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SOME RESULTS ON THE VANISHING CONJECTURE

OF DIFFERENTIAL OPERATORS WITH CONSTANT

COEFFICIENTS

ARNO VAN DEN ESSEN, ROEL WILLEMS AND WENHUA ZHAO

Abstract. In this paper we prove four cases of the vanishing
conjecture of differential operators with constant coefficients and
also a conjecture on the Laurent polynomials with no holomorphic
parts, which were proposed in [Zh3] by the third named author. We
also give two examples to show that the generalizations of both the
vanishing conjecture and the Duistermaat-van der Kallen theorem
[DK] to Laurent formal power series do not hold in general.

1. Introduction

Let z = (z1, z2, . . . , zn) be n commutative free variables and C[z]
(resp.C[z−1, z]) the algebra of polynomials (resp. Laurent polynomials)
in z over C. For any 1 ≤ i ≤ n, set ∂i := ∂/∂zi, and ∂ := (∂1, ∂2, ..., ∂n).
We say a differential operator Λ of C[z] is a differential operator

with constant coefficients if Λ = h(∂) for some polynomial h(ξ) ∈ C[ξ],
where ξ = (ξ1, ξ2, . . . , ξn) are another n commutative variables which
also commute with z. For convenience, we will denote the polynomial
h(∂) by Λ(∂) and simply write Λ = Λ(∂).
In this paper, we will prove four cases of the following vanishing

conjecture of differential operators with constant coefficients, which was
proposed by the third named author in [Zh3].

Conjecture 1.1. Let P (z) ∈ C[z] and Λ = Λ(∂) for some Λ(ξ) ∈ C[ξ].
Assume that Λm(Pm) = 0 for any m ≥ 1. Then Λm(Pm+1) = 0 when

m ≫ 0.

Actually, all the cases of the conjecture above that we will prove in
this paper also hold in the following more general form.
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Conjecture 1.2. Let P (z) ∈ C[z] and Λ = Λ(∂) for some Λ(ξ) ∈ C[ξ].
Assume that Λm(Pm) = 0 for any m ≥ 1. Then, for any g(z) ∈ C[z],
we have Λm(Pmg) = 0 when m ≫ 0.

Note that, Conjecture 1.1 is just the special case of Conjecture 1.2
with g(z) = P (z). Also, when Λ is a homogeneous differential operator
of order 2 with constant coefficients, these two conjectures are actually
equivalent (See [EZ] and [Zh3]).
Note also that Conjecture 1.2 has recently been generalized by the

third named author [Zh4] to the so-called image conjecture of commut-
ing differential operators of order one with constant leading coefficients.
Actually, Conjecture 1.2 is equivalent to the image conjecture of the
commuting differential operators ξi − ∂i (1 ≤ i ≤ n) of the polynomial
algebra C[ξ, z] for the separable polynomial Λ(ξ)P (z) ∈ C[ξ, z]. For
more details, see [Zh4].
The main motivation behind Conjecture 1.1 is its connection with the

well-known Jacobian conjecture proposed by O. H. Keller [K] in 1939
(See also [BCW] and [E]). The connection is given by the following
theorem proved in [Zh2].

Theorem 1.3. Let ∆n :=
∑n

i=1 ∂
2
i be the Laplace operator of the poly-

nomial algebra C[z]. Then, the Jacobian conjecture holds for all n ≥ 1
iff Conjecture 1.1 with Λ = ∆n holds for all n ≥ 1.

It has also been shown in [Zh3] that one may replace the Laplace
operators ∆n in the theorem above by any sequence Λn = Λn(∂) (n ≥ 1)
of differential operators with Λn(ξ) homogeneous of degree 2 whose
ranks go to ∞ as n → ∞.
The proof of Theorem 1.3 is based on the remarkable symmetric re-

duction achieved independently by M. de Bondt and the first named
author [BE1] and G. Meng [Me]. It also depends on some results ob-
tained in [Zh1] on a deformation of polynomial maps.
Currently, there are only a few cases of Conjecture 1.1 that are

known. The best results so far come from M. de Bondt and the first
named author’s results [BE2] [BE3] on symmetric polynomial maps via
the equivalence obtained by the third named author in [Zh2] and [Zh3].
The results state that Conjecture 1.1 holds for homogeneous quadratic
differential operators Λ = Λ(∂) if either n ≤ 4 (for any P (z) ∈ C[z])
or n ≤ 5 with P (z) homogeneous. The case when Λ(ξ) is an (integral)
power of a homogeneous linear polynomial of ξ is an easy exercise (See
also [Zh3]).
In this paper, we will prove four more cases of Conjecture 1.2 and

also a conjecture proposed in [Zh3] by the third named author on the
Laurent polynomials with no holomorphic parts (See Theorem 5.1).
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First, in Section 2, we use a fundamental theorem, Theorem 2.1, in
ODE to show that Conjecture 1.2 holds for the one variable case (See
Theorem 2.3). Actually, in this case Conjecture 1.2 even holds for all
formal power series P (z) and polynomials g(z) ∈ C[z].
In Section 3, we assume n = 2 and show in Theorem 3.1 that Con-

jecture 1.2 holds for any differential operator Λ of the form ∂x−Φ(∂y),
where, for convenience, in this section we use (x, y) instead of (z1, z2)
to denote two free commutative variables and Φ(·) to denote any poly-
nomial in one variable. We also give an example, Example 3.5, to show
that the generalizations of both Conjectures 1.1 and 1.2 to formal power
series do not hold in general.
In Section 4, we first recall and prove some results on rational poly-

topes, polytopes with all its vertices having rational coordinates. We
then use the remarkable Duistermaat-van der Kallen theorem [DK] (See
Theorem 4.5) to show what we call the density theorem of polytopes of
Laurent polynomials (See Theorem 4.6). We will also show in Lemma
4.9 that Conjecture 1.2 holds when the polytope Poly (P ) − Poly (Λ)
has no intersection points with (R≥0)×n. At the end of this section, we
give an example, Example 4.11, to show that the Duistermaat-van der
Kallen theorem can not be generalized to the setting of Laurent formal
power series.
In Section 5, we first give a proof for a conjecture proposed in [Zh3]

on Laurent polynomials with no holomorphic parts (See Theorem 5.1).
We then show in Corollary 5.3 that Conjecture 1.2 holds when either
Λ(ξ) or P (z) is a monomial of ξ or z, respectively.
In Section 6, we show in Theorem 6.1 and Corollary 6.5 that Con-

jecture 1.2 holds when either Λ(ξ) or P (z) is a linear combination of
two monomials of ξ or z, respectively, with different degrees.

