The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/141245

Please be advised that this information was generated on 2017-08-11 and may be subject to change.
Search for resonant diboson production in the $\ell\ell q\bar{q}$ final state in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

This paper reports on a search for narrow resonances in diboson production in the $\ell\ell q\bar{q}$ final state using pp collision data corresponding to an integrated luminosity of 20 fb$^{-1}$ collected at $\sqrt{s} = 8$ TeV with the ATLAS detector at the Large Hadron Collider. No significant excess of data events over the Standard Model expectation is observed. Upper limits at the 95% confidence level are set on the production cross section times branching ratio for Kaluza–Klein gravitons predicted by the Randall–Sundrum model and for Extended Gauge Model W' bosons. These results lead to the exclusion of mass values below 740 GeV and 1590 GeV for the graviton and W' boson respectively.
Search for resonant diboson production in the $\ell\ell q\bar{q}$ final state in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

ATLAS Collaboration

Received: date / Accepted: date

Abstract This paper reports on a search for narrow resonances in diboson production in the $\ell\ell q\bar{q}$ final state using pp collision data corresponding to an integrated luminosity of 20 fb$^{-1}$ collected at $\sqrt{s} = 8$ TeV with the ATLAS detector at the Large Hadron Collider. No significant excess of data events over the Standard Model expectation is observed. Upper limits at the 95% confidence level are set on the production cross section times branching ratio for Kaluza–Klein gravitons predicted by the Randall–Sundrum model and for Extended Gauge Model W' bosons. These results lead to the exclusion of mass values below 740 GeV and 1590 GeV for the graviton and W' boson respectively.

1 Introduction

This paper presents a search for narrow diboson resonances in the semileptonic decay channel ZW or $ZZ \rightarrow \ell\ell q\bar{q}$ (where ℓ stands for electron or muon) in pp collision data corresponding to an integrated luminosity of 20 fb$^{-1}$ recorded with the ATLAS detector at a centre-of-mass energy $\sqrt{s} = 8$ TeV at the Large Hadron Collider (LHC). This type of resonances appear in models such as Technicolor [1–3], Warped Extra Dimensions [4–6], and Grand Unified Theories [7–10]. The semileptonic decay channel has a relatively large branching ratio compared to the fully leptonic mode, while the requirement of the presence of two decay leptons can suppress the multijet background present in the fully hadronic mode. Additionally, the absence of neutrinos in the final state allows to reconstruct the invariant mass of the diboson system.

This analysis is optimized using two models with narrow resonances as benchmarks: spin-2 Kaluza–Klein (KK) gravitons ($G^* \rightarrow ZZ$), and spin-1 W' gauge bosons ($W' \rightarrow ZW$) of the Sequential Standard Model (SSM) with modified coupling to ZW, also referred to as the Extended Gauge Model (EGM) [11]. For both models, the W and Z bosons from resonance decays are longitudinally polarized over a pole mass range relevant to this analysis.

The KK graviton interpretation is based on an extended Randall–Sundrum (RS) model with a warped extra dimension in which the Standard Model (SM) fields can propagate [12]. This extended “bulk” RS model avoids constraints on the original RS model [4], referred to as RS1 hereafter, from limits on flavour-changing neutral currents and from electroweak precision tests. The bulk RS model is characterized by a dimensionless coupling constant $k/\bar{M}_{Pl} \sim 1$ where k is the curvature of the warped extra dimension and $\bar{M}_{Pl} = M_{Pl}/\sqrt{8\pi}$ is the reduced Planck mass. The width relative to the mass of the bulk RS graviton with $k/\bar{M}_{Pl} = 1$ varies between 3% and 6% within the pole mass range of 300–2000 GeV.

The EGM introduces W' and Z' bosons with SM couplings to fermions and with the coupling strength of the heavy W' to ZW modified by a mixing factor $\xi = c \times (m_W/m_{W'})^2$ relative to the SM couplings, where m_W and $m_{W'}$ are the pole masses of the W and W' bosons respectively, and c is a coupling scaling factor. In this scenario the partial width of the W' boson to ZW scales linearly with $m_{W'}$, leading to a narrow resonance over the accessible mass range, in contrast to the SSM where the width grows rapidly as $m_{W'}^5$. For the simulated EGM W' samples used in the analysis, the natural W' width is about 3% at a pole mass of 300 GeV and increases slightly to 4% at a pole mass of 2000 GeV.

