Allosterically-controlled threading of polymers through macrocyclic dimers

Seda Cantekin*, Albert J. Markvoortb, Johannes A. A. W. Elemansa, Alan E. Rowana, and Roeland J. M. Noltea*

aRadboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
bInstitute for Complex Molecular Systems and Computational Biology Group, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
*E-mail: r.nolte@science.ru.nl / s.cantekin@science.ru.nl

Abstract
As part of an ongoing study to construct a molecular Turing machine in which a polymer substrate could be encoded via information transfer, we describe the thermodynamic and kinetic characterization of a multicomponent self-assembly based on a zinc porphyrin macrocyclic compound, a bidentate ligand (1,4-diazabicyclo[2.2.2]octane, DABCO) and a viologen substituted polymer guest. Initial addition of DABCO to the porphyrin macrocycle in chloroform solution leads to the formation of a stable 2:1 (porphyrin:DABCO) dimeric complex exclusively, even under dilute conditions, by means of strong cooperative interactions involving hydrogen and metal-ligand bonds. Further titration of the porphyrin-DABCO mixtures with the polymer gives rise to a complex array of species in the solution. The system is analyzed in detail by spectroscopic measurements and computational modeling. Each association constant in the binding scheme and the fraction of each individual complex that is formed in solution are determined precisely using a mass-balance model. Studies on kinetics of the polymer threading and dethreading revealed that the rates of the polymer threading in and out of the dimeric system are remarkably slow, indicating that the polymer is locked inside the cavity of the stable 2:1 dimeric complex as a result of strong allosteric interactions.
Introduction

Cooperative effects that are observed in the binding of two or more substrates to different binding sites of a receptor as a result of a conformational change caused by the binding of the first substrate are called allosteric interactions.\(^1\) Allosteric regulation is a widely observed mechanism in biological systems and is used to control the function of proteins and enzymes in cellular metabolism. The application of cooperative interactions as used by Nature to construct multicomponent self-assembled systems and to control functions such as molecular recognition, signal amplification, reactivity, and catalysis has been an intriguing field of research for organic and bio-organic chemists.\(^1\)–\(^8\) Over the years, various multicomponent systems displaying positive\(^9\)–\(^12\) and negative\(^13\)–\(^15\) homotropic\(^16\) and heterotropic\(^17\)–\(^18\) cooperative binding phenomena have been developed. In these systems, the binding affinity of one component to one site can affect the affinity of the other site by means of steric, conformational or electrostatic communication.\(^19\) In order to be able to mimic the processes observed in complex enzyme systems (e.g. information transfer in DNA replication) with these synthetic supramolecular models, the nature of the interactions between the individual components in the synthetic multicomponent assemblies should be understood; the fraction of possible complexes formed, as well as the kinetic and thermodynamic parameters of the system, should be quantified accurately. We previously reported on a simple and efficient procedure for deriving cooperative binding effects from experimentally obtained kinetic and thermodynamic data, which can be used as a guide to study synthetic and natural cooperative binding systems.\(^20\) Furthermore, we showed that the binding affinity of a guest can be enhanced by means of allosteric interactions in a multicomponent self-assembled system based on a combination of host–guest and metal–ligand interactions.\(^21\) This previously described system consisted of a cavity-appended porphyrin host and various combinations of ligands and substrates such as 4-tert-butylpyridine, 1,4-diazabicyclo[2.2.2]octane (DABCO), and dimethylviologen. In this synthetic system the binding affinity of DABCO was enhanced in the presence of viologen, which resulted in the formation of a 1:1:1 complex (macrocycle:DABCO:viologen); however, the equilibrium of a double-decker complex with two macrocycles assembled by DABCO and viologen (macrocycle:viologen:DABCO:macrocycle:viologen; pentameric complex) was not directed to full assembly, as a result of negative cooperative effects.\(^21\) Further studies revealed, however, that in the presence of stabilizing hydrogen bonding hydroxyl groups on the porphyrin roof of the host, the two cage compounds self-assembled much more favorably into
the above mentioned pentameric complex, which was formed nearly quantitatively when sufficiently high concentrations of macrocycle, DABCO and viologen were used (~1 mM).