Acknowledgment The authors would like to thank Harm Derksen,
Wilberd van der Kallen and Han Peters for personal communications.
The authors would also like to thank the anonymous referee for some
valuable suggestions.

2. Proof of the Vanishing Conjecture for One Variable Case

In this section, we consider Conjecture 1.2 for the one-variable case
and show that it does hold even for formal power series P (z) (See
Theorem 2.3).
Throughout this section we assume that n = 1 and let z denote

a single free variable. For convenience, we also set D := d/dz. A



4 ARNO VAN DEN ESSEN, ROEL WILLEMS AND WENHUA ZHAO

different operator Λ = Λ(D) is also fixed, where Λ(ξ) denotes any
non-zero polynomial in one variable.
With the notation above, let us first recall the following two well-

known fundamental results from ODE (See [L] or any standard text
book on ODE).

Theorem 2.1. Let λi (1 ≤ i ≤ k) be the set of all distinct roots of the

polynomial Λ(ξ) 6= 0 with multiplicity mi ≥ 1. Then, a formal power

series P (z) ∈ C[[z]] satisfies the differential equation Λ(D)P (z) = 0 iff

P (z) can be written as a linear combination over C of zjeλiz (1 ≤ i ≤
k; 0 ≤ j ≤ mi − 1).

Lemma 2.2. For any distinct λi ∈ C (1 ≤ i ≤ k), the formal power

series {eλiz | 1 ≤ i ≤ k} are linearly independent over the rational

function field C(z).

In case that a formal power series P (z) can be written (uniquely) as

P (z) =

k
∑

i=1

ci(z)e
λiz(2.1)

for some distinct λi ∈ C (1 ≤ i ≤ k) and non-zero ci(z) ∈ C[z], we call
this expression the exponential expansion of P (z).
The main result of this section is the following theorem.

Theorem 2.3. For any formal power series P (z) with Λm(Pm) = 0
for any m ≥ 1, we have

(a) P (z) must be a polynomial in z.
(b) Conjecture 1.2 holds for Λ, P (z) and any g(z) ∈ C[z].

Proof: In the proof below, we will freely use the notation fixed above
for the differential operator Λ = Λ(D) and the polynomial Λ(ξ).
Note first that, if P (z) = 0, there is nothing to prove. So we assume

P (z) 6= 0.
Since ΛP = 0, by Theorem 2.1 and without losing any generality,

we may write P (z) uniquely as in Eq. (2.1) with λi (1 ≤ i ≤ k) being
distinct roots of Λ(ξ) and ci(z) ∈ C[z] with deg ci(z) ≤ mi − 1 for any
1 ≤ i ≤ k.
Assume that P (z) is not a polynomial. Then, by Lemma 2.2, there

exists λi 6= 0 for some 1 ≤ i ≤ k. Identify C with R2 and let Σ be the
polytope or the convex subset in R2 generated by λi (1 ≤ i ≤ k). Then,
there exists a vertex of Σ which is not the origin 0 ∈ R2. Without losing
any generality, we assume that λ1 is such a vertex.
For any m ≥ 1, from Eq. (2.1), it is easy to see that Pm(z) also

has an exponential expansion in which emλ1z appears with the nonzero
coefficient cmλ1

(z).
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On the other hand, since Λm(Pm) = 0, by Theorem 2.1 and Lemma
2.2, we know that mλ1 must be a root of the polynomial Λm(ξ), hence
also a root of Λ(ξ). Since λ1 6= 0 and the statement above holds for
any m ≥ 1, we see that Λ(ξ) has infinitely many distinct roots mλ1

(m ≥ 1), which is impossible. Therefore, P (z) must be a polynomial
and (a) holds.
To show (b), by (a) and Lemma 2.2, it is easy see that none of non-

zero roots of Λ(ξ) can be involved in Eq. (2.1). Hence we have k = 1,
λ1 = 0 and P (z) = c1(z) with the degree

d := degP (z) = deg c1(z) ≤ m1 − 1.(2.2)

Since Λ(ξ) has the root λ1 = 0 with multiplicity m1 ≥ 1, we may write
Λ(ξ) as Λ(ξ) = Φ(ξ)ξm1 for some Φ(ξ) ∈ C[ξ]. Consequently, we have
Λ = Λ(D) = Φ(D)Dm1 .
Now we fix any g(z) ∈ C[z] with d′ := deg g(z) ≥ 0. Then, for any

m ≥ 1, the polynomial Dmm1(Pmg(z)), if not zero, has the degree

degDmm1(Pmg(z)) = (md+ d′)−mm1 = d′ − (m1 − d)m.(2.3)

Note that, by Eq. (2.2), we know that m1 − d ≥ 1. So, for any
m > d′/(m1 − d), we have d′ − (m1 − d)m < 0. Furthermore, by
Eq. (2.3), we have, for any m > d′/(m1−d), Dmm1(Pmg(z)) = 0, hence
also

Λm(Pmg(z)) = ΦmDmm1(Pmg(z)) = 0.

Therefore, Conjecture 1.2 holds for any g(z) ∈ C[z]. ✷

Two remarks about Theorem 2.3 are as follows.
First, the theorem does not always hold for formal power series g(z) ∈

C[[z]]. For example, let c ∈ C such that c is not a root of Λ(ξ) and
g(z) = ecz. Then, By Theorem 2.3, (a) and Theorem 2.1, it is easy to
see that Λm(Pm(z)g(z)) 6= 0 for any m ≥ 1.
Second, even though the conjecture 1.2 fails for some formal power

series g(z) ∈ C[[z]], by Theorem 2.3, (a), it still holds when g(z) = P (z)
without assuming in advance that g(z) = P (z) is a polynomial. In
other words, Conjecture 1.1 actually still holds for all formal power
series P (z).