Previous searches for diboson resonances have been carried out using $p\bar{p}$ collision data at $\sqrt{s} = 1.96$ TeV at
the Tevatron and pp collision data at $\sqrt{s} = 7$–8 TeV at the LHC. The D0 Collaboration searched for resonances in WW and ZW production [13,14] and excluded W' bosons in the mass range of 180–690 GeV and RS1 gravitons in the mass interval 300–754 GeV at the 95% confidence level (CL). The CDF experiment searched for resonances in the ZZ decay channel and set limits on the production cross section of RS1 gravitons in the mass range 300–1000 GeV at the 95% CL [15]. The ATLAS Collaboration reported searches for resonant ZZ ($\rightarrow \ell\ell\ell'$, $\ell\ell q\bar{q}$) [16], WW ($\rightarrow \ell\nu q\bar{q}$) [17] and WZ ($\rightarrow \ell\nu q\bar{q}$, $\ell\nu\ell'$) [17,18] production, and searches for new phenomena in high-mass WW ($\rightarrow \ell\ell\nu\nu$) processes [19] using pp collision data recorded at $\sqrt{s} = 7$ TeV, except for the WZ $\rightarrow \ell\nu\ell'$ search in Ref. [18], which used data recorded at $\sqrt{s} = 8$ TeV. Here ℓ' stands for an electron or muon. These studies excluded EGM W' bosons with masses up to 1.52 TeV for WZ final states, RS1 gravitons with masses up to 845 GeV for ZZ final states and up to 1.23 TeV for WW final states. The CMS Collaboration searched for ZZ and WW resonances in the semileptonic decay channel, setting exclusion limits on the production cross section of bulk RS gravitons [20]. In the fully hadronic channel, the CMS Collaboration excluded RS1 gravitons with $k/3M_{\text{Pl}} = 0.1$ for masses up to 1.2 TeV, and W' bosons for masses up to 1.7 TeV [21]. Both of these searches implement jet substructure techniques to identify the event topology where the hadronic system from the decay of one or two gauge bosons is produced at high transverse momentum p_T, resulting in a single reconstructed jet. In the analysis presented here, a similar technique has been used to identify hadronically decaying W or Z boson produced at high p_T. This technique uses the characteristics of two cores (“subjets”) inside a single reconstructed jet and allows for a significant improvement in acceptance and selection efficiency for high mass states with boosted W and Z bosons over the previous analysis [16].

2 Analysis

In this study, three optimized sets of selection criteria classify ZW/ZZ $\rightarrow \ell\ell q\bar{q}$ events into distinct kinematic regions, namely the “low-p_T resolved region” (LR), “high-p_T resolved region” (HR) and “merged region” (MR), based on the p_T of the dilepton and the hadronic system. In the LR and HR the hadronic boson decay is reconstructed as two distinct jets, whereas in the MR it is reconstructed as a single jet. In all three cases, the dilepton (hadronic system) mass is required to be consistent with the mass of the Z boson (W or Z boson).

In the MR, additional jet substructure information, optimized for the identification of the hadronic decay of a longitudinally polarized high-p_T boson, is used to improve the sensitivity. Finally, the $\ell\ell q\bar{q}$ mass spectrum, reconstructed as the mass of the dilepton and the two-jet system in the LR and HR ($m_{\ell\ell j}$) or the dilepton and the single-jet system in the MR ($m_{\ell j}$), is examined for excesses with respect to the expectation from SM processes (background).

2.1 Detector and data sample

The ATLAS detector [22] consists of an inner detector (ID) providing charged particle tracking for the pseudorapidity [1] range $|\eta| < 2.5$, surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters with a coverage of $|\eta| < 4.9$, and a muon spectrometer (MS) with toroidal magnets that provides muon identification in the range $|\eta| < 2.7$.

This study uses an integrated luminosity of 20.3 fb$^{-1}$ of pp collision data collected in 2012. The luminosity is derived from beam-separation scans [23] and has an uncertainty of 2.8%. Events are selected with lepton triggers that require the presence of at least one lepton (electron or muon) with p_T above 24 GeV. The trigger efficiency for signal events that pass the selection criteria described in Sect. 2.3 is approximately 92% for the muon channel and greater than 99% for the electron channel.

