HALFWAY BETWEEN QUECHUA AND SPANISH:
The Case for Relexification

Pieter Muysken
University of Amsterdam

1. Introduction

Media Lengua (ML hereafter) is a fascinating Amerindian contact language spoken in several communities in the Ecuadorian Highlands. It is Quechua in its grammatical structure, and almost 90 percent Spanish in its lexicon (see Table 1, p. 53). It has been in existence for over 60 years, and it has native speakers as well as speakers for whom it is the second or third language with Quechua and/or Spanish.

The aims of this paper are threefold: 1) to describe a case of massive relexification, resulting from the contact of two typologically, extremely different languages; 2) to present a linguistic theory of relexification, and to analyze the change and variation in the grammar of Quechua which are the consequences of its relexification by Spanish; and 3) to analyze the role of relexification in a general theory of language genesis, in trying to explain why Quechua was relexified at all.

2. Media Lengua

The recent bibliography of pidgins and creole languages by Reinecke et al. (1975) devotes only four pages to those South American regions where Spanish has been in intensive contact with indigenous languages for centuries, and but a handful of items to contact languages there. Likewise, Lavandera’s (1974) review article about sociolinguistic work done on New World Spanish deals mostly with studies made in Argentina, the United States, Mexico, and Panama, and only briefly with Paraguay and the Andean area.

Considering the paucity of materials relating to the contact between Spanish and the indigenous languages (a striking exception is Albó’s Social Constraints on Cochabamba Quechua, 1970), one is led to believe that no phenomena of interest to the student of pidgins and creoles are to be discovered here. This expectation is in accordance with Diebold’s (1961:109) prediction that no pidgins could emerge out of the contact situation of Indian languages and Spanish in Mexico since the sociological circumstances did not favor their emergence. No sudden need for communication between speakers of different languages, which would lead to a makeshift language, is present (cf. Whinnom 1971).

The fact is that we do indeed find very interesting contact phenomena involving
Quechua, an Indian language of the Andean region, and Spanish. The contact language studied here, Media Lengua, is not used for communication among different ethnic groups, but only within the community itself. In the final section of this paper we will try to explain why it emerged at all, but the fact that it is an intra-group, and not an inter-group, language accounts for some of its characteristics such as its conservative Quechua grammar and phonology.

Although several other varieties have been studied, the ML described here is spoken around the town of San Miguel de Salcedo, in the Cotopaxi province of Ecuador, by Indian peasants, weavers, and construction workers. The area, situated at an altitude of 2,800 meters, is one of the poorest in a poor country; but it is relatively accessible from the capital, Quito. Fieldwork on Quechua (Q), rural Spanish (Sp), and ML in the area was carried out in the period 1974-76 and in 1978 (cf. Muysken 1977; Stark & Muysken 1977; Muysken 1979). Three samples of ML were gathered, totaling about four hours of conversation of five speakers. Sample CF represents data elicited from a 30-year-old couple, both native speakers; sample CI represents conversational data from these same speakers and their children, recorded two years later; sample MI represents conversational data of a female 37-year-old native speaker of ML, and two nonnative speakers of ML. Sample CF clearly represents a conservative norm for ML, while samples CI and MI show cases of ML-Sp code-switching, as well as innovations within ML, as will be argued in Section 3 of this paper. Still, the three samples show a remarkable degree of uniformity in essential respects, such as the amount of Spanish vocabulary present (see Table 1 below).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>CI</th>
<th>MI</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>not a verb in Sp</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>25</td>
<td>1%</td>
</tr>
<tr>
<td>Q verb</td>
<td>41 (20)*</td>
<td>91 (57)*</td>
<td>63 (31)*</td>
<td>195 (108)*</td>
<td>11% (6%)*</td>
</tr>
<tr>
<td>Sp verb</td>
<td>309</td>
<td>849</td>
<td>414</td>
<td>1572</td>
<td>87%</td>
</tr>
<tr>
<td>indeterminate</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Sp verbs</td>
<td>87%</td>
<td>89%</td>
<td>85%</td>
<td>87%</td>
<td></td>
</tr>
</tbody>
</table>

*the number in parentheses indicates occurrences of the Q verb /ga-/ 'to be'
What is ML? Basically, it is Q with a lexicon almost completely derived from Sp, but which to a large extent preserves the semantic and syntactic structures of Q. An example is given in /1/:

/1/ Q yalli-da tamia-pi-ga, mana ri-sha-chu
 ML dimas-ta llubi-pi-ga, no i-sha-chu
 too-much rain-SUB-TO, not go-1FU-NEG
 Sp si llueve demás, no voy a ir
 ‘if it rains too much, I won’t go’

Here we see that ML preserves the Q grammar almost completely: SOV word order, the use of verbal affixes (here the adverbial subordinator /-pi/) to indicate subordination, topic and negation marking (/-ga/ and /-chu/, respectively), person and tense affixation rather than inflection of a paradigm.

