PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/141331

Please be advised that this information was generated on 2017-12-15 and may be subject to change.
Fc Gamma Receptor IIb on GM-CSF Macrophages Controls Immune Complex Mediated Inhibition of Inflammatory Signals

Kim C. M. Santegoets1,2,3, Mark H. Wenink1,2,3, Wim B. van den Berg3, Timothy R. D. J. Radstake1,2,3*

1 Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands, 2 Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands, 3 Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands

Abstract

Background: In rheumatoid arthritis (RA) macrophages play a major role in amplifying synovial inflammation. Important activating signals are those induced by Toll-like receptor (TLR) ligands and by activated T cells. The balance between activating and inhibitory Fc gamma receptors (FcγRs) on macrophages might be crucial in modulating these inflammatory responses. The purpose of this study was to determine FcγR expression on pro- and anti-inflammatory macrophages (gmMφ and mMφ, respectively) and identify functional consequences on immune complex uptake and macrophage activation.

Methods: Human monocytes were isolated and differentiated into gmMφ and mMφ. A full FcγR characterization of both macrophage subtypes was performed and uptake of fluorescent immune complexes (ICs) was determined. FcγRIIb isoforms were determined by qPCR. Macrophages were stimulated via different TLRs or cytokine activated T cells in the presence or absence of ICs and cytokine production was determined. Blocking studies were performed to look into the pathways involved.

Results: mMφ expressed high levels of the activating FcγRIIa and FcγRIII and low levels of the inhibitory FcγRIIb, while the FcγR balance on gmMφ was shifted towards the inhibitory FcγRIIb. This was accompanied by a clear increase in FcγRIIb mRNA expression in gmMφ. This resulted in higher IC uptake by mMφ compared to gmMφ. Furthermore, FcγR-mediated stimulation of gmMφ inhibited TLR2, 3, 4 and 7/8 mediated cytokine production via FcγRIIb and PI3K signaling. In addition, gmMφ but not mMφ produced TNF-α upon co-culture with cytokine activated T cells, which was reduced by IC binding to FcγRIIb. The latter was dependent on PI3K signaling and COX2.

Conclusions: FcγRII expression patterns on gmMφ and mMφ are significantly different, which translates in clear functional differences further substantiating FcγRIIb as an interesting target for inflammation control in RA and other autoimmune/inflammatory diseases.

Citation: Santegoets KCM, Wenink MH, van den Berg WB, Radstake TRD (2014) Fc Gamma Receptor IIb on GM-CSF Macrophages Controls Immune Complex Mediated Inhibition of Inflammatory Signals. PLoS ONE 9(10): e110966. doi:10.1371/journal.pone.0110966

Editor: Jagadeesh Bayry, Institut National de la Santé et de la Recherche Médicale U 872, France

Received May 28, 2014; Accepted September 26, 2014; Published October 23, 2014

Copyright: © 2014 Santegoets et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all underlying findings are fully available without restriction. All relevant data are within the paper.

Funding: This work was supported by the Dutch Arthritis Foundation (Reumafonds) [NR 09-1-3-4] and a VENI and VIDI grant (NWO, Dutch science foundation) given to TR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: TR.D.J.Radstake@umcutrecht.nl

Introduction

One of the major pathways underlying the pathogenesis of rheumatoid arthritis (RA) is the aberrant production of inflammatory cytokines by macrophages. In the arthritic joint, macrophages are one of the main effector cells present and their levels correlate with disease activity and joint destruction [1,2]. Their levels are mainly associated with inflammatory cytokines such as TNFα and interleukin (IL) 1β, and could be sustained by factors like granulocyte-macrophage colony-stimulating factor (GM-CSF), present in the RA synovial joint [3–5]. Multiple pathways are proposed to play a role in macrophage activation in RA. One mechanism inducing cytokine production by RA macrophages is the triggering of Toll-like receptors (TLRs). Many endogenous TLR ligands have been found in an arthritic joint, such as GP96 and SNAPIN, which activate cells via TLR2, small heat shock protein B8 that can activate TLR4, and self-RNA from damaged cells which is likely to stimulate macrophages via TLR3 or TLR7/8 [6–10]. Blocking antibodies against these TLRs reduce spontaneous cytokine production by RA synovial tissue cultures, confirming they are not only present in the arthritic joint but also contribute to the abundant cytokine production seen in RA [10–12].