The presented work is aimed at the construction of a molecular Turing machine, which consists of a catalytically active double-cage system, that writes the information on a polymeric thread in one cage using instructions that are obtained from the other cage by means of cooperative and allosteric interactions. Therefore, we study the binding behavior and threading kinetics of a viologen-substituted polytetrahydrofuran (polyTHF) polymer (P) through a dimeric system based on Zn-tetrahydroxy-porphyrin (M) and the ligand DABCO (D) (Figure 1a). A stable 2:1 (porphyrin:DABCO) dimeric complex is formed when DABCO is added to a dilute porphyrin macrocycle solution, as a result of cooperative hydrogen bonding and metal-ligand interactions. The binding affinity of the viologen-substituted polymer inside of the cavity is enhanced in the presence of the ligand DABCO as a result of allosteric interactions. Consequently, a large fraction of a pentameric complex is formed even in dilute solutions (Figure 1b). We quantify the fraction of each species that is present in the solution as well as the corresponding association constants by using a mass-balance method. This methodology allows us to extract distinct spectral data of the individual species from overlapping UV-vis and fluorescence emission spectra. Analysis on the dethreading and threading kinetics revealed that the enhanced binding affinity of the polymer inside the cavity leads to changes in the kinetics of the polymer threading. A remarkably slow dethreading rate of the polymer from one of the cages in the pentameric complex is observed indicating that the complex is held together by means of strong cooperative interactions and that the polymers are locked in the cavities of the self-assembled complex. In addition, the reverse process that is the threading of one polymer through the unoccupied cage, while the other cage is already threaded by polymer, is also very slow suggesting that the open end of the polymer chain interferes with the unoccupied cavity and delaying the threading of the second polymer. The study represented here shows that the information transfer is possible between two cages and is expressed by means of allosteric interactions.
Figure 1. (a) Chemical structures of the compounds and the corresponding cartoons: Zn-tetrahydroxy-porphyrin macrocycle (M), DABCO ligand (D), and viologen-functionalized polytetrahydrofuran polymer (P). (b) Schematic representation of the pentameric complex (M₂D₂₅).

Results and Discussion

Thermodynamics of polymer threading through macrocyclic dimers

Macrocycle M and viologen-functionalized polymer P were synthesized according to the previously published procedure with slight modifications.22,26 (see the Supporting Information section 2). The binding of DABCO and polymer to M was studied by using UV-vis and fluorescence spectroscopy in dilute chloroform solution. The UV-vis spectrum of the macrocycle M shows a Soret band (λ_max) at 421 nm ([M] = 5.5 µM, Figure 2a, black line). The absorption spectrum of M displays a broader band compared to that of the previously studied porphyrin macrocycle without OH groups23 (see the Supporting Information Figure S2), which is presumably the result of hydrogen-bonding effects in dilute chloroform solution. The initial addition of DABCO (0.55-20 mol equiv) to a solution of M in CHCl₃ resulted in a red shift of the λ_max from 421 to 426 nm (Figure 2a, see the Supporting Information Figure S3a for the complete spectra). Upon further addition of DABCO (500-1000 mol equiv) the intensity of the band at 426 nm decreased and a new band appeared at 428 nm. The gradual red shift of the λ_max is characteristic for the formation of 2:1 and 1:1 porphyrin-DABCO complexes, as was previously reported.19-24,27 Therefore, the three distinct peaks in the UV-vis spectra of M and DABCO mixture are assigned to three species: free macrocycle M (λ_max = 421 nm), M₂D complex (λ_max = 426 nm) and MD complex (λ_max = 428 nm). Similar titration experiments performed under identical conditions by using the monodentate ligand 4-tert-butyl pyridine
and M did not result in a similar gradual red shift in the UV-vis spectra of M. On the contrary, the absorption spectra displayed a sharp transition from 421 nm to 428 nm upon addition of 4-tert-butyl pyridine, which indicates that only the 1:1 complex is formed (see the Supporting Information Figure S3b). Furthermore, the UV-vis spectra of the porphyrin macrocycle without the OH groups in chloroform showed a similar sharp transition upon the addition of DABCO, indicating the formation of only a 1:1 complex in the absence of hydrogen-bonding interaction (see the Supporting Information Figure S3c). Figure 2b shows the complexation isotherms for M and DABCO at three different wavelengths. This figure suggests that upon the addition of DABCO the concentration of free macrocycle M decreases (squares), while the concentration of M2D (circles) and MD (triangles) increases. Finally, in the presence of excess DABCO the concentration of M2D decreases again while the concentration of MD further increases. Figures 2a and 2b also illustrate that the two equilibria take place simultaneously and that the UV-vis absorption bands of M, MD, and M2D overlap. Therefore, the abundance ratio of the species cannot be determined simply from the maximum absorbance values at individual wavelengths. Instead, we extracted the spectra of the individual species from the measured spectra using a mass-balance model. In our model, we assumed that only M, MD and M2D are present in the solution and that the concentration of the species formed is determined by two equilibrium constants, K_{M-D} and K_{MD-M} (Figure 2c). For given values of these association constants, the fraction of the macrocycle present as free M and as a component in a MD and a M2D complex were calculated for different DABCO concentrations (see Supporting Information sections 5 and 6). Given these fractions and the experimental UV-vis spectra for solutions containing three different DABCO concentrations, one can calculate which unique combination of the spectra for the three individual species would yield these experimental curves (see Supporting Information section 7). The values for the equilibrium constants K_{M-D} and K_{MD-M} were then optimized such that the spectra for the three individual species, as extracted from multiple different sets of three experimental curves, were most alike. The resulting UV-vis spectra (for optimized values of $K_{M-D} = 1 \times 10^4$ M$^{-1}$ and $K_{MD-M} = 3 \times 10^6$ M$^{-1}$) of each pure species M, M2D and MD, are shown in Figure 2d. Figure 2e shows the fractions of the macrocycle in the unbound macrocycle M, and as a component in M2D and MD as a function of DABCO concentration, which were extracted by the fit. By combining these spectra for the individual species in Figure 2d and these fractions in Figure 2e, UV-vis spectra for the different macrocycle-to-DABCO ratios were reconstructed (Figure 2f), and these were then validated by comparison with the experimentally obtained curves in Figure 2a. Figures 2a and 2f are in good agreement (see the
Supporting Information Figure S8a-8b for the complete UV-vis spectra). The analysis of the UV-vis spectra reveals that M is complex of major abundance when [D]<<[M], at increasing concentration of DABCO M2D is formed, and MD becomes the dominating species when [D]>>[M]. In the presence of 20 mol equiv of DABCO the fraction of M residing in M2D complex rises to 75%, whereas the fraction of M present in MD is almost 70% in the presence of 1000 mol equiv of DABCO. The association constant K_{M,D}, is in good agreement with data for the binding of DABCO to the porphyrin macrocycle without OH groups, obtained from NMR titrations in a 1:1 chloroform/acetonitrile mixture (c_{porphyrin} = 1 mM, K = 5 × 10^4 M^{-1}, in which only 1:1 complex formation was observed).14

