The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/143020

Please be advised that this information was generated on 2017-08-11 and may be subject to change.
TRIPHENYLPHOSPHINE COMPLEXES OF Cu(I), Ag(I) AND Au(I) N,N-DIALKYLDITHIOCARBAMATES.

H.C. Brinckhoff, A.G. Matthijssen, C.G. Oomes
(Department of Inorganic Chemistry, University of Nijmegen, Driehuizerweg 200, Nijmegen, The Netherlands).

(Received 7 August 1970)

The synthesis and properties of bis-triphenyolphosphine complexes of Cu(I) and Ag(I) N,N-dialkyldithiocarbamates \([(\text{Ph}_3\text{P})_2\text{M(R}_2\text{dtc})] \) were reported by Kowala and Swan (1). Molecular weights of these compounds in benzene or chloroform were 30 - 50% lower than the calculated values. In spite of the low conductivities in chloroform and nitrobenzene solutions Kowala and Swan suggested that these complexes are best formulated as \((\text{Ph}_3\text{P})_2\text{M}^{+}.\text{R}_2\text{dtc}^- \). We have reinvestigated the \(\text{Et}_2\text{dtc} \) complexes, and have also succeeded in preparing \((\text{Ph}_3\text{P})_2\text{Au(}\text{Et}_2\text{dtc}) \). Conductivity studies in nitrobenzene show the Cu, Ag and Au complexes to be non-electrolytes (at a concentration of \(10^{-2} \) mole/l the molar conductivity is lower than 0.1 ohm\(^{-1}\) cm\(^2\) mole\(^{-1}\)). Osmometrically determined molecular weights are summarized in the TABLE. The combined results clearly indicate a dissociation:

\[
(\text{Ph}_3\text{P})_2\text{M(R}_2\text{dtc}) \xrightarrow{\text{osm.}} (\text{Ph}_3\text{P})\text{M(R}_2\text{dtc}) + \text{Ph}_3\text{P}
\]

It is noteworthy that the dissociation increases in the order Cu < Ag < Au. Our finding that the Au complex in benzene is completely dissociated, is confirmed by the synthesis of \((\text{Ph}_3\text{P})\text{Au(}\text{Et}_2\text{dtc}) \) which is monomeric in benzene solution (TABLE).

Attempts to prepare \((\text{Ph}_3\text{P})\text{M(}\text{Et}_2\text{dtc}) \ldots M = \text{Cu, Ag} \) were unsuccessful. In contrast with the report by Kowala and Swan addition of methyl iodide to a solution of the bis-phosphine complexes in benzene results in the formation

87
TABLE

Molecular weights of \((\text{Ph}_3\text{P})_2\text{M(ET}_2\text{dtc)}\) and \((\text{Ph}_3\text{P})\text{Au(ET}_2\text{dtc)}\) in benzene at 37°.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Found</th>
<th>Calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{Ph}_3\text{P})_2\text{Cu(ET}_2\text{dtc)})</td>
<td>600</td>
<td>736</td>
</tr>
<tr>
<td>((\text{Ph}_3\text{P})_2\text{Ag(ET}_2\text{dtc)})</td>
<td>450</td>
<td>781</td>
</tr>
<tr>
<td>((\text{Ph}_3\text{P})_2\text{Au(ET}_2\text{dtc)})</td>
<td>430</td>
<td>870</td>
</tr>
<tr>
<td>((\text{Ph}_3\text{P})\text{Au(ET}_2\text{dtc)})</td>
<td>600</td>
<td>607</td>
</tr>
</tbody>
</table>

of methyltriphenylphosphonium iodide, supporting the idea of dissociation into free phosphine.

EXPERIMENTAL

Molecular weight determinations were performed using the Hewlett Packard vapour pressure osmometer 302 B. \((\text{Ph}_3\text{P})_2\text{M(ET}_2\text{dtc)}\) ... \(\text{M} = \text{Cu}, \text{Ag}\) were prepared as previously reported (1).

\((\text{Ph}_3\text{P})_2\text{Au(ET}_2\text{dtc)}\) was prepared on addition of two moles \text{Ph}_3\text{P} to 1 mole \text{Au(ET}_2\text{dtc)} (2) in acetone solution. Colourless needles were obtained, m.p. 134-136°. **Anal.** Found: C, 56.4; H, 4.4; Au, 22.7. Calc. for \((\text{Ph}_3\text{P})_2\text{Au(ET}_2\text{dtc)}\): C, 56.6; H, 4.6; Au, 22.6%.

\((\text{Ph}_3\text{P})\text{Au(ET}_2\text{dtc)}\) was prepared by adding equivalent amounts of \text{Na(ET}_2\text{dtc)}\cdot3\text{H}_2\text{O (Fluka A.G.) in ethanol to a solution of (Ph}_3\text{P})\text{AuCl (3) in CH}_2\text{Cl}_2. NaCl was filtered off and the solvent was evaporated under vacuo. The residue was recrystallized from ethanol. Light yellow needles were obtained, m.p. 152 - 153°. **Anal.** Found: C, 46.0; H, 4.1; N, 2.3; S, 10.5; Au, 32.4. Calc. for \((\text{Ph}_3\text{P})\text{Au(ET}_2\text{dtc)}\): C, 45.5; H, 4.1; N, 2.3; S, 10.6; Au, 32.5%.

ACKNOWLEDGEMENT

The investigations were supported in part by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organisation for...
the Advancement of Pure Research.

REFERENCES