Another pathway mediating synovial macrophage activation is by direct interaction with activated T cells. Cytokine activated T cells resemble RA synovial T cells in their contact-dependent...
Phagocyte colony-stimulating factor (M-CSF, 25 ng/ml; R&D) for 6 days. Macrophages were cultured in 6 well plates (Corning, New York, USA) with 1.0 × 10⁶ cells per well in 2 ml medium (RPMI-1640 Dutch modification (Gibco Life Technologies, Grand Island, New York, USA) supplemented with 10% FCS, antibiotic-antimycotic and L-glutamine (Gibco Life Technologies). Culture medium with the same supplements (1 ml) was added at day 3 and the cells were harvested at day 6. In parallel, autologous CD4+ T cells were cultured in complete medium with recombinant human IL-2 (25 ng/ml), IL-6 (100 ng/ml) and TNFα (25 ng/ml) at 2 × 10⁶ cells/ml for 6 days (all from R&D).

Phenotypical analysis

Using standardized flow cytometry protocols as described previously [14]. gmMφ and mMφ were phenotyped using antibodies against CD14, CD163 (both BD Biosciences, Franklin Lakes, New Jersey, USA) and HMC-II DR/DP (clone Q1514) [23]. FcγR expression was determined with antibodies against FcγRI (CD64, PE labeled, clone 10.1; Dako, Glostrup, Denmark), FcγRII (CD16, PE labeled, clone DJ130c; Dako), clone IV.3 which preferentially binds to FcγRIIa (StemCell Technologies, Vancouver, Canada) and the FcεRIIB specific antibody 2B6 (Alexa488 labeled; Macrogenics, Rockville, Maryland, USA). Expression of unlabeled markers was visualized via a FITC labeled goat-anti-mouse secondary antibody. Cell fluorescence was measured on a FACS Calibur (BD) and analyzed using FlowJo software for the mean fluorescence intensity (MFI) and the proportion of positive cells relative to cells stained with the appropriate IgG isotypes.

RNA isolation and qPCR

Total RNA was extracted in 0.5 ml of TRI-reagent and treated with DNase to remove genomic DNA before being reverse-transcribed into cDNA. qPCR was performed on a Quantstudio 12K Flex (Life Technologies) with SYBR Select Master Mix (Life Technologies), 7.5 ng cDNA and a primer concentration of 0.5 μM in a total volume of 15 μl. qPCR signals were quantified by comparing the cycle threshold value (Ct) of the gene of interest of each sample with the Ct value of the reference gene GAPDH (ΔCt). Results were deployed as relative expression (2^−ΔΔCt). The following primers were used: GAPDH forward ATGGGGAAAGGTGAAGGTCG; reverse GGGGTCTATTAGTGCGCAAACTA; FcγRIIb forward GGAATTCGGCTCTCAGGAGGAT, reverse CGGTTCGTGAGCATCAGGCTC; FcγRIIb2 forward AAAGCGGATTGCACGCAATTC, reverse 3′CAAGA-CATGGACTAATACGCT.

Phagocytosis and binding assay

Phagocytosis assays were performed with fluorescently labeled ICs, prepared as previously described [24]. Macrophages were incubated with FITC-labeled ICs (50 μg/ml) for 30 min at 4°C and 37°C to determine binding and uptake, respectively. Unattached ICs were washed away before determining binding and uptake by flow cytometry. To determine IC uptake extracellular attached FITC-IC was quenched by adding trypsin blue (1/40 diluted in PBS, Sigma-Aldrich) to the samples just before determining the IC uptake by flow cytometry.