Figure 2. Titration of macrocycle M with D in CHCl₃ ([M] = 5.5 μM). (a) Selected UV-vis spectra during the course of the titration. Mol equiv of D are indicated (see the Supporting Information Figure S3a for the complete set of spectra). (b) Change in UV-vis absorbance of M at three different wavelengths (421, 426, 428 nm) as a function of mol equiv of DABCO. (c) Schematic representation of the three species formed as a result of binding of D to M and the binding scheme. (d) UV-vis spectra of the individual species extracted from the experimental data using the mass-balance model. (e) Fraction of the macrocycle as M unbound to DABCO, as a component in M2D and MD as a function of mol equiv of DABCO obtained from the fit. (f) Reconstructed UV-vis spectra based on Figures 2d and 2e, the fractions were computed using the optimized values of K_{M,D} = 1 × 10^4 M^{-1} and K_{MD-M} = 3 × 10^6 M^{-1} (see the Supporting Information Figure S8b for the complete set of spectra).

We further analyzed complex formation by using NMR spectroscopy; despite the fact that the concentration used for the ^1H-NMR analysis ([M] = 1.4 mM in CDCl₃) is higher than that of interest for the threading studies (see below). The β-pyrrole proton signals of M (at 9.1
and 8.9 ppm) showed a typical upfield shift (to 8.6 and 8.3 ppm, respectively) upon the addition of DABCO, indicating coordination of the ligand to the porphyrin roof (see the Supporting Information Figure S10). Furthermore, a characteristic peak below −5 ppm, arising from six methylene protons of the DABCO residing between two porphyrin cages, indicates the formation of an \(\text{M}_2\text{D} \) complex. The formation of the \(\text{MD} \) complex in the presence of excess DABCO (4 mol equiv) was not observed. Based on the equilibrium constants derived above, indeed much higher concentrations of DABCO would be required in order to obtain significant amounts of \(\text{MD} \) so that it can be detected by NMR (\textit{vide infra}, Figure 5).

