Evidence of $W\gamma\gamma$ production in pp collisions at $\sqrt{s} = 8$ TeV and limits on anomalous quartic gauge couplings with the ATLAS detector

The ATLAS Collaboration

Abstract

This Letter reports evidence of triple gauge boson production $pp \to W(\ell\nu)\gamma\gamma + X$, which is accessible for the first time with the 8 TeV LHC data set. The fiducial cross section for this process is measured in a data sample corresponding to an integrated luminosity of 20.3 fb$^{-1}$, collected by the ATLAS detector in 2012. Events are selected using the W boson decay to $e\nu$ or $\mu\nu$ as well as requiring two isolated photons. The measured cross section is used to set limits on anomalous quartic gauge couplings in the high diphoton mass region.
In the Standard Model (SM), the self-couplings of the electroweak gauge bosons are specified by the non-Abelian $SU(2) \times U(1)$ structure of the electroweak sector. Since any deviation in the self-couplings from this expectation indicates the presence of new physics phenomena at unprobed energy scales, the measurement of the production of multiple electroweak gauge bosons represents an important test of the SM. This Letter presents a measurement of the triboson production cross section, discussed in Ref. [1], where the W boson decays into $e\nu$ or $\mu\nu$ ($W(\ell\nu)\gamma\gamma$), and its sensitivity to anomalous quartic gauge couplings (aQGCs) $WW\gamma\gamma$. The inclusive and exclusive cross sections are both measured. The inclusive case has no restriction on the $W\gamma\gamma$ recoil system, whereas the exclusive case includes a veto on events containing one or more jets. Limits on aQGC parameters are set in the exclusive phase space with a diphoton mass larger than 300 GeV. Total and differential cross sections for the diboson production processes WW, WZ, ZZ, $W\gamma$, and $Z\gamma$ have been reported previously by the ATLAS [2–5], CMS [6–8], D0 [9–11], and CDF [12–14] collaborations, including limits on anomalous triple gauge boson couplings. Limits have been set on aQGCs by ATLAS [15], CMS [16, 17], the LEP experiments [18–21], and D0 [22].

ATLAS [23] is a multipurpose detector composed of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) immersed in the magnetic field produced by a system of superconducting toroids. Events in this analysis are selected with triggers requiring the presence of one muon with a transverse momentum (p_T) of more than 18 GeV and two electromagnetic objects with a transverse energy (E_T) of more than 10 GeV each, with an efficiency of about 80%, or three $E_T > 15$ GeV electromagnetic objects with an efficiency of more than 95% [24]. After applying data quality requirements, the data set corresponds to a total integrated luminosity of 20.3 ± 0.6 fb$^{-1}$ [25].

The main backgrounds to the $W(\ell\nu)\gamma\gamma$ process originate from processes with jets identified as photons or leptons, referred to as fakes hereafter. Data-driven techniques are used to estimate fakes, whereas Monte Carlo (MC) simulation is used to estimate background sources with prompt leptons and photons and for the signal. The SHERPA 1.4.1 generator [26–29] is used to model the signal with up to three partons in the final state. SHERPA was also used to simulate the $Z\gamma$, $Z\gamma\gamma$, WZ, and $W(\tau\nu)\gamma\gamma$ backgrounds. The $t\bar{t}$, single top, and WW processes are modeled by MC@NLO 4.02 [30, 31], interfaced to HERWIG 6.520 [32] for parton showering and fragmentation processes and to JIMMY 4.30 [33] for underlying event simulation. The POWHEG [34] generator is used to simulate ZZ production, interfaced to PYTHIA 8.163 [35] for parton showering and fragmentation. The CT10 parton distribution function (PDF) set [36] is used for all SHERPA, MC@NLO, and POWHEG samples. The standard ATLAS detector simulation [37] based on GEANT4 [38] is used. It includes multiple proton-proton interactions per bunch crossing (pile-up) as observed in data.

The $W(\ell\nu)\gamma\gamma$ candidate events contain an isolated lepton and missing transverse momentum (E_T^{miss}) from the undetected neutrino of the leptonic W decay, and two isolated photons (including both converted and unconverted categories). Muon candidates are identified, within pseudorapidity [24] $|\eta| < 1.4$, by associating complete tracks or track segments in the MS with tracks in the ID [39]. Electron candidates are reconstructed within $|\eta| < 2.47$ as electromagnetic clusters associated to a track [40], whereas photons are reconstructed as electromagnetic clusters with $|\eta| < 2.37$ [41]. The calorimeter transition regions at $1.37 < |\eta| < 1.52$ are excluded for electrons and photons. Identification criteria based on shower shapes in the EM calorimeter for photons, and additionally on tracking information for electrons, referred to as “tight” in Refs. [40, 42], are used. The E_T^{miss} uses the energy deposits in the calorimeters within $|\eta| < 4.9$ and the muons identified in the MS, as described in Ref. [43]. Reconstructed muons, electrons, and photons are required to have $p_T^{\mu/e/\gamma} > 20$ GeV and to be isolated. Photons are considered isolated if the sum of calorimeter transverse energy deposits in a cone of size $\Delta R = 0.4$ around the candidate is smaller
For electrons, the calorimeter transverse energy deposits and the sum of the transverse momenta of tracks with the largest p_T, extracted from MC simulation. The number of candidate events in data passing the full selection is also shown.