Stimulation of monocye-derived macrophages

At day 6 macrophages were harvested and plated in a concentration of 0.3 × 10⁶ cells/ml in 96 well culture plates (100 μl). Immune complexes used in this study were prepared by heating human IgG (Sigma-Aldrich, St. Louis, Missouri, USA) in PBS at 65°C for 30 minutes (heat-aggregated immune complexes...
Macrophages were stimulated or not with ICs for 15–30 minutes before the addition of TLR agonists for 20 hours. The following concentrations of TLR agonists were used: Pam3CSK4 (5 μg/ml, EMC Microcollections, Tübingen, Germany), Poly(I:C) (25 μg/ml, Invivogen, San Diego, California, USA), LPS (100 ng/ml, E. coli 0111:B4, Sigma-Aldrich) and R848 (2 μg/ml, Invivogen) for TLR2/1, 3, 4 and 7/8 respectively. The LPS was double-purified to remove any contaminating proteins as described previously [26]. Macrophages were also co-cultured with cytokine-activated T cells for 20 hours in a 1:5 ratio in the presence or absence of IC (50 μg/ml) prestimulation for 1 h.

FcγRIIb blocking was performed by 30 min incubation of mφ-1 with 10 μg/ml 2B6 antibody (MacroGenics) or an isotype control at 4°C before stimulation with ICs and LPS or Tck. In other experiments gmMφ were treated with the PI3K inhibitors Wortmannin (0.1 μM; Calbiochem, San Diego, California, USA) or LY294002 (10 μM; Calbiochem) or COX2 inhibitor I (20 μM; Calbiochem) for 1 h at 37°C before stimulation.

Measurement of cytokines in culture supernatants

Levels of IL-10 and TNFα were measured in the supernatants using commercially available kits (Millipore, Billerica, Massachusetts, USA) according to the manufacturer’s instructions. Cytokine

Figure 1. gmMφ express high FcγRIIb levels, while mMφ express more FcγRIla and FcγRIII. Monocytes were cultured for 6 days with GM-CSF or M-CSF into gmMφ and mMφ respectively. Expression of CD14, CD163 and MHC-II (A) and all FcγRs (B) was determined by flow cytometry. (B) For FcγR expression, representative FACS plots are shown together with bar graphs showing mean (and SEM of) MFI and percentage of positive cells from 11 donors. Histograms show isotype control (thin line) and FcγR specific antibody (solid grey). (C) mRNA expression of FcγRIIb1 and FcγRIIb2 were determined by qPCR and plotted as relative expression compared to GAPDH. Bars are mean and SEM of 7 donors. (D) gmMφ and mMφ were incubated with FITC-labeled ICs (50 μg/ml) for 30 min at 4°C for binding and 37°C for uptake. IC uptake was determined in the presence of trypan blue. Bars are mean and SEM from 4 donors. *P<0.05, **P<0.01 and ***P<0.001 compared to mφ-1.

doi:10.1371/journal.pone.0110966.g001
levels were measured and analyzed with the Bio-Plex system (Bio-Rad, Hercules, California, USA).

Statistical analysis
Differences were analyzed using paired Student’s t-tests. P values less than 0.05 were considered significant.

Results

gmMφ express high levels of the inhibitory FcγRIIb, while mMφ express higher levels of the activating FcγRIIa and FcγRII