After the evaluation of the binding equilibria between \(\text{M} \) and \(\text{D} \), we analyzed the binding of polymer \(\text{P} \) to the macrocycle by UV-vis spectroscopy. The Soret band of \(\text{M} \) displayed a typical red shift (7 nm) as a result of binding of 1 mol equiv of viologen in the cavity of the host, resulting in formation of a 1:1 \(\text{MP} \) complex ([M] = 5.5 μM in CHCl\(_3\)) (see the Supporting Information Figure S11a). Binding experiments performed with complexes \(\text{M}_2\text{D} \) (50 mol equiv of DABCO) and \(\text{MD} \) (1000 mol equiv of DABCO) under identical conditions resulted in a slight red shift of the Soret band, which suggests the formation of DABCO-containing polymer-threaded complexes \(\text{M}_2\text{DP} \), \(\text{M}_2\text{DP}_2 \), and \(\text{MDP} \) (see the Supporting Information Figure S11b-11c). The absorption maxima of these complexes are not distinguishable from those of \(\text{M}_2\text{D}, \text{MD} \) and \(\text{MP} \) by UV-vis spectroscopy. Therefore, we continued our binding studies with fluorescence spectroscopy and determined the binding constants from the titration curves obtained using that technique.

Fluorescence spectroscopy is a tool that is commonly used to analyze the interaction of porphyrin receptors with various acceptor compounds, e.g. viologen derivatives.\(^ {28} \) Previous studies showed that the binding of viologen derivatives inside the porphyrin macrocycle results in the quenching of the fluorescence emission of the porphyrin, and the fraction of porphyrin-viologen complexes in the mixture can be quantified by the decrease in fluorescence intensity.\(^ {22,29} \) Therefore, we wanted to analyze the binding behavior of the polymer through the cavities of the double-cage system, \(\text{M}_2\text{D} \), by fluorescence spectroscopy. We first started with the evaluation of the binding equilibria between macrocycle (\(\text{M} \)) and DABCO (\(\text{D} \)) in the absence of polymer. The fluorescence emission of \(\text{M} \) was measured upon addition of DABCO ([M] = 1 μM in CHCl\(_3\), T = 295 K, \(\lambda_{\text{ex}} = 421 \text{ nm} \)). The intensity of the fluorescence signal slightly decreased (20% quenching in the presence of 3 mol equiv of DABCO) during the course of addition while a red shift (from 641 nm to 651 nm) and a
change in the shape of the fluorescence signal were observed as a result of DABCO coordination to the macrocycle (Figure 3a). After that, a similar fluorescence titration was performed between macrocycle \(M \) and polymer \(P \) in the absence of DABCO under identical conditions. Upon addition of the polymer the intensity of the fluorescence signal of \(M \) decreased and 95% quenching was observed in the presence of 1 mol equiv of polymer (Figure 3b). This suggests that the majority of the macrocycle is threaded by the polymer forming a 1:1 \(MP \) complex.\(^{29}\) We extracted the fluorescence spectra and the fraction of each species formed that is \(M, M_2D, MD \) and \(MP \), from Figures 3a and 3b by using the binding model described in Figure 2c (see the Supporting Information section 10), and reconstructed the individual fluorescence spectra by combining those. The spectra of the individual species depicted in Figure 3c indicate that the reconstructed fluorescence spectrum of \(M \) is in good agreement with that of experimental fluorescence spectrum and the spectra of the different species (\(M, M_2D, MD \) and \(MP \)) indeed overlap. Furthermore, polymer-threaded 1:1 complex, \(MP \) hardly contributes to the fluorescence signal. The association constants, \(K_{M-D} = 1.5 \times 10^4 \) \(M^{-1} \) and \(K_{MD-M} = 5 \times 10^6 \) \(M^{-1} \), were obtained for DABCO-macrocycle binding by fitting the fluorescence curves in Figure 3a with the model (see the Supporting Information section 10.1). These association constants are slightly higher than those obtained from the UV-vis curves above, however, they still lie in the valley of the contour plot obtained for the UV-vis titration data (\textit{vide supra}, see the Supporting Information section 7, Figure S6) and thus fit both experiments. The slight difference may be due to deviations in the exact experimental concentrations of the mixtures during the UV-vis and fluorescence measurements. The association constant derived for the binding of the macrocycle and the polymer in the absence of DABCO is calculated as \(K_{M-P} = 3 \times 10^7 \) \(M^{-1} \) (see the Supporting Information section 10.2).
Figure 3. Analysis of binding between M, D and P as measured with fluorescence spectroscopy ($\lambda_{ex} = 421$ nm, $[M] = 1 \mu$M in CHCl$_3$, T = 295 K). Mol equiv of the added compounds are indicated. Fluorescence emission spectra of (a) M upon addition of D. (b) M upon addition of P. (c) The fluorescence spectra of the individual species extracted from the experimental data and the fractions predicted by the mass-balance model. (d) MD (M:D = 1:1000) upon addition of P. (e) MD (M:D = 1:20) upon addition of P. (f) Fraction of the macrocycle within different complexes as a function of mol equiv of the polymer in the presence of 20 mol equiv of DABCO.