Sp irregular verbs are regularized in ML. As shown in the following chart, they derive from inflected or infinitive Sp forms:

/2/ ML Sp
 i- ir ‘go’
 (bamuchi vamonos ‘let’s go’)
 da/-dali- dar (dale) ‘give’
 bi- ver ‘see’
 azi- hacer ‘do’
 ri- reise ‘laugh’
 dintra- entrar/dentrar ‘enter’
 sabi- saber ‘know’

These verbs receive the normal Q affixes:

/3/ ML no sabi-ni-chu
 Q mana yacha-ni-chu
 Sp no sé
 ‘I don’t know’

/4/ ML ya i-gri-ni
 Q ña ri-gri-ni
 Sp ya me voy
 ‘I’m already going’

/5/ ML bos-mu da-ni-mi
 Q kan-mu ku-ni-mi
 Sp te doy a ti
 ‘I give to you’
Besides verb regularization we find several other processes of lexical adaptation of Sp vocabulary in ML, such as “freezing,” reduplication, and morphological regularization to fit the Q CVCV pattern:

/6/ “Freezing”: the combination in the ML lexicon of morphologically separate Sp forms:

<table>
<thead>
<tr>
<th>Sp</th>
<th>ML</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>no ha habido</td>
<td>nuwabishka</td>
<td>tiya-</td>
</tr>
<tr>
<td>no hay</td>
<td>nuwábi</td>
<td>tiy-</td>
</tr>
<tr>
<td>aún no</td>
<td>aunu</td>
<td>sint-</td>
</tr>
<tr>
<td>a mi</td>
<td>ami</td>
<td>sint-ri-</td>
</tr>
</tbody>
</table>

‘there has been no . . . ’ ‘there is no . . . ’ ‘not yet’ ‘me’ (non-nominative pron.)

/7/ Reduplication
ML yo-ga *bin-bin* tixi-y-da pudi-ni
Sp yo puedo tejer muy bien
‘I can weave very well’
ML anda-y *brebe-brebe* kuzina-ngi
Sp anda a cocinar breve
‘go cook quickly’

/8/ Morphological Regularization
Sp relój
ML relóxo
Q rilux
‘watch’

By far the most interesting process of adaptation of the Sp lexicon in ML has been relexification. Relexification, which will be more technically defined in the next section of this paper, can be described as the process of vocabulary borrowing in which the borrowed element adopts the meaning and use of the element in the receptor language for which it is substituted. Examples in ML are *sinta-* and *sinta-ri-:*

/9/ Q tiya-
ML sinta-
Sp estar sentado, vivir, estar, hay
‘sit’, ‘live’, ‘(loc. be)’, ‘there is’
In these cases, a single ML word is substituted for the Q word, preserving the various meanings of the latter even when in Sp each of these meanings may be expressed by a separate lexical item. Here the claim is made that relexification is in fact the general process responsible for the formation of the ML lexicon.

A very interesting and complicated case involves the ML verbs /kiri-/ 'wish' and /dizi- zı-/ 'want', 'say'. In Q two verbs exist which express wishing and wanting:

/10/ Q muna- 'wish'
 ni- 'want', 'say'

These verbs occur in constructions such as:

/11a/ Q papa-da muna-ni
 potatoAC wish-1sg
 'I want potatoes'

/11b/ papa-da ni-ni
 potatoAC want-1sg
 'I want potatoes'

/11c/ miku-na muna-ni
 eat-NOM wish-1sg
 'I want to eat'

/11d/ miku-sha ni-ni
 eat-1FU say-1sg
 'I say I'll eat', 'I want to eat'

In Q both verbs, /ni-/ and /muna-/, can take NP complements and infinitival complements. In the latter case, /ni-/ selects /-sha/ on the infinitive verb, and /muna-/ selects /-na/ or another marker.