3. Proof of the Vanishing Conjecture for the Differential

Operator Λ = ∂x − Φ(∂y)

Throughout this section, we denote by (x, y) instead of (z1, z2) two
commutative free variables and by ξ another free variable which com-
mutes with x and y. Once and for all, we also fix an arbitrary non-zero
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polynomial Φ(ξ) and write it as

Φ(ξ) = q0 + q1ξ + · · ·+ qkξ
k(3.1)

for some k ≥ 0 and qi ∈ C (0 ≤ i ≤ k).
We will denote by o(Φ(ξ)) or o(Φ) the order of the polynomial Φ(ξ),

i.e. the least integer m ≥ 0 such that qm 6= 0.
In this section, we first give a proof of Conjecture 1.2 for the dif-

ferential operator Λ = ∂x − Φ(∂y) (See the theorem below). We then
give an example (See Example 3.5) to show that the generalizations of
both Conjectures 1.1 and 1.2 to formal power series P (x, y) ∈ C[[x, y]]
actually do not hold.
The main result of this section is the following theorem.

Theorem 3.1. The Conjecture 1.2 holds for the differential operator

Λ = ∂x − Φ(∂y) and all polynomials P (x, y) ∈ C[x, y].

Note first that, if P (x, y) = 0, there is nothing to prove for the
theorem. So, for the rest of this section, we fix an arbitrary polynomial
P (x, y) ∈ C[x, y] and assume P (x, y) 6= 0.
In order to prove Theorem 3.1, we first need the following three

lemmas.

Lemma 3.2. Let Λ and 0 6= P (x, y) ∈ C[x, y] as fixed above. Assume

that ΛP = 0. Then, q0 = 0, or equivalently, the order o(Φ(ξ)) ≥ 1 if

Φ(ξ) 6= 0.

Proof: Assume q0 6= 0. By Eq. (3.1), we have Λ = ∂x − Φ(∂y) =
∂x − (q0 + q1∂y + · · · + qk∂

k
y ). Let d = deg P (x, y) and Pd(x, y) the

homogeneous part of P (x, y) of degree d. Note that the highest degree
part of ΛP is q0Pd(x, y) which is equal to zero since ΛP = 0. Since we
have assumed q0 6= 0 and P (x, y) 6= 0, we have Pd(x, y) = 0, which is a
contradiction. ✷

Lemma 3.3. Let Λ and 0 6= P (x, y) ∈ C[x, y] as above with ΛP = 0.
Then, we have P (x, y) = exΦ(∂y)(f(y)) for some f(y) ∈ C[y].

Proof: Note first that,

∂x(e
−xΦ(∂y)P ) = e−xΦ(∂y)(∂x − Φ(∂y))P = e−xΦ(∂y)(ΛP ) = 0.

So e−xΦ(∂y)P is independent on x. Hence e−xΦ(∂y)P = f(y) for some
f(y) ∈ C[y]. Now, applying exΦ(∂y) to both sides of the latter equation,
we get P (x, y) = exΦ(∂y)(e−xΦ(∂y)P ) = exΦ(∂y)(f(y)). ✷
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Note that exΦ(∂y)(f(y)) is still a polynomial, because from Lemma 3.2
it follows that Φ = 0 or o(Φ) ≥ 1. So, in the first case P (x, y) = f(y)
and in the latter there exists an m such that Φm(∂y)(f(y)) = 0.

Lemma 3.4. Let Λ and P (x, y) be as in Lemma 3.3. Further assume

o(Φ) ≥ 2 and ΛP = Λ2(P 2) = 0. Then, we have o(Φ) > deg f and

P (x, y) = f(y).

Proof: First, we view Λ2(P 2) = (∂x − Φ(∂y))
2((exΦ(∂y)f(y))2) as a

polynomial in C[y][x], and look at its constant term, which is

Λ2(P 2)|x=0 = 2f(y)Φ2(∂y)f(y) + 2(Φ(∂y)f(y))
2

− 4Φ(∂y) (f(y)Φ(∂y)f(y)) + Φ2(∂y)(f
2(y))

= 0

Let d = deg f(y) and r = o(Φ(ξ)) ≥ 2, and assume that d ≥ r. Write
f(y) = c0 + c1y + · · ·+ cdy

d and Φ(∂y) = qr∂
r
y + qr+1∂

r+1
y + · · ·+ qk∂

k
y

for some k ≥ r.
Now, by looking at the leading coefficient of Λ2(P 2)|x=0, we get

0 = 2c2dq
2
rv

d!

(d− r)!
+ 2c2dq

2
r

(

d!

(d− r)!

)2

− 4c2dq
2
r

d!

(d− r)!

(2d− r)!

(2d− 2r)!
+ c2dq

2
r

(2d)!

(2d− 2r)!
,

where v = 0 if d < 2r and v = (d−r)!
(d−2r)!

if d ≥ 2r.

Then, by the assumptions cd 6= 0 and qr 6= 0, we further have

0 =
2vd!

(d− r)!
+ 2

(

d!

(d− r)!

)2

−
4d!(2d− r)!

(d− r)!(2d− 2r)!
+

(2d)!

(2d− 2r)!
.

(3.2)

But, on the other hand, for any r ≥ 2, we also have

2vd!

(d− r)!
+ 2

(

d!

(d− r)!

)2

> 0(3.3)

−
4d!(2d− r)!

(d− r)!(2d− 2r)!
+

(2d)!

(2d− 2r)!
≥ 0.(3.4)

The first inequality is obvious. The second inequality holds is because
it is equivalent to

(

2d
r

)

≥ 4
(

d

r

)

which follows from the general identity
(

2d
r

)

≥ 2r
(

d

r

)

for any r ≥ 0 and the assumption that r ≥ 2. Note that
the last inequality can be easily verified by the facts that 2d−i ≥ 2(d−i)
for any 0 ≤ i ≤ r − 1.
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From the inequalities in Eqs. (3.3) and (3.4), we see that Eq. (3.2)
can not hold, which means that our assumption d ≥ r can not hold.
Therefore, we have o(Φ) > deg f(y). Then Φ(∂y)f(y) = 0 and, by
Lemma 3.3, we also have P (x, y) = f(y). ✷

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let Λ = ∂x−Φ(∂y) and 0 6= P (x, y) ∈ C[x, y]
such that Λm(Pm) = 0 for any m ≥ 1. Fix any g(x, y) ∈ C[x, y], we
want to show that Λm(Pmg) = 0 when m ≫ 0.
First, by Lemma 3.3, we know P = exΦ(∂y)(f(y)) for some f(y) ∈

C[y]. Furthermore, from Lemma 3.2 it follows that either Φ(ξ) = 0 or
o(Φ(ξ)) ≥ 1. If Φ = 0, then Λ = ∂x and P = f(y). In this case it
immediately follows that Λm(Pmg) = 0 for any m ≥ degx g.
So from now on assume that Φ 6= 0 and o(Φ) ≥ 1. Let k = degΦ.

