Search for a Charged Higgs Boson Produced in the Vector-boson Fusion Mode with Decay $H^\pm \rightarrow W^\pm Z$ using pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Experiment

The ATLAS Collaboration

Abstract

A search for a charged Higgs boson, H^\pm, decaying to a W^\pm boson and a Z boson is presented. The search is based on 20.3 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The H^\pm boson is assumed to be produced via vector-boson fusion and the decays $W^\pm \rightarrow q\bar{q}'$ and $Z \rightarrow e^+e^-/\mu^+\mu^-$ are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an H^\pm boson is observed. Upper limits of 31–1020 fb at 95% CL are placed on the cross section for vector-boson fusion production of an H^\pm boson times its branching fraction to $W^\pm Z$. The limits are compared with predictions from the Georgi-Machacek Higgs Triplet Model.
After the discovery of a Higgs boson at the LHC in 2012 [1, 2], an important question now is whether the newly discovered particle is part of an extended scalar sector. The discovery of additional scalar or pseudoscalar bosons would provide spectacular evidence that this is the case.

A charged Higgs boson, H^\pm, appears in many models with an extended scalar sector such as the Two Higgs Doublet Model, where a second Higgs doublet is introduced [3], and the Higgs Triplet Models [4, 5], where a triplet is added to the Higgs doublet of the Standard Model (SM). While $H^\pm \rightarrow \tau^\mp \nu, c.s.tb$ decays dominate in the Two Higgs Doublet Model at tree level, $H^\pm \rightarrow W^\pm Z$ decays are allowed at loop level [6] and are predicted at tree level in Higgs Triplet Models. In the search presented in this Letter, the H^\pm boson is assumed to couple to W^\pm and Z bosons. In this case it is produced via vector-boson fusion (VBF), $W^\pm Z \rightarrow H^\pm$, at the LHC and decays to $W^\pm Z$. The search is performed in the channel with subsequent decays of $W^\pm \rightarrow q\bar{q}'$ and $Z \rightarrow \ell^+ \ell^-$, over the H^\pm mass range $200 < m_{H^\pm} < 1000$ GeV. The data are compared with the Georgi-Machacek Higgs Triplet Model (GMHTM) [4].

Searches at LEP have looked for pair-produced charged Higgs bosons [7]. Previous searches at the Tevatron and LHC have looked for a charged Higgs boson produced in top quark decays or in associated production with a top quark [8–11]. Searches for a $W^\pm Z$ resonance have also been performed in non-Higgs-specific models [12–18], but this search is the first to look specifically for the VBF production mechanism.

The data used in this search were recorded with the ATLAS detector in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV. In the ATLAS coordinate system, the polar angle θ is measured with respect to the LHC beam-line and the azimuthal angle ϕ is measured in the plane transverse to the beam-line. Pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$.

The ATLAS detector is described in detail elsewhere [19]. It consists of an inner tracking detector covering the range $|\eta| < 2.5$, surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters ($|\eta| < 4.9$) and an external muon spectrometer ($|\eta| < 2.7$). The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is 20.3 ± 0.6 fb$^{-1}$ [20]. The data were collected using a combination of single-electron, single-muon, electron-electron and muon-muon triggers. Their p_T thresholds are 24 GeV for the single-lepton triggers and 13 GeV for the dilepton triggers.

Monte Carlo simulated events are used to estimate distributions of expected signal and background events. Signal events are generated for a narrow-width H^\pm boson produced via VBF with MADGRAPH5 [21] using CTEQ6L1 [22] parton distribution functions (PDFs). The parton showering is performed with PYTHIA8 [23, 24]. The dominant background is the production of Z bosons in association with jets, which is simulated with SHERPA [25] using CT10 PDFs [26]. Top quark pair, single top quark and diboson production are simulated with POWHEG [27–29] using CTEQ6L1 PDFs.