Monocytes were cultured into pro- and anti-inflammatory gmMφ and mMφ in the presence of either GM-CSF or M-CSF. To confirm the phenotype of our gmMφ and mMφ we first analyzed their expression of CD14, CD163 and MHC-II. In line with literature the expression of CD14 and CD163 was higher on mMφ, while MHC-II was increased on gmMφ (Figure 1A) [21]. We further evaluated the expression of activating and inhibitory FcγRs. The monomeric IgG receptor FcγRI was similarly expressed in gmMφ and mMφ, while FcγRIII expression was highly increased on mMφ compared to gmMφ (regarding both MFI and percentage of positive cells, Figure 1B). Investigating the activating and inhibiting subtype of FcγRII separately, we observed a marked difference between the gmMφ en mMφ. Whereas the activating FcγRIIa is expressed higher on mMφ, expression of the inhibitory FcγRIIb was increased on gmMφ (Figure 1B). More specifically, the FcγRIIa/FcγRIIb ratio was 1.56 for gmMφ and 0.48 for mMφ. Thus, gmMφ display an FcγR balance favored towards the inhibitory subtype whereas the opposite was found on mMφ. FcγR expression was also determined on gmMφ and mMφ from some RA patients, which showed a similar FcγR distribution compared to healthy controls (data not shown). In vivo in situations in which GM-CSF is produced most likely also a basal level of M-CSF will be present. To determine the effect of the combination of both growth factors on macrophage development we also cultured macrophages with GM-CSF and M-CSF. This resulted in a phenotype similar to gmMφ, suggesting GM-CSF is dominant over M-CSF, at least regarding FcγR expression (data not shown).

We further aimed to differentiate between the two major FcγRIIb isoforms, FcγRIIb1 and FcγRIIb2. Since the extracellular domain of these isoforms is the same we used qPCR to determine the expression of these variants in mMφ and gmMφ. Using isoform specific primers we found that FcγRIIb2 expression was similar in both macrophage subtypes, while FcγRIIb1 expression was significantly increased in gmMφ compared to mMφ (Figure 1C), gmMφ thus have an increased expression of the FcγRIIb variant usually more predominant in B cells which is less capable of mediating endocytosis.

The capacity to take up ICs is an important function of macrophages. To evaluate the functionality of the altered aforementioned FcγR balance, we investigated whether the gmMφ and mMφ display a different binding and uptake capacity of ICs. mMφ show a significantly increased potential for both binding and uptake of ICs compared to gmMφ (Figure 1D). This is fitting with the enhanced expression of FcγRIIa and FcγRIII on mMφ, which have a higher affinity for most IgG isotypes compared to FcγRIIb [27] and the increased expression of the non-endocytosing FcγRIIb1 on gmMφ.

ICs inhibit TLR induced cytokine production by gmMφ but not by mMφ
To further evaluate the functional consequences of the differential FcγR expression on gmMφ and mMφ and to test whether ICs can also inhibit TLR4 signaling in human macrophages that express high FcγRIIb levels, gmMφ and mMφ were stimulated with TLR ligands in combination with ICs. mMφ and gmMφ were first stimulated with ICs alone to determine the effect of differential FcγR expression on these cells on IC induced cytokine production. In mMφ ICs induced significant but low levels of TNFα and IL-10 production, while there was no clear cytokine induction observed in gmMφ (Figure 2A). Upon TLR 4 stimulation with LPS gmMφ produced high levels of TNFα and low levels of IL-10, while mMφ were marked by their relatively high IL-10 production and low production of TNFα which corroborates the literature (Figure 2B) [5,28]. After co-stimulation with ICs, gmMφ were able to significantly attenuate TNFα production compared to those stimulated with LPS alone, while IL-10 production was relatively unaffected (Figure 2B). In contrast, but in line with our observations on FcγR expression, the addition of ICs to LPS did not result in inhibition of TLR4 mediated cytokine production in mMφ. In fact, mMφ produced significantly more IL-10 after co-stimulation with ICs.

To determine if this inhibitory pathway can also affect cytokine induction by other TLR ligands, similar experiments were performed with specific ligands for TLR2/1 (Pam3CSK4), TLR3 (Poly(C)) and TLR7/8 (R848). These experiments learned that the inhibitory effect of ICs on TLR signaling by gmMφ is not limited to TLR4, but also extends to TLR2/1, TLR3 and TLR7/ 8 (Figure 2C), further substantiating the pivotal role of the FcγR balance in the regulation of cell activation. Again, IL-10 production by gmMφ was not clearly affected by the presence of ICs and the inhibitory effect on TNFα production was not present in mMφ (data not shown). To determine if ICs could also affect TLR induced cytokine production after TLR stimulation has already occurred, we performed a time course with addition of ICs from 2 hours prior to Pam3CSK4 till 2 hours after Pam3CSK4 stimulation. ICs were able to significantly modulate TNFα production during the whole time range, without significantly affecting IL-10 (data not shown). ICs can thus modulate TLR induced cytokine production before and after TLR triggering.

