is alleen mogelijk via menselijke activiteiten (transport over land) of dierlijke vectoren (zoals watervogels of kreeften).

Kolonisatie van waardevolle habitats

De quaggamossel is onder andere aangetroffen in alle grote rivieren en veel nevengeulen, uiterwaardplassen die zijn verbonden met een rivier, grote meren (zoals het Markermeer en
Daarnaast is in Nederland een negatief effect van de quaggamossel (regio-Microcystis) op biodiversiteit de-uitheemse soorten aanwezig. Het effect van de quaggamossel op de dichtheid van een aantal inheemse soorten is zeer waarschijnlijk groter dan 80% en onomkeerbaar zo lang als de quaggamossel aanwezig is. Selectieve filtering van algen kan eventueel leiden tot de dominantie van ongewenste algensoorten, zoals blauwalgen van het genus Microcystis die toxisch kunnen zijn voor waterdieren en mensen. Blauwalgenbloei in het Eemmeer in 2014 is mogelijk gerelateerd aan de aanwezigheid van quaggamossen in het gebied, echter over het selectieve filtergedrag van de mossel in Nederlandse wateren is nog weinig bekend. De introductie van de quaggamossel wordt in Noord-Amerika beschouwd als een belangrijke oorzaak van de (regionale) extinctie van diverse zeldzame zoetwatermosselsoorten (unioniden). Hierbij speelt de dichte begroeiing van hun schelpen en daardoor het blokkeren van de sifons en voedselcompetitie met de quaggamossel een belangrijke rol. In Nederland is een negatief effect van de quaggamossel op groei en leeftijd van de inheemse schildersmossel (U. pictorum) en vijvermossel (A. anatina) aangetoond. Dichte begroeiingen van hard substraat en dikke matten van quaggamossen op de waterbodem vormen schuilplekken voor uitheemse kreeftachtige (gammariden) en vissen zoals de zwartbekgrondel (N. melanostomus). Daarnaast vormt de quaggamossel ook stapelvoedsel voor invasieve grondels. Hierdoor wordt de vestiging van andere invasieve exoten geïntroduceerd en treden ook secundaire effecten op inheemse soorten op. Op basis van de bovenstaande informatie zijn de risico’s op ongewenste effecten van de quaggamossel door sterke ‘predatie en begrazing’ en ‘verstoring en competitie’ beoordeeld als hoog (score 3).

Uit de literatuur is bekend dat de quaggamossel als tussengastheer talrijke parasieten kan overdragen die gevaarlijk zijn voor andere aquatische soorten. Het is waarschijnlijk dat de quaggamossel een vergelijkbare rol in Nederland zal gaan spelen als de driehoeksmossel. Voor de Nederlandse situatie is echter geen informatie beschikbaar over de aanwezigheid en overdracht van parasieten door de quaggamossel en de gevolgen daarvan voor de biodiversiteit. Daarom is bij het criterium ‘overdracht van parasieten en ziektes’ aangegeven dat er sprake is van datadeficiëntie (DD). Dan is het echter wel waarschijnlijk dat ook in Nederland effecten van parasieten ziektes optreden als geïnfecteerde quaggamossen zijn of worden geïntroduceerd. Daarom zou voor dit risicocriterium ook de beoordeling aannemelijk (score 2) op basis van ‘best professional judgement’ mogelijk zijn. Om dit belangrijke kennisheidsgebrek voor de Nederlandse situatie te duiden verdiende het oordeel ‘datadeficiëntie’ echter de voorkeur.

Het criterium ‘Genetische effecten (hybridisatie / introgressie) op inheemse soorten’ is niet relevant voor de risicobeoordeling van de quaggamossel omdat in Nederland geen nauw verwante soorten inheems zijn. Er is wel een melding dat de quaggamossel kan hybridiseren met de driehoeksmossel maar de literatuur hierover is tegenstrijdig. De driehoeksmossel is ook in Nederland geïntroduceerd en wordt beschouwd als een ingeburgerde exoot.
Bij beoordeling van een ISEIA-sectie met meerdere effectcriteria is de hoogste risicoscore altijd bepalend voor de risicoclassificatie. Daarom is de quaggamossel voor het criterium ‘Directe of indirecte negatieve effecten op biodiversiteit’ beoordeeld als een soort met een hoog risico (score 3).

Directe of indirecte verandering van ecosysteemfuncties
De quaggamossel kan zeer hoge dichtheden op harde substraten bereiken en vormt ook dikke matten op de bodem van watersystemen. Door de hoge filtercapaciteit van de quaggamossel nemen de planktonische algen en het zwevend organisch materiaal in water sterk af (‘bottom up’ controle) en treedt een sterkere koppeling op van pelagische- en bodemprocessen. De soort heeft daardoor een grote invloed op de nutriëntencyclus en plankton in verschillende milieucompartimenten van het watersysteem. Uiteindelijk verschuift de biomassa naar de bodem (hoog risico; score 3). De quaggamossel wordt beschouwd als een ecosysteembouwer. De soort vormt dichte matten op de bodem en op harde substraten. Bij hoge dichtheden kan een afname van de troebelheid met een hogere lichtdoordringing in helder water optreden. Daarom is het risico op fysische modificatie van habitats beoordeeld als hoog (score 3). Organische stof bezinkt als (pseudo)feces van de quaggamossel naar de bodem waardoor de voorheen minerale bodem organisch wordt. Door eerdergenoemde effecten op de biodiversiteit en fisieke modificatie van habitats treedt ook ontwrichting op van de voedselketens (hoog risico; score 3). Bij de omslag van door algen gedomineerde of troebele watersystemen naar heldere wateren met ondergedoken waterplanten verandert de natuurlijke successie van ecosystemen (hoog risico; score 3). De quaggamossel wordt beschouwd als een ecosysteembouwer. De soort vormt dichte matten op de bodem en op harde substraten. Bij hoge dichtheden kan een afname van de troebelheid met een hogere lichtdoordringing in helder water optreden. Daarom is het risico op fysische modificatie van habitats beoordeeld als hoog (score 3). Organische stof bezinkt als (pseudo)feces van de quaggamossel naar de bodem waardoor de voorheen minerale bodem organisch wordt. Door eerdergenoemde effecten op de biodiversiteit en fisieke modificatie van habitats treedt ook ontwrichting op van de voedselketens (hoog risico; score 3). Bij de omslag van door algen gedomineerde of troebele watersystemen naar heldere wateren met ondergedoken waterplanten verandert de natuurlijke successie van ecosystemen (hoog risico; score 3). Bij de beoordeling van een ISEIA-sectie met meerdere effectcriteria is de hoogste risicoscore bepalend voor de risicoclassificatie. Daarom is quaggamossel voor ‘Directe of indirecte verandering van ecosysteemfunctie’ beoordeeld als een soort met een hoog risico (score 3).

Toekomstige situatie in Nederland
De verwachting van het deskundigenpanel is dat de verspreiding van de quaggamossel in Nederland de komende jaren nog verder toeneemt bij ongewijzigd beleid en dat meer waardevolle habitats worden gekoloniseerd (zoals wateren in Natura 2000-gebieden). Naar verwachting nemen de dichtheden van de quaggamossel nog verder toe in watersystemen met geschikt habitat en daardoor ook de (in)directe effecten op de biodiversiteit en het functioneren van ecosystemen. Omdat de quaggamossel invasief is in gebieden met een warmer klimaat dan Nederland (bijvoorbeeld het westen van de Verenigde Staten van Amerika) zullen de risicoscores voor de directe en indirecte effecten van de soort zeer waarschijnlijk niet veranderen bij klimaatverandering.

Huidige en toekomstige situatie in Nederland
Met het ISEIA-protocol is bepaald dat de milieurisicoscore van de quaggamossel voor zowel de huidige als toekomstige situatie in Nederland 12 bedraagt (Tabel 3.4). In paragraaf 3.1.3 is geconcludeerd dat de soort in Nederland al wijd is verspreid. De verspreiding van de quaggamossel zal de komende jaren nog verder toenemen in Nederland. Volgens het BFIS-lijstssysteem, dat in België maar niet in Nederland wordt gebruikt, classificeert de quaggamossel daarmee als een A3-soort die in aanmerking komt voor plaatsing op de Zwarte-lijst (Figuur 3.17).
Figuur 3.17: De risicoclassificatie van de quaggamossel (aangegeven met X) voor zowel de huidige als toekomstige situatie in Nederland volgens het BFIS-lijstsysteem.

3.2.2 Harmonia+-protocol
De beschikbare informatie over de verspreiding, vestiging en effecten van de quaggamossel in Nederland en andere gebieden met een vergelijkbaar klimaat is ook gebruikt voor de effectbeoordeling en risicoclassificatie met behulp van de internetversie van het Harmonia+-protocol. De consensusscores van het deskundigenpanel voor de risico's van de quaggamossel in Nederland en de mate van zekerheid van de beoordeling zijn vermeld in Tabel 3.5.

