PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/143912

Please be advised that this information was generated on 2017-08-10 and may be subject to change.
Search for a Charged Higgs Boson Produced in the Vector-boson Fusion Mode with Decay $H^\pm \rightarrow W^\pm Z$ using pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Experiment

The ATLAS Collaboration

Abstract

A search for a charged Higgs boson, H^\pm, decaying to a W^\pm boson and a Z boson is presented. The search is based on 20.3 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The H^\pm boson is assumed to be produced via vector-boson fusion and the decays $W^\pm \rightarrow q\bar{q}'$ and $Z \rightarrow e^+e^-/\mu^+\mu^-$ are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an H^\pm boson is observed. Upper limits of 31–1020 fb at 95% CL are placed on the cross section for vector-boson fusion production of an H^\pm boson times its branching fraction to $W^\pm Z$. The limits are compared with predictions from the Georgi-Machacek Higgs Triplet Model.
After the discovery of a Higgs boson at the LHC in 2012 [1, 2], an important question now is whether the newly discovered particle is part of an extended scalar sector. The discovery of additional scalar or pseudoscalar bosons would provide spectacular evidence that this is the case.

A charged Higgs boson, H^\pm, appears in many models with an extended scalar sector such as the Two Higgs Doublet Model, where a second Higgs doublet is introduced [3], and the Higgs Triplet Models [4, 5], where a triplet is added to the Higgs doublet of the Standard Model (SM). While $H^\pm \rightarrow \tau^+\tau^-, c\tau, t\bar{t}$ decays dominate in the Two Higgs Doublet Model at tree level, $H^\pm \rightarrow W^\pm Z$ decays are allowed at loop level [6] and are predicted at tree level in Higgs Triplet Models. In the search presented in this Letter, the H^\pm boson is assumed to couple to W^\pm and Z bosons. In this case it is produced via vector-boson fusion (VBF), $W^\pm Z \rightarrow H^\pm$, at the LHC and decays to $W^\pm Z$. The search is performed in the channel with subsequent decays of $W^\pm \rightarrow q\bar{q}'$ and $Z \rightarrow \ell^+\ell^-$, over the H^\pm mass range $200 < m_{H^\pm} < 1000$ GeV. The data are compared with the Georgi-Machacek Higgs Triplet Model (GMHTM) [4].

Searches at LEP have looked for pair-produced charged Higgs bosons [7]. Previous searches at the Tevatron and LHC have looked for a charged Higgs boson produced in top quark decays or in associated production with a top quark [8–11]. Searches for a $W^\pm Z$ resonance have also been performed in non-Higgs-specific models [12–18], but this search is the first to look specifically for the VBF production mechanism.

The data used in this search were recorded with the ATLAS detector in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 8$ TeV. In the ATLAS coordinate system, the polar angle θ is measured relative to the LHC beam-line and the azimuthal angle ϕ is measured in the plane transverse to the beam-line. Pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$.

The ATLAS detector is described in detail elsewhere [19]. It consists of an inner tracking detector covering the range $|\eta| < 2.5$, surrounded by a superconducting solenoid providing a 2 T magnetic field, electromagnetic and hadronic calorimeters ($|\eta| < 4.9$) and an external muon spectrometer ($|\eta| < 2.7$). The integrated luminosity of the data sample, considering only data-taking periods where all relevant detector subsystems were operational, is $20.3 \pm 0.6 \text{ fb}^{-1}$ [20]. The data were collected using a combination of single-electron, single-muon, electron-electron and muon-muon triggers. Their p_T thresholds are 24 GeV for the single-lepton triggers and 13 GeV for the dilepton triggers.

Monte Carlo simulated events are used to estimate distributions of expected signal and background events. Signal events are generated for a narrow-width H^\pm boson produced via VBF with MADGRAPH5 [21] using CT10 PDFs [26]. The dominant background is the production of Z bosons in association with jets, which is simulated with SHERPA [25] using CT10 PDFs [26]. Top quark pair, single top quark and diboson production are simulated with POWHEG [27–29] using CTEQ6L1 PDFs.

All simulated samples are passed through the ATLAS GEANT4-based detector simulation [30, 31]. The simulated events are overlaid with additional minimum-bias events to account for the effect of multiple pp interactions (pile-up) occurring in the same and neighboring bunch crossings [32].