In ML we find that: a) Q /muna-/ has been relexified as ML /kiri-/ 'want' (Sp 'querer'), and Q /ni-/ has been relexified as ML /(di)zi-/ 'wish', 'say' (Sp 'decir'); b) with NP complements only ML /kiri-/ occurs; and c) with infinitival complements /kiri-/ often gets /-na/ or another nominalizer, and /(di)zi-/ often, but not always gets /sha/ complements.

We notice that the relexification process has been only partial here. Whereas in Q the verb /ni-/ can take NP complements, the corresponding ML item /(di)zi-/ cannot. We will return to the alternation between /dizi-/ and /zi/ in the next section of this paper.
A second complex case of relexification involves the ML pronoun system. Consider the paradigm of personal pronouns in the three languages:

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>ML</th>
<th>Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ānuka</td>
<td>yo/ami+case</td>
<td>yo/me/mi</td>
<td>'I'</td>
</tr>
<tr>
<td>kan</td>
<td>bos</td>
<td>tu/te/ti</td>
<td>'you (intimate)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vos/te</td>
<td>'you (familiar)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>usted/le</td>
<td>'you (polite)'</td>
</tr>
<tr>
<td>pay</td>
<td>el</td>
<td>él/le</td>
<td>'he'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ella/le</td>
<td>'she'</td>
</tr>
<tr>
<td>ānukunchi</td>
<td>nustru</td>
<td>nosotros/nos</td>
<td>'we'</td>
</tr>
<tr>
<td>kan-guna</td>
<td>bos-kun</td>
<td>ustedes/les</td>
<td>'you (pl.)'</td>
</tr>
<tr>
<td>pay-guna</td>
<td>el-kuna</td>
<td>ellos/les</td>
<td>'they (m.)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ellas/les</td>
<td>'they (f.)'</td>
</tr>
</tbody>
</table>

The third column for this paradigm includes for Sp not only the nominative form but also the object clitic form and the non-nominative form where this differs from the nominative.

When we compare the three paradigms, we notice that the ML and the Q systems are very similar, and that /bos-kuna/ 'you (pl.)' is a direct relexification of Q /kan-guna/. Similarly, ML /el-kuna/ and Q /pay-guna/. The cases of ML /bos/ and /el/ are a little more complicated since both relexification and target simplification could be involved here; distinctions existing in Sp are lost. The only direct counter-example to relexification is the non-nominative personal pronoun ML /ami/, which was discussed already in /6/ as a case of freezing. This pronoun occurs with the Q case markers /-da/ 'acc.' and /-mu/ 'dat.' as in /13/:
In Table 3, all pronouns in the samples are listed, showing some deviations from the ML paradigm given in /12/. These will be discussed in the next section.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Personal Pronouns in the Three Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CF</td>
</tr>
<tr>
<td>I yo</td>
<td>31</td>
</tr>
<tr>
<td>ami+case</td>
<td>10</td>
</tr>
<tr>
<td>ami (obj.)</td>
<td>1</td>
</tr>
<tr>
<td>me (obj.)</td>
<td>1</td>
</tr>
<tr>
<td>miu (subj.)</td>
<td>1</td>
</tr>
<tr>
<td>II bos</td>
<td>11</td>
</tr>
<tr>
<td>bos-kuna</td>
<td>1</td>
</tr>
<tr>
<td>tu</td>
<td>1</td>
</tr>
<tr>
<td>III el</td>
<td>7</td>
</tr>
<tr>
<td>el-kuna</td>
<td>3</td>
</tr>
<tr>
<td>ele</td>
<td>1</td>
</tr>
<tr>
<td>1pl. nustru</td>
<td>3</td>
</tr>
<tr>
<td>nustrus</td>
<td>1</td>
</tr>
<tr>
<td>nosotros</td>
<td>1</td>
</tr>
<tr>
<td>ñukuchi</td>
<td>1</td>
</tr>
</tbody>
</table>

A final complex case of relexification to be discussed in this section involves derived verbs in Q. An important difference between the Q and the Sp lexicon is that in Q modal suffixes are present (which are combined with the relatively few Q verbal roots to form a complex system of verbal expressions) whereas in Sp every action is expressed through a separate verbal root. The semantic differentiation possible in the two systems is comparable.