Huidige en toekomstige situatie in Nederland
Met behulp van twee rekenmethoden in het Harmonia+-protocol (gemiddelde en maximale effectscore per risicocategorie) zijn voor diverse risicocategorieën de risicoscores voor de quaggamossel in Nederland berekend (Tabel 3.6 en 3.7). Daarbij is tevens de mate van zekerheid weergegeven. De invoerwaarden voor de effectbeoordeling en risicoclassificatie met de huidige online versie van Harmonia+ zijn bepaald door het deskundigenpanel (consensuswaarden weergegeven in Tabel 3.5). In beide berekeningen zijn alle criteria en effectscores gelijk gewogen (weegfactor 1; standaardinstelling Harmonia+). Hoewel de twee gebruikte rekenmethoden resulteren in verschillen in risicoscores en mate van zekerheid, zijn de daarop gebaseerde risicoclassificaties van de soort gelijk. De invasiescore, effectscore en totale risicoscore van de quaggamossel zijn in beide gevallen hoog. Dit komt overeen met de beoordeling volgens het ISEIA-protocol. De Harmonia+-resultaten tonen dat de risico’s van introductie, vestiging, verspreiding en ongewenste effecten op biodiversiteit, functioneren van ecosystemen en overige maatschappelijke effecten hoog zijn. De risico’s voor de volksgezondheid zijn matig en de risico’s voor de veeteelt en plantenteelt in Nederland zijn laag. De risico’s voor ecosysteemdiensten worden met behulp van de huidige versie van het Harmonia+-protocol wel beoordeeld, maar nog niet meegenomen in de berekeningen van de risicoscores. De beoordeling van de potentiële gevolgen van klimaatverandering toont dat de risicoclassificatie van de soort voor de toekomstige situatie (bij ongewijzigd beleid) zeer waarschijnlijk gelijk blijft (Tabel 3.5: A_{34,41}).
Risicobeoordeling

<table>
<thead>
<tr>
<th>Context</th>
<th>Auteurs risicoanalyse voor NVWA</th>
<th>Milieu en volksgezondheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01. Beoordelaar(s)</td>
<td>Quaggamossel (Dreissena rostriformis bugensis)</td>
<td>Uitheems en gevestigd in het wild</td>
</tr>
<tr>
<td>A02. Soortnaam</td>
<td></td>
<td>Nederland</td>
</tr>
<tr>
<td>A03. Gebied</td>
<td></td>
<td>Milieu en volksgezondheid</td>
</tr>
<tr>
<td>A04. Soortstatus in gebied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A05. Risicodomeinen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risicocategorie</th>
<th>Risico</th>
<th>Zekerheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A06. Waarschijnlijkheid introductie via natuurlijke dispersie</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>A07. Waarschijnlijkheid onbewuste introducties</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>A08. Waarschijnlijkheid bewuste introducties</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>Vestiging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A09. Klimaatomstandigheden voor vestiging</td>
<td>Optimaal</td>
<td>Hoog</td>
</tr>
<tr>
<td>A10. Habitatomstandigheden voor vestiging</td>
<td>Optimaal</td>
<td>Hoog</td>
</tr>
<tr>
<td>Verspreiding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A11. Natuurlijke dispersiecapaciteit voor secundaire verspreiding</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>A12. Frequentie secundaire verspreiding door mens</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>Milieu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A13. Effecten inheemse soorten door predatie, parasitisme of herbivorie</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>A14. Effecten inheemse soorten door competitie</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>A15. Effecten inheemse soorten door hybridisatie</td>
<td>Geen/erg laag</td>
<td>Hoog</td>
</tr>
<tr>
<td>A16. Effecten inheemse soorten door overdracht parasieten of pathogenen</td>
<td>Matig</td>
<td>Laag</td>
</tr>
<tr>
<td>A17. Effecten integriteit ecosystems door veranderen abiotiek</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>A18. Effecten integriteit ecosystems door veranderen biotiek</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>Plantenteelt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A19. Effecten teeltplanten door predatie, parasitisme of herbivorie</td>
<td>N.v.t.</td>
<td>Hoog</td>
</tr>
<tr>
<td>A20. Effecten teeltplanten door competitie</td>
<td>N.v.t.</td>
<td>Hoog</td>
</tr>
<tr>
<td>A21. Effecten teeltplanten door hybridisatie</td>
<td>N.v.t.</td>
<td>Hoog</td>
</tr>
<tr>
<td>A22. Effecten integriteit teelsystemen</td>
<td>Erg laag</td>
<td>Hoog</td>
</tr>
<tr>
<td>A23. Effecten teeltplanten door overdracht parasieten of pathogenen</td>
<td>N.v.t.</td>
<td>Hoog</td>
</tr>
<tr>
<td>Veeteelt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A24. Effecten dierenwelzijn of -productie door parasitisme of predatie</td>
<td>N.v.t.</td>
<td>Hoog</td>
</tr>
<tr>
<td>A25. Effecten dierenwelzijn of -productie door gevaarlijke stoffen</td>
<td>Erg laag</td>
<td>Hoog</td>
</tr>
<tr>
<td>A26. Effecten dierenwelzijn of -productie door overdracht parasieten of pathogenen</td>
<td>Laag</td>
<td>Matig</td>
</tr>
<tr>
<td>Volksgezondheid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A27. Effecten volksgezondheid door parasitisme</td>
<td>N.v.t.</td>
<td>Hoog</td>
</tr>
<tr>
<td>A28. Effecten volksgezondheid bij contact door gevaarlijke stoffen</td>
<td>Laag</td>
<td>Hoog</td>
</tr>
<tr>
<td>A29. Effecten volksgezondheid door overdracht parasieten of pathogenen</td>
<td>Matig</td>
<td>Matig</td>
</tr>
<tr>
<td>Overige effecten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A30. Effecten infrastructuur etc.</td>
<td>Hoog</td>
<td>Hoog</td>
</tr>
<tr>
<td>Ecosysteemdiensten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A31. Provisie</td>
<td>Matig negatief</td>
<td>Matig</td>
</tr>
<tr>
<td>A32. Regulering</td>
<td>Matig positief</td>
<td>Matig</td>
</tr>
<tr>
<td>A33. Cultureel</td>
<td>Neutraal</td>
<td>Matig</td>
</tr>
<tr>
<td>Effect klimaatverandering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A34. Introductie</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A35. Vestiging</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A36. Verspreiding</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A37. Milieueffecten</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A38. Plantenteelt</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A39. Veeteelt</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A40. Volksgezondheid</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
<tr>
<td>A41. Overige effecten</td>
<td>Geen</td>
<td>Hoog</td>
</tr>
</tbody>
</table>

n.v.t.: niet van toepassing
Tabel 3.6: Risicoscores van de quaggamossel in Nederland en zekerheid daarvan volgens de rekenmethoden van het Harmonia*-protocol op basis van de gemiddelde effectscore per risicocategorie. De risicoclassificaties en gerelateerde kleurcodes zijn vervolgens bepaald op basis van de methodiek in Tabel 2.2.

<table>
<thead>
<tr>
<th>Risicocategorie</th>
<th>Risicoklasse</th>
<th>Risicoscore</th>
<th>Zekerheid</th>
<th>Zekerheidscore¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductie²</td>
<td>Hoog</td>
<td>1,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Vestiging¹</td>
<td>Hoog</td>
<td>1,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Verspreiding¹</td>
<td>Hoog</td>
<td>0,88</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Milieu¹</td>
<td>Hoog</td>
<td>0,75</td>
<td>Hoog</td>
<td>0,83</td>
</tr>
<tr>
<td>Plantenteelt¹</td>
<td>Laag</td>
<td>0,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Veeeteelt¹</td>
<td>Laag</td>
<td>0,13</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Volksgezondheid¹</td>
<td>Matig</td>
<td>0,38</td>
<td>Hoog</td>
<td>0,75</td>
</tr>
<tr>
<td>Overige¹</td>
<td>Hoog</td>
<td>0,75</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Invasiescore² | Hoog | 0,96 | n.v.t. | n.v.t. |
Effectscore | Hoog | 0,75 | n.v.t. | n.v.t. |
Risicoscore (Invasie x effect) | Hoog | 0,72 | n.v.t. | n.v.t. |

¹: gemiddelde effect score per categorie; ²: introductie x vestiging x verspreiding; ³: rekenkundig gemiddelde per categorie, n.v.t.: niet van toepassing.

Tabel 3.7: Risicoscores van de quaggamossel in Nederland en zekerheid daarvan volgens de rekenmethoden van het Harmonia+ protocol op basis van de maximale effectscore per risicocategorie. De risicoclassificaties en gerelateerde kleurcodes zijn vervolgens bepaald op basis van de methodiek in Tabel 2.2.

<table>
<thead>
<tr>
<th>Risicocategorie</th>
<th>Risicoklasse</th>
<th>Risicoscore</th>
<th>Zekerheid</th>
<th>Zekerheidscore³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductie¹</td>
<td>Hoog</td>
<td>1,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Vestiging¹</td>
<td>Hoog</td>
<td>1,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Verspreiding¹</td>
<td>Hoog</td>
<td>1,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Milieu¹</td>
<td>Hoog</td>
<td>1,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Plantenteelt¹</td>
<td>Laag</td>
<td>0,00</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Veeeteelt¹</td>
<td>Laag</td>
<td>0,25</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Volksgezondheid¹</td>
<td>Matig</td>
<td>0,50</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
<tr>
<td>Overige¹</td>
<td>Hoog</td>
<td>0,75</td>
<td>Hoog</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Invasiescore² | Hoog | 1,00 | n.v.t. | n.v.t. |
Effectscore | Hoog | 1,00 | n.v.t. | n.v.t. |
Risicoscore (Invasie x effect) | Hoog | 1,00 | n.v.t. | n.v.t. |

¹: maximum effect score per categorie; ²: introductie x vestiging x verspreiding; ³: rekenkundig gemiddelde per categorie, n.v.t.: niet van toepassing.