Immune complexes can inhibit gmMφ activation by activated T cells
Another important activator of RA synovial macrophages are cytokine activated T cells. We therefore evaluated cytokine production in co-cultures of Tck with gmMφ or mMφ. Tck induced a synergistic production of TNFα when co-cultured with gmMφ (Figure 3A), while IL-10 is almost absent, resulting in an unbalanced proinflammatory response. The TNFα production by mMφ after co-culture with Tck is much lower and not significantly different from mMφ alone (Figure 3A). In contrast to mMφ stimulation by TLR ligands, in co-culture with Tck also IL-10 production remained low. Thus, Tck mainly stimulate gmMφ. To determine if ICs could inhibit Tck induced TNFα production when macrophages express high FcγRIIb levels, gmMφ were stimulated with ICs and Tck. IC co-stimulation reduced the TNFα release by gmMφ with approximately 50% upon Tck stimulation (Figure 3B). ICs can thus modulate both TLR and T cell induced gmMφ activation.
The inhibitory effect of ICs is mediated via FcγRIIB and the PI3K pathway

To confirm whether the high FcγRIIB expression on gmMφ was indeed responsible for the inhibitory effect of ICs on TLR and Tck induced signaling in these cells, we used a blocking antibody against FcγRIIB. Blocking of FcγRIIB fully abrogated the inhibitory effect of ICs on both TLR and Tck induced TNFα production (Figure 4A and B).

In DCs our group has previously shown that the PI3K/Akt pathway is involved in the crosstalk between FcγRIIB and TLR4 [21]. To determine if this pathway is also involved in the FcγRIIB effect on macrophages, we blocked PI3K signaling before stimulation of gmMφ with ICs and LPS. The IC mediated inhibition of LPS induced TNFα production was abrogated in the presence of Wortmannin or LY294002, confirming the role of the PI3K pathway in FcγRIIB mediated TLR4 signaling inhibition in gmMφ (Figure 4C and data not shown). Mice studies pointed towards an additional role for prostaglandin E2 in the inhibitory actions of FcγRIIB on TLR4 signaling [22]. To test this in the human setting we performed our experiments in the presence of a COX2 inhibitor. This did not affect the IC mediated inhibition of cytokine production by gmMφ upon TLR4 stimulation (Figure 4C). To test if the same mechanism was involved in IC mediated blocking of other TLRs we tested FcγRIIB blocking and PI3K inhibition also for ICs in combination with TLR2/1 stimulation and this gave similar results as shown for TLR4 (data not shown).

To further determine if similar pathways are involved in inhibition of Tck induced macrophage activation we performed...
Figure 3. **IC can inhibit** T cell mediated macrophage activation in \textit{gmMφ}. \textit{gmMφ} or \textit{mMφ} and Tck were cultured from the same donor. (A) At day 6 the macrophages and Tcks were harvested, washed and cultured together in a ratio of 1:5. TNFα and IL-10 were measured in the supernatant after 20 hours. Bars are mean and SEM from 3 independent experiments. (B) \textit{gmMφ} were cultured alone or in a 1:5 ratio with Tck in the presence or absence of ICs (50 μg/ml) for 20 hours before collecting the supernatant. Bars are mean and SEM from 6 independent experiments. *P<0.05, NS is not significant.
doi:10.1371/journal.pone.0110966.g003