Table 1 shows the expected background as well as the observation. The background expectation alone is sufficient to describe the data indicating the presence of signal events. The fake-photon background from $W\gamma + Wjj$ estimated by performing a two-dimensional template fit to the isolation energy distributions of the leading and subleading photons, as described in Ref. [45]. Three background templates are obtained from data by reversing some of the photon identification requirements based on shower shape; the signal templates are taken from MC simulation. Contributions from events where a jet satisfies the electron identification criteria, or the muon originates from heavy-flavor decays, i.e. from $\gamma\gamma +$ jets processes, are estimated by using a two-dimensional sideband method constructed from the lepton isolation and E_T^{miss} variables, as described in Ref. [5]. The distribution of the diphoton invariant mass in the two channels is shown in Fig. 1. In the estimation of the fake-photon background, systematic uncertainties arise from the limited number of events in the control regions, the functional form used to describe the background isolation energy distribution, the definition of the control region, the modeling of the signal in the MC samples and the corresponding statistical uncertainty. In the estimate of the fake-lepton background, systematic uncertainties related to the control region definitions and the residual correlation of the discriminating variables are considered.
Figure 1: Diphoton invariant mass distribution in the electron (left) and muon (right) channels. The expected signal based on the SHERPA prediction is shown. The hashed areas show the total systematic and statistical uncertainty on the background estimate.

The fiducial cross sections $\sigma_{W\gamma\gamma}^{\text{fid}}$ are obtained from a maximum-likelihood fit, similarly to Ref. [5], for the electron channel, the muon channel, and the combination of the two assuming lepton universality to determine the $W(\ell\nu)\gamma\gamma$ cross section for a single lepton flavor. They are measured in a phase space, defined in Table 2, close to that of the experimentally selected region. Here p_ν^T is the transverse momentum of the neutrino and e_p^h is the fractional energy carried by the closest particle-level jet in a cone of $\Delta R = 0.4$ around each photon direction.

<table>
<thead>
<tr>
<th>Definition of the fiducial region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_\ell^T > 20 \text{ GeV}, p_\nu^T > 25 \text{ GeV},</td>
</tr>
<tr>
<td>$m_T > 40 \text{ GeV}$</td>
</tr>
<tr>
<td>$E_T^\gamma > 20 \text{ GeV},</td>
</tr>
<tr>
<td>$\Delta R(\ell, \gamma) > 0.7, \Delta R(\gamma, \gamma) > 0.4, \Delta R(\ell/\gamma, \text{jet}) > 0.3$</td>
</tr>
</tbody>
</table>

Table 2: Definition of the fiducial region for which the cross section is evaluated.

The efficiency of the signal selection and the small acceptance correction due to the extrapolation over the calorimeter transition region and to $|\eta| = 2.5$ for the leptons are taken into account in the procedure. The acceptance correction factors are 0.83 and 0.90 in the electron and muon channel, respectively. The combined efficiency and acceptance correction amounts to $(19.6\pm0.5)\%$ and $(40.4\pm0.7)\%$ in the electron and muon channels in the inclusive case, and to $(15.1\pm0.7)\%$ and $(39.7\pm1.0)\%$ in the exclusive case. The given uncertainties are statistical only. Corrections are applied to account for small differences between data and MC simulation in lepton, photon, and jet efficiencies, momentum scale and resolution, additional pp interactions, and beam-spot position.

Systematic uncertainties on the cross section are accounted for by introducing nuisance parameters in the likelihood which modify the signal and background expected yields. Correlations between systematic...
To preserve unitarity up to high energy scales, a form factor is introduced which depends on the energy, an exponent n, following the formalism described in Refs. [52, 53]. The uncertainties in the two channels are accounted for in the combined fit. When combining the two channels, the dominant systematic uncertainties in the inclusive and exclusive cross-section measurements are 14% and 23% from the data-driven background, 5% to 7% from the jet energy scale, and 3% from the luminosity. Other systematic uncertainties considered stem from the electromagnetic and muonic energy scale and resolution, the object reconstruction, the pileup description, and the trigger efficiency. These are found to have a minor impact, below 3%. Theoretical uncertainties on the signal modeling, affecting only the acceptance extrapolation, are negligible. The measured cross sections are shown in Table 3. The significance after combining the two channels is larger than 3σ in the inclusive case. The measurements in the electron and muon channels are compatible within 1σ.