All simulated samples are passed through the ATLAS GEANT4-based detector simulation [30, 31]. The simulated events are overlaid with additional minimum-bias events to account for the effect of multiple pp interactions (pile-up) occurring in the same and neighboring bunch crossings [32].

Electrons are identified for $|\eta| < 2.47$ and $p_T > 7$ GeV from energy clusters in the electromagnetic calorimeter that are matched to tracks in the inner detector [33]. Quality requirements on the calorimeter clusters and tracks are applied to reduce contamination from jets. The jet background is further reduced by applying isolation requirements that are based on tracking information within a cone around the electron candidate [34].
Muons are reconstructed in the muon spectrometer in the range $|\eta| < 2.7$ and $p_T > 7$ GeV [35]. For $|\eta| < 2.5$ the muon spectrometer track must be matched with a track in the inner detector and information from both is used to reconstruct the momentum. The muon candidates are required to pass isolation requirements similar to those for electrons.

Jets are reconstructed using the anti-k_t algorithm [36] with size parameter $R = 0.4$ and are restricted to $|\eta| < 4.5$ in order to fully contain each of the jets in the calorimeters. Those jets with $|\eta| < 2.5$, where there is good tracking coverage, are called central jets and are required to have $p_T > 20$ GeV. Those jets with $2.5 < |\eta| < 4.5$ are required to have $p_T > 30$ GeV. Low-p_T central jets from pile-up are suppressed with the following requirement: for jets with $|\eta| < 2.4$ and $p_T < 50$ GeV, tracks associated with the primary vertex must contribute over 50% to the scalar sum of the p_T of all the tracks associated with the jet. Jets originating from b-quark fragmentation are selected using a multivariate tagging algorithm (b-tagging) [37]. The b-tagging algorithm is only applied to central jets and its operating point is chosen such that the efficiency to select b-quark jets is approximately 70%.

The magnitude of the missing transverse momentum (E_T^{miss}) is computed using fully calibrated electrons, muons, jets and calorimeter clusters not associated to other physics objects [38].

The $Z \rightarrow \ell^+\ell^-$ decay is reconstructed from two electrons or two muons. In events with muons, where there is a very low charge misidentification probability, the leptons must be oppositely charged. In order to match the single-lepton trigger threshold and reduce the multijet background, tighter requirements are applied. Once a tag-jet pair has been identified, the $|\eta|$ of the remaining central jets must be greater than 0.4 if it is a muon, then it is restricted to $|\eta| < 2.5$. The mass of the Z boson candidate is reconstructed from the two leptons and must satisfy $83 < m_{\ell\ell} < 99$ GeV.

The VBF process generally contains two reconstructed jets, referred to as tag jets, with high $|\eta|$ in opposite directions. The tag-jet selection begins by requiring two non-b-tagged jets in opposite hemispheres. If more than one such pair is found, the one with the highest invariant mass is selected. The tag-jet pair must have an invariant mass greater than 500 GeV and $|\Delta\eta| > 4$.

Once a tag-jet pair has been identified, the $W^+ \rightarrow q\bar{q}'$ decay is reconstructed from the two highest-p_T remaining central jets. These jets are referred to as signal jets. In order to reduce the Z+jets background, at least one signal jet is required to have $p_T > 45$ GeV. A cut on the dijet invariant mass of $60 < m_{jj} < 95$ GeV, consistent with the W^\pm mass, is made.

Background from top quark production is reduced by rejecting events with two or more b-tagged jets and requiring the E_T^{miss} significance $E_T^{\text{miss}}/\sqrt{H_T} < 6$ GeV$^{0.5}$, where H_T is the scalar sum of the transverse momenta of all jets and leptons in the event.

The invariant mass of the two leptons and two signal jets $m_{\ell\ell jj}$ is used to reconstruct the charged Higgs boson mass, m_{H^\pm}. The resolution is improved by using the W^\pm mass [39], $m_W = 80.4$ GeV, as a constraint by scaling the energy of each jet by m_W/m_{jj}. The resulting experimental resolution on $m_{\ell\ell jj}$, determined from simulation, is on average 2.4% and is approximately independent of $m_{\ell\ell jj}$ over the range of the analysis.