After analyzing the binding equilibria between M-D and M-P respectively, we studied the binding behavior of the polymer to the complexes MD and M$_2$D by performing titration experiments under identical conditions. Upon addition of 1 mol equiv of polymer to MD (M:D = 1:1000 in which MD complex is in majority) the polymer is threaded through the cavity of the MD and MDP forms exclusively, which results in the almost complete quenching of the fluorescence signal (Figure 3d). Next, the polymer is added into M-D mixture (M:D = 1:20) in which the dimeric M$_2$D complex is in majority. During the course of polymer addition the intensity of the fluorescence signal decreased suggesting the threading of the polymer through the cavities of the complexes to form M$_2$DP and M$_2$DP$_2$. In the presence of 1 mol equiv of polymer the fluorescence emission signal was not fully quenched, which is presumably due to the unoccupied cavity in M$_2$DP. In order to fully quench the fluorescence signal 2 mol equiv of polymer was needed (Figure 3e). During the titration of M$_2$D with polymer, a two-step process was not observed for the binding of the polymer to each cavity (see the Supporting Information Figure S15c). M$_2$DP and M$_2$DP$_2$ were formed
simultaneously. This will be shown again in the phase diagrams in the next section (vide infra Figure 5a and 5b).

The interpretation of the fluorescence data was performed in a similar fashion as for the UV-vis curves described in the previous section. In the presence of three components, M, P and D, multiple interactions take place and the spectra of the different complexes overlap. The fluorescence spectra for the titration of polymer P into solutions containing M-D complexes were analyzed by taking into account the additional binding constants for the formation of MDP, M₂DP and M₂DP₂ and their contribution to the fluorescence signal. For each mixture, theoretical fluorescence spectra were calculated by using the fraction of species determined by the mass-balance model and the spectra of the individual species in Figure 3c. Assuming the contribution of MDP to the fluorescence signal is very small as was in the case of MP, the association constant $K_{\text{MP-D}} = 4 \times 10^4 \text{ M}^{-1}$ could be determined (see Supporting Information Figure S15). The binding affinity of D to M in the presence of polymer is almost 3 times larger than that in the absence of polymer ($K_{\text{M-D}} = 1.5 \times 10^4 \text{ M}^{-1}$) as a result of allosteric effects observed earlier for the binding of dimethylviologen to the porphyrin cavity in the presence of DABCO.²¹ Similarly the binding of the polymer to M shows a 3-fold increase in the presence of D ($K_{\text{M-P}} = 3 \times 10^7 \text{ M}^{-1}$ and $K_{\text{MD-P}} = 9 \times 10^7 \text{ M}^{-1}$). Assuming that the contribution of all polymer-threaded macrocycles to the fluorescence signal are identical (and all very small) and the contribution of the unthreaded macrocycle in M₂D to the fluorescence signal is equal to that of one macrocycle in M₂D, the association constants for $K_{\text{MDP-M}} = 9 \times 10^6 \text{ M}^{-1}$ and $K_{\text{MDP-MP}} = 3 \times 10^6 \text{ M}^{-1}$ could be determined from the fluorescence spectra of the 1:20 M:D mixture (see Supporting Information Figure S16). This implies that the association constant for the binding of the polymer in one of the cavities of M₂D to form M₂DP, $K_{\text{M₂DP}} = 1.4 \times 10^8 \text{ M}^{-1}$ is 1.6 times larger than that for the binding of polymer in the cavity MD to form MDP $K_{\text{MDP}} = 9 \times 10^7 \text{ M}^{-1}$, whereas the binding constant of the second polymer to the vacant cavity of M₂DP in order to form the pentameric complex, M₂DP₂ is smaller ($K_{\text{M₂DP₂}} = 1 \times 10^7 \text{ M}^{-1}$). The equilibrium constant for the binding of the second polymer to form the pentameric complex, $K_{\text{M₂DP₂}}$, is not the largest equilibrium constant in the system. This does not mean, however, the fraction of M₂DP₂ is not the largest since the fraction of a species cannot be extracted from a single equilibrium (constant) but only from the whole mass-balance as a complete system (Figure 4). The presence of significant amounts of the pentameric complex, M₂DP₂, relative to MDP, depends on whether the ratio; $[\text{M₂DP₂}]/[\text{MDP}] = K_{\text{MDP-MP}} \times K_{\text{M-P}} \times [\text{M}] \times [\text{P}]$ is larger or smaller than 1, which is also dependent on all other equilibrium constants since [M] and [P] are the free
macrocycles and free polymer concentrations that are present in the solution determining the whole mass-balance (see the Supporting Information section 5, equations for \([\text{M}_2\text{DP}_2]\) and \([\text{MDP}]\)). The calculated fraction of \(\text{M}\) residing in various complexes as a function of the polymer concentration in the presence of 20 mol equiv of DABCO is shown in Figure 3f. In the presence of 2 mol equiv of polymer, the concentration of \(\text{M}_2\text{DP}_2\) is 0.2 \(\mu\)M, which indicates that 40% of the macrocycle is present in the form of the pentameric complex. Therefore, in the presence of at least 1 mol equiv of polymer, the highest fraction of the macrocycle is present in \(\text{M}_2\text{DP}_2\). As a result of allosteric interactions between the host, macrocycle, the ligand DABCO and the guest, viologen-functionalized polymer, the polymer-threaded double-decker macrocycle complex is formed as the major species at these dilute concentrations.