By Eq. (3.1), we have Φ(∂y) = q1∂y + · · ·+ qk∂
k
y .

If q1 6= 0, then we can perform the coordinate change (x, y) →
(x′, y′) = (x, y + q1x) to get Λ̃ = ∂x′ − (q2∂

2
y′ + · · ·+ qk∂

k
y′), P (x, y) =

P (x′, y′− q1x
′) = P̃ (x′, y′) and g(x, y) = g(x′, y′− q1x

′) = g̃(x′, y′). Let
Φ̃(∂y′) = q2∂

2
y′ + · · ·+ qt∂

t
y′ , then Λ̃ = ∂x′ − Φ̃(∂y′).

Because that, Λ̃m(P̃m) = 0 ⇔ Λm(Pm) = 0 and Λ̃m(P̃mg̃) = 0 ⇔
Λm(Pmg) = 0, so we may also assume that o(Φ) ≥ 2. Then, by Lemma
3.4, we have o(Φ) > deg f and P (x, y) = f(y).
Now, for any m ≥ 1, we have

Λm(fm(y)g(x, y)) = (∂x − Φ(∂y))
m(fm(y)g(x, y))

=
∑

a+b=m
a,b≥0

(−1)b
(

m

b

)

∂a
xΦ

b(∂y) (f
m(y)g(x, y))

=
∑

a+b=m
a,b≥0

(−1)b
(

m

b

)

Φb(∂y) (f
m(y)∂a

xg(x, y)) .

Note that, the general term (−1)b
(

m

b

)

Φb(∂y) (f
m(y)∂a

xg(x, y)) in the
summation above is not equal to zero only if

{

a ≤ degx g,

b o(Φ) = (m− a)o(Φ) ≤ m deg f + degy g.
(3.5)

Assume the inequalities above hold, Then, we have

m(o(Φ)− deg f) ≤ a o(Φ) + degy g ≤ o(Φ) degx g + degy g.(3.6)
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Since o(Φ) > deg f (as pointed out above), the combined inequality
above is equivalent to

m ≤
o(Φ) degx g + degy g

o(Φ)− deg f
.(3.7)

Therefore, from the arguments above, we have Λm(fmg) = 0 for each

m >
o(Φ) degx g + degy g

o(Φ)− deg f
.(3.8)

Hence, we have proved Theorem 3.1. ✷

Next we give the following example to show that, for the two variable
case, both Conjectures 1.1 and 1.2 fail when P (x, y) is allowed to be a
formal power series, instead of just a polynomial.

Example 3.5. Let Λ = ∂y∂x and P (x, y) = x + ey. Then, for any

m ≥ 1, we have

Λm(Pm) = ∂m
y ∂m

x (x+ ey)m = ∂m
y (m!) = 0,

Λm(Pm+1) = ∂m
y ∂m

x (x+ ey)m+1 = (m+ 1)! ∂m
y (x+ ey)

= (m+ 1)! ey 6= 0.

Hence Conjecture 1.1 fails in this case.

Furthermore, let g(x, y) = x. Then, for any m ≥ 1, we have

Λm(Pmg) = ∂m
y ∂m

x (x(x+ ey)m) = ∂m
y

(

m!x+

(

m

1

)

∂m−1(x+ ey)m
)

= m! ∂m
y (x+m(x+ ey)) = mm! ey 6= 0.

Hence, Conjecture 1.2 also fails for the formal power series P (x, y) =
x+ ey.

4. Some Results on Rational Polytopes and the Density

Theorem of Polytopes of Laurent Polynomials

In this section, we first recall and prove some results on rational
polytopes of Rn that will be needed later in this paper. We then use
the Duistermaat-van der Kallen theorem, Theorem 4.5, to prove what
we call the density theorem of polytopes of Laurent polynomials (See
Theorem 4.6) along with some of its variations. We will also show in
Lemma 4.9 that Conjecture 1.2 holds when the polytope Poly (P ) −
Poly (Λ) has no intersection points with (R≥0)×n. Finally, we give an
example, Example 4.11, to show that the Duistermaat-van der Kallen
theorem can not be generalized to the setting of Laurent formal power
series.
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First, let us fix the following notations and conventions which to-
gether with the notations fixed in Section 1 will be used throughout
the rest of this paper.

Notation and Convention:

(1) We use x = (x1, x2, ..., xn) to denote the coordinates of the
Euclidean space Rn. For any u = (a1, a2, ..., an) ∈ Rn, against
the traditional notation we set |u| :=

∑n
i=1 ai. Note that |u|

could be negative for some u ∈ Rn.
(2) For any non-zero u ∈ Rn, we denote by Ru the ray with the

0 ∈ Rn as its (only) end point and passing through u. When
u = 0, we let Ru denote the single point 0 ∈ Rn.

(3) For any m ∈ Z, β ∈ Rn and a subset A ⊂ Rn, we set

mA :={mu | u ∈ A},

β ± A :={β ± u | u ∈ A}.

(4) We denote by Rn
≥0 the set of the vectors in Rn whose compo-

nents are all non-negative. Furthermore, we introduce a partial
order > for vectors in Rn by setting, for any u, v ∈ Rn, u > v if
u 6= v and u− v ∈ Rn

≥0; and u ≥ v if u > v or u = v.
(5) For any finite subset A = {ui | 1 ≤ i ≤ k} ⊂ Rn, we set

Poly (A) :=

{

k
∑

i=1

ciui | ci ≥ 0;

k
∑

i=1

ci = 1

}

.(4.1)

We call the subset above the polytope generated by the points
ui ∈ Rn (1 ≤ i ≤ k), or simply, by the subset A. Throughout
the paper, by a polytope we always mean a subset of Rn of the
form as in Eq. (4.1).

(6) For any u ∈ Rn, we say u is a rational point of Rn if its all
components are rational numbers. We say a polytope is rational
if all its vertices are rational.