The Q root /riku-/ ‘see’ offers an example of this difference in /14/; many other examples similar to that of /riku-/ could be given:
In ML we find three processes operant in the formation of complex verbal expressions: a) straightforward adoption of the Sp lexical item; b) adoption of the Sp root corresponding with the Q root, combined with the Q derivational suffixes; and c) adoption of an Sp root not corresponding to a Q root, combined with a Q derivational suffix. The combination of these three possibilities gives us the paradigm in /15/ which corresponds to /14/, and which is illustrated in Table 4:

<table>
<thead>
<tr>
<th>Q</th>
<th>ML</th>
<th>Sp</th>
<th>'see'</th>
</tr>
</thead>
<tbody>
<tr>
<td>riku-</td>
<td>(a) bi-</td>
<td>ver</td>
<td>'see'</td>
</tr>
<tr>
<td></td>
<td>(a) mustra-</td>
<td>mostrar</td>
<td>'show'</td>
</tr>
<tr>
<td></td>
<td>(b) bi-chi-</td>
<td>hacer ver</td>
<td>'make see'</td>
</tr>
<tr>
<td></td>
<td>(c) mustra-chi-</td>
<td>mostrar</td>
<td>'show'</td>
</tr>
<tr>
<td>riku-chi-</td>
<td>(a) parisi-</td>
<td>parecer</td>
<td>'appear'</td>
</tr>
<tr>
<td></td>
<td>(b) asoma-</td>
<td>asomar</td>
<td>'show up'</td>
</tr>
<tr>
<td></td>
<td>(b) bi-ri-n</td>
<td>se ve</td>
<td>'it is seen'</td>
</tr>
<tr>
<td>riku-ri-</td>
<td>(a) chapa-</td>
<td>chapar</td>
<td>'spy'</td>
</tr>
<tr>
<td></td>
<td>(b) bi-ra-</td>
<td>mirar fijamente</td>
<td>'stare'</td>
</tr>
<tr>
<td></td>
<td>(c) chapa-ra-</td>
<td>chapar</td>
<td>'spy'</td>
</tr>
</tbody>
</table>

When the Q has its literal meaning, often process (b) applies; when it has a derived meaning, (a) or (c) applies.

Table 4
The Verb 'to see' and Related Forms in the Three Samples

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>CI</th>
<th>MI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi-</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>be (imp.)</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ber (inf.)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bes (2sg)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

continued
Table 4 (continued):

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>CI</th>
<th>MI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>bi-ri-</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>asoma-</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>paris-</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bi-ra-</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>chapa-</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>chapa-ra-</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>bi-chi-</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>mustra-</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>mustra-chi-</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

In this section we have given a general description of ML; we have described some processes of vocabulary adaptation; and, in particular, we have presented some cases of relexification, showing its complexities. In the following section we will attempt a more technical definition of relexification as a specific type of vocabulary substitution; we will see in which ways relexification is constrained, how ML differs from Q syntactically, and along which dimensions we find variation in ML.

3. Relexification and Its Consequences

The previous section, describing different aspects of ML vocabulary, has already shown that one of the most interesting aspects of ML is the structure of its lexicon. If we accept the superficial definition of ML as a form of Q with Sp vocabulary, then ML must be seen as a compromise between the Q lexical system and the Sp one. We have already seen several instances of this compromise. Here the processes operating in it and the consequences it has for the grammar of the language will be studied more systematically. Specifically, the following questions will be discussed:

1) How can relexification and other types of vocabulary substitution be defined?
2) What linguistic constraints operate on vocabulary substitution?
3) In which way does the grammar of ML differ from that of Q, as a result of relexification?
4) Along which dimensions do we find variation in ML?

In order to give a technical definition of relexification, it is helpful to discuss the concept of lexical entry, as it has been defined in generative grammar. Jackendoff (1975) discusses this in detail. The lexicon of a language consists of an un-
ordered series of lexical entries, which are essentially bundles of various types of information. An example is the lexical entry for the English verb 'decide’, part of which is:

Here the phonological representation /decid/ is coupled with: 1) various syntactic features (specifying, among other things, that we are dealing with a verb); 2) subcategorization features (specifying that one of the complements of 'decide' is 'on NP’); 3) a semantic representation (left unspecified here but given in capitals); and 4) selectional features (indicating that the subject of 'decide' must be human, or at least animate).

