The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/143094

Please be advised that this information was generated on 2017-09-03 and may be subject to change.
A New Hydridocarbonyl Complex of Osmium(II)
By F. G. Moers
(Inorganic Chemistry Laboratory, University of Nijmegen, Nijmegen, The Netherlands)

Reprinted from
Chemical Communications 1971

The Chemical Society, Burlington House, London W1V OBN
A New Hydridocarbonyl Complex of Osmium(II)

By F. G. Moers
(Inorganic Chemistry Laboratory, University of Nijmegen, Nijmegen, The Netherlands)

Summary

The reaction of K₂OsCl₆ with tricyclohexylphosphine in alcohols leads to the hydridocarbonyl complex OsHCl(CO)(PCy₃)₂.

The hydridocarbonylphosphine complexes with the formula MHX(CO)(PPh₃)₃ where M = Ru or Os and X = Cl or Br may be obtained directly from the metal halides, triphenylphosphine, and alcohols. Stephenson and Wilkinson describe the preparation of the complex RuCl₂(PPh₃)₃ by refluxing a methanolic solution of PPh₃ and RuCl₃ under nitrogen.

I now report the isolation of the complex OsHCl(CO)(PCy₃)₂ (PCy₃ = tricyclohexylphosphine). On boiling a solution of PCy₃ and K₂OsCl₆ in 2-methoxyethanol in an atmosphere of nitrogen for 48 h, a red complex, OsHCl(CO)(PCy₃)₂, was obtained. The complex had satisfactory analytical data.

The complex decomposes at 210° and is slightly soluble in organic solvents. It is diamagnetic (measured between room temperature and -150°) indicating a low spin d₆-configuration.

The i.r. spectrum (KBr) in the range 2100—1850 cm⁻¹ shows two bands attributable to ν(CO) stretching modes at 1932s and 1887m cm⁻¹ and one band at 2012 cm⁻¹ assigned to ν(M-H). On performing the reaction in deuteriated ethanol, the expected frequency shift for a covalent osmium-hydrogen band was found ν(M-D) at 1508w cm⁻¹, the other two bands being unchanged. The split nature of the carbonyl bands, which is maintained in benzene solution, suggests that the complex is a mixture of geometrical isomers. So far, attempts to separate isomers have not succeeded. On shaking OsHCl(CO)(PCy₃)₂ in an excess of pyridine a yellow complex, OsHCl(CO)(PCy₃)₂Py, was obtained. The pyridine complex shows two i.r. absorption bands (KBr) at 2119m and 1870s cm⁻¹ attributable to ν(CO) and one weak band at 2040 cm⁻¹ assigned to ν(M-H).

In the mass spectrum there is a cluster, with the lowest fragment ion having m/e 808 which is in agreement with the formula OsHCl(CO)(PCy₃)₂. The relative abundances of the peaks in this cluster agree with the calculated ratios. Fragment ions with higher masses than OsHCl(CO)(PCy₃)₂ could not be detected. Comparison of the mass spectra of OsHCl(CO)(PCy₃)₂ and its deuteriated derivative, prepared as described above, showed appreciable deuteration of PCy₃ indicated by the presence of peaks at m/e 280—290. As a result we found that the ratios of the cluster of peaks due to OsHCl(CO)(PCy₃)₂ differed from the calculated OsHCl(CO)(PCy₃)₂ ratios in which the PCy₃ is non-deuteriated. These data suggest an exchange reaction between the complex and deuterium during the preparation of the complex.

All attempts to prepare OsHCl(CO)(PCy₃)₃ by addition of an excess of PCy₃ were unsuccessful. The fact that this complex could not be isolated may be due to the steric hindrance of the cyclohexyl groups.

The structure of this complex is probably related to that of the complexes RuHX(PPh₃)₃, the diamagnetic complex RuX₂(SbPh₃)₃, and RuCl₂(PPh₃). An X-ray study by La Placa and Ibers has shown a quasi-octahedral structure for RuCl₂(PPh₃).

I thank Prof. Dr. Ir. J. J. Steggerda for discussions, Mr. J. P. Langhout for helpful assistance, and Dr. F. Gerhart for recording the mass spectra.

(Received, November 18th, 1970; Com. 1994.)