3.2.3 Overige risicobeoordelingen
Het literatuuronderzoek heeft uitgewezen dat ook voor Groot-Brittannië (Roy et al., 2014), de staten Oregon en New York in de Verenigde Staten (Montgomery & Wells, 2010; Adams, 2013) en Brits-Columbia in Canada (Province of British Columbia, 2015) risicobeoordelingen van de quaggamossel zijn uitgevoerd. In alle beschikbare risicobeoordelingen van de quaggamossel is de risicoscore (bijna) gelijk aan de maximum risicoscore (Tabel 3.8). In de risicobeoordelingen voor Oregon en Brits-Columbia (Canada) zijn naast de effecten op het milieu ook de economische effecten of impact op de gezondheid meegenomen. De resultaten zijn in overeenstemming met de risicoscores en risicoclassificatie van de quaggamossel voor Nederland.
Tabel 3.8: Overzicht van risicobeoordelingen van de quaggamossel in andere landen.

<table>
<thead>
<tr>
<th>Soort(en)</th>
<th>Risico-score</th>
<th>Maximum score</th>
<th>Methode</th>
<th>Land</th>
<th>Beoordelingscriteria</th>
<th>Referentie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaggamossel</td>
<td>125</td>
<td>125</td>
<td>Horizon scanning</td>
<td>Groot-Brittanië</td>
<td>x x x</td>
<td>1</td>
</tr>
<tr>
<td>Quagga- & driehoeksmossel</td>
<td>9</td>
<td>9</td>
<td>Pest Risk Assessment</td>
<td>Oregon, Verenigde Staten</td>
<td>x x x x x</td>
<td>2</td>
</tr>
<tr>
<td>Quaggamossel</td>
<td>88</td>
<td>100</td>
<td>Fish and Aquatic Invertebrates Invasiveness Ranking Form</td>
<td>New York, Verenigde Staten</td>
<td>x x x</td>
<td>3</td>
</tr>
<tr>
<td>Quagga- & driehoeksmossel</td>
<td>30</td>
<td>30</td>
<td>Niet beschikbaar</td>
<td>Brits-Columbia, Canada</td>
<td>x x x x x</td>
<td>4</td>
</tr>
</tbody>
</table>

*NB: niet bekend

Gebaseerd op het protocol dat gebruikt is door het Exotic Forest Pest Information System voor de Verenigde Staten van Amerika.

Recent heeft een ander expertpanel een compacte analyse van de (potentiële) risico’s en management-opties van de quaggamossel in Nederland uitgevoerd in verband met de bepaling van het Nederlandse standpunt over de plaatsing van soorten op lijst van invasieve exoten van de EU-verordening 1143/2014 (Verbrugge et al., 2015). Daarin is ook onderscheid gemaakt tussen ecologische effecten op biodiversiteit, ecosystemen en ecosysteemdiensten met de volgende risiconiveaus: geen (score 0), laag (score 1), matig (score 2) en hoog (score 3). De quaggamossel scoort in deze studie eveneens hoog voor negatieve effecten op biodiversiteit (3) en ecosystemen (3) en matig voor de effecten op ecosysteemdiensten (2). Verbrugge et al. (2015) vermelden tevens dat de soort ook overige schade veroorzaakt, zoals aangroei op infrastructuur en (plezier)vaartuigen. Er zijn geen ecologisch verantwoorde en op grote schaal toepasbare maatregelen beschikbaar voor het uitroeien van de quaggamossel als deze soort zich eenmaal heeft gevestigd in een watersysteem.
4 Uitzetcriteria quaggamossel

De quaggamossel staat in toenemende belangstelling als biologisch filter. In het recente verleden is enkele malen ontheffing van de Flora- en faunawet (Ffw) aangevraagd voor het uitzetten van deze soort in oppervlaktewateren. Het is de verwachting dat het aantal ontheffingsaanvragen zal toenemen. In §4.1 wordt het juridische kader voor een ontheffingsverzoek ingevolge de Ffw beschreven. Op basis van de risicobeoordeling en de onafhankelijke review door wetenschappers en belanghebbenden (§2.4 en Bijlage 1) is een voorstel voor een protocol met beoordelingscriteria (beslisboom) opgesteld ter ondersteuning van het proces van ontheffingsaanvragen (§4.2). De beslisboom kan ook worden gebruikt door initiatiefnemers bij de onderbouwing van een ontheffingsverzoek voor het uitzetten van de quaggamossel in oppervlaktewater.

4.1 Juridische achtergrond ontheffingsverzoek Flora- en faunawet

De quaggamossel wordt gezien als een biologisch middel voor het verbeteren van de waterkwaliteit door het filteren van bijvoorbeeld algen of zwevend stof uit (afval)water. Het is echter op grond van artikel 14 (lid 1) van de Flora- en faunawet (Ffw) verboden om dieren of eieren van dieren in de vrije natuur uit te zetten. Daarnaast kan het uitzetten van quaggamosselen in een watersysteem ook (in)direct resulteren in overtreding van verbodsbepalingen in artikelen 8-12 van de Ffw (onder andere het beschadigen of verstoren voortplantings- of vaste rust- of verblijfplaatsen van beschermde soorten). Onze Minister kan ontheffing verlenen van het bepaalde bij of krachtens deze artikelen op grond van artikel 75 van de Ffw.

Bij een verzoek om ontheffing ingevolge de artikelen 8-12 van de Ffw moet zijn beschreven welke door deze wet beschermde soorten te verwachten zijn in het watersysteem en welk berschermingsregime voor de betreffende soorten geldt (zogenoemde Tabel 1, 2 of 3 soorten). Vervolgens moet worden ingegaan op de mogelijke (in)directe gevolgen van het introduceren van quaggamosselen voor deze beschermde soorten en worden bepaald of verbodsbepalingen worden overtreden. In het geval van overtreding van een of meerdere verbodsbepalingen moet worden aangegeven welke invloed dit heeft op de staat van instandhouding van de betreffende soort(en) en is een beschrijving van de compenserende maatregen (zoals vervangende verblijfplaatsen en vervangend leefgebied) nodig.

Bij het beschermingsregime van Ffw-doelsoorten worden drie categorieën onderscheiden:
1. Tabel 1-soorten waarvoor een generieke vrijstelling geldt (geen ontheffing verlening nodig).
2. Tabel 2-soorten die zijn onderworpen aan ontheffing verlening (tenzij gewerkt wordt conform een goedgekeurde gedragscode) en waarbij een criterium voor ontheffing verlening is dat geen afbreuk wordt gedaan aan de gunstige staat van instandhouding.
3. Tabel 3-soorten die zijn onderworpen aan een zwaar beschermingsregime en waarvoor drie cumulatieve criteria gelden voor ontheffing verlening, namelijk:
 • geen afbreuk doen aan de gunstige staat van instandhouding van de populatie van deze soorten;
 • geen andere bevredigende alternatieven aanwezig die een oplossing bieden voor het onderliggende probleem en minder schadelijk zijn voor de Ffw-soorten;
 • ontheffing mag alleen worden verleend met het oog op een bepaald belang.
4.2 Beslisboom

Het voorgestelde protocol met beoordelingscriteria voor ontheffingsaanvragen ingevolge de Ffw voor het introduceren van de quaggamossel in Nederlandse watersystemen is vormgegeven als een beslisboom met nadere toelichting (Figuur 4.1). Bij indiening van een ontheffingsaanvraag zal de beoordelende instantie (RVO.nl) bij de verantwoordelijke waterbeheerder nagaan of vanuit de Waterwet een vergunning nodig is of dat in de keurverordening nadere regels zijn gesteld aan het lozen, uitzetten of faciliteren van de quaggamossel in het betreffende oppervlaktewater. Deze afstemming is conform Afdeling 3.5 Samenhangende besluiten in de Algemene wet bestuursrecht. Hierbij kan ook de coördinatie tussen de procedures van de besluiten worden vastgesteld. De initiatiefnemer zal bij het verzoek om ontheffing ingevolge de Ffw alle benodigde informatie voor het doorlopen van de beslisboom (en eventuele andere vergunningsverzoeken) aanleveren bij de beoordelende instantie van de aanvragen (RVO.nl), die vervolgens beoordeelt of ontheffing wel of niet kan worden verleend. Dit houdt in dat de initiatiefnemer de aanwezigheid van de quaggamossel in het watersysteem inventariseert. Afhankelijk van de waterkwaliteit- en natuurdoelstellingen en de mate van isolatie van het watersysteem zal de aanvrager moeten aantonen dat het uitzetten van de quaggamossel doelmatig is. Als dit het geval is, motiveert de initiatiefnemer of al dan niet sprake kan zijn van overtredingen van verboden in het kader van de Ffw, zoals (in)directe effecten op (potentieel) aanwezige doelsoorten (zie § 4.1). Per beoordelingscriterium in de beslisboom is de benodigde informatie nader toegelicht.

Figuur 4.1: Voorstel van een beslisboom met beoordelingscriteria ter ondersteuning van besluitvorming over ontheffingsaanvragen in het kader van de Flora- en faunawet voor het uitzetten van de quaggamossel in oppervlaktewateren.

