Evidence of $W\gamma\gamma$ production in pp collisions at $\sqrt{s} = 8$ TeV and limits on anomalous quartic gauge couplings with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports evidence of triple gauge boson production $pp \rightarrow W(\ell\nu)\gamma\gamma + X$, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb$^{-1}$, collected by the ATLAS detector in 2012. Events are selected using the W boson decay to $e\nu$ or $\mu\nu$ as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.
In the Standard Model (SM), the self-couplings of the electroweak gauge bosons are specified by the non-Abelian $SU(2) \times U(1)$ structure of the electroweak sector. Since any deviation in the self-couplings from this expectation indicates the presence of new physics phenomena at unprobed energy scales, the measurement of the production of multiple electroweak gauge bosons represents an important test of the SM. This Letter presents a measurement of the triboson production cross section, discussed in Ref. [1], where the W boson decays into $e\nu$ or $\mu\nu$ ($W(\ell\nu)\gamma\gamma$), and its sensitivity to anomalous quartic gauge couplings (aQGCs) $WW\gamma\gamma$. The inclusive and exclusive cross sections are both measured. The inclusive case has no restriction on the $W\gamma\gamma$ recoil system, whereas the exclusive case includes a veto on events containing one or more jets. Limits on aQGC parameters are set in the exclusive phase space with a diphoton mass larger than 300 GeV. Total and differential cross sections for the diboson production processes WW, WZ, ZZ, $W\gamma$, and $Z\gamma$ have been reported previously by the ATLAS [2–5], CMS [6–8], D0 [9–11], and CDF [12–14] collaborations, including limits on anomalous triple gauge boson couplings. Limits have been set on aQGCs by ATLAS [15], CMS [16, 17], the LEP experiments [18–21], and D0 [22].

ATLAS [23] is a multipurpose detector composed of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) immersed in the magnetic field produced by a system of superconducting toroids. Events in this analysis are selected with triggers requiring the presence of one muon with a transverse momentum (p_T) of more than 18 GeV and two electromagnetic objects with a transverse energy (E_T) of more than 10 GeV each, with an efficiency of about 80%, or three $E_T > 15$ GeV electromagnetic objects with an efficiency of more than 95% [24]. After applying data quality requirements, the data set corresponds to a total integrated luminosity of $20.3 \pm 0.6 \text{ fb}^{-1}$ [25].

The main backgrounds to the $W(\ell\nu)\gamma\gamma$ process originate from processes with jets identified as photons or leptons, referred to as fakes hereafter. Data-driven techniques are used to estimate fakes, whereas Monte Carlo (MC) simulation is used to estimate background sources with prompt leptons and photons and for the signal. The SHERPA 1.4.1 generator [26–29] is used to model the signal with up to three partons in the final state. SHERPA was also used to simulate the $Z\gamma$, $Z\gamma\gamma$, WZ, and $W(\tau\nu)\gamma\gamma$ backgrounds. The $\bar{t}t$, single top, and WW processes are modeled by MC@NLO 4.02 [30, 31], interfaced to HERWIG 6.520 [32] for parton showering and fragmentation processes and to JIMMY 4.30 [33] for underlying event simulation. The POWHEG [34] generator is used to simulate ZZ production, interfaced to PYTHIA 8.163 [35] for parton showering and fragmentation. The CT10 parton distribution function (PDF) set [36] is used for all SHERPA, MC@NLO, and POWHEG samples. The standard ATLAS detector simulation [37] based on GEANT4 [38] is used. It includes multiple proton-proton interactions per bunch crossing (pile-up) as observed in data.