In order to reduce the Z+jets background, cuts are imposed on the transverse momentum and azimuthal angular separation of the lepton pair: $p_T^{\ell\ell} > \min[0.46 m_{\ell\ell} - 54$ GeV, 275 GeV] and $|\Delta\phi_{\ell\ell}| < 1 + ((270$ GeV$/m_{\ell\ell})^{3.5}$, and also on the transverse momentum of the signal jets $p_T^{jj} > 0.1 m_{\ell\ell}$. These cuts depend on the reconstructed charged Higgs boson mass since the decay products of the W^\pm and Z bosons in signal events tend to be at higher transverse momentum and more collimated as $m_{\ell\ell jj}$ increases.
After all cuts, a total of 506 data events are selected. The efficiency of the signal selection is 5% at $m_{H^\pm} = 200$ GeV, rising to a maximum of 9% at $m_{H^\pm} = 600$ GeV and falling to 2% at 1 TeV.

The dominant background after all cuts is Z+jets. Other smaller backgrounds that are taken into account are top pair production, single top production, diboson production and multijet background. The shapes of all backgrounds are determined from simulation, apart from the multijet background, which is estimated from data.

In the electron channel, the multijet background is determined by selecting a sample of events with a reversed isolation requirement on the electron. This is normalized by performing a fit to the $m_{\ell\ell}$ distribution of the data, with the normalizations of the multijet background and of a template made from the sum of the remaining backgrounds left as free parameters. The systematic error on the multijet normalization is evaluated to be 50%. It is determined by looking at the difference in scale factors obtained for a sample of events with either two or three central jets. The multijet background in the muon channel is found to be negligible.

The normalization of the Z+jets background is determined from the signal region by leaving it as a free parameter of the profile likelihood fit as discussed below. The contribution to the expected number of events in the signal region due to top quark production is constrained by comparing the observed and expected yields in a control region enriched in top quark pairs. This control region is defined by selecting events with the same cuts as those for the signal region but with an electron and a muon, rather than two same-flavor leptons, and two b-tagged jets with $50 < m_{jj} < 180$ GeV replacing the central-jet requirements. A total of 261 data events are selected. The other backgrounds, diboson and single top quark production, are normalized according to the theory cross section calculated at next-to-leading order as listed in Ref. [34].

The largest systematic uncertainties arise from the normalization and modeling of the Z+jets background. The largest experimental uncertainty comes from the jet energy scale.

The jet energy scale systematic uncertainty arises from several sources including uncertainties from the in-situ calibration, pile-up-dependent corrections and the jet flavor composition [32]. A systematic error on the jet energy resolution is also included. These uncertainties are propagated to the E_T^{miss}, which also has a contribution from hadronic energy that is not included in jets [38]. The uncertainty in the pile-up is accounted for by varying the cut against pile-up jets and varying the assumed number of pile-up interactions in the simulated events. The b-tagging efficiency uncertainty is dependent on jet p_T and comes mainly from the uncertainty on the measurement of the efficiency in top quark pair events [37]. Other experimental systematic uncertainties that are included arise from the lepton energy scale, lepton identification efficiency and the uncertainty on the multijet background prediction.

In addition to the experimental systematic uncertainties, modeling systematic uncertainties are included to account for possible differences between the data and the simulation model that is used for each background process, following closely the procedure described in Ref. [34]. The Z+jets background includes uncertainties on the relative fractions of the different flavor components, the shape of distributions of m_{jj}, the azimuthal separation of the central jet pair and the transverse momentum of the lepton pair. For top quark pair production, uncertainties on the top quark transverse momentum and m_{jj} distributions are included. Uncertainties on the ratio of the numbers of events containing two and three reconstructed signal jets are also included for each background.