Het uitzetten van de quaggamossel kan ook via secundaire verspreiding introductie in andere watersystemen veroorzaken als met in- of uitlaatwater levende mosselen (adulten, veligers, broed) terechtkomen in andere oppervlaktewateren. De beslisboom kan worden toegepast voor alle watertypen zoals
vastgelegd in de KRW, namelijk natuurlijke wateren die behoren tot de categorieën meren, rivieren en overgangs- en kustwateren (Bijlage 2) en kunstmatige wateren.

4.2.1 Aanwezigheid quaggamossel op doellocatie
Het is van belang dat de aanvrager van de ontheffing inventariseert of de quaggamossel al aanwezig is op de locatie(s) waar de soort moet worden uitgezet. Dit wordt uitgevoerd voor alle wateren waarvoor ontheffing wordt aangevraagd, ongeacht de mate van natuurlijkheid en de natuurdoelstellingen. Als de quaggamossel aanwezig is, vervolgt de initiatiefnemer de beslisboom met de stap om aan te tonen of het uitzetten van de soort doelmatig is (zie § 4.2.4). Als de soort nog niet aanwezig is, wordt gedetailleerde informatie over de natuurdoelstellingen van het water aangeleverd.

4.2.2 Natuurdoelstellingen van watersysteem
Gelet op de uitkomsten van de risicobeoordeling zou ontheffing ingevolge de Ffw niet overwogen moeten worden voor het uitzetten of lozen van de quaggamossel in wateren met een hoge (gewenste) natuurwaarden in combinatie met het gegeven dat de quaggamossel nog niet aanwezig is. Wateren met een hoge (gewenste) natuurwaarde zijn o.a. Natura 2000-gebieden, gebieden in het Natuur Netwerk Nederland en beschermd natuurmonumenten. Op basis van de risicobeoordeling zijn namelijk grote (ongewenste) effecten op de biodiversiteit en het functioneren van ecosystemen te verwachten.

Voor een inventarisatie van de natuurdoelstellingen van het watersysteem zijn onder andere de instandhoudingsdoelstellingen van Natura 2000 gebieden van belang (areaal en kwaliteit van habitattypen en populatieomvang van doelsoorten). Deze doelstellingen zijn bepaald voor specifieke habitattypen en soorten. Onder de zoetwaterhabitats vallen stilstaande wateren (zeer zwakgebufferde vennen, zwakgebufferde vennen, kranswierwateren, meren met krabbenscheer en fonteinkruiden, zure vennen) en stromende wateren (beken en rivieren met waterplanten, slijkige rivieroevers) (Ministerie van Economische Zaken, 2015).

Voor wateren zonder of nevengeschikte natuurdoelstellingen, zoals natuurlijke zwemplassen en stadsvijvers moet worden aangetoond of het water hydrologisch geïsoleerd ligt ten opzichte van andere watersystemen. Het is namelijk van belang te voorkomen dat de quaggamossel zich door uitzetting verspreidt naar nog niet gekoloniseerde wateren.

4.2.3 Hydrologische isolatie en introductie via verbonden wateren of vectoren
Doellocaties zonder of met een relatief lage natuurdoelstelling kunnen geïsoleerd zijn van andere watersystemen waardoor kolonisatie van de quaggamossel via een natuurlijke manier onwaarschijnlijk is. Voor deze doellocaties is de eerstvolgende stap dat de aanvrager de doelmatigheid aantoont van het uitzetten van de mossel (zie § 4.2.4).

Als de doellocatie wel verbonden is met andere watersystemen, inventariseert de initiatiefnemer of de quaggamossel al in die verbonden wateren aanwezig is. Een bovenstroomse populatie in een verbonden watersysteem en/of (plezier)vaartuigen kunnen resulteren in introductie van de quaggamossel op de doellocatie zonder het opzettelijk uitzetten of lozen van individuen. Wanneer geen bovenstroomse populatie aanwezig is, zal de mogelijkheid tot verspreiding via antropogene vectoren, zoals aanhechting aan boten en drijvende materialen, onderzocht moeten worden door de initiatiefnemer. Als de mogelijkheid bestaat tot verspreiding van de quaggamossel via bovenstroomse populaties of antropogene vectoren is een motivering van de doelmatigheid van het uitzetten van de soort nodig (zie § 4.2.4).
In het geval de quaggamossel niet op de doellocatie voorkomt en de natuurlijke introductiekans via verbonden watersystemen zeer klein is, zou het verlenen van ontheffing niet geschikt zijn gelet op de doelstellingen van de Ffw. Het uitzetten of lozen van de quaggamossel in een dergelijk systeem kan dan leiden tot ongewenste verspreiding en significante effecten in andere watersystemen.

4.2.4 Doelmatigheid van uitzetten quaggamossel
Vanuit het algemeen milieuverantwoordelijkheidsprincipe is het van belang dat de initiatiefnemer de doelmatigheid van het uitzetten van de quaggamossel op de doellocatie deugdelijk motiveert. De activiteit moet bijdragen aan de realisatie van de beoogde waterkwaliteitsdoelstellingen en niet met brongerichte of gangbare systeemgerichte maatregelen te realiseren zijn. Het oppervlaktewater moet dan geschikt zijn als habitat voor de quaggamosselen. Tevens moet bekend zijn dat de quaggamossel de ongewenste algensoorten of zwevende stoffen daadwerkelijk uit het water filtert. Hiervoor kan een laboratoriumtest met water van de doellocatie uitsluitend geven over de filtercapaciteit van de quaggamossel. Daarnaast moet rekening worden gehouden met de filtratiecapaciteit van mosselen die al in het systeem aanwezig kunnen zijn. Als doelmatigheid van het uitzetten van de quaggamossel niet afdoende is gemotiveerd, zou geen ontheffing ingevolge de Ffw moeten worden aangevraagd en verleend.

4.2.5 Aanwezigheid en effecten op Ffw-doelsoorten
Bij aangetoonde doelmatigheid van het uitzetten van de quaggamossel wordt geïnventariseerd of beschermde soorten onder de Ffw (potentieel) aanwezig zijn op de doellocatie. Potentieel aanwezige doelsoorten zijn bijvoorbeeld de soorten die tijdens een inventarisatie kunnen worden gemist door lage dichtheden of die slechts tijdelijk in het waterlichaam aanwezig zijn (bijvoorbeeld een kamsalamander). Met het uitzetten van de quaggamossel wordt niet alleen het verbod op het uitzetten van dieren in de vrije natuur overtreden (artikel 14, Ffw), maar kan ook (in)direct resulteren in overtreding van de verbodsbepalingen met betrekking tot het beschadigen of verstoren voortplantings- of vaste rust- of verblijfplaatsen van beschermde soorten (artikel 8-12, Ffw).

Bij afwezigheid van beschermde planten- en diersoorten en voldoende waarborging met betrekking tot hydrologische isolatie en doelmatige inzet van quaggamosselen kan ontheffing van artikel 14 Ffw voor het uitzetten van dieren in het betreffende oppervlaktewater worden overwogen.

Bij aanwezigheid van deze soorten moet de initiatiefnemer inventariseren of (in)directe negatieve effecten van de quaggamossel op Ffw-doelsoorten aan de orde zijn. Hierbij is het ook van belang of lange termijn effecten op de staat van instandhouding van relevante doelsoorten te beschouwen. De introductie van de quaggamossel is meestal onomkeerbaar. Eliminatie is niet meer mogelijk of zeer kostbaar als de soort zich eenmaal heeft gevestigd (Verbrugge et al., 2015). Omdat de quaggamossel een ecosysteembouwer is, kan het uitzetten van mosselen leiden tot onomkeerbare effecten op het functioneren van het watersysteem, zoals de omslag van een onderwaterbodem met zacht substraat naar een bodem met hard substraat. Daardoor bestaat een grote kans op negatieve effecten op (potentieel) aanwezige Ffw-doelsoorten (zie hiervoor de risicobeoordeling van de quaggamossel).

Indien wordt verwacht dat wel negatieve effecten op Ffw-doelsoorten optreden, kan de aanvrager nagaan of, en zo ja welke, mitigerende maatregelen beschikbaar zijn om die effecten te reduceren. Als de aanvrager redelijkerwijs kan aantonen dat geen effecten zullen optreden, eventueel na mitigerende maatregelen, kan ontheffing van art. 14 Ffw worden overwogen.
4.2.6 Beoordeling overtreding art. 8-12 Ffw

Een laatste toets is gewenst om de overtreding van artikelen 8-12 van de Ffw te beoordelen als wel (aanvullende) negatieve effecten op Ffw-doelsoorten worden verwacht. Deze toets is min of meer vergelijkbaar met de beoordeling van natuureffecten in het kader van milieueffectrapportage (Commissie voor de milieueffectrapportage, 2015).

De aanvrager zal informatie moeten aanleveren op grond waarvan kan worden beoordeeld of aan de volgende criteria wordt voldaan:
1. Er zijn geen reële alternatieven met minder gevolgen voor de Ffw-doelsoorten om het probleem op te lossen;
2. Het direct uitzetten of indirect uitzetten via lozen van de quaggamossel dient een groot openbaar belang.
3. Het is mogelijk om de negatieve effecten van de quaggamosselen op doelsoorten te compenseren.