The $W(\ell\nu)\gamma\gamma$ candidate events contain an isolated lepton and missing transverse momentum (E_T^{miss}) from the undetected neutrino of the leptonic W decay, and two isolated photons (including both converted and unconverted categories). Muon candidates are identified, within pseudorapidity $|\eta| < 2.4$, by associating complete tracks or track segments in the MS with tracks in the ID [39]. Electron candidates are reconstructed within $|\eta| < 2.47$ as electromagnetic clusters associated to a track [40], whereas photons are reconstructed as electromagnetic clusters with $|\eta| < 2.37$ [41]. The calorimeter transition regions at $1.37 < |\eta| < 1.52$ are excluded for electrons and photons. Identification criteria based on shower shapes in the EM calorimeter for photons, and additionally on tracking information for electrons, referred to as “tight” in Refs. [40, 42], are used. The E_T^{miss} uses the energy deposits in the calorimeters within $|\eta| < 4.9$ and the muons identified in the MS, as described in Ref. [43]. Reconstructed muons, electrons, and photons are required to have $p_T^{\ell,\gamma} > 20$ GeV and to be isolated. Photons are considered isolated if the sum of calorimeter transverse energy deposits in a cone of size $\Delta R = 0.4$ around the candidate is smaller
Table 1: The background composition in each channel is shown for the inclusive (left) and exclusive (right) cases. The $W\gamma j + Wjj$ and $\gamma\gamma +$ jets backgrounds are estimated using data-driven techniques, whereas the others are extracted from MC simulation. The number of candidate events in data passing the full selection is also shown.

<table>
<thead>
<tr>
<th></th>
<th>Electron channel</th>
<th>Muon channel</th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N_{\text{obs}} \geq 0$</td>
<td>$N_{\text{obs}} = 0$</td>
<td>$N_{\text{obs}} \geq 0$</td>
<td>$N_{\text{obs}} = 0$</td>
</tr>
<tr>
<td>$W\gamma j + Wjj$</td>
<td>15.3 ± 4.8 (stat.) ± 5.3 (syst.)</td>
<td>30.5 ± 7.7 (stat.) ± 6.8 (syst.)</td>
<td>5.8 ± 2.1 (stat.) ± 2.0 (syst.)</td>
<td>14.4 ± 4.9 (stat.) ± 4.9 (syst.)</td>
</tr>
<tr>
<td>$\gamma\gamma +$ jets</td>
<td>1.5 ± 0.6 (stat.) ± 1.0 (syst.)</td>
<td>11.0 ± 4.0 (stat.) ± 4.9 (syst.)</td>
<td>0.2 ± 0.2 (stat.) ± 0.2 (syst.)</td>
<td>6.1 ± 3.5 (stat.) ± 3.1 (syst.)</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>11.2 ± 1.1 (stat.)</td>
<td>3.9 ± 0.2 (stat.)</td>
<td>2.4 ± 0.5 (stat.)</td>
<td>2.8 ± 0.2 (stat.)</td>
</tr>
<tr>
<td>Other backgrounds</td>
<td>2.2 ± 0.6 (stat.)</td>
<td>6.7 ± 2.0 (stat.)</td>
<td>0.3 ± 0.1 (stat.)</td>
<td>1.1 ± 0.3 (stat.)</td>
</tr>
<tr>
<td>Total background</td>
<td>30.2 ± 3.0 (stat.) ± 3.4 (syst.)</td>
<td>52.1 ± 8.9 (stat.) ± 8.4 (syst.)</td>
<td>8.7 ± 2.2 (stat.) ± 2.0 (syst.)</td>
<td>24.4 ± 6.0 (stat.) ± 5.8 (syst.)</td>
</tr>
<tr>
<td>Data</td>
<td>47</td>
<td>110</td>
<td>15</td>
<td>53</td>
</tr>
</tbody>
</table>