Given the concept of lexical entry, relexification can be defined as the process of vocabulary substitution in which the only information adopted from the target language in the lexical entry is the phonological representation. This definition gives us the opportunity to define translexification as the process of vocabulary substitution in which, in addition to the phonological representation, all other levels of information are adopted from the target language as well. Schematically, these two options are given in /17/:
There are, of course, a number of outcomes intermediate between relexification and translexification, in which only some of the features of the target language item are adopted. Later in this section, we will see that the continuum between strict relexification and strict translexification is one of the parameters along which variation occurs in ML.

For relexification to occur, the semantic representations of source and target language entries must partially overlap; otherwise, the two entries would never be associated with each other. Other features of the two entries may, but need not, overlap. In ML, we find cases of relexification in which only part of the semantic representation of the two entries in Q and Sp overlaps, as in /18/, where the combination of the SP word *hambre* 'hunger' and the Q impersonal verb with animate object /yarika-(na)/ 'to be hungry' has led to the ML impersonal verb /ambri-na-/:

We have argued in the previous section that the major process operative in the creation of ML vocabulary was relexification. Consequently, we expect only those lexical categories to occur in ML that occur in Q. A survey of the different categories present in Q, Sp, and ML is given in /19/:
The expectation that the categories present in ML correspond to the categories in Q is largely borne out (as seen in /19/); however, there are several exceptions.

As shown in Table 5, several prepositions occur in the two samples CI and MI, but only /entre/ occurs in the formally elicited sample, CF.

Table 5
Prepositions in the Three Samples

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>CI</th>
<th>MI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>de</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>8</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>por</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>para</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>entre</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>komo</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hasta</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>sin</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>en</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>despwesitu</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

The instances of /entre/ in ML could be regarded as relexification of the Q post-nominal element /-pura/, as in /20/:

/20/ ML entre says-mi ga-nchi
Q sukta-pura-mi ga-nchi
 six-among-AF be-1pl
Sp somos seis
 ‘there are six of us’

In some ways, Q /-pura/ is distinct from the postpositions which mark case in Q and which can best be analyzed as case markers, not as elements of the category P. One of the rare instances of a true postposition (P) in Q may be /-pura/; hence, relexification as /entre/ would be expected. All other cases of Sp prepositions, with the exception of /despwesitu/ ‘after’, which occurs as an ML post-position (example /21/), will have to be considered as cases of code-switching in exclamations such as /por dyos/ ‘please’. Another instance of direct relexification is /21/:

/21/
MUYSKEN

/21/ML miza despwesitu kaza-mu i-naku-ndu-ga, ahí-bi buda da-naku-n
 Q miza k’ipa wasi-mu ri-naku-pi-ga, chi-bi buda ku-naku-n
Mass after house-to go-PL-SUB-TO there feast give-PL-3
Sp yendo a la casa después de la Misa, ahí dan una boda
‘going home after Mass, they then give a feast there’

Here /k’ipa/ may, again, be one of the few postpositions in Q. The alternative to
 treating the other cases of Sp prepositions as cases of code-switching is to assume
that in ML we find two systems: the Sp prepositional system in a few cases, and
the Q case marking system in the vast majority of cases.

 An example of the introduction of an Sp preposition through code-switching
as analyzed here is given in /22/:

/22/sikyera karga-bu-lla-ish, pero komi-nga-bu-lla-ish da-chun, sikyera para komir
 perhaps load-BEN-DIM-IND, but eat-NOM-BEN-DIM-IND give-SUB, perhaps
for eat
‘let them then give the food for a load, to eat, perhaps to eat’

Here /komi-nga-bu/, which contains the Q nominalizer /-nga-/ and the Q case
marker /-bu-/, is juxtaposed to /para komir/, which contains the Sp preposition
para and the Sp infinitive marker /-r/.

The case of conjunctions is complex. ML has adopted both the Sp and the
Q system of conjunctions (see Table 6). In Q, conjunctions are always cliticized
to the element on their left; but they are arguably generated as a separate phrase
structure category (unlike case markers). In Sp we find conjunctions as a separate
lexical category.