2.2 Simulated event samples

To model the acceptance and the reconstructed mass spectra for narrow resonances, benchmark signal samples are generated with pole masses between 300 and 2000 GeV, in 100 GeV steps. Additional samples are generated between 350 and 950 GeV for the bulk RS G^* signal so that the mass gap is reduced to 50 GeV, which is comparable to the detector resolution of the reconstructed $\ell\ell q\bar{q}$ mass in this mass interval. The bulk RS G^* signal events are generated by CALCHEP [24] with $k/3M_{\text{Pl}} = 1.0$, and the W' signal sample is generated with PYTHIA 8 [25], setting the coupling scale factor $c = 1$. The factorization and renormalization scales are set to the resonance mass. The hadronisation and fragmentation are modelled with PYTHIA 8 in both cases.

1 ATLAS uses a right-handed coordinate system with the z-axis along the beam pipe. The x-axis points to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (ρ,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln(\tan(\theta/2))$.

and the CTEQ6L1 [20] (MSTW2008LO [27]) parton distribution functions (PDFs) are used for the \(G^* \) signal. The \(W' \) production cross section is scaled to a next-to-next-to-leading-order (NNLO) calculation in \(\alpha_s \) by ZWprod [28]. Calculated production cross section times branching ratio values for different pole masses are given in Table 1.

![Table 1](image)

The main background sources are \(Z \) bosons produced in association with jets (\(Z + \)jet(s)), followed by top-quark pair and non-resonant vector-boson pair production. The contribution from multijet events is negligible after the selection cuts described in Sect. 2.3. All background estimates are based on simulation. Additionally, the main background source, \(Z + \)jets, is estimated using constraints from data as described in Sect. 2.4. The \(Z + \)jets background is modelled by the SHERPA generator [29] with CT10 PDFs [30]. The top pair, s-channel single-top and \(Wt \) processes are modelled by the MC@NLO [31] generator with CT10 PDFs [30]. The top pair production cross section is calculated at NNLO in QCD using constraints from data as described in Sect. 2.4.

2.3 Object and event selection

Electron candidates are selected from energy clusters in the electromagnetic calorimeter according to the medium criteria of Ref. [35], which impose requirements on the shower profile and demand an associated ID track. Offline reconstructed electrons are required to have \(p_T > 25 \) GeV and \(|\eta| < 2.47\). The transition region between the barrel and endcaps (\(1.37 < |\eta| < 1.52 \)) exhibits degraded energy resolution and is therefore excluded.

Muon candidates are reconstructed by combining ID and MS tracks which have consistent position, charge and momentum measurements [40]. The muon candidates are required to have \(p_T > 25 \) GeV and \(|\eta| < 2.4\).

A primary vertex reconstructed from at least three well-reconstructed charged particle tracks, each with \(p_T > 400 \) MeV, is required in order to remove non-collision background. If an event contains more than one primary vertex candidate, the vertex with the highest \(\Sigma p_T^2 \) of the associated tracks is selected. To ensure that both electrons or muons originate from the primary vertex, it is required that the product of the longitudinal impact parameter (\(z_0 \)) and the sine of the polar angle of the candidate (\(\theta \)) satisfies \(|z_0 \sin(\theta)| < 0.5 \) mm, and that the ratio of the transverse impact parameter (\(d_0 \)) to its uncertainty (\(\sigma_{d_0} \)) for electrons (muons) fulfills \(|d_0|/\sigma_{d_0} < 6 \) (3.5). In addition, the lepton candidates are required to be isolated from other tracks and calorimetric activity. The scalar sum of the transverse momenta of tracks within a cone of size \(\Delta R \equiv \sqrt{\Delta \eta^2 + (\Delta \phi)^2} = 0.2 \) around the lepton track is required to be less than 15% of the candidate \(p_T \). Similarly, the sum of transverse energy deposits in the calorimeter within a cone of size \(\Delta R \equiv 0.2 \), excluding the transverse energy due to the lepton, and corrected for the expected pile-up contribution, is required to be less than 30% of the candidate \(p_T \) (calorimetric isolation).

To improve the acceptance for events with boosted \(Z \) bosons, with \(p_T > 800 \) GeV, the isolation method is modified for dilepton objects: a dilepton track isolation variable is calculated for each lepton of a like-flavour pair by subtracting the \(p_T \) of the paired lepton from the \(p_T \) sum described above if it falls inside the isolation cone of the lepton under consideration. The modified scalar sum \(p_T \) variable for the dilepton isolation is required to be less than 15% of the lepton \(p_T \), as in the standard track isolation. The calorimetric isolation requirements are dropped if \(\Delta R(\ell\ell) < 0.25 \).