than 4 GeV. The isolation is corrected for photon energy leakage. The muon isolation is based on the sum of the transverse momenta of ID tracks in a cone of size $\Delta R = 0.2$ which must be below $0.15 \times p_T^{l\mu}$. For electrons, the calorimeter transverse energy deposits and the sum of the transverse momenta of tracks in a cone of size $\Delta R = 0.2$ must be below $0.2 \times p_T^e$ and $0.15 \times p_T^e$, respectively. The lepton must also be compatible with originating from the primary vertex of the interaction, which is taken to be the vertex with the largest Σp_T^k of associated tracks. E_T^{miss} is required to exceed 25 GeV. The transverse mass of the W boson [44] is required to be greater than 40 GeV. The two photons must be outside of their mutual isolation cones by requiring $\Delta R(\gamma, \gamma) > 0.4$. To suppress the contribution from final-state radiation, the lepton and photons are required to have $\Delta R(\ell, \gamma) > 0.7$. Events containing a second reconstructed lepton are rejected to reduce background from Drell-Yan events. In the electron channel, additional requirements are used to suppress events in which one electron is misidentified as a photon (mainly originated from the $Z\gamma$ process): the transverse momentum of the $e\gamma\gamma$ system is required to be greater than 30 GeV, and the invariant mass of the electron and the leading, subleading or both photons is required to be outside a 13, 8 or 15 GeV wide window around the Z boson mass, respectively. Exclusive events are defined with a veto on additional jets compared to the inclusive selection. Jets are reconstructed from clustered energy deposits in the calorimeter using the anti-k_t algorithm [45] with radius parameter $R = 0.4$ and are required to have $p_T > 30$ GeV and $|\eta| < 4.4$. Jets at $\Delta R < 0.3$ from the selected lepton and photons are rejected. In order to reduce pile-up effects, for jets with $p_T < 50$ GeV and $|\eta| < 2.4$, more than 50% of the summed scalar p_T of tracks within $\Delta R = 0.4$ of the jet axis must be from tracks associated to the primary vertex.

Table 1 shows the expected background as well as the observation. The background expectation alone is not sufficient to describe the data indicating the presence of signal events. The fake-photon background from $W\gamma j + Wjj$ is estimated by performing a two-dimensional template fit to the isolation energy distributions of the leading and subleading photons, as described in Ref. [46]. Three background templates are obtained from data by reversing some of the photon identification requirements based on shower shape; the signal templates are taken from MC simulation. Contributions from events where a jet satisfies the electron identification criteria, or the muon originates from heavy-flavor decays, i.e. from $\gamma\gamma +$ jets processes, are estimated by using a two-dimensional sideband method constructed from the lepton isolation and E_T^{miss} variables, as described in Ref. [5]. The distribution of the diphoton invariant mass in the two channels is shown in Fig. 1. In the estimation of the fake-photon background, systematic uncertainties arise from the limited number of events in the control regions, the functional form used to describe the background isolation energy distribution, the definition of the control region, the modeling of the signal in the MC samples and the corresponding statistical uncertainty. In the estimate of the fake-lepton background, systematic uncertainties related to the control region definitions and the residual correlation of the discriminating variables are considered.
Figure 1: Diphoton invariant mass distribution in the electron (left) and muon (right) channels. The expected signal based on the SHERPA prediction is shown. The hashed areas show the total systematic and statistical uncertainty on the background estimate.

The fiducial cross sections $\sigma_{W\gamma\gamma}^{\text{fid}}$ are obtained from a maximum-likelihood fit, similarly to Ref. [5], for the electron channel, the muon channel, and the combination of the two assuming lepton universality to determine the $W(\ell\nu)\gamma\gamma$ cross section for a single lepton flavor. They are measured in a phase space, defined in Table 2, close to that of the experimentally selected region. Here p_T^ν is the transverse momentum of the neutrino and ϵ_p^h is the fractional energy carried by the closest particle-level jet in a cone of $\Delta R = 0.4$ around each photon direction.

Definition of the fiducial region

- $p_T^\ell > 20$ GeV, $p_T^\nu > 25$ GeV, $|\eta| < 2.5$
- $m_T > 40$ GeV
- $E_T^\gamma > 20$ GeV, $|\eta^\gamma| < 2.37$, iso. fraction $\epsilon_p^h < 0.5$
- $\Delta R(\ell, \gamma) > 0.7$, $\Delta R(\gamma, \gamma) > 0.4$, $\Delta R(\ell/\gamma, \text{jet}) > 0.3$

Exclusive: no anti-k_t jets with $p_T^{\text{jet}} > 30$ GeV, $|\eta^{\text{jet}}| < 4.4$

Table 2: Definition of the fiducial region for which the cross section is evaluated.