Ontheffing van art. 8-12 en art. 14 Ffw kan alleen worden verleend als aan de drie criteria wordt voldaan, mits de mitigatie- en compensatiemaatregelen worden uitgevoerd. Aanbevolen wordt dat de initiatiefnemer in overleg met de ontheffingverlener en beheerder van het oppervlaktewater (waterschap of Rijkswaterstaat) ook afspraken maakt over de uitvoering en evaluatie van effectmonitoring.

Ongewenste neveneffecten voor overige belanghebbenden

In aanvulling op de ontheffingsaanvraag ingevolge de Ffw wordt ook een inventarisatie aanbevolen van mogelijke ongewenste neveneffecten van het uitzetten van de quaggamossel voor overige belanghebbenden van het watersysteem. Hierbij kan gedacht worden aan naburige bedrijven met wateronttrekking waar de mossel (koelwatersystemen) kan verstoppen en aan recreanten die zich kunnen verwonden aan de mosselen.
5 Discussie

5.1 Risicobeoordeling

De effectbeoordelingen en risicoclassificaties van de quaggamossel door het panel van deskundigen met behulp van de ISEIA en Harmonia-protocolen en de beschikbare informatie uit de risico-inventarisatie resulteerden bij beide protocollen in een hoog risico voor de invasiviteit en ecologische gevolgen van deze zoetwatermossel (Workshop 1). Daarnaast is met het Harmonia-protocol het risico op sociaal-economische effecten ook hoog gewaardeerd door de betrokken deskundigen. De uitkomsten zijn in overeenstemming met met risicobeoordelingen in Groot-Brittannië en Noord-Amerikaanse staten en worden tevens gedragen door deskundigen (wetenschappers en belanghebbenden) die een onafhankelijke review van de risicobeoordeling hebben uitgevoerd (Workshop 2).

Beide risicobeoordelingsprotocolen zijn ontwikkeld voor het beoordelen en classificeren van negatieve effecten van uitheemse soorten en laten eventuele positieve effecten buiten beschouwing. In de huidige rapportage is de beschikbare informatie over positieve effecten echter wel meegenomen, namelijk bij de risico-inventarisatie en de consensusvorming over de risico’s van de quaggamossel tijdens de workshop met deskundigen. Momenteel ontbreekt echter een formele protocol of afwegingskader voor het opmaken van de kwantitatieve balans tussen positieve en negatieve effecten van invasieve exoten op biodiversiteit, functioneren van ecosystemen en overige maatschappelijke belangen. Verschillende verwachtingen van belanghebbenden van die balans tussen positieve en negatieve effecten bepalen hun risicoperceptie van het uitzetten van quaggamosselen voor het bestrijden van algen in oppervlaktewater of filteren van zwevend organisch materiaal in afvalwater.

Over het algemeen is veel informatie beschikbaar over de vestiging, verspreiding en effecten van dreisseniden in zoetwatersystemen. Naar de specifieke gevolgen van quaggamossel is echter minder vaak onderzoek gedaan dan naar de driehoeksmossel, onder andere omdat de driehoeksmossel al veel eerder uitheemse gebieden heeft gekoloniseerd. Hierdoor zijn voor de effectbeoordeling en risicoclassificatie niet alle effectdata van quaggamosselen afkomstig uit Nederland. Gegevens over een verandering in fytoplanktonsoortensamenstelling door selectief filtergedrag en de voor- en nadelen voor macro-vertebraten zijn vooral afkomstig uit studies voor Noord-Amerika. Op basis van klimaat-overeenkomsten wordt verwacht dat de effecten op ecosystemen die geobserveerd zijn in rivieren en het grote merengebied op de grens van de oostelijke Verenigde Staten en Canada ook in Nederland kunnen plaatsvinden. Verschillen in watersystemen resulteren echter ook in onzekerheden omdat er in de Verenigde Staten voornamelijk diepe, koudere meren voorkomen en in Nederland vooral ondiepe, warmere meren.

Daarnaast zijn specifieke effecten vooralsnog alleen onderzocht voor de driehoeksmossel, zoals de relatie tussen de aanwezigheid van de mossel, nutriëntenconcentraties en de verandering in de dichtheid van blauwalgen in het waterstelsel (Sarnelle et al., 2012). Verder zijn effecten van aanhechting op macrofauna vooral beschreven voor de driehoeksmossel (Brazner & Jensen, 2000; Van Appledorn & Bach, 2007; Fincke et al., 2009; Rosso, 2012), met uitzondering van de gevolgen van begroeiing van unioniden. Ten slotte ontbreekt gedetailleerde data voor quaggamosselen over de volgende aspecten:

- Gevolgen van matvorming en uitscheiding van toxische pseudofeces voor bodemprocessen;
- Risico’s van massamortaliteit voor remobilisatie van geaccumuleerde nutriënten en gifstoffen;
Faciliteren van habitat voor andere invasieve uitheemse soorten (zogenaamde *invasive meltdown*);

Risico’s als gastheer van ziekteverwekkers voor inheemse soorten, waaronder ook soorten die van economisch belang zijn (bijvoorbeeld vissen).

Verschillen in adaptatie tussen de driehoeksmossel en de quaggamossel dragen mogelijk bij aan verschuivingen in hun dichtheid in watersystemen en gevolgen daarvan voor het ecologisch functioneren, wat het belang benadrukt voor het oplossen van kennishiaten over de quaggamossel in Nederland. Hieronder vallen zowel de ecologische effecten als de impact op de volksgezondheid, industrie, visserij, infrastructuur en recreanten. Er ontbreekt namelijk ook een overzicht van de economische schade en additionele beheerskosten door de invasie van de quaggamossel in Nederland.

Tenslotte bestaat bij waterbeheerders behoefte aan een overzicht van de implicaties van de vestiging van de quaggamossel voor het waterbeheer. Hieronder valt onder andere het mogelijke effect van de soort op de haalbaarheid van de waterkwaliteitsdoelen van de KRW. Tot nu toe is het lastig gebleken om te bepalen of en hoe scores op de verschillende kwaliteitselementen (fytoplankton, waterplanten, macrofauna en vis) van de KRW-maatlassen worden beïnvloed door de quaggamossel (Iff, 2014). Daarnaast is behoefte aan een protocol dat aangeeft hoe om moet worden gegaan met de quaggamossel als die ongewenst aanwezig is in een watersysteem of negatieve effecten heeft op de haalbaarheid van KRW-doelen.

De risico’s van de quaggamossel voor biodiversiteit en ecosystemen zijn hoog, maar de soort geeft ook positieve effecten op het functioneren van het watersysteem. Dit gegeven maakt dat waterbeheerders zich tijdens de tweede workshop afvragen of zij in bepaalde gevallen niets hoeven te doen, in sommige gevallen misschien moeten bestrijden en in andere gevallen misschien zelfs de vestiging faciliteren of extra mosselfilters uitzetten. De beantwoording hiervan valt echter buiten de doelstellingen van het huidige rapport en vergt aanvullend onderzoek omdat nog een aantal kennishiaten voor de Nederlandse situatie moeten worden opgelost. In de praktijk zal waarschijnlijk van situatie tot situatie moeten worden beoordeeld welke aanpak voor de quaggamossel soort nodig is voor een optimale balans van de positieve en negatieve effecten.

5.2 Uitzetcriteria

Bij de Rijksdienst voor Ondernemend Nederland (RVO.nl) zijn de afgelopen jaren al enkele verzoeken gedaan voor ontheffing voor overtreding van verboden ingevolge de Ffw vanwege het uitzetten van quaggamosselen in oppervlaktewateren, onder andere:

- Het Waterschap Brabantse Delta voor het aanleggen van een mosselfilter met gekweekte quaggamosselen in de Linievijver in Breda (Brabantse Delta, 2013; Van der Jagt et al., 2014).
- De gemeente Nijmegen voor de introductie van een mosselfilter in de vijver van het Kronenburgerpark (Dutch Water Tech, 2015).

De verwachting is dat het aantal Ffw-ontheffingsverzoeken voor het uitzetten van quaggamosselen toeneemt. In verband met het zorgvuldig, efficiënt en consistent beoordelen van dergelijke ontheffingsverzoeken bestaat daarom behoefte aan eenduidige criteria voor het beoordelen daarvan. In het voorliggende rapport is op basis van een gedegen risicobeoordeling samen met wetenschappers en waterbeheerders een voorstel voor een protocol met beoordelingscriteria (beslisboom) opgezet voor het uitzetten van quaggamosselen in oppervlaktewateren. Voorgesteld wordt om initiatiefnemers
middels deze beslisboom zelf de benodigde informatie te laten aanleveren op grond waarvan de beoordelende instantie van de aanvragen (RVO.nl) vervolgens kan beslissen of een dergelijk ontheffingsverzoek ingevolge de Ffw wel of niet kan worden verleend. Het is dus van belang dat de initiatiefnemer bij het verzoek om ontheffing eerst alle benodigde informatie verzamelt, zoals gedetailleerde informatie over waterkwaliteits- en natuurdoelstellingen, hydrologische isolatie van een watersysteem, potentiële aanwezigheid van quaggamosselen in hydrologisch verbonden wateren, aanwezigheid van Ffw-lijstsoorten, doelmatigheid en maatschappelijke belang van het uitzetten, mitigatie en compensatie van eventuele ongewenste effecten. De verwachting van de opstellers is dat de beslisboom een belangrijke zelfregulerende werking zal hebben en het aantal aanvragen voor ontheffingen zal beperken, omdat op basis van de verzamelde informatie en beoordelingscriteria snel duidelijk wordt of een ontheffingsverzoek kansrijk zal zijn. De definitieve beslisboom is gebaseerd op consent van een grote groep deskundigen (auteurs van dit rapport en belanghebbenden, Bijlage 1).