Jets are reconstructed from clusters of calorimeter cells using the anti-\(k_T \) algorithm [47] with a distance parameter \(R = 0.4 \). Jets are required to be in the range \(|\eta| < 2.1 \) and to have \(p_T > 30 \) GeV after correcting for energy losses in passive material, the non-compensating response of the calorimeter and extra energy due to event pile-up [48]. Furthermore, for jets with \(p_T < 50 \) GeV, the scalar sum \(\sum p_T \) of associated tracks from the primary vertex is required to be at least 50% of the scalar sum \(\sum p_T \) of all associated tracks to suppress
jets from pile-up interactions. The selected anti-k_T jets are referred to as small-R jets and denoted by “j” hereafter.

For resonances with a mass above about 900 GeV, the qq^\mp pair is often merged into a single jet and the fraction of merged qq^\mp pairs increases with the resonance mass. Such jets are reconstructed with the Cambridge–Aachen jet clustering algorithm [49] with a distance parameter $R = 1.2$. To exploit the characteristics of the decay of the massive boson into a qq^\mp pair, these jets are further required to pass a splitting and filtering algorithm similar to the algorithm described in Ref. [50] but optimized for the identification of very high-p_T jets or “J” hereafter.

Events which contain exactly two electrons or muons satisfying the above criteria are selected if at least one is associated with a lepton trigger candidate. To select lepton pairs originating from a Z boson decay, the dilepton invariant mass ($m_{\ell\ell}$) is required to be in the range $66\text{ GeV} < m_{\ell\ell} < 116\text{ GeV}$. The $m_{\ell\ell}$ cut range is chosen to be wide to enhance the signal sensitivity, given that the dominant background is from the Z + jets processes and a narrower cut would not provide additional discrimination power. Muon-pair events are further required to have muons of opposite charge. The opposite-charge requirement is not required for electron-pair events because of a higher charge misidentification rate for high-p_T electrons.

The three selection regions are differentiated by the p_T ranges for the leptonic Z decay candidate ($p_T^{\ell\ell}$) and hadronic jet system, namely $p_T^{\ell\ell} > 400\text{ GeV}$ and $p_T^{J} > 400\text{ GeV}$ for the large-R jet in the MR, and $p_T^{\ell\ell} > 100\text{ (250) GeV}$ and $p_T^{J} > 100\text{ (250) GeV}$ for the two small-R jets at low (high) p_T in the LR (HR). The mass of the hadronic jet system is required to be in the range $70\text{ GeV} < m_{jj/J} < 110\text{ GeV}$ for both the hadronic W and Z decay candidates in all three regions. In the MR, the large-R jet is split into subjets using an algorithm described in Ref. [50]. However, in contrast to the configuration used in Ref. [50], the mass relation between the large-R jet and subjets, the mass drop, is not imposed. A subjet momentum balance variable is defined as $\sqrt{y_R} = \min(p_T^{j1}, p_T^{J})/\Delta R_{12}/m_{12}$, where p_T^{j1} and p_T^{J} are the transverse momenta of the two leading subjets, ΔR_{12} is their separation and m_{12} is their mass. To suppress jets from gluon radiation and splitting, the subjet momentum balance is required to be $\sqrt{y_R} > 0.45$. Events are classified by sequentially applying the criteria for the MR, HR, and LR, thus assigning each event exclusively to one region. Overall, the signal acceptance times efficiency after all selection require-

ments increases from 5–10% at $m_G = 300\text{ GeV}$ to a plateau of 30–35% above $m_G = 500\text{ GeV}$ for a signal sample of $G^* \rightarrow ZZ \rightarrow \ell\ell q\bar{q}$. The improvement in acceptance compared to the previous analysis [16] ranges up to a factor of five for masses above 1.5 TeV.

2.4 Background and event yield

The simulation of the main background source ($Z + \text{jets}$) is corrected using data. The normalization and $m_{\ell\ell jj/J}$ shape corrections of the simulated $Z + \text{jets}$ background sample is determined from data in a control region defined by all selection cuts but with an inverted cut on $m_{jj/J}$, namely $m_{jj/J} < 70\text{ GeV}$ or $m_{jj/J} > 110\text{ GeV}$, in the resolved and merged regions, respectively. The normalization corrections, obtained as the ratio of event yields in the data and $Z + \text{jets}$ simulated samples for the electron and muon channel, after removing contributions from subdominant backgrounds from the data spectrum, range between 2% and 10%. The $m_{\ell\ell jj/J}$ shape correction is well reproduced with a linear fit to the ratio of data to $Z + \text{jets}$ background, derived for each signal region after combining the electron and muon channels. This results in bin-by-bin corrections of up to 7% in the LR, 3% in the HR, and 22% in the MR. The other backgrounds, from diboson and top production, are taken from simulation without applying corrections from data control regions.