The efficiency of the signal selection and the small acceptance correction due to the extrapolation over the calorimeter transition region and to $|\eta| = 2.5$ for the leptons are taken into account in the procedure. The acceptance correction factors are 0.83 and 0.90 in the electron and muon channel, respectively. The combined efficiency and acceptance correction amounts to (19.6±0.5)% and (40.4±0.7)% in the electron and muon channels in the inclusive case, and to (15.1±0.7)% and (39.7±1.0)% in the exclusive case. The given uncertainties are statistical only. Corrections are applied to account for small differences between data and MC simulation in lepton, photon, and jet efficiencies, momentum scale and resolution, additional pp interactions, and beam-spot position.

Systematic uncertainties on the cross section are accounted for by introducing nuisance parameters in the likelihood which modify the signal and background expected yields. Correlations between systematic
The form factor scale preserves unitarity up to high energy scales, a form factor is introduced which depends on the energy, 6 operators used at LEP [18–21] and by CMS [16] via the transformations described in Ref. [51]. To the T_0 operator, whereas the other two operators can be related to the parameters of the dimension-4 restricted to f and f^\prime of Ref. [50]. While many operators give rise to anomalous couplings of the form $WW\gamma\gamma$, the W couplings are introduced as dimension-8 operators following the formalism defined in the Appendix of Ref. [5]. The measurements in the electron and muon channels are compatible within 1σ.

<table>
<thead>
<tr>
<th>Inclusive ($N_{\text{jet}} \geq 0$)</th>
<th>σ^{fid} [fb]</th>
<th>σ^{MCFM} [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\nu\gamma\gamma$</td>
<td>$7.1^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)</td>
<td></td>
</tr>
<tr>
<td>$e\nu\gamma\gamma$</td>
<td>$4.3^{+1.9}_{-1.6}$ (stat.) ± 1.9 (syst.) ± 0.2 (lumi.)</td>
<td>2.90 ± 0.16</td>
</tr>
<tr>
<td>$\ell\gamma\gamma$</td>
<td>$6.1^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusive ($N_{\text{jet}} = 0$)</th>
<th>σ^{fid} [fb]</th>
<th>σ^{MCFM} [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\nu\gamma\gamma$</td>
<td>3.5 ± 0.9 (stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1 (lumi.)</td>
<td></td>
</tr>
<tr>
<td>$e\nu\gamma\gamma$</td>
<td>$1.9^{+1.1}{-1.1}$ (stat.) $^{+1.1}{-1.2}$ (syst.) ± 0.1 (lumi.)</td>
<td>1.88 ± 0.20</td>
</tr>
<tr>
<td>$\ell\gamma\gamma$</td>
<td>$2.9^{+0.8}{-0.7}$ (stat.) $^{+1.0}{-0.9}$ (syst.) ± 0.1 (lumi.)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Measurement of the $pp \rightarrow \ell\nu\gamma\gamma + X$ inclusive and exclusive fiducial cross sections.

The SM prediction for the $W(\ell\nu)\gamma\gamma$ cross section is calculated with MCFM [47] at next-to-leading order (NLO). The calculations are performed using the MCFM default electroweak parameters [48] and the CT10 PDF set. The renormalization and factorization scales are set to the invariant mass of the $\ell\nu\gamma\gamma$ system. The fragmentation of quarks and gluons to photons is included using the fragmentation function GdRG_LO [49]. The kinematic requirements at parton level match the fiducial acceptance of Table 2.

In addition to the inclusive prediction, an exclusive cross section is obtained by vetoing events with an additional jet emission. To account for the difference between jets defined at parton and particle levels, a correction factor of about 0.87 in the exclusive case is computed and applied to the prediction as documented in Ref. [5]. Uncertainties on the two predictions include the effect of varying independently the renormalization and factorization scales by factors of 0.5 and 2.0, evaluating the CT10 PDF error sets scaled to the 68% confidence level (CL), the uncertainties on quark or gluon fragmentation to a photon, and the parton to particle correction factors. The predictions for $W(\ell\nu)\gamma\gamma$ production are compared to the measured cross sections in Table 3. The measured cross section is higher by 1.9σ in the inclusive case, while better agreement is seen in the exclusive case, similar to the measurement of $W\gamma$ and $Z\gamma$ in Ref. [5].