(7) For any fixed Laurent polynomial P (z) ∈ C[z−1, z], and any
α ∈ Zn, we denote by [zα]P (z) the coefficient of zα in P (z).
We define the support of P (z), denoted by Supp (P ), to be the
subset of α ∈ Zn such that [zα]P (z) 6= 0; and the polytope

of P (z), denote by Poly (P ), to be the polytope generated by
Supp (P ).

(8) For any differential operator Λ = Λ(∂) with Λ(ξ) ∈ C[ξ], we
define the support of Λ, denoted by Supp (Λ), and the polytope
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of Λ, denoted by Poly (Λ), to be the support and the polytope,
respectively, of the polynomial Λ(ξ).

We start with the following lemma which is well-known (e.g. see
[CLO]) and also easy to prove directly. In our later argument we will
frequently use this lemma without explicitly referring to it.

Lemma 4.1. (a) For any polytope Σ in Rn and m ≥ 1, we have

mΣ =

{

m
∑

i=1

ui | ui ∈ Σ

}

.(4.2)

(b) For any Laurent polynomial P (z) ∈ C[z−1, z] and m ≥ 1, we have

Poly (Pm) = mPoly (P ).(4.3)

The following lemma is also well-known. But, for the sake of com-
pleteness, we include a proof here.

Lemma 4.2. For any β ∈ Rn and any polytope Σ in Rn with Σ∩Rn
≥0 =

∅, there exists N ≥ 1 such that (β +mΣ) ∩ Rn
≥0 = ∅ for any m ≥ N .

Proof: Assume otherwise, then there exist a strictly increasing se-
quence {mk |mk ∈ N} and a sequence {vk | vk ∈ (β +mkΣ) ∩ Rn

≥0}.
Note that, for any k ≥ 1, we may write vk = β + mkuk for some

uk ∈ Σ. Since Σ is bounded and closed, and hence compact, the
sequence {uk | k ≥ 1} has a subsequence which converges to an element
u ∈ Σ. Without losing any generality, we still denote this subsequence
by {uk | k ≥ 1}.
Note that, for any k ≥ 1, uk = vk/mk − β/mk. Then we have

u = lim
k→∞

uk = lim
k→∞

(vk/mk − β/mk) = lim
k→∞

(vk/mk).

Since, for any k ≥ 1, mk ≥ 1 and vk ∈ Rn
≥0, we have vk/mk ∈ Rn

≥0.
Furthermore, since Rn

≥0 is closed, from the equation above we have
u ∈ Rn

≥0. Therefore, we have u ∈ Σ ∩ Rn
≥0, which is a contradiction.

Hence the lemma holds. ✷

Lemma 4.3. For any two rational polytopes Σ and Γ, we have

(a) If Σ ∩ Γ 6= ∅, then it is also a rational polytope.

(b) Σ− Γ:= {u− v | u ∈ Σ, v ∈ Γ} is also a rational polytope.

(c) For any rational w ∈ Σ − Γ, there exist u ∈ Σ and v ∈ Γ such

that u, v are both rational and w = u− v.

Proof: (a) It is well known (e.g. see Theorem 1.1, pp. 29 in [Zi])
that any polytope is a set of common solutions of a system of linear
equations or inequalities. It is easy to see that a polytope is rational
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iff its determining linear equations or inequalities are defined over Q,
i.e. all the coefficients of unknowns including constant terms of the
equations or inequalities are in Q. Since Σ ∩ Γ is determined by the
union of determining linear equations or inequalities of Σ and Γ, Σ∩Γ
is also a rational polytope if it is not empty.
(b) First, it is easy to see that (−1)Γ is a rational polytope and Σ−Γ

is the same as the so-called Minkowski sum of the polytopes Σ and Γ.
It is well known that the Minkowski sum of any two polytopes is also
a polytope (e.g. see [CLO] and [Zi]). The reason that the polytope
Σ − Γ is also rational is because any vertex of Σ − Γ is the difference
of a vertex of Σ and a vertex of Γ.
(c) Note that, for the fixed w ∈ Σ − Γ in the lemma, the set of

elements u ∈ Σ such that w = u − v for some v ∈ Γ is given by
Σ ∩ (w + Γ) which is non-empty by the existence of w itself.
Since both w and Γ are rational, so is w + Γ. By (a) we know that

Σ∩ (w+Γ) is a (non-empty) rational polytope since Σ is also rational.
Let u be any rational point of Σ ∩ (w + Γ), say a vertex of this

polytope, and write it as u = w + v for some v ∈ Γ. Since v = u− w,
v is also rational. Hence we get (c). ✷

Corollary 4.4. For any rational polytope Σ of Rn with Σ ∩ Rn
≥0 6= ∅,

there exists a rational u ∈ Σ ∩ Rn
≥0.

Proof: Since the rational polytope Σ is a closed and bounded subset
of Rn, so is Σ ∩ Rn

≥0. We may choose an N ∈ N such that Σ ∩ Rn
≥0

lies inside the polytope generated by 0 ∈ Rn and Nei (1 ≤ i ≤ n),
where ei’s are the vectors in the standard basis of Rn. Since the latter
polytope is also rational, the corollary follows from Lemma 4.3, (a).
✷

Next we prove some results for the polytopes of Laurent polynomials.
But, first let us recall the following remarkable theorem which was first
conjectured by O. Mathieu [Ma] and later was proved by J. Duistermaat
and W. van der Kallen [DK].

Theorem 4.5. (Duistermaat and van der Kallen) For any f(z) ∈
C[z−1, z] such that the constant term of fm(z) is equal to zero for any

m ≥ 1, we have 0 6∈ Poly (f).

The following result will play some crucial roles in later sections.
We believe that it is also important in its own right, so we formulate
it as a theorem and call it the density theorem of polytopes of Laurent
polynomials.
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Theorem 4.6. (The Density Theorem) For any P (z) ∈ C[z−1, z]
and any rational point u ∈ Poly (P ), there exists m ≥ 1 such that

Ru ∩ Supp (Pm) 6= ∅.

Proof: Assume otherwise, i.e. Ru ∩ Supp (Pm) = ∅ for any m ≥ 1.
Since u is rational, there exists N ≥ 1 such that β := Nu ∈ Zn.