Electrons are identified for $|\eta| < 2.47$ and $p_T > 7$ GeV from energy clusters in the electromagnetic calorimeter that are matched to tracks in the inner detector [33]. Quality requirements on the calorimeter clusters and tracks are applied to reduce contamination from jets. The jet background is further reduced by applying isolation requirements that are based on tracking information within a cone around the electron candidate [34].
Muons are reconstructed in the muon spectrometer in the range $|\eta| < 2.7$ and $p_T > 7$ GeV [35]. For $|\eta| < 2.5$ the muon spectrometer track must be matched with a track in the inner detector and information from both is used to reconstruct the momentum. The muon candidates are required to pass isolation requirements similar to those for electrons.

Jets are reconstructed using the anti-k_T algorithm [36] with size parameter $R = 0.4$ and are restricted to $|\eta| < 4.5$ in order to fully contain each of the jets in the calorimeters. Those jets with $|\eta| < 2.5$, where there is good tracking coverage, are called central jets and are required to have $p_T > 20$ GeV. Those jets with $2.5 < |\eta| < 4.5$ are required to have $p_T > 30$ GeV. Low-p_T central jets from pile-up are suppressed with the following requirement: for jets with $|\eta| < 2.4$ and $p_T < 50$ GeV, tracks associated with the primary vertex must contribute over 50% to the scalar sum of the p_T of all the tracks associated with the jet. Jets originating from b-quark fragmentation are selected using a multivariate tagging algorithm (b-tagging) [37]. The b-tagging algorithm is only applied to central jets and its operating point is chosen such that the efficiency to select b-quark jets is approximately 70%.

The magnitude of the missing transverse momentum (E_T^{miss}) is computed using fully calibrated electrons, muons, jets and calorimeter clusters not associated to other physics objects [38].

The $Z \rightarrow \ell^+\ell^-$ decay is reconstructed from two electrons or two muons. In events with muons, where there is a very low charge misidentification probability, the leptons must be oppositely charged. In order to match the single-lepton trigger threshold and reduce the multijet background, tighter requirements are imposed on the transverse momentum and azimuthal angular separation of the lepton pair: $p_T^{\ell\ell} > \min[0.46 m_{\ell\ell}, 54 \text{ GeV}, 275 \text{ GeV}]$ and $\Delta \phi_{\ell\ell} < 1 + (270 \text{ GeV}/m_{\ell\ell})^{3.5}$, and also on the transverse momentum of the signal jets $p_T^j > 0.1 m_{\ell\ell}$. These cuts depend on the reconstructed charged Higgs boson mass since the decay products of the W^\pm and Z bosons in signal events tend to be at higher transverse momentum and more collimated as $m_{\ell\ell}$ increases.
After all cuts, a total of 506 data events are selected. The efficiency of the signal selection is 5% at $m_{H^\pm} = 200$ GeV, rising to a maximum of 9% at $m_{H^\pm} = 600$ GeV and falling to 2% at 1 TeV.

The dominant background after all cuts is Z+jets. Other smaller backgrounds that are taken into account are top pair production, single top production, diboson production and multijet background. The shapes of all backgrounds are determined from simulation, apart from the multijet background, which is estimated from data.

In the electron channel, the multijet background is determined by selecting a sample of events with a reversed isolation requirement on the electron. This is normalized by performing a fit to the $m_{\ell\ell}$ distribution of the data, with the normalizations of the multijet background and of a template made from the sum of the remaining backgrounds left as free parameters. The systematic error on the multijet normalization is evaluated to be 50%. It is determined by looking at the difference in scale factors obtained for a sample of events with either two or three central jets. The multijet background in the muon channel is found to be negligible.

The normalization of the Z+jets background is determined from the signal region by leaving it as a free parameter of the profile likelihood fit as discussed below. The contribution to the expected number of events in the signal region due to top quark production is constrained by comparing the observed and expected yields in a control region enriched in top quark pairs. This control region is defined by selecting events with the same cuts as those for the signal region but with an electron and a muon, rather than two same-flavor leptons, and two b-tagged jets with $50 < m_{jj} < 180$ GeV replacing the central-jet requirements. A total of 261 data events are selected. The other backgrounds, diboson and single top quark production, are normalized according to the theory cross section calculated at next-to-leading order as listed in Ref. [34].

The largest systematic uncertainties arise from the normalization and modeling of the Z+jets background. The largest experimental uncertainty comes from the jet energy scale.