The SM prediction for the $W(\ell\nu)\gamma\gamma$ cross section is calculated with MCFM [47] at next-to-leading order (NLO). The calculations are performed using the MCFM default electroweak parameters [48] and the CT10 PDF set. The renormalization and factorization scales are set to the invariant mass of the $\ell\nu\gamma\gamma$ system. The fragmentation of quarks and gluons to photons is included using the fragmentation function GdRG_LO [49]. The kinematic requirements at parton level match the fiducial acceptance of Table 2.

In addition to the inclusive prediction, an exclusive cross section is obtained by vetoing events with an additional jet emission. To account for the difference between jets defined at parton and particle levels, a correction factor of about 0.87 in the exclusive case is computed and applied to the prediction as documented in Ref. [5]. Uncertainties on the two predictions include the effect of varying independently the renormalization and factorization scales by factors of 0.5 and 2.0, evaluating the CT10 PDF error sets scaled to the 68% confidence level (CL), the uncertainties on quark or gluon fragmentation to a photon, and the parton to particle correction factors. The predictions for $W(\ell\nu)\gamma\gamma$ production are compared to the measured cross sections in Table 3. The measured cross section is higher by 1.9σ in the inclusive case, while better agreement is seen in the exclusive case, similar to the measurement of $W\gamma$ and $Z\gamma$ in Ref. [5].

The aQGCs are introduced as dimension-8 operators following the formalism defined in the Appendix of Ref. [50]. While many operators give rise to anomalous couplings of the form $WW\gamma\gamma$, this study is restricted to f_{T0}/Λ^4, f_{M2}/Λ^4, and f_{M3}/Λ^4, where Λ represents the scale at which new physics appears, and f the coupling of the respective operator. The $W\gamma\gamma$ final state is expected to be particularly sensitive to the $T0$ operator, whereas the other two operators can be related to the parameters of the dimension-6 operators used at LEP [18–21] and by CMS [16] via the transformations described in Ref. [51]. To preserve unitarity up to high energy scales, a form factor is introduced which depends on the energy, the form factor scale Λ_{FF} and an exponent n, following the formalism described in Refs. [52, 53].

<table>
<thead>
<tr>
<th>Operator</th>
<th>σ^{MC} [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu\nu\gamma\gamma$</td>
<td>$7.1^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)</td>
</tr>
<tr>
<td>$e\nu\gamma\gamma$</td>
<td>$4.3^{+1.7}_{-1.6}$ (stat.) ± 1.9 (syst.) ± 0.2 (lumi.)</td>
</tr>
<tr>
<td>$\ell\gamma\gamma$</td>
<td>$6.1^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)</td>
</tr>
</tbody>
</table>

Table 3: Measurement of the $pp \rightarrow \ell\nu\gamma\gamma + X$ inclusive and exclusive fiducial cross sections.
largest form factor scale ensuring unitarity for this process at $\sqrt{s} = 8$ TeV, calculated using the VBFNLO generator [54], is given by $n = 2$ and $\Lambda_{\text{FF}} = 600$ GeV for f_{T0}/Λ^4, and $\Lambda_{\text{FF}} = 500$ GeV for f_{M2}/Λ^4 and f_{M3}/Λ^4.

Deviations from the SM prediction for the aQGC parameters, which are predicted to be zero, lead to an excess of events with high diphoton invariant mass. The optimal phase space to study aQGCs was found to be the exclusive selection with the additional requirement of $m_{\gamma\gamma} > 300$ GeV. The SM backgrounds in this region are determined from a fit to the observed $m_{\gamma\gamma}$ distribution. The expected SM background is 0.01 ± 0.03 (stat.) ± 0.20 (syst.) $(0.02 \pm 0.05$ (stat.) ± 0.46 (syst.)) events in the electron (muon) channel, where uncertainties include systematic effects due to the extrapolation procedure. No events are observed in the high-mass region.