The aQGCs are introduced as dimension-8 operators following the formalism defined in the Appendix of Ref. [50]. While many operators give rise to anomalous couplings of the form $WW\gamma\gamma$, this study is restricted to f_{T0}/Λ^4, f_{M2}/Λ^4, and f_{M3}/Λ^4, where Λ represents the scale at which new physics appears, and f the coupling of the respective operator. The $W\gamma\gamma$ final state is expected to be particularly sensitive to the T_0 operator, whereas the other two operators can be related to the parameters of the dimension-6 operators used at LEP [18–21] and by CMS [16] via the transformations described in Ref. [51]. To preserve unitarity up to high energy scales, a form factor is introduced which depends on the energy, the form factor scale Λ_{FF} and an exponent n, following the formalism described in Refs. [52, 53].
largest form factor scale ensuring unitarity for this process at $\sqrt{s} = 8$ TeV, calculated using the VBFNLO generator [54], is given by $n = 2$ and $\Lambda_{FF} = 600$ GeV for f_{T0}/Λ^4, and $\Lambda_{FF} = 500$ GeV for f_{M2}/Λ^4 and f_{M3}/Λ^4.

Deviations from the SM prediction for the aQGC parameters, which are predicted to be zero, lead to an excess of events with high diphoton invariant mass. The optimal phase space to study aQGCs was found to be the exclusive selection with the additional requirement of $m_{\gamma\gamma}$ > 300 GeV. The SM backgrounds in this region are determined from a fit to the observed $m_{\gamma\gamma}$ distribution. The expected SM background is 0.01 ± 0.03 (stat.) ± 0.20 (syst.) $(0.02 \pm 0.05$ (stat.) ± 0.46 (syst.)) events in the electron (muon) channel, where uncertainties include systematic effects due to the extrapolation procedure. No events are observed in the high-mass region.

<table>
<thead>
<tr>
<th>n</th>
<th>Observed [TeV$^{-4}$]</th>
<th>Expected [TeV$^{-4}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>f_{T0}/Λ^4</td>
<td>$[-0.9, 0.9] \times 10^2$</td>
</tr>
<tr>
<td></td>
<td>f_{M2}/Λ^4</td>
<td>$[-0.8, 0.8] \times 10^4$</td>
</tr>
<tr>
<td></td>
<td>f_{M3}/Λ^4</td>
<td>$[-1.5, 1.4] \times 10^4$</td>
</tr>
<tr>
<td>1</td>
<td>f_{T0}/Λ^4</td>
<td>$[-7.6, 7.3] \times 10^2$</td>
</tr>
<tr>
<td></td>
<td>f_{M2}/Λ^4</td>
<td>$[-4.4, 4.6] \times 10^4$</td>
</tr>
<tr>
<td></td>
<td>f_{M3}/Λ^4</td>
<td>$[-8.9, 8.0] \times 10^4$</td>
</tr>
<tr>
<td>2</td>
<td>f_{T0}/Λ^4</td>
<td>$[-2.7, 2.6] \times 10^3$</td>
</tr>
<tr>
<td></td>
<td>f_{M2}/Λ^4</td>
<td>$[-1.3, 1.3] \times 10^5$</td>
</tr>
<tr>
<td></td>
<td>f_{M3}/Λ^4</td>
<td>$[-2.9, 2.5] \times 10^5$</td>
</tr>
</tbody>
</table>

Table 4: Observed and expected 95% CL limits obtained for the f_{T0}/Λ^4, f_{M2}/Λ^4 and f_{M3}/Λ^4 aQGC parameters for the combination of the two channels. The values of $n = 0, 1, 2$ are the exponential choices of the form factor, Λ_{FF} is fixed to 600 GeV for f_{T0}/Λ^4 and to 500 GeV for the other parameters. The $n = 0$ choice produces the limits without the form factor applied.