The jet energy scale systematic uncertainty arises from several sources including uncertainties from the in-situ calibration, pile-up-dependent corrections and the jet flavor composition [32]. A systematic error on the jet energy resolution is also included. These uncertainties are propagated to the E_T^{miss}, which also has a contribution from hadronic energy that is not included in jets [38]. The uncertainty in the pile-up is accounted for by varying the cut against pile-up jets and varying the assumed number of pile-up interactions in the simulated events. The b-tagging efficiency uncertainty is dependent on jet p_T and comes mainly from the uncertainty on the measurement of the efficiency in top quark pair events [37]. Other experimental systematic uncertainties that are included arise from the lepton energy scale, lepton identification efficiency and the uncertainty on the multijet background prediction.

In addition to the experimental systematic uncertainties, modeling systematic uncertainties are included to account for possible differences between the data and the simulation model that is used for each background process, following closely the procedure described in Ref. [34]. The Z+jets background includes uncertainties on the relative fractions of the different flavor components, the shape of distributions of m_{jj}, the azimuthal separation of the central jet pair and the transverse momentum of the lepton pair. For top quark pair production, uncertainties on the top quark transverse momentum and m_{jj} distributions are included. Uncertainties on the ratio of the numbers of events containing two and three reconstructed signal jets are also included for each background.

Modeling uncertainties on the signal acceptance are taken into account by varying the factorization and normalization scale up and down by a factor of two, varying the amount of initial- and final-state radiation
and comparing the default CTEQ6L1 PDFs to MSTW2008lo68c1 [40] and NNPDF21_lo_as_0119_100 [41] PDFs. The combined signal acceptance uncertainty is \(\sim 10\% \) and approximately constant with \(m_{H\pm} \).

Figure 1: The \(m_{\ell\ell} \) distribution for data and the expected SM background. The hashed band indicates the post-fit systematic uncertainty. Included in the plot is an example signal sample with \(m_{H\pm} = 400 \text{ GeV} \), which has been plotted with a cross section times branching fraction, \(\sigma \times BR(H^{\pm} \rightarrow W^{\pm}Z) = 1 \text{ pb} \) for illustration.

The data are compared with the SM expectation in Fig. 1. The expectation is determined with a profile likelihood fit [42] using the modified frequentist method, also known as CLs [43]. The fit is performed on the \(m_{\ell\ell} \) mass distribution in the signal region and the number of events in the top quark control region. No significant excess of events is observed in the data compared with the SM expectation.

Figure 2 shows the exclusion limits at the 95% confidence level (CL) on the VBF production cross section times the branching fraction \(BR(H^{\pm} \rightarrow W^{\pm}Z) \) as a function of \(m_{H\pm} \), assuming the signal has a small intrinsic width, i.e. much smaller than the experimental resolution. The observed limits range from 31 fb at \(m_{H\pm} = 650 \text{ GeV} \) to 1020 fb at \(m_{H\pm} = 220 \text{ GeV} \); the corresponding expected limits are 55 fb and 719 fb, respectively.

The exclusion limits are compared with predicted charged Higgs boson production cross sections in the GMHTM [44], calculated at \(\sqrt{s} = 8 \text{ TeV} \) [45]. In this model, the quantity \(s_{H}^{2} \) is a free parameter that represents the fraction of the square of the gauge boson masses \(m_{W}^{2} \) and \(m_{Z}^{2} \) that is generated by the vacuum expectation value of the triplet, while \(1 - s_{H}^{2} \) represents the fraction generated by the SM Higgs doublet. The production cross section and \(H^{\pm} \) width are proportional to \(s_{H}^{2} \). The branching fraction of \(H^{\pm} \rightarrow W^{\pm}Z \) is expected to be very high above the \(W^{\pm}Z \) threshold, so for simplicity it is set to one. For this comparison a nonzero intrinsic \(H^{\pm} \) width must be taken into account. This is done by smearing the signal \(m_{\ell\ell} \) distributions with a relativistic Breit-Wigner distribution with a width as calculated in Ref. [45]. The fractional width \(\Gamma_{H^{\pm}}/m_{H^{\pm}} \) for \(s_{H} = 1 \) increases from 0.2% at \(m_{H^{\pm}} = 200 \text{ GeV} \) to 31% at...
Figure 2: Exclusion limits in fb at the 95% CL for the vector-boson fusion production cross section of a H^\pm boson times its branching fraction to $W^\pm Z$ assuming the signal has a narrow intrinsic width. Also included on the plot are the median, $\pm 1\sigma$ and $\pm 2\sigma$ values within which the limit is expected to lie in the absence of a signal.