De mogelijke aanwezigheid van driehoeksmosselen op de doellocatie in het watersysteem is niet als apart criterium in de beslisboom meegenomen. Wanneer de initiatiefnemer de doelmatigheid van het uitzetten van quaggamossels in kaart moet brengen, zal wel rekening moeten worden gehouden met de filtratiecapaciteit van mosselen die al in het systeem aanwezig zijn. Eventueel zou de beslisboom ook voor het uitzetten van de driehoeksmossel kunnen dienen.

Het uitzetten van de quaggamossel kan via secundaire verspreiding ook introductie in andere watersystemen veroorzaken als bijvoorbeeld met in- of uitlaatwater levende mosselen (adulten, veligers, broed) terechtkomen in andere oppervlaktewateren. Dit kan bijvoorbeeld voorkomen als de quaggamossel bij waterzuiveringsinstallaties wordt gebruikt voor aanvullende zuivering. Een oplossing is dat het gefilterde water alleen vrij van levende mosselen zou mogen worden geloosd in andere watersystemen. Dit vergt echter aanvullend onderzoek naar de technische mogelijkheden en kosteneffectiviteit van maatregelen om diverse levensstadia van quaggamosselen uit effluenten te verwijderen.

5.3 **Afstemming overige juridische instrumenten**

Het verlenen van een ontheffing in het kader van de Ffw sluit niet uit dat het uitzetten of lozen van de quaggamossel in strijd is met andere wettelijke kaders. Vingerende beleidsregels voor vergunningverlening en handhaving op grond van de keurverordening van waterschappen kunnen ook een rol spelen. Initiatiefnemers hebben voor activiteiten in een watersysteem een vergunning nodig. Wanneer bijvoorbeeld waterschappen beleidsregels opstellen rondom het gebruik van exoten in hun watersystemen, zoals het uitzetten van quaggamossel, kan het waterschap besluiten om op grond van die regels een vergunnings- of ontheffingsverzoek van een initiatiefnemer af te wijzen. Ondanks een ontheffing op grond van de Ffw mag de quaggamossel dan in het betreffende watersysteem niet worden uitgezet. Daarom wordt aanbevolen dat de beoordelende instantie bij indiening van een ontheffingsaanvraag ingevolge de Ffw nagaat en vervolgens de initiatiefnemer op de hoogte stelt of het uitzetten, lozen of faciliteren van de quaggamossel strijdig is met ander wettelijk instrumentarium voor het betreffende oppervlaktewater en eventueel aanvullend toestemming of vergunningen nodig zijn waarvoor de initiatiefnemer informatie zal moeten aanleveren.

Quaggamosselen kunnen worden ingezet voor aanvullende zuivering van afvalwater om verontreinigingen die gebonden zijn aan zwevend stof er uit te filteren (Van der Jagt *et al.*, 2014). Bij lozingen kunnen adulten, veligers en broed met het effluent in oppervlaktewateren terecht komen. Het
is verboden om stoffen te brengen in een oppervlaktewaterlichaam, tenzij een daartoe strekkende vergunning is verleend door de minister van Infrastructuur en Milieu of het bestuur van een waterschap (artikel 1, lid a, Waterwet). Momenteel wordt in de vergunningsprocedure voor waterlozingen in het kader van de Waterwet geen aandacht besteed aan biologische vervuiling (door uitzetten of lozing van exoten) in Nederland. Ook bij het verplaatsen van bagger kan sprake zijn van de introductie van quaggamosselen en andere exoten in watersystemen waar die voorheen nog niet aanwezig waren (De Hoop et al., 2015). Aanbevolen wordt om te onderzoeken of en hoe in het kader van de Waterwet door waterbeheerders moet worden omgegaan om de risico’s op ongewenste verspreiding en effecten van invasieve exoten te beperken.

Tijdens de workshop met deskundigen is opgemerkt dat de detailhandel (vijver leveranciers, tuincentra, aquariumwinkels) en hoveniers momenteel interesse tonen in mogelijkheden voor verkoop van quaggamosselen als waterfilter voor vijvers en aquaria. Hierdoor neemt de kans toe dat ook veel particulieren de quaggamossel gaan gebruiken voor het filteren van hun vijvers en aquaria, waardoor verdere verspreiding kan optreden (bijvoorbeeld door lozen van overtollige quaggamosselen in oppervlaktewateren). Het verdient daarom aanbeveling om nader te bezien of en hoe deze ontwikkeling door de overheid in het kader van de Ffw kan worden gereguleerd. Het uitzetten van dieren en dus ook quaggamosselen is in beginsel verboden ingevolge de Ffw, maar handhaving van dit verbod zal moeilijk worden als filtersystemen met quaggamosselen massaal in de particuliere handel komen. Bovendien is van andere aquarium- en vijversoorten bekend dat deze door particulieren worden losgelaten in oppervlaktewateren.
6 Conclusies en aanbevelingen

6.1 Risicobeoordeling

Waarschijnlijkheid van binnenkomst
- De quaggamossel is inheems in twee rivieren van de Ponto-Kaspische regio die uitstromen in de Zwarte Zee, namelijk de Dnjepr en de Zuidelijke Boeg. In 2006 is deze soort voor het eerst waargenomen in Nederland en is waarschijnlijk al in 2004 of eerder geïntroduceerd via ballast-, bilgen-, of motorkoelwater van schepen.
- De opzettelijke introducties van de quaggamossel in stadsvijvers via begroeide kratten van elders dragen sinds kort bij aan de kolonisatie van de soort in geïsoleerde (stedelijke) wateren.

Waarschijnlijkheid van vestiging
- De quaggamossel heeft zich in Nederland snel verspreid en gevestigd op locaties die permanent in verbinding staan met het netwerk van vaarwegen, zoals de grote rivieren, kanalen en meren.
- De komende decennia wordt een verdere verspreiding verwacht in oppervlaktewateren die in verbinding staan met het netwerk van vaarwegen en wordt een toename in de dichtheid van quaggamosselen verwacht in zoete kalkhoudende watersystemen met geschikt substraat en weinig droogval. Het klimaat en watermilieu in Nederland en het oorspronkelijke verspreidingsgebied komen redelijk overeen. De omgeving- en watertemperatuur in Nederland vallen binnen de extremen waarden van het oorspronkelijke verspreidingsgebied. Toekomstige veranderingen in het klimaat, zoals hetere zomers, zullen daarom waarschijnlijk geen effect hebben op de verdere verspreiding en vestiging van de soort in Nederland.

Waarschijnlijkheid van verspreiding
- De hoge dispersiesnelheid van de quaggamossel wordt het meest waarschijnlijk gefaciliteerd door transport via binnenscheepvaart (stroomopwaartse introductie) en waterstromingen (stroomafwaartse kolonisatie).
- In Nederland zijn talrijke menselijke vectoren aanwezig, zoals drijvende materialen waaraan de mosselen zich vasthechten, waardoor een hoge kans bestaat op secundaire verspreiding van de quaggamossel.
- Verspreiding van quaggamosselen naar hydrologisch geïsoleerde wateren door natuurlijke vectoren is mogelijk maar de kans daarop is relatief klein.

Risicovolle gebieden in Nederland
- De quaggamossel komt voor in habitats met hoge natuurwaarden en het risico bestaat dat ook geïsoleerde wateren met hoge natuurwaarden (bijvoorbeeld in Natura 2000 gebieden) gekoloniseerd worden door menselijke introductie.

Effecten op biodiversiteit en functioneren ecosystemen
- De quaggamossel is een ecosysteembouwer (kan dikke matten op de bodem en dichte begroeiing op harde substraten vormen) en heeft bij hoge dichtheden in zoete oppervlaktewateren door zijn sterke filtering van zwervende organische stoffen significante effecten op de integriteit van het ecosysteem zoals biotische factoren (bijvoorbeeld afname algenbiomassa) en abiotische factoren (bijvoorbeeld toename doorzicht, accumulatie organisch materiaal op de bodem).
- Afhankelijk van de populatie dichtheid en omgevingsfactoren veroorzaakt de quaggamossel in de Nederlandse wateren een toename in helderheid, een (mogelijke) bloei van specifieke blauwalgen,
woekering van ondergedoken waterplanten, voedselcompetitie met inheemse zoetwatermosselen (unioniden) door aanhechting op hun schelpen en een verschuiving in de samenstelling van vissoorten.

Overige effecten
- De quaggamosselen begroeien en verstoppen (koel)watersystemen, leidingen, pompen, gemalen, duikers en andere waterhuishoudkundige kunstwerken. Naast de (gederfde) kosten door de impact op bedrijfsvoering, zijn er ook aanzienlijke kosten door maatregelen ter preventie van aanhechting en door schoonmaakacties om de aangroei fysiek te verwijderen. Door aangroei op binnenvaart- schepen en pleziervaartuigen nemen de schoonmaakkosten en het brandstofverbruik toe. Daarnaast zijn er effecten van de quaggamossel op de volksgezondheid (bijvoorbeeld bij snijwonden van badgasten), visserij (begroeiing netten en fuiken; veranderingen in visstand) en recreatie (bijvoorbeeld hinder van recreatieve vaart, surfers en zwemmers door ondergedoken waterplanten; hogere veiligheid door toename doorzicht).