Figure 4. Binding scheme showing all possible complexes and equilibria involving \(\text{M, D, and P}\) with corresponding association constants.

Using the above derived equilibrium constants; the concentration of the macrocycle residing in each species was also calculated as a function of the DABCO concentration for different conditions (Figure 5). It is clearly represented in Figure 5a that \(\text{M}_2\text{DP}\) (dark yellow line) is present in solution when \([\text{D}] = 20 \mu\)M and \([\text{P}] = 1 \mu\)M while the assembly is fully
directed towards $M_{2}D_{2}$ (black line) when $[D] = 20 \mu M$ and $[P] = 2 \mu M$ (Figure 5b). Furthermore, $M_{2}D$ (green line) is the complex of major abundance in the presence of 0.5 mol equiv DABCO and the 1:1 MD complex only forms in the presence of excess DABCO (> 0.1 M) in solution (Figure 5c). Therefore, the MD complex was not observed in the NMR titration of the macrocycle with DABCO where $[M] = 1.4$ mM and $[D] = 5.6$ mM (vide supra). The ratio of $M_{2}D_{2}$ is almost 100% when $[D] = 0.5$ mM and $[P] = 1$ mM (Figure 5d). These phase diagrams showing the precise distribution of the species will be useful for the (de)threading kinetics described in the next section.

Figure 5. Calculated fractions of the macrocycle within different species as a function of mol equiv of DABCO under various conditions based on the equilibrium constants obtained from fluorescence titration experiments. (a) $[M] = 1 \mu M$ and $[P] = 1 \mu M$. (b) $[M] = 1 \mu M$ and $[P] = 2 \mu M$. (c) $[M] = 1$ mM, in the absence of polymer. The concentration of M present in the form of $M_{2}D_{2}$ (dark yellow line), $M_{2}D_{2}$ (black line), $M_{2}D_{2}$ (purple line) and M_{2} (pink line) is 0 in the absence of polymer. (d) $[M] = 1$ mM, in the presence of polymer, $[P] = 1$ mM. Under these conditions the equilibrium is directed to the full assembly of $M_{2}D_{2}$ therefore the concentration of M present in the form of $M_{2}D_{2}, M_{2}, M_{2}$ is 0 in the plot.
Kinetics of polymer threading through the macrocyclic dimers

After analyzing the thermodynamics of the binding behavior of the polymer to the double-cage M_2D system, we studied the threading and dethreading kinetics of the polymer P through the cavities in M_2D and compared these with those of single-cage, monomeric system M. First, we determined the threading rate constant of the polymer through unbound macrocycle M, which is more straightforward in the presence of only two components M and P. To a known volume of macrocycle $M ([M] = 2 \mu M$ in CHCl$_3$), 1.0 mol equiv of polymer solution was added at 295 K and the fluorescence emission intensity of M was measured as a function of time. The fluorescence intensity decreased over time, indicating that the macrocycle finds the open end of the polymer and threads onto the polymer chain, eventually reaching the viologen trap, after which the fluorescence of the porphyrin is quenched (Figure 6a)22,29. The rate of threading follows second-order kinetics, thus the slope of the plot of $1/[M]$ against time gives the threading rate constant $k_{\text{on-}M-P}$ (inset of Figure 6a)22. The fits revealed that the threading rate of the polymer through macrocycle M ($k_{\text{on-}M-P} = 2.3 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$) is similar to the value determined previously in CHCl$_3$/CH$_3$CN solution (1:1, v/v)29. The dethreading rate of the polymers from MP was measured by adding a known amount of a concentrated solution of the complex ($c = 1 \text{ mM, M:P in MP = 1:1}$) to CHCl$_3$ (2 mL) and measuring the fluorescence emission over time (Figure 6b). Upon dilution, the polymer and the macrocycle dissociate and a new equilibrium is reached. Previous studies showed that the dethreading is a first-order process, thus the slope of $\ln([\text{complex}] - [M])/[\text{complex}]$ against time gives the k_{off} value (insets of Figure 6b)22 which is equal to $0.8 \times 10^{-3} \text{ s}^{-1}$ for the dethreading of P from MP (Table 1).