$m_{H^\pm} = 1000$ GeV. Comparisons with the GMHTM are only shown for $\Gamma_{H^\pm}/m_{H^\pm} < 0.15$, since higher values may violate perturbative unitarity of the $W^\pm Z \rightarrow W^\pm Z$ scattering amplitudes. As shown in Fig. 3, the data exclude a charged Higgs boson over the range $240 < m_{H^\pm} < 700$ GeV for $s_H = 1$, with weaker limits for smaller values of s_H.
In conclusion, data recorded by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 fb$^{-1}$ at a center-of-mass energy of 8 TeV, have been used to search for a charged Higgs boson, produced via vector-boson fusion and decaying to $W^\pm Z$, over the charged Higgs boson mass range 200–1000 GeV. This is the first search for this process. No deviation from the SM background prediction is observed. Upper limits at the 95% confidence level on the cross section of a VBF-produced H^\pm boson times its branching fraction to $W^\pm Z$ are set between 31 and 1020 fb for a narrow $W^\pm Z$ resonance. The data exclude a charged Higgs boson in the range $240 < m_{H^\pm} < 700$ GeV within the Georgi-Machacek Higgs Triplet Model with parameter $s_H = 1$ and 100% branching fraction of $H^\pm \rightarrow W^\pm Z$.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CONRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden),
CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

