The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/142265

Please be advised that this information was generated on 2017-07-29 and may be subject to change.
Cannabinoids with a Propyl Side Chain in Cannabis: Occurrence and Chromatographic Behavior

Abstract. Neutral cannabinoids with a pentyl side chain—for example, cannabidiol, tetrahydrocannabinol, and cannabinol—are generally accompanied by homologs with a propyl side chain, of which at least one has psychotropic activity. Samples of hashish and marihuana from Asia especially sometimes have abundant amounts of propyl cannabinoids, the quantities being of the same order as that of the accompanying pentyl cannabinoids. Detection and identification of the propyl and pentyl cannabinoids in gas chromatography and thin-layer chromatography is discussed.

The chemical composition of hashish and marihuana has been well studied (1). Cannabidiol (1), Δ¹-tetrahydrocannabinol (2) (monoterpenoid numbering), and cannabinol (3) were identified as the major neutral cannabinoids (1) of which Δ¹-tetrahydrocannabinol was found to be psychotropically active (2). The neutral cannabinoids can be accompanied by their respective acids, having a carboxyl group in one of the free positions at the aromatic ring. The cannabinoid acids are psychotropically inactive (1) and not very stable. Under the influence of light and heat, for example on smoking, decarboxylation to neutral cannabinoids rapidly occurs.

These cannabinoids can be regarded as monoterpenoids coupled with olivetol (5-propylresorcinol), with the structural differences occurring in the terpenoid part of the molecule.

![Chemical structures](image)

A new class of cannabinoids, which can be regarded as derived from divarinol (5-propylresorcinol) rather than of olivetol has been discovered. Vollner et al. (3) isolated the propyl analog of cannabidiol and proposed the name of cannabinivarin (1α); Gill et al. (4) isolated Δ¹-tetrahydrocannabinivar (2α) and Merkus (5) found cannabinivarin (3α). Although these trivial names are in common use, the following abbreviations are more satisfactory for our work. Cannabidiol, pentyl-CBD; Δ¹-tetrahydrocannabinol, pentyl-Δ¹-THC; cannabinol, pentyl-CBN; cannabinivarin (the propyl homolog of CBD), propyl-CBD; Δ¹-tetrahydrocannabinivar, propyl-Δ¹-THC; and cannabinivarin, propyl-CBN. These notations indicate the differences as well as the similarities between the various cannabinoids, and the system can also be used successfully if other propyl homologs are discovered. The above abbreviations will be used here.

Propyl-Δ¹-THC was found to be 4.8 times less active than pentyl-Δ¹-THC in producing cataleptic states in mice (4). No information exists on the activity of the other propyl cannabinoids, but the corresponding pentyl components are psychotropically inactive on smoking and on intravenous injection (2, 6). However, on intracerebral injection, both pentyl-CBD and pentyl-CBN showed about the same activity in mice as did equal doses of pentyl-Δ¹-THC (6).

In view of these developments procedures are required for the detection, identification, and evaluation of the propyl cannabinoids in Cannabis products. We have identified propyl cannabinoids by a new method of combined gas chromatography and mass spectrometry (7). We now report the chromatographic behavior of the components in gas chromatography and thin-layer chromatography and describe their occurrence in nature.

Samples of hashish and marihuana from different sources were used and were obtained from police seizures. Resin (0.1 g) or herb (0.5 g) were dried, powdered, and extracted twice with fresh 5-mL portions of chloroform. The combined filtered extracts were concentrated to a volume of about 2 mL by evaporation under reduced pressure. Various samples of Extractum Cannabis (8), which is an ethanol percolate of Cannabis sativa var. indica, were also used. A portion (0.1 g) of this extract was dissolved in 1 mL of acetone and then filtered. The identity of the cannabinoids was confirmed by combined gas chromatography and mass spectrometry (7).

A typical gas chromatogram of a hashish sample is shown in Fig. 1 (9). The major peaks could be identified as propyl-CBD, propyl-Δ¹-THC, propyl-CBN, pentyl-CBD, pentyl-Δ¹-THC, and pentyl-CBN, respectively. The propyl cannabinoids are eluted first, and their separation sequence is similar to that of the pentyl homologs. Under the conditions used, cannabinoid acids, if present, would decarboxylate and thus contribute to the peak of their respective neutral cannabinoids. Decarboxylation can be prevented by making trimethylsilyl derivatives, but after silylation of the sample no silylated acids appeared in the chromatogram. The peaks in Fig. 1 can therefore be attributed to the presence of neutral cannabinoids only.