Modeling uncertainties on the signal acceptance are taken into account by varying the factorization and normalization scale up and down by a factor of two, varying the amount of initial- and final-state radiation
and comparing the default CTEQ6L1 PDFs to MSTW2008lo68cl [40] and NNPDF21_lo_as_0119_100 [41] PDFs. The combined signal acceptance uncertainty is \(\sim 10\% \) and approximately constant with \(m_{H^\pm} \).

Figure 1: The \(m_{\ell\ell jj} \) distribution for data and the expected SM background. The hashed band indicates the post-fit systematic uncertainty. Included in the plot is an example signal sample with \(m_{H^\pm} = 400 \) GeV, which has been plotted with a cross section times branching fraction, \(\sigma \times \text{BR}(H^\pm \rightarrow W^\pm Z) = 1 \text{ pb} \) for illustration.

The data are compared with the SM expectation in Fig. 1. The expectation is determined with a profile likelihood fit [42] using the modified frequentist method, also known as CL$_s$ [43]. The fit is performed on the \(m_{\ell\ell jj} \) mass distribution in the signal region and the number of events in the top quark control region. No significant excess of events is observed in the data compared with the SM expectation.

Figure 2 shows the exclusion limits at the 95% confidence level (CL) on the VBF production cross section times the branching fraction \(\text{BR}(H^\pm \rightarrow W^\pm Z) \) as a function of \(m_{H^\pm} \), assuming the signal has a small intrinsic width, i.e. much smaller than the experimental resolution. The observed limits range from 31 fb at \(m_{H^\pm} = 650 \) GeV to 1020 fb at \(m_{H^\pm} = 220 \) GeV; the corresponding expected limits are 55 fb and 719 fb, respectively.

The exclusion limits are compared with predicted charged Higgs boson production cross sections in the GMHTM [44], calculated at \(\sqrt{s} = 8 \) TeV [45]. In this model, the quantity \(s_H^2 \) is a free parameter that represents the fraction of the square of the gauge boson masses \(m_W^2 \) and \(m_Z^2 \) that is generated by the vacuum expectation value of the triplet, while \(1 - s_H^2 \) represents the fraction generated by the SM Higgs doublet. The production cross section and \(H^\pm \) width are proportional to \(s_H^2 \). The branching fraction of \(H^\pm \rightarrow W^\pm Z \) is expected to be very high above the \(W^\pm Z \) threshold, so for simplicity it is set to one. For this comparison a nonzero intrinsic \(H^\pm \) width must be taken into account. This is done by smearing the signal \(m_{\ell\ell jj} \) distributions with a relativistic Breit-Wigner distribution with a width as calculated in Ref. [45]. The fractional width \(\Gamma_{H^\pm}/m_{H^\pm} \) for \(s_H = 1 \) increases from 0.2% at \(m_{H^\pm} = 200 \) GeV to 31% at

\[\text{Figure 1: } \text{The } m_{\ell\ell jj} \text{ distribution for data and the expected SM background. The hashed band indicates the post-fit systematic uncertainty. Included in the plot is an example signal sample with } m_{H^\pm} = 400 \text{ GeV, which has been plotted with a cross section times branching fraction, } \sigma \times \text{BR}(H^\pm \rightarrow W^\pm Z) = 1 \text{ pb for illustration.} \]

\[\text{Figure 2 shows the exclusion limits at the 95\% confidence level (CL) on the VBF production cross section times the branching fraction } \text{BR}(H^\pm \rightarrow W^\pm Z) \text{ as a function of } m_{H^\pm}, \text{ assuming the signal has a small intrinsic width, i.e. much smaller than the experimental resolution. The observed limits range from } 31 \text{ fb at } m_{H^\pm} = 650 \text{ GeV to } 1020 \text{ fb at } m_{H^\pm} = 220 \text{ GeV; the corresponding expected limits are } 55 \text{ fb and } 719 \text{ fb, respectively.} \]