Hence, we have Ru = Rβ . Since u ∈ Poly (P ) and Poly (PN) =
NPoly (P ), we have

β = Nu ∈ Poly (PN).(4.4)

Let f(z) := z−βPN(z) ∈ C[z−1, z]. Then, for any m ≥ 1, the
constant term of fm is equal to zero. Otherwise, we would have
mβ ∈ Supp (PmN) and mβ ∈ Rβ ∩ Supp (PmN) = Ru ∩ Supp (PmN),
which contradicts to our assumption on Ru.
Now apply Theorem 4.5 to f(z), we have 0 6∈ Poly (f). But, on the

other hand, we have

Poly (f) = −β + Poly (PN).

Therefore, β 6∈ Poly (PN) which contradicts to Eq.(4.4). Hence, we
have proved the theorem. ✷

From the proof above, we can actually get a stronger result.

Corollary 4.7. For any P (z) ∈ C[z−1, z] and any rational point u ∈
Poly (P ), there exist infinitely many mi ≥ 1 such that

Ru ∩ Supp (Pmi) 6= ∅.

Proof: Assume otherwise, then there exists N ≥ 1 such that Ru ∩
Supp (Pm) = ∅ for any m ≥ N .
But, applying Theorem 4.6 to the Laurent polynomial PN(z) and

the rational point Nu ∈ Poly (PN), we see that there exists m ≥ 1,
such that

∅ 6= RNu ∩ Supp (PmN) = Ru ∩ Supp (PmN).

Since mN ≥ N , we get a contradiction. ✷

When P (z) is homogeneous with respect to the generalized degree
(counting deg z−1

i = −1 for any 1 ≤ i ≤ n) of Laurent polynomials, we
have the following more precise result.

Corollary 4.8. For any homogeneous Laurent polynomial P (z) of de-
gree d 6= 0, and any rational point u ∈ Poly (P ), there exist infinitely

many mi ≥ 1 such that miu ∈ Supp (Pmi).



14 ARNO VAN DEN ESSEN, ROEL WILLEMS AND WENHUA ZHAO

Proof: First, since deg P = d, we see that Poly (P ) lies in the affine
hyperplane H determined by the equation

∑n
i=1 xi = d. Since u ∈

Poly (P ) ⊂ H , we have |u| = d.
Second, by Corollary 4.7, we know that there exist infinitely many

mi ≥ 1 such that Ru ∩ Supp (Pmi) 6= ∅. We fix any such an mi ≥ 1
and choose any βi ∈ Ru ∩ Supp (Pmi) (Actually, such βi is unique as
the intersection point of Ru with the affine hyperplane miH). Write
βi = kiu for some ki ≥ 0. Then we have |βi| = ki|u| = kid. Since
βi ∈ Supp (Pmi) ⊂ miPoly (P ) ⊂ miH , we have |βi| = mid. Hence we
have ki = mi and βi = miu. ✷

Next we prove the following general result on Conjecture 1.2, which
will be needed in Section 6.

Lemma 4.9. Let P (z) ∈ C[z] and Λ = Λ(∂) any differential operator

with constant coefficients. Assume

(Poly (P )− Poly (Λ)) ∩ Rn
≥0 = ∅.(4.5)

Then, we have

(a) for any m ≥ 1, Λm(Pm) = 0.
(b) for any g(z) ∈ C[z], Λm(Pmg) = 0 when m ≫ 0.

Proof: We first prove (b) as follows.
First, note that, by the linearity of Λm(Pmg) (m ≥ 1) on g(z) ∈ C[z],

it is easy to see that we may assume g(z) = zγ for some γ ∈ Nn.
Second, let Σ:= Poly (P )−Poly (Λ). Then, we have that Σ∩Rn

≥0 = ∅
and also, by Lemma 4.3, (b), Σ is a polytope of Rn.
Apply Lemma 4.2 to the polytope Σ and γ ∈ Nn, we get a N ≥ 1

such that, for any m ≥ N ,

(γ +mΣ) ∩ Rn
≥0 = ∅.(4.6)

On the other hand, for any m ≥ 1, we have

mΣ = mPoly (P )−mPoly (Λ) = Poly (Pm)− Poly (Λm).(4.7)

Therefore, by Eq.(4.6) and the equation above, we have

Rn
≥0 ∩ (γ + (Poly (Pm)− Poly (Λm)) = ∅(4.8)

for any m ≥ N .
Consequently, for any m ≥ N , λ ∈ Supp (Pm) ⊂ Poly (Pm) and

µ ∈ Supp (Λm) ⊂ Poly (Λm), we have

(γ + λ)− µ = γ + (λ− µ) 6∈ Rn
≥0.(4.9)

Hence, we have ∂µzγ+λ = 0. Since Λm is a linear combination of
∂µ (µ ∈ Supp (Λm)) and zγPm(z) is a linear combination over C of
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zγ+λ (λ ∈ Supp (Pm)), we have Λm(zγPm(z)) = 0 for any m ≥ N .
Therefore, we have proved (b).
To see (a) also holds, note that, by choosing γ = 0 ∈ Nn in the

proof above, Eq.(4.6) actually holds for any m ≥ 1. This is because
the condition Σ ∩ Rn

≥0 = ∅ implies directly mΣ ∩ Rn
≥0 = ∅ for any

m ≥ 1. Therefore, the argument above also goes through with N = 1
and γ = 0, which means (a) also holds. ✷

Remark 4.10. Note that, by Lemma 4.9, (a), we see that the condition
given in Eq. (4.5) implies the condition in Conjecture 1.2. By Lemma

4.9, (b), we see that Conjecture 1.2 does hold in this case.

Finally, let us point out that, like Conjectures 1.1 and 1.2, the
Duistermaat-van der Kallen theorem, Theorem 4.5 can not be gen-
eralized to Laurent formal power series either.

Example 4.11. Let f(x, y) = y−1(1 + x−1ey) and g(x, y) = x. Then,

for any m ≥ 1, it is easy to check that, the constant term of fm is

equal to zero, but the constant term of fmg is equal to 1/(m− 1)! 6= 0.
Therefore, 0 ∈ Supp (fmg) for each m ≥ 1.
Assume that the statement of Theorem 4.5 holds for f(x, y), i.e.

0 6∈ Poly (f), then, as shown in [DK], we will have 0 6∈ Supp (fmg)
when m ≫ 0. But this contradicts to the fact pointed out above, i.e.