The event yield in the three signal regions is summarized in Table 2. The total event yield with combined statistical and systematic uncertainties is given before and after the simultaneous fit to the three signal regions (cf. Sect. 3).

2.5 Systematic uncertainties

The main systematic uncertainty on the $m_{\ell\ell jj/J}$ spectrum comes from the uncertainty in the $Z + \text{jets}$ background modelling. The normalization uncertainty of the $Z + \text{jets}$ background is estimated from the relative difference between the normalization corrections derived from the nominal control region ($m_{jj/J} < 70\text{ GeV}$ or $m_{jj/J} > 110\text{ GeV}$) and either the lower or higher mass region, taking the larger of the two as an estimate of the systematic uncertainty. If the resulting uncertainty is smaller than the statistical uncertainty of the normalization correction from the nominal control region, the latter is used as the systematic uncertainty. The uncertainty of the shape correction is estimated from the uncertainty on the slope parameter of the linear fit and is treated as uncorrelated with respect to the normalization uncertainty. The combined normalization and
shape uncertainties vary as a function of $m_{\ell\ell jj/J}$ and range from 6% to 9% in the LR, 2% to 8% in the HR, and 11% to 47% in the MR. For all simulated samples, detector performance-related systematic uncertainties including the small-R jet energy scale and resolution, large-R jet energy, mass and momentum-balance scales and resolutions, the lepton reconstruction and identification efficiencies, and lepton momentum scales and resolutions, the lepton reconstruction and identification efficiencies, and lepton momentum scales and resolutions are also considered. The large-R jet energy and mass scale uncertainties are evaluated by comparing the ratio of calorimeter-based to track-based measurements in dijet data and simulated events, and are validated using a data sample of high-p_T W bosons produced in association with jets. A Kolmogorov–Smirnov (KS) test is then performed between the nominal and systematically varied distributions for a given systematic uncertainty source to determine if it has a sizeable effect on the shape of background and signal estimations. Only significant systematic effects are retained in the analysis by requiring a KS probability of less than 10%. For the normalization, if the event yield changes by more than half the statistical uncertainty of the nominal yield, the systematic uncertainty is included.

Uncertainties on signal acceptance due to PDF sets, renormalization and factorization scale choices, initialand final-state gluon radiation (ISR/FSR) modelling, and LHC beam energy uncertainty are also considered. The PDF uncertainties are estimated by taking the acceptance difference between CTEQ6L1 and MSTW2008LO PDFs and adding it in quadrature to the differences between MSTW2008LO error sets. The uncertainties due to the scale and ISR/FSR modelling are estimated by varying relevant parameters in PYTHIA 8 by a factor of 2.0 and 0.5. The beam energy systematic uncertainty is assessed with simulation by varying the beam energy within the measured uncertainty of 0.66% [53], leading to at most a 1% effect on acceptance. The dominant uncertainty comes from ISR/FSR modelling and is approximately 5%.

3 Results

The invariant mass of the diboson system is reconstructed from the $\ell\ell jj$ or $\ell\ell J$ system. The reconstructed $m_{\ell\ell jj/J}$ distributions for data and simulated background events in the three signal regions are shown in Fig. 1 for the combined electron and muon channels. Good agreement is observed between the data and the background predictions, with p-values ranging from 0.98 to 0.10, and the results are presented as 95% confidence level upper limits on the production cross section times branching fraction into G^* and W' models. The upper limits are determined using the CL$_S$ modified frequentist formalism with a profile likelihood test statistic [54]. The test statistic is evaluated with a maximum likelihood fit of signal models and background predictions to the reconstructed $m_{\ell\ell jj/J}$ spectra shown in Fig. 1. Systematic uncertainties and their correlations are taken into account as nuisance parameters with Gaussian constraints. The likelihood fit, which takes into account correlations between the systematic uncertainties, is performed for signal pole masses ranging between 300–850 GeV for the LR, 550–1800 GeV for the HR and 800–2000 GeV for the MR. Overlapping regions are fit simultaneously.