\[\text{The exclusion limits are compared with predicted charged Higgs boson production cross sections in the GMHTM [44], calculated at } \sqrt{s} = 8 \text{ TeV [45]. In this model, the quantity } s_H^2 \text{ is a free parameter that represents the fraction of the square of the gauge boson masses } m_W^2 \text{ and } m_Z^2 \text{ that is generated by the vacuum expectation value of the triplet, while } 1 - s_H^2 \text{ represents the fraction generated by the SM Higgs doublet. The production cross section and } H^\pm \text{ width are proportional to } s_H^2. \]

\[\text{The branching fraction of } H^\pm \rightarrow W^\pm Z \text{ is expected to be very high above the } W^\pm Z \text{ threshold, so for simplicity it is set to one. For this comparison a nonzero intrinsic } H^\pm \text{ width must be taken into account. This is done by smearing the signal } m_{\ell\ell jj} \text{ distributions with a relativistic Breit-Wigner distribution with a width as calculated in Ref. [45]. The fractional width } \Gamma_{H^\pm}/m_{H^\pm} \text{ for } s_H = 1 \text{ increases from 0.2\% at } m_{H^\pm} = 200 \text{ GeV to 31\% at} \]
Figure 2: Exclusion limits in fb at the 95% CL for the vector-boson fusion production cross section of a H^\pm boson times its branching fraction to $W^\pm Z$ assuming the signal has a narrow intrinsic width. Also included on the plot are the median, ±1σ and ±2σ values within which the limit is expected to lie in the absence of a signal.

$m_{H^\pm} = 1000$ GeV. Comparisons with the GMHTM are only shown for $\Gamma_{H^\pm}/m_{H^\pm} < 0.15$, since higher values may violate perturbative unitarity of the $W^\pm Z \rightarrow W^\pm Z$ scattering amplitudes. As shown in Fig. 3, the data exclude a charged Higgs boson over the range $240 < m_{H^\pm} < 700$ GeV for $s_H = 1$, with weaker limits for smaller values of s_H.
Figure 3: Exclusion limits at the 95% CL for s_H versus m_{H^\pm} in the Georgi-Machacek Higgs Triplet Model. Also included on the plot are the median, $\pm 1\sigma$ and $\pm 2\sigma$ values within which the limit is expected to lie in the absence of a signal.

In conclusion, data recorded by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb$^{-1}$ at a center-of-mass energy of 8 TeV, have been used to search for a charged Higgs boson, produced via vector-boson fusion and decaying to $W^\pm Z$, over the charged Higgs boson mass range 200–1000 GeV. This is the first search for this process. No deviation from the SM background prediction is observed. Upper limits at the 95% confidence level on the cross section of a VBF-produced H^\pm boson times its branching fraction to $W^\pm Z$ are set between 31 and 1020 fb for a narrow $W^\pm Z$ resonance. The data exclude a charged Higgs boson in the range $240 < m_{H^\pm} < 700$ GeV within the Georgi-Machacek Higgs Triplet Model with parameter $s_H = 1$ and 100% branching fraction of $H^\pm \rightarrow W^\pm Z$.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden),
CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

The ATLAS Collaboration

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Louisiana Tech University, Ruston LA, United States of America

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst MA, United States of America

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

Group of Particle Physics, University of Montreal, Montreal QC, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

National Research Nuclear University MEPhI, Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York NY, United States of America

Ohio State University, Columbus OH, United States of America

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

Department of Physics, Oklahoma State University, Stillwater OK, United States of America

Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America

Petersburg Nuclear Physics Institute, Gatchina, Russia

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America

(a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPTPA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

(a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand,
Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison WI, United States of America
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven CT, United States of America
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
Also at Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal
Also at Tomsk State University, Tomsk, Russia
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
Also at Department of Physics, National Tsing Hua University, Taiwan
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Georgian Technical University (GTU), Tbilisi, Georgia
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York NY, United States of America
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Department of Physics, Stanford University, Stanford CA, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
∗ Deceased