0 ∈ Supp (fmg) for each m ≥ 1. Hence the statement of Theorem 4.5

fails for the Laurent power series f(x, y).

5. A Theorem on Laurent Polynomials with no Holomorphic

Parts and the Vanishing Conjecture when Λ(∂) or P (z) is a

Monomial

In this section, we first prove a conjecture proposed in [Zh3] on Lau-
rent polynomials with no holomorphic parts (See Theorem 5.1). By us-
ing this result, we then show in Corollary 5.3 that Conjecture 1.2 holds
when the polynomials P (z) or the differential operators Λ = Λ(∂) is a
monomial of z or ∂, respectively.

Theorem 5.1. Let f(z) ∈ C[z−1, z] such that, for any m ≥ 1, the

holomorphic part of fm is equal to zero, i.e. Supp (fm) ∩ Rn
≥0 = ∅,

or equivalently, [zα]fm = 0 for any α ∈ Nn. Then, for any g(z) ∈
C[z−1, z], the holomorphic part of gfm is equal to zero when m ≫ 0.

Proof: Since the subset of Laurent polynomials with no holomorphic
parts is a subspace of C[z−1, z], and g(z) is a linear combination over C
of finitely many monomials of z, it is easy to see that we may assume
g(z) = zβ for some β ∈ Zn.
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Let us first show Poly (f) ∩ Rn
≥0 = ∅ by the contradiction method.

Assume otherwise, i.e. Poly (f)∩Rn
≥0 6= ∅. Since Poly (f) is a rational

polytope, by Corollary 4.4, there exists a rational u ∈ Poly (f) ∩ Rn
≥0.

Below we fix any such a rational point u.
Apply Theorem 4.6 to f(z) ∈ C[z−1, z] and the rational point u ∈

Poly (f), there exists N ≥ 1 such that Ru ∩ Supp (fN) 6= ∅. Note
that Ru ⊂ Rn

≥0 since u ∈ Rn
≥0. So we have Rn

≥0 ∩ Supp (fN) 6= ∅, and
hence the holomorphic part of fN is not zero, which is a contradiction.
Therefore, we must have Poly (f) ∩ Rn

≥0 = ∅.
Next, apply Lemma 4.2 to the polytope Poly (f) and β ∈ Nn, we

know that Rn
≥0 ∩ (β + mPoly (f)) = ∅ when m ≫ 0. Since, for any

m ≥ 1, mPoly (f) = Poly (fm) and Supp (fm) ⊂ Poly (fm), we have
Rn

≥0 ∩ (β + Supp (fm)) = ∅ when m ≫ 0.

On the other hand, it is easy to see that Supp (zβfm) = β+Supp (fm)
for anym ≥ 1. Therefore, we have Rn

≥0∩Supp (z
βfm) = ∅ whenm ≫ 0,

which means that the theorem holds for g(z) = zβ . ✷

Next, we use Theorem 5.1 to show that Conjecture 1.2 holds when
P (z) or Λ is a monomial of z or ∂, respectively. But, first, let us
formulate the following simple observation as a lemma since it will be
crucial for our later arguments.

Lemma 5.2. For any α, β ∈ Nn, we have that, ∂αzβ = 0 iff β 6≥ α, or
equivalently, β − α 6∈ Rn

≥0.

Note that the lemma above is not necessarily true for β ∈ Zn\Nn.

Corollary 5.3. Conjecture 1.2 holds if either Λ = ∂α or P (z) = zα

for some α ∈ Nn.

Proof: We prove the corollary for the case that P (z) = zα for some
α ∈ Nn. The proof for the other case is similar.
First, by the linearity on g(z) ∈ C[z], we may assume that g(z) = zγ

for some γ ∈ Nn.
Second, for any h(ξ) ∈ C[ξ] and any β ∈ Nn, by Lemma 5.2, it is

easy to see that we have the following equivalences:

h(∂)zβ = 0 ⇔ β 6≥ µ for any µ ∈ Supp (h)(5.1)

⇔ Supp (zβh(z−1)) ∩ Rn
≥0 = ∅.

Note that the last statement above is equivalent to saying that the
holomorphic part of the Laurent polynomial zβh(z−1) is equal to zero.
Now, we write Λ = Λ(∂) for some polynomial Λ(ξ) ∈ C[ξ] and set

f(z) := Λ(z−1)zα. Since Λm(Pm) = Λm(zmα) = 0 for any m ≥ 1,
applying the equivalences in Eq. (5.1) with h(ξ) = Λm(ξ) and β = mα,
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we know that the holomorphic part of fm = Λm(z−1)zmα is equal to
zero for any m ≥ 1.
Applying Theorem 5.1 to f(z) and g(z) = zγ , we know that there ex-

ists a N ≥ 1 such that the holomorphic part of fmzγ = Λm(z−1)zmα+γ

is equal to zero for any m ≥ N . For any fixed m ≥ N , applying the
equivalences in Eq. (5.1) with h(ξ) = Λm(ξ) and β = mα + γ, we get
Λm(Pmzγ) = Λm(zmα+γ) = 0. Therefore, Conjecture 1.2 does hold in
this case. ✷

6. Proof of the Vanishing Conjecture for the Differential

Operator Λ = a∂α + b∂β with |α| 6= |β|

In this section, we prove the following case of Conjecture 1.2.

Theorem 6.1. Let α, β ∈ Nn such that |α| 6= |β|, and Λ = a∂α + b∂β

for some a, b ∈ C. Then, Conjecture 1.2 holds for the differential

operator Λ and any homogeneous P (z) ∈ C[z].

First, let us consider the following simple cases of the theorem above.
If a = b = 0, then Λ = 0. There is nothing to prove. If only one of

the a and b is zero, then, after a change of variables, we may assume
Λ = ∂γ for some γ ∈ Nn. Then Conjecture 1.2 in this case follows
directly from Corollary 5.3.
Therefore we may assume that a and b are both nonzero. Then, by

using the fact that α 6= β, it is easy to see that, after a change of vari-
ables, we may assume a = b 6= 0. Note also that in general Conjecture
1.2 holds for a differential operator iff it holds for any nonzero scalar
multiple of the differential operator. So we may further assume that
a = b = 1. Therefore, we can reduce Theorem 6.1 to the case when
Λ = ∂α + ∂β for some α, β ∈ Nn with |α| 6= |β|.
Throughout the rest of this section, we will fix a differential operator

Λ as above and a homogeneous polynomial P (z) ∈ C[z] of degree d =
degP ≥ 0 such that Λm(Pm) = 0 for any m ≥ 1. We divide the proof
of Theorem 6.1 for this case into several lemmas.