Fig. 2 shows 95% CL upper limits on the production cross section times branching fraction into ZZ or W' as a function of the resonance pole mass. The theoretical predictions for the EGM W' and the bulk RS G^* with two different values of the coupling constant, α_S and α_T could be considered.
Fig. 1 Reconstructed $\ell\ell jj$ or $\ell\ell J$ mass distributions in the data and for background after all the selection cuts are applied in the three kinematic regions referred to as the LR (top), HR (middle) and MR (bottom) in the text. The shaded regions show the full background uncertainty obtained by adding statistical and systematic uncertainties in quadrature, including the constraints on the background from the data control regions and before the fit to the data in the signal regions (cf. unconstrained case in Table 2). Also shown are the G^* signal yields expected for masses of 500, 800 and 1400 GeV with the production cross sections scaled by a factor 10.

shown in the figure, allow the extraction of observed (expected) lower mass limits of 1590 (1540) GeV for the W', and 740 and 540 (700 and 490) GeV for the G^* with $k/M_{Pl} = 1.0$ and 0.5 respectively. The most powerful search regions are the LR for masses below 550 GeV, the HR from 500 to 850 GeV and the MR for higher masses.

Fig. 2 Observed and expected 95% CL upper limits on the cross section times branching fraction as a function of the resonance pole mass for the G^* (top) and EGM W' (bottom). The LO (NNLO) theoretical cross sections for G^* (EGM W') production with $k/M_{Pl} = 0.5$ and 1.0 ($c = 1$) are also shown. The band around the W' cross section represents the theoretical uncertainty on the NNLO calculation. The inner and outer bands on the expected limits represent ±1σ and ±2σ variations respectively.

4 Conclusion

In summary, a search for narrow, heavy resonances produced in pp collisions and decaying to diboson final states at the Large Hadron Collider has been performed. The data sample analysed, corresponding to an integrated luminosity of 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV, was recorded with the ATLAS detector. No significant excess over the Standard Model background expectation was found. Upper limits on the production cross section times branching ratio and mass exclusion limits are derived for W' bosons in the theoretical framework of an Extended
Gauge Model and for gravitons in warped extra dimensions in the context of the bulk Randall–Sundrum model. The results represent a significant improvement over previously reported limits by ATLAS due to increased pp collision energy and data set size as well as the development of new techniques to analyse heavily boosted decays of bosons.

Acknowledgements We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COFIN/COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; FNRS and IAP, Belgium; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNIF and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 DESY, Hamburg and Zeuthen, Germany
42 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
43 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
44 Department of Physics, Duke University, Durham NC, United States of America
45 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) E. Andronikashvili Institute of Physics, Iw. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 II Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
52 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
55 Department of Physics, Hampton University, Hampton VA, United States of America
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
57 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
58 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
59 Department of Physics, Indiana University, Bloomington IN, United States of America
60 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
61 University of Iowa, Iowa City IA, United States of America
62 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
63 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
64 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
65 Graduate School of Science, Kobe University, Kobe, Japan
66 Faculty of Science, Kyoto University, Kyoto, Japan
67 Kyoto University of Education, Kyoto, Japan
68 Department of Physics, Kyushu University, Fukuoka, Japan
69 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
70 Physics Department, Lancaster University, Lancaster, United Kingdom
19

72 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
74 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
75 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
76 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
77 Department of Physics and Astronomy, University College London, London, United Kingdom
78 Louisiana Tech University, Ruston LA, United States of America
79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
80 Fysiska institutionen, Lunds universitet, Lund, Sweden
81 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
82 Institut für Physik, Universität Mainz, Mainz, Germany
83 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
84 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
85 Department of Physics, University of Massachusetts, Amherst MA, United States of America
86 Department of Physics, McGill University, Montreal QC, Canada
87 School of Physics, University of Melbourne, Victoria, Australia
88 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
89 Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
90 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
93 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
94 Group of Particle Physics, University of Montreal, Montreal QC, Canada
95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
97 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
98 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
103 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
107 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York NY, United States of America
110 Ohio State University, Columbus OH, United States of America
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
113 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
120 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia

Also at Section de Physique, Université de Genève, Geneva, Switzerland

Also at International School for Advanced Studies (SISSA), Trieste, Italy

Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America

Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

Also at Department of Physics, Oxford University, Oxford, United Kingdom

Also at Department of Physics, Nanjing University, Jiangsu, China

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany

Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

* Deceased