Figure 4. **TLR and Tck inhibition by IC is mediated via FcγRIIb and PI3K**. \textit{gmMφ} were pre-incubated for 30 minutes with the FcγRIIb specific blocking antibody 2B6 (10 μg/ml) or an isotype control before stimulation with IC (50 μg/ml) and LPS (100 ng/ml) (A) or Tck (B). \textit{gmMφ} were pre-incubated with Wortmannin (0.1 μM) or a COX2 inhibitor (20 μM) for 1 hr before stimulation with IC and LPS (C) or Tck (D). 20 hour supernatants were collected to analyze TNFα levels. In the graphs showing TLR stimulation (A and C) the percentage of TNFα production is plotted with the LPS only stimulation set at 100%. In the Tck graphs (B and D) absolute values are shown. All graphs show the mean and SEM of at least 3 experiments. *P<0.05.
doi:10.1371/journal.pone.0110966.g004
the Tck experiments in the presence of Wortmannin or a COX2 inhibitor. As for TLR activation a functioning PISK pathway was necessary for the inhibitory effect of ICs, however IC mediated blocking of gmMø activation via Tck also appeared to be dependent on prostaglandin production, as is exemplified by the lack of IC mediated inhibition in the presence of a COX2 inhibitor (Figure 4D). IC mediated inhibition of gmMø TNFα production via both pathways is mediated via binding to FcγRIIb and involves the PISK pathway. Prostaglandins are necessary for the effect of IC when combined with Tck, but not for TLR mediated cell activation.

Discussion

The present study shows that gmMø have a relatively high expression of FcγRIIb compared to the activating FcγRs, while this balance is shifted towards the activating FcγRs on mMø. gmMø secrete large amounts of TNFα upon stimulations relevant in RA, such as TLR ligands and cytokine activated T cells. Under these conditions inhibitory immune receptors, such as FcγRIIb, are crucial to counter-regulate the induced inflammatory responses to prevent excessive tissue damage. We show that the switched balance towards the inhibitory FcγRIIb on gmMø is functionally relevant and can inhibit TNFα secretion from these cells induced by either TLRs or Tck in the presence of soluble ICs. This way it could function as a natural brake in an attempt to prevent excessive cytokine production and inflammation in RA.

The important regulatory role of FcγRIIb is extensively shown in animal models for autoimmunity [Reviewed in [29]]. In this context it was shown that the transfer of RA but not healthy control serum can induce arthritis in FcγRIIb−/− mice, but not in normal B6 mice [30]. This was caused by the IgG portion supporting a pathogenic role for IgG (auto) antibodies from RA patients and an important regulatory role for FcγRIIb. This model bypasses the effect of B cells because human IgG is passively transferred and it thus shows that FcγRIIb expression on other effectors cells, including macrophages and DCs, is crucial to prevent autoimmune inflammation.

We demonstrated for the first time that FcγRIIb can inhibit cytokine induction by a wide range of TLRs, of which ligands have been found in the artithritic joint, including TLR2, TLR3, TLR4 and TLR7/8. In addition, FcγRIIb can also inhibit macrophage TNFα production induced by activated T cells. This way FcγRIIb can actively control two important stimulatory pathways for macrophages in RA. Inhibitor studies taught us that normal PISK signaling is necessary for FcγRIIb inhibition of both TLR and Tck induced cytokine release, while prostaglandins are only involved in the latter. Prostaglandins were postulated as an essential signaling molecule in FcγRIIb mediated inhibition of TLR4 in mouse macrophages [22]. However, in our human experimental setting prostaglandins are dispensable for FcγRIIb mediated inhibition of TLRs. In our cultures prestimulation of gmMø with ICs for only 15–30 minutes or up to 2 hours after TLR stimulation was enough to get inhibition, while in mouse macrophages the dependency on prostaglandins was demonstrated after 24 hour prestimulation with ICs [22]. So prostaglandins are not necessary for the direct inhibition of TLR4 signaling by FcγRIIb in humans, but might have additional inhibitory effects at later time points. This would be in line with the dependency of Tck inhibition on prostaglandin production, since the induction of TNFα in this setting is described to be much slower (peaks at 24 hrs.) compared to TLR stimulated TNFα induction (peaks at 4–8 hrs.) [31]. However, much is still unknown about the pathways involved in macrophage activation upon interaction with Tcks. CD69, CD18 and CD49d on the Tck were shown to be involved in the induction of TNFα by monocytes upon Tck co-culture [14]. On monocytes/macrophages ICAM-1 and VCAM-1 might be involved as binding partners for CD18 and CD49d, respectively. Thus far, no direct interactions are known between these molecules and FcγR signaling. Hence, our work justifies more research focused on deciphering potential mechanisms involved in FcγRIIb inhibition on T cell mediated macrophage activation.