Table 6
Conjunctions in the Three Samples

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>CI</th>
<th>MI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>o</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>pero</td>
<td></td>
<td>11</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>sino ke</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2</td>
<td>24</td>
<td>11</td>
<td>37</td>
</tr>
</tbody>
</table>
Are the Sp conjunctions that we find in ML cases of relexification of Q categories, or cases of introduction from Sp? The latter seems correct because: 1) in ML the conjunctions are used as in Sp; 2) the conjunctions coexist with the Q cliticized conjunctions; and 3) in Q itself we find frequent borrowing of Sp conjunctions. Only two Sp conjunctions are found in the CF sample, the probable reason being that only relatively short sentences were elicited.

Thus, the introduction of Sp conjunctions into ML is the one exception to the idea that ML lexical categories, arising through relexification, correspond strictly to Q categories. This exception may be explained by the fact that conjunctions, which occur at discourse level, are less closely integrated into the grammar of the language and can be borrowed more easily. The category of complementizers, for instance, is a much more crucial part of sentence grammar. We will turn to it in the following discussion.

To summarize our treatment of relexification, we can draw the following conclusions from the case of ML:

1) The different components of a lexical entry function so independently of each other that (apparently) a phonological representation can be substituted into an entry without affecting the other sets of features (syntactic, subcategorization, semantic, selectional).

2) For relexification to occur, the only requirement is that source and target language lexical entries share some semantic features; other common features are not required, although they will often be present.

3) A language which emerged through relexification has the same lexical categories as its source. The morphosyntactic and syntactic categories, which are expressed in Q through affixation, have been maintained in ML.

What consequences did relexification have for the syntax of ML? In which ways does it diverge from that of Q? Remarkably, relexification had relatively few consequences, for example: word order; comparatives; reflexives; embedded wh-questions and complementizers:

Word Order

In some cases the subcategorization features of the relexified item were adopted from Sp as well, which led to word order changes in ML. In /23/ we see an example involving the Sp preposition /entre/, which has already been discussed; in /24/, the example shows how a prenominal adjective in Q is relexified as a postnominal adjective in ML:
On the whole, ML has maintained the SOV characteristics of Q, as can be seen in Table 7. Only 21 percent of the sentences in the three samples which contain both a verb and a complement in the VP (object, adverbial complement) show VX word order:

Table 7

VX vs. XV Word Order in the Three Samples

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>CI</th>
<th>MI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX</td>
<td>35</td>
<td>43</td>
<td>34</td>
<td>113</td>
</tr>
<tr>
<td>XV</td>
<td>160</td>
<td>132</td>
<td>125</td>
<td>417</td>
</tr>
<tr>
<td>VX/(VX+XV)</td>
<td>0.18</td>
<td>0.24</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>Not applicable</td>
<td>111</td>
<td>65</td>
<td>49</td>
<td>225</td>
</tr>
<tr>
<td>TOTAL</td>
<td>306</td>
<td>240</td>
<td>209</td>
<td>755</td>
</tr>
</tbody>
</table>

Comparatives

In Q, comparatives are formed with the uninflected verb /yalli/ 'surpass', which functions as a serial verb. The object with which something is compared receives /-da/ accusative case:

\[
/25/Q\quad \text{kan Huzi-da } yalli \text{ puri-nga} \quad \text{you José-AC pass walk-2sg} \quad \text{you walk faster than José}
\]

In ML /yalli/ is relexified as /gana-/ 'win', but it cannot appear uninflected:
Instead, /gana-/ must appear either in adverbial subordination with the /-sha/ marker, or in a coordinated clause:

\[27\] ML Xwan-mi Pedro-da gana-sha grande ga-n
John-AF Peter-AC win-SUB big be-3 'John is taller than Peter'

\[28\] Takunga-mi riko ga-n Salsedo-da gana-n
Latac.-AF rich be-3 Salcedo-AC win-3 'Latacunga is richer than Salcedo'

The impossibility of using uninflected /gana-/ in ML comparatives suggests that in some cases relexification can involve the simplification of a lexical entry. In Q /yall\i/ must be marked to indicate its occurrence in serial VP contexts as well as in S contexts. Only the latter context, which allows for person marking, is preserved in ML, i.e., the context available to all verbs in the language.