The ATLAS Collaboration

G. Aad85, B. Abbott113, J. Abdallah151, O. Abelnov11, R. Aben107, M. Abolins90, O.S. AbouZeid158, H. Abramowicz53, H. Abreu52, R. Abreu1, Y. Abulaiti146a,146b, B.S. Acharya164a,164b,a,
L. Adamczyk38a, D.L. Adams25, J. Adelman108, S. Adomeit100, T. Adye131, A.A. Affolder74,
T. Agatonovic-Jovin13, J.A. Aguilar-Saavedra126a,126f, S.P. Ahlen22, F. Ahmadov65,b, G. Aielli133a,133b,
H. Akerssted146a,146b, T.P.A. Åkesson81, G. Akimoto155, A.V. Akimov96, G.L. Alberghi20a,20b,
J. Albert169, S. Albrand45, M.J. Alconada Verzini71, M. Aleksa30, I.N. Aleksandrov65, C. Alexa26a,
B.M.M. Allbrooke18, P.P. Allport74, A. Alomisio104a,104b, A. Alonso36, F. Alonso71, C. Alpigiani76,
A. Altheimer35, B. Alvarez Gonzalez90, D. Álvarez Piquerus167, M.G. Alviggi104a,104b, B.T. Amadio15,
K. Amako66, Y. Amaral Coutinho23, C. Amelung23, D. Amidei89, S.P. Amor Dos Santos126a,126c,
A. Amorim126a,126b, S. Amoroso48, N. Amram153, G. Amundsen39, L.S. Ancu49,
A. Andrezza91a,91b, V. Andrei58a, S. Angelidakis9, I. Angelozzi107, P. Anger44, A. Angerami35,
F. Anghinolfi30, A.V. Anisenkov90,c, N. Anjos12, A. Annovi124a,124b, M. Antonelli47, A. Antonov98,
J. Antos144b, F. Anulli132a, M. Aoki66, L. Aperio Bella18, G. Arabidze90, Y. Arai66, J.P. Araque26a,
A.T.H. Arco45, F.A. Ardu17, J-F. Arguin95, S. Argyropoulos42, M. Ariki190, A.J. Armbruster30,
O. Arnaez30, V. Arnal82, H. Arnold48, M. Aron98, O. Arslan21, A. Artonov97, G. Artoni191,
S. Asai155, N. Asbah72, A. Ashkenazi153, B. Åsman146a,146b, L. Asquith149, K. Assamagan25,
R. Astalos144a, M. Atkinson160, N.B. Atlay141, B. Auerbach6, K. Augsten28, M. Aurousseau145b,
G. Avolio30, B. Axen15, M.K. Ayoub17, G. Azuelos95,d, M.A. Baak30, E.A. Baas8a, C. Bacci134a,134b,
H. Bachacou36, K. Bachas154, M. Backes30, M. Backhaus30, E. Badescu26a, P. Bagiacchi132a,132b,
P. Bagnaia132a,132b, Y. Bai33a, T. Bain35, J.T. Baines131, O.K. Baker176, P. Balek129, T. Baleztri148,
F. Balli84, E. Banas39, Sw. Banerjee172, A.A.E. Bannoura175, H.S. Bansil21, L. Barak5, S.P. Banarov96,
E.L. Barberio58, D. Barberis50a,50b, M. Barbero95, T. Barillari101, M. Barisonzi74a,164b, T. Barklow143,
N. Barlow28, S.L. Barnes84, B.M. Barnett131, R.M. Barnett15, Z. Barnovská3, A. Baronecelli134a,
G. Barone49, A.J. Barr120, F. Barreiro82, J. Barreiro Guimarães da Costa57, R. Bartoldus143,
A.E. Barton72, P. Bartos144a, A. Bassalat117, A. Basye165, R.L. Bates53, S.J. Batista158, J.R. Batley28,
M. Battaglia157, M. Bauce132a,132b, F. Bauer136, H.S. Bawa143,c, J.B. Beacham111, M.D. Beattie73,
T. Beau90, P.H. Beauchemin160, R. Beccherele124a,124b, P. Bechtle21, H.P. Beck17,f, K. Becker120,
M. Becker83, S. Becker100, M. Beckingham170, C. Becot117, A.J. Beddall19c, A. Beddall19c,
V.A. Bednyakov65, C.P. Bee148, L.J. Beevers107, T.A. Beermann175, M. Begel25, J.K. Behr120,
C. Belanger-Champagne87, P.J. Bell49, W.H. Bell49, G. Bella153, L. Bellagamba20a, A. Bellerive29,
M. Bellomo86, K. Belotsky98, O. Beltramello30, O. Benary153, D. Benchekroun135a, M. Bender100,
K. Bender146a,146b, N. Benekos10, Y. Benhammou153, E. Benhar Noccioli49, J.A. Benitez Garcia159b,
D.P. Benjamin45, J.R. Bensinger23, S. Bentvelsen107, L. Beresford120, M. Beretta47, D. Berge107,
E. Bergeaas Kuutmann166, N. Berger2, F. Berghaus169, J. Beringer15, C. Bernard22, N.R. Bernard86,
C. Bernius110, F.U. Bernlochner21, T. Berry77, P. Berta129, C. Bertella83, G. Bertoli146a,146b,146c,
F. Bertolucci124a,124b, C. Bertes13, D. Bertesch13, M.I. Besana91a, G.J. Besjes106,
O. Bessidskaia Bylund146a,146b, M. Bessner42, N. Besson136, C. Betancourt48, S. Bethke101,
A.J. Bevan76, W. Bhimji46, R.M. Bianchi125, L. Bianchini23, M. Bianco30, O. Biebel100, S.P. Bieniek78,
M. Biglietti134a, J. Bilbao De Mendizabal49, H. Bilokon47, M. BIND154, S. Binet117, A. Bingul19c,
C. Bing132a,132b, C.W. Black150, J.E. Black43, K.M. Black22, D. Blackburn138, R.E. Blair6,
J.-B. Blanchard36, J.E. Bianco7, T. Blazek144a, I. Bloch42, C. Blocker23, W. Blum133,c,
U. Blumenschein54, G.J. Bobbink107, V.S. Bobrovnikov109,c, S.S. Bocchetta41, A. Bocci45, C. Bock100,
Physics Department, National Technical University of Athens, Zografou, Greece
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
Department of Physics, Humboldt University, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Physikalisches Institut, University of Bonn, Bonn, Germany
Department of Physics, Boston University, Boston MA, United States of America
Department of Physics, Brandeis University, Waltham MA, United States of America
Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFJF), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
Department de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
Department de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
79 Louisiana Tech University, Ruston LA, United States of America
80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81 Fysiska institutionen, Lunds universitet, Lund, Sweden
82 Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain
83 Institut für Physik, Universität Mainz, Mainz, Germany
84 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst MA, United States of America
87 Department of Physics, McGill University, Montreal QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
89 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
90 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
91 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
94 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
95 Group of Particle Physics, University of Montreal, Montreal QC, Canada
96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York NY, United States of America
111 Ohio State University, Columbus OH, United States of America
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
115 Palacký University, RCPTM, Olomouc, Czech Republic

22
Johannesburg, South Africa
(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
(c) Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atrómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
(a) Also at Department of Physics, King’s College London, London, United Kingdom
(b) Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
(c) Also at Novosibirsk State University, Novosibirsk, Russia
(d) Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, Stanford University, California CA, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

* Deceased