Effectbeoordeling en risicoclassificatie volgens het ISEIA-protocol en BFIS-systeem
- De ecologische risico’s van de quaggamossel in de huidige en toekomstige situatie zijn door het panel van deskundigen als volgt beoordeeld:
 - Dispersie potentieel of invasiviteit. Classificatie: **Hoog**
 - Kolonisatie van waardevolle en/of beschermd habitats. Classificatie: **Hoog**
 - Negatieve effecten op inheemse soorten. Classificatie: **Hoog**
 - Wijzigen van ecosystemfuncties. Classificatie: **Hoog**
- De combinatie van de ecologische effectbeoordeling met de (potentiële) verspreiding van de quaggamossel resulteert in een risicoclassificatie A3 voor zowel de huidige als toekomstige situatie. De soort komt in aanmerking voor plaatsing op de Zwarte-lijst.

Effectbeoordeling en risicoclassificatie volgens het Harmonia+-protocol
- De beoordeling van de quaggamossel door deskundigen op basis van de beschikbare kennis heeft geresulteerd in de volgende risicoscores:
 - Introductierisico: **Hoog**
 - Vestigingsrisico: **Hoog**
 - Verspreidingsrisico: **Hoog**
 - Risico milieueffecten: **Hoog**
 - Risico effecten plantenteelt: **Laag**
 - Risico effecten gedomesticeerde dieren en veeteelt: **Laag**
 - Risico effecten volksgezondheid: **Matig**
 - Risico overige effecten: **Hoog**
- De invasiescore, effectscore en totale risicoscore van de quaggamossel zijn hoog wanneer een gemiddelde of maximale effectscore per risicocategorie wordt gebruikt in de berekening. Dit komt overeen met de beoordeling volgens het ISEIA-protocol. De beoordeling van de potentiële gevolgen van klimaatverandering toont dat de risicoclassificatie van de soort voor de toekomstige situatie (bij ongewijzigd beleid) zeer waarschijnlijk gelijk blijft.
- In risicobeoordelingen voor de quaggamossel in Groot-Brittannië, de staten Oregon en New York in de Verenigde Staten en Brits-Columbia in Canada is de risicoscore (bijna) gelijk aan de maximum risicoscore. Dit is in overeenstemming met de risicoscore voor Nederland.
6.2 Uitzetcriteria

- Het uitzetten van alle (exotische) dieren, dus ook de quaggamossel, in oppervlaktewateren is in beginsel verboden op grond van artikel 14 van de Flora- en faunawet (Ffw). Als gevolg van het uitzetten van quaggamosselen voor bestrijding van algen kan ook overtreding van artikelen 8-12 van de Ffw aan de orde zijn. Conform artikel 75 van de Ffw is wel ontheffing mogelijk voor de voornoemde artikelen.

- Een voorstel voor een protocol met beoordelingscriteria voor ontheffingsaanvragen ingevolge de Ffw voor het introduceren van de quaggamossel in Nederlandse watersystemen is vormgegeven als een beslisboom met een nadere toelichting. De beslisboom kan worden toegepast voor alle watertypen zoals deze zijn vastgelegd in de Europese Kaderrichtlijn Water (KRW) of habitats zoals vastgelegd in de Europese Vogel- en Habitatrichtlijn.

- De initiatiefnemer zal bij het verzoek om ontheffing alle benodigde informatie voor het doorlopen van de beslisboom moeten aanleveren bij de beoordelende instantie van de aanvragen (RVO.nl), die vervolgens op basis van die informatie beoordeelt of ontheffing wel of niet kan worden verleend.

- Het voorstel houdt in dat de initiatiefnemer de aanwezigheid van de quaggamossel in het watersysteem inventariseert. Afhankelijk van het resultaat van de toetsing aan de waterkwaliteit- en natuurdoelstellingen en de mate van hydrologische isolatie van het watersysteem zal de aanvrager vervolgens moeten aantonen dat het uitzetten van de quaggamossel doelmatig is. Als dit het geval is, motiveert de initiatiefnemer of al dan niet sprake kan zijn van overtredingen van verboden in het kader van de Ffw, zoals (in)directe effecten op (potentieel) aanwezige doelsoorten.

- De verwachting van de opstellers is dat de beslisboom een belangrijke zelfregulerende werking zal hebben en het aantal aanvragen voor ontheffingen zal beperken, omdat op basis van de verzamelde informatie en beoordelingscriteria snel duidelijk wordt of een ontheffingsverzoek kansrijk zal zijn.

6.3 Aanbevelingen

Toepassing beslisboom

- Aanbevolen wordt dat de beoordelende instantie bij indiening van een ontheffingsaanvraag ingevolge de Ffw nagaat of het uitzetten, lozen of faciliteren van de quaggamossel strijdig is met ander wettelijk instrumentarium voor het betreffende oppervlaktewater en eventueel aanvullende instemming of vergunningen nodig zijn waarvoor de initiatiefnemer informatie zal moeten aanleveren.

- Gelet op de uitkomsten van de risicobeoordeling zou ontheffing ingevolge de Ffw niet overwogen moeten worden voor het uitzetten of lozen van de quaggamossel in wateren met (gewenste) hoge natuurwaarden (zoals in Natura 2000-gebieden) waarin de quaggamossel nog niet aanwezig is.

- In aanvulling op de ontheffingsaanvraag ingevolge de Ffw wordt met het oog op mogelijke schadeclaims ook een inventarisatie aanbevolen van mogelijke ongewenste neveneffecten van het uitzetten van de quaggamossel voor overige belanghebbenden van het watersysteem. Hierbij kan
gedacht worden aan naburige bedrijven met wateronttrekking waar de mossel (koel)water-systemen kan verstopporen en aan recreanten die zich kunnen verwonden aan de mosselen.

Afstemming overige juridische instrumenten

- Aanbevolen wordt dat de beoordelende instantie van de ontheffingsaanvraag de initiatiefnemer op de hoogte stelt van ander wettelijk instrumentarium (bijvoorbeeld de Waterwet of de keurverordening van waterschappen) waarvoor een vergunning of toestemming nodig is en waarvoor de initiatiefnemer informatie zal moeten aanleveren.

- Aanbevolen wordt om te onderzoeken of en hoe in het kader van vergunningverlening op grond van de Waterwet door waterbeheerders moet worden omgegaan om de risico’s op ongewenste verspreiding en effecten van invasieve exoten te beperken.

- Het wordt aanbevolen om na te gaan of en hoe het gebruik van quaggamosselen als waterfilter voor particuliere vijvers en aquaria door de overheid kan worden gereguleerd (bijvoorbeeld in het kader van de Ffw).

VERDER ONDERZOEK

- In dit onderzoek en tijdens de workshops zijn diverse kennishiaten gesignaleerd die (deels) relevant zijn voor de beoordeling van Ffw-ontheffingsverzoeken, maar in dergelijke gevallen uiteraard door initiatiefnemers moeten worden opgelost.

- Op welke wijze bij de beoordeling van diverse kwaliteitelementen (fytoplankton, waterplanten, macrofauna en vis) in de KRW-maatlatten rekening kan worden gehouden met positieve en negatieve effecten van de quaggamossel en hoe worden deze kwaliteitelementen beïnvloed door de quaggamossel.

- Fundamenteel onderzoek naar algenselectiviteit en filtercapaciteit van de quaggamossel in verschillende typen watersystemen en de gevolgen daarvan voor de biodiversiteit en het ecologisch functioneren van de betreffende systemen.

- De gevolgen van matvorming en accumulatie van organisch materiaal, nutriënten en gifstoffen door quaggamosselen voor bodemprocessen.

- De gevolgen van massamortaliteit van quaggamosselen tijdens extreme milieuomstandigheden voor de remobilisatie van geaccumuleerde nutriënten en gifstoffen uit het mosselweefsel.

- Het systematisch rapporteren door waterbeheerders en bedrijven van schade aan gemalen, pompystemen, kunstwerken en (koel)waterleidingen en extra bestrijdingskosten. Dit geldt ook voor andere maatschappelijke sectoren die schade ondervinden door de aangroei van de quaggamossel (scheep- en recreatievaart, visserij, etc.).

- Het opstellen van methodieken voor kwantitatieve weging van positieve en negatieve effecten van invasieve exoten op biodiversiteit, functioneren van ecosystemen, ecosysteemdiensten en overige belangen.
7 Dankwoord

Onze dank gaat uit naar de Nederlandse Voedsel- en Warenautoriteit (NVWA) voor financiering van het voorliggende onderzoek (inkoopnummer 60005223 d.d. 31 augustus 2015) en Ir. W. Lammers (Coördinator Team Invasieve Exoten, Bureau Risicobeoordeling en Onderzoeksprogrammering, NVWA) voor de prettige samenwerking tijdens de uitvoering van dit project. Dit project was niet mogelijk zonder de waardevolle inbreng van alle deskundigen (wetenschappers en belanghebbenden). Tenslotte worden Peter Klok, Mervyn Roos en het Hoogheemraadschap van Rijnland bedankt voor het beschikbaar stellen van hun foto’s voor dit rapport.
8 Referenties

Ackerman, J.D. (1999) Effect of velocity on the filter feeding of dreissenid mussels (*Dreissena polymorpha* and *Dreissena bugensis*): implications for trophic dynamics. *Canadian Journal of Fisheries and Aquatic Sciences*, 56 (9), 1551-1561.