As shown in Figure 2e, the dimeric complex, M_2D is not the only species in solution when $[D] = 20 \mu M$ and $[M] = 1 \mu M$ (the fraction of M is 70% in M_2D, 15% in MD and 15% in the form of unbound M). Therefore, the threading rate constant of the polymer through M_2D ($k_{\text{on-}M_2D-P}$) could not be measured directly. Furthermore, as shown in Figure 3d and 3e, the formation of M_2DP and M_2DP_2 cannot be differentiated in a step-wise manner by titration. Therefore, we are interested in determining the threading rate constant of one polymer through the unoccupied cavity in M_2DP. In order to do that, the dethreading rate ($k_{\text{off-}M_2DP_2}$) of one polymer from one of the cavities in M_2DP_2 to form M_2DP was measured and the threading rate constant of the polymer through the unoccupied cavity in M_2DP ($k_{\text{on-}M_2DP-P}$) was derived from K_a ($K_a = k_{\text{on}}/k_{\text{off}}$). A known amount of a concentrated solution of the M_2DP_2 complex ($c = 1 \text{ mM, M:D:P = 1:0.5:1}$). The fraction of M_2DP_2 in the mixture is almost 100%
when $[M] = 1$ mM, $[D] = 0.5$ mM and $[P] = 1$ mM, as shown in Figure 5d) was added to CHCl₃ (2 mL) and the fluorescence emission was measured over time (Figure 6c). Upon dilution to 1 µM concentration, the pentameric complex dissociates and a new equilibrium is reached for a new composition, which is mainly MP and M. (The equilibrium is shifted from the assembly state presented in Figure 5d to the one in Figure 5a). Figure 5a shows that the new composition includes M₂DP (which is 4% of the total macrocycle concentration) in the solution when $[M] = 1$ µM $[D] = 0.5$ µM and $[P] = 1$ µM, indicating that the new equilibrium is reached via the M₂DP complex. The dethreading of one polymer from one of the cavities in M₂DP₂ leads to the formation of MDP, M and P, which further dissociates to MP, M and D in solution (vide supra Figure 4). The rate constant of dethreading of P from M₂DP₂ was calculated by fitting the experimental data as described above giving the value of $k_{\text{off-M₂DP-P}} = 7.0 \times 10^{-6}$ s⁻¹ (Table 1).²²

Figure 6. Threading studies. Fluorescence emission as a function of time. (a) Threading of P (1 mol equiv) through M. $[M] = 2$ µM (b) Dethreading of P from MP. $[M] = 1$ mM, $[P] = 1$ mM. (c) Dethreading of P from M₂DP₂. $[M] = 1$ mM $[D] = 0.5$ mM $[P] = 1$ mM. Monitored at 649 nm. Fits are obtained from first-order (dethreading) and second-order (threading) rate laws.
Table 1 | Calculated threading and dethreading rate constants for, MP and M2DP, as determined by the first-
and second-order reaction rate laws, respectively.

<table>
<thead>
<tr>
<th>Complex</th>
<th>k_{on} ($M^{-1}s^{-1}$)</th>
<th>k_{off} (s^{-1})</th>
<th>K (M^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP</td>
<td>2.3×10^4</td>
<td>0.8×10^{-3}</td>
<td>$K_{M-P} = 3.0 \times 10^7$</td>
</tr>
<tr>
<td>M2DP</td>
<td>7.0×10^4</td>
<td>7.0×10^{-6}</td>
<td>$K_{M2DP-P} = 1.0 \times 10^7$</td>
</tr>
</tbody>
</table>