Interestingly, the increased membrane FcγRIIb expression on gmMø coincides with an increased expression of FcγRIIb on mRNA level. This suggests that FcγRIIb expression on gmMø could play a role in the inhibitory effects of ICs on these cells. Although the FcγRIIb isomers have been repeatedly shown to have differential endocytosis potential [17–19], not much is known about possible differences in inhibitory signaling. It has been described that FcγRIIb is differently phosphorylated in B cells compared to FcγRIIb2 and might have additional inhibitory functions [19,32], but this has not been repeated by another group in macrophage cell lines [33]. Whether this could have functional implications for macrophage responses towards ICs needs to be further investigated.

Some groups have tried to identify the macrophage phenotype or the FcγR expression on macrophages from RA synovial tissue. FcγRII overall, FcγRIIb in particular and FcγRIII were all increased in RA synovium and correlated with the amount of macrophages present [34,35]. Looking at in vitro markers for gmMø and mMø it remains difficult to fully characterize the macrophages from the synovial tissue since they express markers representing both phenotypes [36,37]. Supported by our data the expression of FcγRIIb could be an additional marker for gmMø while FcγRIII marks mMø macrophages. The ratio between these two FcγRs could be a good discriminator between these macrophage subsets. The high expression of activating FcγRs by mMø, which are mainly described for their controlling/homeostatic functions, and the high expression of the inhibitory FcγRIIb on the more inflammatory gmMø might seem contradictory. However, because of the easily activated phenotype of gmMø regulatory mechanisms including those via FcγRIIb are crucial to prevent excessive inflammation and tissue damage. In addition, the capacity of mMø to remove IC is facilitated by the high expression of FcγRs, preventing accumulation of IC and thereby preventing unwanted inflammatory responses. Next to that we show that small ICs in combination with TLR stimulation mainly increase IL-10 production in mMø and no major induction of TNFα was observed.

The in vivo situation is not as black and white as shown by this in vitro model, but knowledge about functional characteristics of these macrophage subsets combined with more detailed phenotyping of local macrophages, including differentiation between FcγRIIa and FcγRIIb in different diseases might give clues about the pathogenic processes going on in vivo. This could possibly give leads for therapeutic options to increase FcγRIIb expression on macrophages even further to induce a more inhibitory phenotype.

Conclusions

gmMø and mMø are characterized by a different FcγR balance, with high FcγRIIa and FcγRIII levels on mMø and increased FcγRIIb expression on pro-inflammatory gmMø. The relatively high FcγRIIb expression on gmMø makes these cells sensitive to IC mediated inhibition of proinflammatory cytokine release upon stimulation by TLR ligands and Tck, which can be an important feedback mechanism to prevent excessive inflammation. This shows that FcγRIIb mediated cell inhibition is not
restricted to ITAM containing receptors or FcRIIγ, but can broadly regulate immune responses. Specific targeting of FcRIIB might therefore open novel therapeutic avenues for RA and other chronic immune mediated inflammatory disorders.

Acknowledgments
We thank MacroGenics for providing us with the FcRIIB specific antibody 2B6 for flow cytometry and blocking studies.

References

Author Contributions
Conceived and designed the experiments: KS MW WB TR. Performed the experiments: KS MW. Analyzed the data: KS MW. Contributed reagents/materials/analysis tools: KS MW WB TR. Contributed to the writing of the manuscript: KS MW WB TR.