Bij de Vaate, A. (2010b) Some evidence for ballast water transport being the vector of the quagga mussel (Dreissena rostriformis bugensis Andrusov 1897) introduction into Western Europe and subsequent upstream dispersal in the River Rhine. Aquatic Invasions, 5, 207-209.

Rosso, C. (2012). Effects of *Dreissena polymorpha* and *Dreissena bugensis rostriformis* on macrobenthic communities. Universiteit van Amsterdam, p. 44.

Bijlage 1

<table>
<thead>
<tr>
<th>Type organisatie</th>
<th>Organisatie</th>
<th>Contactpersoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderzoek / advies</td>
<td>Stichting Bargerveen / Vertegenwoordiger</td>
<td>Hein van Kleef *</td>
</tr>
<tr>
<td></td>
<td>Kennisnetwerk ‘Ontwikkeling en Beheer Naturkwaliteit’(OBN)</td>
<td></td>
</tr>
<tr>
<td>Onderzoek / advies</td>
<td>Bureau Waardenburg</td>
<td>Martijn Dorenbosch</td>
</tr>
<tr>
<td>Onderzoek / advies</td>
<td>Deltas</td>
<td>Miquel Dionisio Pires</td>
</tr>
<tr>
<td>Onderzoek / advies</td>
<td>DNV GL</td>
<td>Maarten Bruijs</td>
</tr>
<tr>
<td>Onderzoek / advies</td>
<td>GiMaRIS</td>
<td>Arjan Gittenberger</td>
</tr>
<tr>
<td>Waterschap</td>
<td>Hoogheemraadschap van Rijnland</td>
<td>Marloes van der Kamp</td>
</tr>
<tr>
<td>Onderzoek / universiteit</td>
<td>Naturalis Biodiversity Center / Radboud Universiteit</td>
<td>Gerard van der Velde</td>
</tr>
<tr>
<td>Rijksoverheid - NVWA</td>
<td>Nederlandse Voedsel- en Warenautoriteit</td>
<td>Wiebe Lammers</td>
</tr>
<tr>
<td>Universiteit</td>
<td>Radboud Universiteit Nijmegen</td>
<td>Frank Collas</td>
</tr>
<tr>
<td>Universiteit</td>
<td>Radboud Universiteit Nijmegen</td>
<td>Jonathan Matthews</td>
</tr>
<tr>
<td>Universiteit</td>
<td>Radboud Universiteit Nijmegen</td>
<td>Lisette de Hoop</td>
</tr>
<tr>
<td>Universiteit</td>
<td>Radboud Universiteit Nijmegen</td>
<td>Rob Leuven</td>
</tr>
<tr>
<td>Universiteit</td>
<td>Universiteit van Amsterdam</td>
<td>Arie Vonk</td>
</tr>
<tr>
<td>Waterbedrijf</td>
<td>Waterbedrijf</td>
<td></td>
</tr>
<tr>
<td>Waterschap</td>
<td>Waterschap Hollandse Delta / Werkgroep plaagsoorten</td>
<td>Hans Sessink</td>
</tr>
<tr>
<td>Waterschap</td>
<td>Waterschap Rivierenland</td>
<td>Ronald Gylstra *</td>
</tr>
<tr>
<td>Waterschap</td>
<td>Wetterskip Fryslân</td>
<td>Marianne Thannhauser</td>
</tr>
</tbody>
</table>

* Deelnemer was verhinderd, maar heeft schriftelijk gereageerd op de conceptdocumenten.
Bijlage 2

Tabel A2. Natuurlijke watertypen uit de Europese Kaderrichtlijn Water waar de quaggamossel is waargenomen en met de inschatting over de geschiktheid van de watertypen voor de quaggamossel.

<table>
<thead>
<tr>
<th>Natuurlijk watertype (KRW)</th>
<th>Code</th>
<th>Potentieel voorkomen soort</th>
<th>Quaggamossel waargenomen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gekoppelde sloten (overgangssloten, sloten in rivierengebied)</td>
<td>M1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zwak gekoppelde sloten (poldersloten)</td>
<td>M2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gekoppelde (regionale) kanalen</td>
<td>M3</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zwak gekoppelde (regionale) kanalen</td>
<td>M4</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Ondiep bijzonder water, open verbinding met rivier / geïnundeerd</td>
<td>M5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Grote ondiepe kanalen</td>
<td>M6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Grote diepe kanalen</td>
<td>M7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gekoppelde laagveensloten</td>
<td>M8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zwak gekoppelde hoogveen sloten</td>
<td>M9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laagveen vaarten en kanalen</td>
<td>M10</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kleine ondiepe gekoppelde plassen</td>
<td>M11</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Kleine ondiepe zwak gekoppelde plassen (vennen)</td>
<td>M12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kleine ondiepe zure plassen (vennen)</td>
<td>M13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ondiepe gekoppelde plassen</td>
<td>M14</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ondiepe grote gekoppelde meren</td>
<td>M15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diepe gekoppelde meren</td>
<td>M16</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diepe zwakgekoppelde meren</td>
<td>M17</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Diepe zure meren</td>
<td>M18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diepe meren in open verbinding met rivier</td>
<td>M19</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Matig grote diepe gekoppelde meren</td>
<td>M20</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Grote diepe gekoppelde meren</td>
<td>M21</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kleine ondiepe kalkrijke plassen</td>
<td>M22</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Grote ondiepe kalkrijke plassen</td>
<td>M23</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diepe kalkrijke meren</td>
<td>M24</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ondiepe laagveenplassen</td>
<td>M25</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ondiepe zwak gekoppelde hoogveenplassen/vennen</td>
<td>M26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Matig grote ondiepe laagveenplassen</td>
<td>M27</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diepe laagveenmeren</td>
<td>M28</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Matig grote diepe laagveenmeren</td>
<td>M29</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zwak brakke wateren</td>
<td>M30</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Kleine brakke tot zoute wateren</td>
<td>M31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grote brakke tot zoute meren</td>
<td>M32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rivieren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droogvallende bron</td>
<td>R1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Permanente bron</td>
<td>R2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Droogvallende langzaam stromende bovenloop op zand</td>
<td>R3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Permanent langzaamstromende bovenloop op zand</td>
<td>R4</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende middenloop/benedenloop op zand</td>
<td>R5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende riviertje op zand/klei</td>
<td>R6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende rivier/nevengeul op zand/klei</td>
<td>R7</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zoet getijdenwater (uitloper rivier) op zand/klei</td>
<td>R8</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende bovenloop op kalkhoudende bodem</td>
<td>R9</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende middenloop op kalkhoudende bodem</td>
<td>R10</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende bovenloop op veenbodem</td>
<td>R11</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Langzaam stromende middenloop/benedenloop op veenbodem</td>
<td>R12</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Snelstroomende bovenloop op zand a</td>
<td>R13</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Natuurlijk watertype (KRW)</td>
<td>Code</td>
<td>Potentieel voorkomen soort</td>
<td>Quaggamossel waargenomen c</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Snelstromende middenloop/benedenloop op zand a</td>
<td>R14</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Snelstromende rivier op kiezelhoudende bodem a</td>
<td>R15</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Snelstromende rivier/nevengeul op zandbodem of grind a</td>
<td>R16</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Snelstromende bovenloop op kalkhoudende bodem a</td>
<td>R17</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Snelstromende middenloop/benedenloop op kalkhoudende bodem b</td>
<td>R18</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Overgangswateren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estuarium met beperkt getijverschil b</td>
<td>O1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Estuarium met matig getijverschil b</td>
<td>O2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kustwateren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kustwater, open en polyhalien</td>
<td>K1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kustwater, beschut en polyhalien</td>
<td>K2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kustwater, open en euhalien</td>
<td>K3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a Alleen op locaties met stroomsnelheid < 1,4 m/s.
b Indien saliniteit lager dan 6-8 ‰.
c Huidige waarnemingen betreffen wateren die hydrologisch verbonden zijn met rivieren of kanalen.
Bijlage 3

Tabel A3. Habitattypen uit Natura 2000 waar de quaggamossel is waargenomen en met de inschatting over de geschiktheid van het habitat voor de quaggamossel.

<table>
<thead>
<tr>
<th>Habitattype</th>
<th>Code</th>
<th>Potentieel habitat</th>
<th>Quaggamossel waargenomen a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoetwaterhabitats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeer zwakgebufferde vennen</td>
<td>H3110</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zwakgebufferde vennen</td>
<td>H3130</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Kranswierwateren</td>
<td>H3140</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Meren met Krabbenscheer en fonteinkruiden</td>
<td>H3150</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zure vennen</td>
<td>H3160</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stromende wateren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beken en rivieren met waterplanten (grote fonteinkruiden)</td>
<td>H3260</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>Slikkige rivieroovers</td>
<td>H3270</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

a Huidige waarnemingen betreffen wateren die hydrologisch verbonden zijn met rivieren of kanalen.