Reflexives
Reflexives in Q do not involve a reflexive pronoun as they do in Sp. Instead, /lladi/ 'just, precisely' is added to the subject NP:

\[29\] Q nuka-lladi riku-ni
I-just see-lsg 'I see myself'

With the 3rd person, /lladi/ is added to the adverb /shina/ 'thus':

\[30\] Q pay shina-lladi riku-n
he thus-just see-3 'he sees himself'

In ML, 3rd person reflexives are formed as in Q, with /shina/ being relexified as /asi/ 'thus' (from Sp asf), but 1st person reflexives involve a double pronoun construction:

\[31\] ML Huzi asi-lladi-mi mata-ka
José thus-just-AF kill-PA 'José killed himself'
This construction is limited to the 1st person since, as seen in /12/, only that person has a separate non-nominative pronoun, /ami/.

While the resulting ML double pronoun construction could of course be interpreted as an adaptation to Sp syntax, this is by no means the necessary conclusion. In Sp the reflexive pronoun is an unstressed clitic in preverbal position. The ML reflexive element is a strong form which also occurs in nonreflexive contexts, as in /13/. Of course we do find stressed postverbal pronouns in Sp emphatic reflexives:

/33/ Sp yo me veo a mi
 ‘I see myself’

In any case, the difference between Q and ML is specifically determined by a lexical element, /ami/, present in ML, absent in its source language.

Embedded Wh-Questions and Complementizers

In Q, embedded wh-questions are formed by fronting a wh-pronoun, as are nonembedded ones; but in addition they are nominalized, as are other embedded clauses. Compare /34a/ with /34b/ and /35a/ with /35b/:

/34a/ Q mana yacha-ni-chu [Xwan shamu-shka-da]
not know-1sg-NEG [John come-NOM-AC]
‘I don’t know that John has come’
/34b/ mana yacha-ni-chu [pi shamu-shka-da]
not know-1sg-NEG [who come-NOM-AC]
‘I don’t know who has come’
/35a/ mana yacha-ni-chu [Xwan shamu-na-da]
not know-1sg-NEG [John come-NOM-AC]
‘I don’t know that John will come’
/35b/ mana yacha-ni-chu [pi shamu-na-da]
not know-1sg-NEG [who come-NOM-AC]
‘I don’t know who will come’

Whereas the italicized nominalizers in /34/ and /35/ are part of the verb morphology, they are generally assumed to function as complementizers and are subcategorized by the matrix verb. The wh-pronoun /pi/ ‘who’, in /34b/ and /35b/, is fronted, but does not appear as the complementizer.
In ML, the situation is different. We find the */-na-/* and */-shka-/* nominalizers in sentential complements; but in embedded wh-questions we find ordinary verb inflection:

\begin{align*}
\text{\textbf{/36a/ ML no sabi-ni-chu [Xwan bini-}shka-da]} \\
& \text{not know-1 sg-NEG [John come-NOM-AC]} \\
\text{\textbf{/36b/ no sabi-ni-chu [kin bini-}rka]} \\
& \text{not know-1 sg-NEG [who come-PA]} \\
\text{\textbf{/36c/ *no sabi-ni-chu [kin bini-}shka-da]} \\
& \text{not know-1 sg-NEG [who come-NOM-AC]} \\
\end{align*}

The contrast between \textbf{/36/} and \textbf{/34/} (a similar situation holds for \textbf{/35/}) suggests that in ML (where in embedded wh-questions the ordinary past tense marker */-rka-/* occurs instead of the nominalizer */-shka-/*), the wh-element does function as the complementizer.

It would be tempting to interpret this development as the beginning of a typological shift from a COMP-final system (like Q) to a COMP-initial one (like Sp). The problem is that no or few other cases of clause-initial complementizers occur in ML. In Table 8 the data are given for */ki/* ‘that’, */porke/* ‘because’, and */aunke/* ‘although’:

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
 & CF & CI & MI & Total \\
\hline
ki & 5 & 1 & & 6 \\
porke & & 3 & & 3 \\
aunke & 1 & 2 & & 3 \\
\hline
\end{tabular}
\caption{The Complementizer */ki/* in the Three Samples}
\end{table}

The three cases are somewhat different and will be analyzed separately. The ‘that’ complementizer */ki/* occurs as an alternative to */-shka-/* and */-na-/* complementation. Consider \textbf{/37/}:

\begin{align*}
\text{\textbf{/37/ no be}} \text{ ki no i-sha-chu diz-i-}n \\
& \text{not see that not go-1FU-NEG say-3} \\
& \text{no ve que dice que no irá} \\
& \text{‘don’t you see he does not want to go?’}
\end{align*}