As compared to gas chromatography, thin-layer chromatography, another important technique in Cannabis analyses, is less useful for separating the six cannabinoids. We tested a neutral, an alkaline, and a reversed phase system and found various overlappings occurring in all three (Fig. 2) (10). The propyl cannabinoids elute more slowly than their corresponding pentyl homologs; this often results in coinciding of one of the slower components of the pentyl class with one of the faster-moving spots from the propyl class. Thus, in the neutral and alkaline systems the six components show up as four spots, of which the highest represents a single pentyl component, the lowest a single propyl com-

Fig. 1. Gas chromatogram of a Nepalese hashish sample (9): 1, propyl-CBD; 2, propyl-Δ¹-THC; 3, propyl-CBN; 4, pentyl-CBD; 5, pentyl-Δ¹-THC; and 6, pentyl-CBN.

Fig. 2. Thin-layer chromatogram of a Nepalese hashish sample (9): 1, propyl-CBD; 2, propyl-Δ¹-THC; 3, propyl-CBN; 4, pentyl-CBD; 5, pentyl-Δ¹-THC; and 6, pentyl-CBN.
cause propyl-Δ1-THC is psychotropically active, large quantities of this substance would contribute considerably to the total activity of a Cannabis sample. In general, we found peak areas of propyl-Δ1-THC and propyl-CBD larger than that of propyl-CBN, but we found no correlation between the amount of a certain propyl component and that of its accompanying pentyl homolog. For example, a high concentration of propyl-Δ1-THC is not necessarily accompanied by a similar concentration of pentyl-Δ1-THC, and vice versa. A small number of Asian samples indicated the presence of minor amounts of the propyl analog of cannabichromene and the propyl analog of cannabicyclol, but conclusive evidence is not yet available as we lack sufficiently pure reference samples of the corresponding pentyl components. The availability of such references is a prerequisite for the identification of propyl cannabinoids by means of combined gas chromatography and mass spectrometry (7).

Samples from Middle Eastern and Mediterranean countries also contained propyl cannabinoids, but in much lower concentration than Asian samples. In gas chromatograms taken under conditions to suitably record pentyl cannabionoids the propyl components were usually difficult to distinguish from the background. However, when higher quantities were injected, detection and identification could still be performed by combined gas chromatography and mass spectrometry.

So far, we have been able to detect propyl cannabinoids in all samples investigated, so that these components seem to be natural constituents in addition to the pentyl cannabionoids. Samples from the Americas were not available for testing (11).

Rokus A. de Zeeuw
Jaap Wijssbeek

Laboratory for Pharmaceutical and Analytical Chemistry, State University, Groningen 8004, Netherlands

Douwe D. Breimer
Tom B. Vree

Cees A. M. van Ginneken
Jacques M. van Rossum

Department of Pharmacology, University of Nijmegen, Nijmegen, Netherlands

References and Notes

4. Becker 409 with flame ionization detector; stainless steel column (2 mm x 2 m) packed with 5 percent SE-30 on DMCS treated, acid-washed G, 80 to 100 mesh; carrier gas nitrogen, 20 ml/min, inlet pressure 2.5 kg/cm²; injection block 275 °C, oven 260 °C, detector 275 °C; sample 1 μl.
5. Becker 409 with flame ionization detector; stainless steel column (2 mm x 2 m) packed with 5 percent SE-30 on DMCS treated, acid-washed G, 80 to 100 mesh; carrier gas nitrogen, 20 ml/min, inlet pressure 2.5 kg/cm²; injection block 275 °C, oven 260 °C, detector 275 °C; sample 1 μl. Trifluoroacetyl derivatives were obtained by evaporating 0.5-ml samples to dryness under a stream of nitrogen and dissolving the dried samples in 0.5 ml of TFA (Trifluoroacetic acid).
9. Becker 409 with flame ionization detector; stainless steel column (2 mm x 2 m) packed with 5 percent SE-30 on DMCS treated, acid-washed G, 80 to 100 mesh; carrier gas nitrogen, 20 ml/min, inlet pressure 2.5 kg/cm²; injection block 275 °C, oven 260 °C, detector 275 °C; sample 1 μl. Trifluoroacetyl derivatives were obtained by evaporating 0.5-ml samples to dryness under a stream of nitrogen and dissolving the dried samples in 0.5 ml of TFA (Trifluoroacetic acid).
10. Becker 409 with flame ionization detector; stainless steel column (2 mm x 2 m) packed with 5 percent SE-30 on DMCS treated, acid-washed G, 80 to 100 mesh; carrier gas nitrogen, 20 ml/min, inlet pressure 2.5 kg/cm²; injection block 275 °C, oven 260 °C, detector 275 °C; sample 1 μl. Trifluoroacetyl derivatives were obtained by evaporating 0.5-ml samples to dryness under a stream of nitrogen and dissolving the dried samples in 0.5 ml of TFA (Trifluoroacetic acid). After 5 minutes, the solution is ready for injection.