The dethreading rate constant of the polymer from M2DP, $k_{off-M2DP-P}$, is remarkably smaller
than $k_{off-M-P}$, suggesting that the polymer is held within the cavity of the macrocycle in the
pentameric complex much stronger due to allosteric interactions between host, guest and the
ligand. This leads to a very slow dissociation rate of the polymer from the complex. The rate
constant for the threading of the polymer through the unoccupied cavity of M2DP was obtained from $K_a (= k_{on}/k_{off})$, which is also very low ($k_{on-M2DP-P} = 7.0 \times 10^4 M^{-1} s^{-1}$) compared
to k_{on-M-P}. This may be due to the occupation of the second cavity by the open end of the
already threaded-polymer. Previous studies on the mechanism of polymer threading revealed
that the threading may follow either an intermolecular or intramolecular pathway. In the
former case the macrocycle finds the open end of the polymer chain and threads on it while
during an intramolecular pathway the polymer first interacts with the outside of the
macrocycle and subsequently threads on it. The formation of a viologen-macrocycle complex
on the outside of the host enhances the chance of loop formation facilitating the threading of
the open end of the polymer chain through the cavity of the host. In this case the threading
rate is dependent on the effective molarity of the reactive components that is the cavity and
the open end of the chain. Similarly, in a dimeric M2DP system the open end of the polymer
chain residing in one cavity may block the second cavity via a looping mechanism, thereby
delaying the threading of a second polymer through this cavity (Figure 7). The remarkably
slow threading and dethreading rates of a polymer through and from a dimeric system suggest
that there is a communication between the two cages via allosteric interactions between
macroyclic host, ligand DABCO and polymeric guest.
Figure 7. Schematic representation of the macrocyclic dimer in which the second cavity is blocked by the open end of the polymer residing in the first cavity.

Conclusions

In conclusion, we have studied the thermodynamics and kinetics of the binding process of a viologen-substituted polymer to a macrocyclic dimer consisting of zinc porphyrin host and the ligand DABCO. The binding process of the polymer to the cavities of the dimer led to a complex array of species in solution. We have analyzed the binding equilibria of the polymer-host-ligand combinations by using UV-vis and fluorescence spectroscopy. We provided a methodology to quantify the precise fractions of each species formed in the binding process by separating the spectral data that overlap. Using this method we determined the association constants of all complexes that are formed in solution. It is shown that the 2:1 porphyrin macrocycle-DABCO dimeric complex is formed even under very dilute conditions. The viologen-substituted polymer can then be threaded through the cavities of this dimeric system, giving rise to a pentameric complex M_2DP_2, exclusively. We studied the kinetics of the polymer binding in this pentameric system and compared this with that of free macrocycle M. The enhanced binding affinity of the polymer as a result of allosteric interactions between host, ligand and the guest in the pentameric complex led to a very slow dethreading process of the polymer from M_2DP_2 to form M_2DP. More importantly, very slow rate was observed for the threading of the polymer through M_2DP to form M_2DP_2 due to the intramolecular looping of the open end of the polymer through the unoccupied cavity delaying the threading of the second polymer.

The results obtained are valuable for the construction of the molecular Turing machine mentioned in the introduction section. The data represented here shows that the information transfer is possible between two cage molecules, both with respect to the thermodynamics of the binding process and the kinetics of the threading and dethreading processes. The next step is to combine the observed cooperative effects with catalysis. To this end the zinc centers of the porphyrin will be replaced by manganese centers, which are known to be good
One of the goals is to transfer information, e.g. from a chiral polymeric guest (polyaminoacid) threaded in one of the porphyrin cages, to a polymer chain containing double bonds (polybutadiene) that is residing in the second cage. Such an information transfer may result in a “writing” process, in which oxygen atoms in the form of epoxides are positioned along the polybutadiene chain by an allosteric catalytic reaction. Work along this line is in progress.

ASSOCIATED CONTENT

Supporting Information
General experimental protocols, 1H-NMR, additional UV-vis and fluorescence measurements. Details of the mass-balance model and the applications of the model. Additional reconstructed UV-vis and fluorescence emission spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION
Corresponding Authors
*s.cantekin@science.ru.nl
*r.nolte@science.ru.nl

Notes
The authors declare no competing financial interest.

ACKNOWLEDGEMENTS
This research was supported by the European Research Council in the form of an ERC Advanced grant to R.J.M.N. (ALPROS-290886) and an ERC Starting grant to J.A.A.W.E (NANOCAT-259064). Further financial support was obtained from the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research (CW-NWO) (Vidi grant for J.A.A.W.E and Vici grant for A.E.R) and from the Ministry of Education, Culture and Science (Gravity program 024.001.035). We would like to thank Theo Peters for his help with the synthesis of the macrocycle, L. Pitet for his help with the synthesis of the viologen-substituted polymer and the art work and S. Varghese for useful discussions.
REFERENCES