The cross-section prediction as a quadratic function of the aQGC parameters is obtained by using VBFNLO. For SM couplings VBFNLO agrees with MCFM. The limits on the aQGC parameters are extracted with a frequentist profile likelihood test [55], using the methodology of Ref. [5]. The expected and observed limits at 95% CL on the aQGC parameters are shown in Table 4 for different values of n. The limits on f_{M2}/Λ^4 and f_{M3}/Λ^4 improve on the previous results from LEP [18–21] and D0 [22], but are less stringent than those from CMS [16, 17]. The limit on f_{T0}/Λ^4 is tighter than the previous limit published by CMS [17, 56]. This can be explained by the fact that f_{T0}/Λ^4 is especially sensitive to transversely polarized W bosons, which are favored in the present study [50].

In summary, evidence for the $W(\ell\nu)\gamma\gamma$ process is reported for the first time. The significance of the inclusive production cross section is larger than 3 σ. The measured cross sections are in agreement within uncertainties with NLO SM predictions calculated with MCFM. Limits are set at 95% CL on the aQGC parameters, in particular improving the limit on f_{T0}/Λ^4.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[24] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). The distance ΔR in the (η, φ) space is defined as ΔR = \sqrt{(Δη)^2 + (Δφ)^2}.

The transverse mass of the W is defined, using the lepton (ℓ) and neutrino (ν) p_T and ϕ, as $m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos(\phi_\ell - \phi_\nu))}$.

Private communication from J.M. Campbell, R. K. Ellis, and C. Williams, publication in preparation.

C. Degrande et al., [arXiv:1309.7890].

J. Baglio et al., [arXiv:1107.4038].

VBFNLO uses a slightly different definition of the field strength tensors than Ref. [50]. Therefore, the couplings f need to be scaled for comparison. In the case of f_{10}, the scale factor is g^{-4}, where g is the $SU(2)$ gauge coupling [54].
Physics Department, National Technical University of Athens, Zografou, Greece
Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
Institute of Physics, University of Belgrade, Belgrade, Serbia
Department for Physics and Technology, University of Bergen, Bergen, Norway
Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
Department of Physics, Humboldt University, Berlin, Germany
Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Department of Physics, Bogazici University, Istanbul; Department of Physics, Dogus University, Istanbul; Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
Department of Physics, Boston University, Boston MA, United States of America
Department of Physics, Brandeis University, Waltham MA, United States of America
(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
Department de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, Carleton University, Ottawa ON, Canada
(a) Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington NY, United States of America
Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Fysiska institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
INFN Sezione di Napoli; Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacký University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
\((a)\) INFN Sezione di Pavia; \((b)\) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
\((a)\) INFN Sezione di Pisa; \((b)\) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
\((a)\) INFN Sezione di Roma; \((b)\) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
\((a)\) INFN Sezione di Roma Tor Vergata; \((b)\) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
\((a)\) INFN Sezione di Roma Tre; \((b)\) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
\((a)\) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; \((b)\) Centre National de l’Énergie des Sciences Techniques Nucleaires, Rabat; \((c)\) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; \((d)\) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; \((e)\) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
Department of Physics, University of Washington, Seattle WA, United States of America
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Fachbereich Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford CA, United States of America
\((a)\) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; \((b)\) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
\((a)\) Department of Physics, University of Cape Town, Cape Town; \((b)\) Department of Physics,
University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison WI, United States of America
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven CT, United States of America
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
g Also at Tomsk State University, Tomsk, Russia
h Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
i Also at Università di Napoli Parthenope, Napoli, Italy
j Also at Institute of Particle Physics (IPP), Canada
k Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
l Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
m Also at Louisiana Tech University, Ruston LA, United States of America
n Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
o Also at Department of Physics, National Tsing Hua University, Taiwan
p Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
q Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
r Also at CERN, Geneva, Switzerland
s Also at Georgian Technical University (GTU), Tbilisi, Georgia
t Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
u Also at Manhattan College, New York NY, United States of America
v Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
w Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
x Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
y Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
z Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
aa Also at Section de Physique, Université de Genève, Geneva, Switzerland
ab Also at International School for Advanced Studies (SISSA), Trieste, Italy
ac Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
ad Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
ae Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
af Also at National Research Nuclear University MEPhI, Moscow, Russia
ag Also at Department of Physics, Stanford University, Stanford CA, United States of America
ah Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ai Also at Department of Physics, Oxford University, Oxford, United Kingdom
aj Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
ak Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
al Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased