Crystal and molecular structure of bis(N,N-di-n-butyldithiocarbamato)gold(III) dibromoargentate(1)

J. A. CRAS, J. H. NOORDIK, P. T. BEURSKENS
AND A. M. VERHOEVEN
Crystallography Laboratory, University of Nijmegen, Nijmegen, The Netherlands

(Received 20 April 1970)

Abstract

The crystal and molecular structure of bis(N,N-di-n-butyldithiocarbamato)gold(III) dibromoargentate(I), \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_2\text{)}_2\text{AgBr}_2 \), has been determined by three-dimensional X-ray methods. The compound crystallizes in the monoclinic space group \( C2/c \) with unit cell dimensions: \( a = 17.39(1) \) Å, \( b = 18.65(1) \) Å, \( c = 9.199(6) \) Å, \( \beta = 93.9(1)^\circ \); \( Z = 4 \). Intensities were collected on an automatic diffractometer. The structural parameters were refined by least-squares methods to a conventional \( R \) factor of 0.048 for 854 non-zero observed reflexions. The structure consists of \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_2\text{)}_2^+ \) and \( \text{AgBr}_2^- \) ions. The gold is in planar coordination with four sulphur atoms, the two crystallographically non-equivalent \( \text{Au—S} \) bond lengths being 2.357(8) Å and 2.324(8) Å. The silver is linearly coordinated, the \( \text{Ag—Br} \) bond lengths being 2.450(5) Å. The ionic packing in the structure differs from that in the analogous \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_3\text{)}_2\text{AuBr}_3 \) complex.

Introduction

In preceding papers, the crystal structures of \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_3\text{)}_2\text{AuBr}_3 \) (Beurskens, Blaauw, Cras & Steggerda, 1968) and of \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_3\text{)}_2\text{Br} \) (Beurskens, Cras and Van der Linden, 1970) have been reported. Study of the packing in these ionic structures has been extended by the investigation of the complex \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_2\text{)}_2\text{AgBr}_2 \) (=\( \text{Au(dtc)}_2\text{AgBr}_2 \)), prepared by Van der Linden (1970).

Crystal data

Bis(N,N-di-n-butyldithiocarbamato)gold(III)dibromoargentate(I), \( \text{Au(S}_2\text{CN(C}_4\text{H}_9)_2\text{)}_2\text{AgBr}_2 \)
\( (=\text{Au(dtc)}_2\text{AgBr}_2) \), \( FW 873.41 \). The prismatic crystals are elongated along \( c \). The space group, from systematic absences, is either \( \text{Cc} \) or \( \text{C2/c} \) and the structure was solved assuming the latter. Unit cell dimensions are \( a = 17.39(1) \) Å, \( b = 18.65(1) \) Å, \( c = 9.199(6) \) Å, \( \beta = 93.9(1)^\circ \); \( V = 2977(9) \) Å\(^3\). \( D_m = 1.98(2) \) g cm\(^{-3}\) (flotation method), \( Z = 4 \), \( D_x = 1.95(1) \) g cm\(^{-3}\). Nickel-filtered copper \( K\alpha \) radiation, \( \lambda = 1.5418 \) Å, was used. The linear absorption coefficient \( \mu \) is 208.8 cm\(^{-1}\).

A crystal, cut to approximately \( 0.09 \times 0.09 \times 0.14 \) mm\(^3\), was mounted with \( c \) coincident with the \( \phi \) axis. The cell dimensions were obtained from \( \theta, \phi \) and \( \chi \) measurements on a Nonius diffractometer for 22 reflexions in the range \( 10^\circ < \theta < 30^\circ \), the values with estimated standard deviations being calculated by a least-squares method.

Intensity measurements

Intensities were collected with an automatic Nonius diffractometer, using the moving counter-moving crystal method (scan speed 0.3°/min). Every 60 min a reference reflexion was measured to detect and
Table 1. Atomic parameters for Au(dtc)$_2$AgBr$_2$ with standard devils. The key to atomic numbering is given in Fig. 3.

(a) All atoms except butyl carbon atoms. The expression used for the anisotropic temperature factor is: \(\exp - (\beta_{11} h^2 + \beta_{22} k^2 + \beta_{33} l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(\beta_{11})</th>
<th>(\beta_{22})</th>
<th>(\beta_{33})</th>
<th>(\beta_{12})</th>
<th>(\beta_{13})</th>
<th>(\beta_{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0036(1)</td>
<td>0.0033(1)</td>
<td>0.0116(4)</td>
<td>-0.0001(1)</td>
<td>0.0001(2)</td>
<td>-0.0001(2)</td>
</tr>
<tr>
<td>Ag</td>
<td>0.2015(2)</td>
<td>0.2500</td>
<td>0.0062(3)</td>
<td>0.0059(3)</td>
<td>0.0209(9)</td>
<td>0.0000</td>
<td>0.0010(4)</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Br</td>
<td>0.1730(5)</td>
<td>0.0004(3)</td>
<td>0.0081(3)</td>
<td>0.024(1)</td>
<td>-0.0021(2)</td>
<td>0.0009(4)</td>
<td>-0.0020(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S(1)</td>
<td>0.169(1)</td>
<td>0.0050(4)</td>
<td>0.0042(4)</td>
<td>0.04(2)</td>
<td>-0.0005(5)</td>
<td>-0.0014(7)</td>
<td>-0.002(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S(2)</td>
<td>0.1197(3)</td>
<td>0.0050(4)</td>
<td>0.0042(4)</td>
<td>0.04(2)</td>
<td>-0.0005(5)</td>
<td>-0.0014(7)</td>
<td>-0.002(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.184(2)</td>
<td>-0.1135(2)</td>
<td>0.254(4)</td>
<td>0.006(2)</td>
<td>0.006(2)</td>
<td>0.031(9)</td>
<td>-0.001(1)</td>
<td>-0.002(3)</td>
<td>0.000(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>0.107(2)</td>
<td>-0.091(2)</td>
<td>0.173(4)</td>
<td>0.008(3)</td>
<td>0.003(2)</td>
<td>0.006(7)</td>
<td>-0.001(1)</td>
<td>-0.002(3)</td>
<td>0.000(3)</td>
</tr>
</tbody>
</table>

(b) Butyl carbon atoms. The positional parameters are the unrefined results of a difference Fourier synthesis (see text)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(B(\text{Å}^2))</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(B(\text{Å}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)</td>
<td>0.211</td>
<td>-0.097</td>
<td>0.344</td>
<td>9(1)</td>
<td>C(6)</td>
<td>0.133</td>
<td>-0.222</td>
<td>0.256</td>
</tr>
<tr>
<td>C(3)</td>
<td>0.289</td>
<td>-0.094</td>
<td>0.278</td>
<td>9(1)</td>
<td>C(7)</td>
<td>0.175</td>
<td>-0.236</td>
<td>0.142</td>
</tr>
<tr>
<td>C(4)</td>
<td>0.353</td>
<td>-0.064</td>
<td>0.394</td>
<td>10(1)</td>
<td>C(8)</td>
<td>0.150</td>
<td>-0.328</td>
<td>0.134</td>
</tr>
<tr>
<td>C(5)</td>
<td>0.434</td>
<td>-0.054</td>
<td>0.333</td>
<td>8(2)</td>
<td>C(9)</td>
<td>0.083</td>
<td>-0.350</td>
<td>0.061</td>
</tr>
</tbody>
</table>
correct for fluctuations in the primary beam. Of the 1633 attainable symmetry-independent reflexions (up to $\sin \theta/\lambda = 0.50 \text{ Å}^{-1}$), 834 reflexions have been measured above background. Absorption corrections were calculated according to the Busing & Levy (1957) procedure, using $6 \times 6 \times 8$ volume components and 8 accurately located boundary planes. From calculations for some reflexions, using a $16 \times 16 \times 16$ subdivision, the average error of the absorption correction factors was found to be 2% with a maximum error of 10%.

**Determination of the structure**

The structure was solved by Patterson & Fourier methods. After the initial stage of the analysis, the unobserved reflexions were rejected (practically all had calculated intensities at this stage less than $1 \times I^*$.)

![Fig. 1. Projection of Au(dtc)$_3$AgBr$_3$ along c. The white cations are situated at $z = 0$, the black cations at $z = \frac{1}{4}$. (omitted: gold atoms at 0, 0, 0; 1, 1, 0; 1, 0, $\frac{1}{4}$ and 0, 1, $\frac{3}{4}$). The twofold axes are indicated.](image-url)
the minimum observable value). The positional and anisotropic vibrational parameters and the scale factor were refined by full-matrix least-squares methods. The function that was minimized was $w(|F_0| - |F_c|)^2$, the weight $w$ for each reflection being obtained from counting statistics. The atomic scattering factors were those of Au+, Ag+, Br-, S, C and N corrected for the anomalous scattering component $(df')$ using data from the International Tables (1962).

After refinement of all atoms except the carbon atoms of the butyl chains, the most probable positions for these carbon atoms were sought from a difference Fourier synthesis. Refinement of these positions by least-squares methods did not affect the $R$ value and led to improbable bond distances and angles. Also three more cycles, holding these atomic positions fixed and refining the other parameters, did not produce significant changes. According to our experience with similar structures, the failure to locate the butyl chains cannot be explained by the errors in the observed structure factors and we therefore presume that the butyl chains are disordered. The most probable positions of the butyl carbon atoms, as found from the difference Fourier synthesis and listed in Table 1(b), have been included in the structure factor calculations.

The conventional $R$ factor is 0.048. The final difference Fourier map showed some maxima of about 1 e.Å$^{-3}$ around the heavy atoms and 0.6 e.Å$^{-3}$ in the neighbourhood of the butyl chains. In view of the presumed disorder of the butyl chains and the rather large absorption corrections, we do not attach much physical significance to the temperature factor parameters given in Table 1.

Calculations were performed on an IBM 360/50 computer using programmes written by Busing, Martin & Levy (1962) and Ahmed & Pippy (1968). Programmes for cell dimensions, diffractometer setting angles and data reduction, and Fourier synthesis were written by the authors.

**Description of the structure**

The atomic parameters are given in Table 1. The structure is illustrated in Figs. 1 and 2, the bond distances and angles being given in Fig. 3. The table of observed and calculated structure factors is available from the authors on request.
The compound consists of two ionic units $\text{Au(dtc)}_2^+$ and $\text{AgBr}_2^-$. Within the accuracy of the structure determination, the geometry of the cation in this compound is similar to that of the analogous compounds $\text{Au(dtc)}_2\text{AuBr}_2$ and $\text{Au(dtc)}_2\text{Br}$ (loc. cit.). The Au atom is situated on a centre of symmetry and is in planar coordination with four S atoms, the mean Au—S distance being 2.340 Å. The equation

Table 2. Interionic distances less than 4 Å

<table>
<thead>
<tr>
<th></th>
<th>(Å)</th>
<th></th>
<th>(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Au—S}(1)$ I</td>
<td>3.68(8)</td>
<td>$\text{S}(2)—\text{S}(2)$ I</td>
<td>3.87(1)</td>
</tr>
<tr>
<td>$\text{Ag—S}(2)$ II</td>
<td>3.16(1)</td>
<td>$\text{S}(2)—\text{N}$ I</td>
<td>3.79(3)</td>
</tr>
<tr>
<td>$\text{Br—S}(1)$</td>
<td>3.74(1)</td>
<td>$\text{S}(2)—\text{C}(1)$ I</td>
<td>3.62(4)</td>
</tr>
<tr>
<td>$\text{Br—S}(2)$ II</td>
<td>3.68(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The butyl carbon atoms are excluded.
Symmetry code: I: $-x, y, \frac{1}{2}-z$ II: $-x, -y, -z$
of the plane through the gold and sulphur atoms is: \(0.6577x - 0.0209y - 0.7530z = 0\), with deviations from the plane of \(-0.01(3)\) Å and \(0.02(3)\) Å for C(1) and N, respectively. In the direction of the needle axis \(c\), the cations are piled on top of one another, adjacent cations being related by a twofold axis. The gold atoms are \(4.600(3)\) Å (ξe) apart.

The Ag atom of the anion is situated on a twofold axis and is linearly coordinated by two Br atoms. In contrast to the analogous compounds (loc. cit.) where the anions are in the holes formed by the butyl chains, the position of the anion in the present compound is near to the sulphur of the cation. Some interionic distances are given in Table 2. The shortest contact is the Ag—S(2) distance, 3.16(1) Å. Br—S contacts are about 3.7 Å, the Br being only 0.166(5) Å out of the plane through the gold and sulphur atoms (see Fig. 2).

The authors are grateful to Professor J. J. Steggerda for his continuous interest and to Mr. W. P. J. Bosman and Mr. J. M. M. Smits for valuable assistance. Authors of contributions from the Department of Inorganic Chemistry and Crystallography of this University will no longer be listed in alphabetical order.

References

Ahmed, F. R. & Pippy, M. E. (1968) NRC crystallographic programs: Absorption correction (NRC-3), Scan of inter-atomic distances and angles (NRC-12), Mean Plane (NRC-22).


National Lending Library Supplementary Publication No. 60012 contains 1 page of structure factor tables on 1 microfiche.