Lemma 6.2. (a) For any m ≥ 1, we have

Supp (Λm) = {kα + ℓβ | k, ℓ ∈ N; k + ℓ = m}.(6.1)

(b) For any m, k ≥ 1 and u ∈ Supp (Λk), mu ∈ Supp (Λmk).

Proof: (a) The statement follows directly from the binomial expan-
sion of Λm = (∂α + ∂β)m.
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(b) By (a), we may write u = rα + sβ for some r, s ∈ N with
r + s = k. Then, we have mu = mrα + msβ. Since mr,ms ∈ N

and mr +ms = mk, by (a) again we have mu ∈ Supp (Λmk). ✷

Lemma 6.3. For any fixed m ≥ 1, we have

(a) ∂µPm = 0 for any µ ∈ Supp (Λm).
(b) for any µ ∈ Supp (Λm) and γ ∈ Supp (Pm), we have γ 6≥ µ or

equivalently, γ − µ 6∈ Rn
≥0.

Proof: (a) We first consider

0 = Λm(Pm) = (∂α + ∂β)m(Pm) =
∑

k,ℓ≥0
k+ℓ=m

(

m

k

)

∂kα+ℓβ(Pm).(6.2)

Note that, for any k, ℓ ≥ 0 with k + ℓ = m, we have

deg(∂kα+ℓβPm) = md− (k|α|+ ℓ|β|).(6.3)

Assume that, for some k′, ℓ′ ∈ Nn with k′ + ℓ′ = m, we have

deg(∂k′α+ℓ′βPm) = deg(∂kα+ℓβPm)

Then, by Eq. (6.3), we get

k|α|+ ℓ|β| = k′|α|+ ℓ′|β|,

(k − k′)|α| = (ℓ′ − ℓ)|β|.(6.4)

Since k + ℓ = k′ + ℓ′ = m, we have k − k′ = ℓ′ − ℓ. Combining
Eq. (6.4) with the fact that |α| 6= |β|, we see that k − k′ = ℓ′ − ℓ = 0.
Therefore, all the terms in the sum of Eq. (6.2) have different degrees.
Hence they all have to be zero.
On the other hand, by Lemma 6.2, (a), any µ ∈ Supp (Λm) has the

form kα + ℓβ for some k, l ∈ N with k + l = m. Hence (a) follows.
(b) First, we write Pm(z) as Pm(z) =

∑

γ∈Supp (Pm) bγz
γ with bγ ∈

C×. For any µ ∈ Supp (Λm), by (a) and also Lemma 5.2, we have

0 = ∂µ(Pm) =
∑

γ∈Supp (Pm)

bγ∂
µ(zγ) =

∑

γ∈Supp (Pm)
γ≥µ

bγz
γ−µ.(6.5)

Note that bγ 6= 0 for any γ ∈ Supp (Pm) and, for any γ1 6= γ2 ∈
Supp (Pm), zγ1−µ 6= zγ2−µ. Then, from Eq. (6.5) we see that there can
not be any γ ∈ Supp (Pm) such that γ ≥ µ. Hence (b) also holds. ✷

Lemma 6.4. Let u ∈ Poly (P ) and v ∈ Poly (Λ). Assume that both u
and v are rational. Then, we have, u 6≥ v.
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Proof: First, denote by Lα,β the line segment in Rn connecting α
and β. Then it is easy to see that Poly (Λ) = Lα,β. Since both α and β
are rational, it is easy to check that, a point of Lα,β is rational iff it is
a linear combination of α and β with rational coefficients. Therefore,
we may write v = rα + sβ for some rational r, s ≥ 0 with r + s = 1.
Let N ≥ 1 such that Nr,Ns ∈ N. Since Nr + Ns = N , by Lemma
6.2, (a), we have Nv = Nrα +Nsβ ∈ Supp (ΛN).
Second, apply Corollary 4.8 to the homogeneous polynomial PN and

the rational point Nu ∈ Poly (PN), there exists m ≥ 1 such that
mNu ∈ Supp (PmN). Since Nv ∈ Supp (ΛN), by Lemma 6.2, (b), we
have mNv ∈ Supp (ΛmN).
Note that mNu ∈ Supp (PmN) and mNv ∈ Supp (ΛmN ) are both

rational, by Lemma 6.3, (b), we have mNu−mNv = mN(u−v) 6∈ Rn
≥0.

Since mN > 0, we also have (u− v) 6∈ Rn
≥0, i.e. u 6≥ v. ✷

Now, we can prove the main result, Theorem 6.1, of this section as
follows.

Proof of Theorem 6.1: First, by the reductions given at the begin-
ning of this section, we may assume that the differential operator
Λ = ∂α + ∂β for some α, β ∈ Nn with |α| 6= |β|.
Second, let Σ := Poly (P ) − Poly (Λ). Then, by Lemma 4.9, it will

be enough to show that Σ ∩ Rn
≥0 = ∅.

We assume otherwise, i.e. Σ ∩ Rn
≥0 6= ∅, and derive a contradiction

as follows.
Note first that, by Lemma 4.3, (b), we know that Σ is a rational

polytope. By Corollary 4.4, there exists a rational point w ∈ Σ ∩Rn
≥0.

Then, by lemma 4.3, (c), there exist u ∈ Poly (P ) and v ∈ Poly (Λ)
such that u, v are both rational and u− v = w ∈ Σ∩Rn

≥0 ⊂ Rn
≥0. But

this contradicts to Lemma 6.4. Hence we have proved the theorem. ✷

Finally, let us point out that, by similar arguments as in the proof
of Theorem 6.1, it is easy to see that Conjecture 1.2 also holds for the
following case.

Corollary 6.5. Let α, β ∈ Nn with |α| 6= |β| and P (z) = azα + bzβ for

some a, b ∈ C. Let Λ = Λ(∂) with Λ(ξ) homogeneous. Then Conjecture

1.2 holds for Λ, P (z) and any g(z) ∈ C[z].
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