<table>
<thead>
<tr>
<th>n</th>
<th>Observed [TeV$^{-4}$]</th>
<th>Expected [TeV$^{-4}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>f_{T0}/Λ^4</td>
<td>$[-0.9, 0.9] \times 10^2$</td>
</tr>
<tr>
<td></td>
<td>f_{M2}/Λ^4</td>
<td>$[-0.8, 0.8] \times 10^4$</td>
</tr>
<tr>
<td></td>
<td>f_{M3}/Λ^4</td>
<td>$[-1.5, 1.4] \times 10^4$</td>
</tr>
<tr>
<td>1</td>
<td>f_{T0}/Λ^4</td>
<td>$[-7.6, 7.3] \times 10^2$</td>
</tr>
<tr>
<td></td>
<td>f_{M2}/Λ^4</td>
<td>$[-4.4, 4.6] \times 10^4$</td>
</tr>
<tr>
<td></td>
<td>f_{M3}/Λ^4</td>
<td>$[-8.9, 8.0] \times 10^4$</td>
</tr>
<tr>
<td>2</td>
<td>f_{T0}/Λ^4</td>
<td>$[-2.7, 2.6] \times 10^3$</td>
</tr>
<tr>
<td></td>
<td>f_{M2}/Λ^4</td>
<td>$[-1.3, 1.3] \times 10^5$</td>
</tr>
<tr>
<td></td>
<td>f_{M3}/Λ^4</td>
<td>$[-2.9, 2.5] \times 10^5$</td>
</tr>
</tbody>
</table>

Table 4: Observed and expected 95% CL limits obtained for the f_{T0}/Λ^4, f_{M2}/Λ^4 and f_{M3}/Λ^4 aQGC parameters for the combination of the two channels. The values of $n = 0, 1, 2$ are the exponential choices of the form factor, Λ_{FF} is fixed to 600 GeV for f_{T0}/Λ^4 and to 500 GeV for the other parameters. The $n = 0$ choice produces the limits without the form factor applied.

The cross-section prediction as a quadratic function of the aQGC parameters is obtained by using VBFNLO. For SM couplings VBFNLO agrees with MCFM. The limits on the aQGC parameters are extracted with a frequentist profile likelihood test [55], using the methodology of Ref. [5]. The expected and observed limits at 95% CL on the aQGC parameters are shown in Table 4 for different values of n. The limits on f_{M2}/Λ^4 and f_{M3}/Λ^4 improve on the previous results from LEP [18–21] and D0 [22], but are less stringent than those from CMS [16,17]. The limit on f_{T0}/Λ^4 is tighter than the previous limit published by CMS [17,56]. This can be explained by the fact that f_{T0}/Λ^4 is especially sensitive to transversely polarized W bosons, which are favored in the present study [50].

In summary, evidence for the $W(\ell\nu)\gamma\gamma$ process is reported for the first time. The significance of the inclusive production cross section is larger than 3 σ. The measured cross sections are in agreement within uncertainties with NLO SM predictions calculated with MCFM. Limits are set at 95% CL on the aQGC parameters, in particular improving the limit on f_{T0}/Λ^4.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI,
The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[24] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as \(\eta = -\ln \tan(\theta/2) \). The distance \(\Delta R \) in the (η, φ) space is defined as \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \).

The transverse mass of the W is defined, using the lepton (ℓ) and neutrino (ν) p_T and ϕ, as
\[m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos(\phi_\ell - \phi_\nu))}. \]

Private communication from J.M. Campbell, R. K. Ellis, and C. Williams, publication in preparation.

C. Degrande et al., [arXiv:1309.7890].

J. Baglio et al., [arXiv:1107.4038].

VBFNLO uses a slightly different definition of the field strength tensors than Ref. [50]. Therefore, the couplings f need to be scaled for comparison. In the case of f_{10}, the scale factor is g^{-4}, where g is the $SU(2)$ gauge coupling [54].
The ATLAS Collaboration

40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America

79

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

80

Fysiska institutionen, Lunds universitet, Lund, Sweden

81

Departamento de Física Teórica C-15, Universidad Autónoma de Madrid, Madrid, Spain

82

Institut für Physik, Universität Mainz, Mainz, Germany

83

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

84

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

85

Department of Physics, University of Massachusetts, Amherst MA, United States of America

86

Department of Physics, McGill University, Montreal QC, Canada

87

School of Physics, University of Melbourne, Victoria, Australia

88

Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

89

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

90

INFN Sezione di Milano; Dipartimento di Fisica, Università di Milano, Milano, Italy

91

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

92

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

93

Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America

94

Group of Particle Physics, University of Montreal, Montreal QC, Canada

95

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

96

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

97

National Research Nuclear University MEPhI, Moscow, Russia

98

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

99

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

100

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

101

Nagasaki Institute of Applied Science, Nagasaki, Japan

102

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

103

INFN Sezione di Napoli; Dipartimento di Fisica, Università di Napoli, Napoli, Italy

104

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

105

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

106

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

107

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

108

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

109

Department of Physics, New York University, New York NY, United States of America

110

Ohio State University, Columbus OH, United States of America

111

Faculty of Science, Okayama University, Okayama, Japan

112

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

113

Department of Physics, Oklahoma State University, Stillwater OK, United States of America

114

Palacký University, RCPTM, Olomouc, Czech Republic

115