Search for Higgs Boson Pair Production in the $\gamma\gamma b\bar{b}$ Final State using pp Collision Data at $\sqrt{s} = 8$ TeV from the ATLAS Detector

The ATLAS Collaboration

Abstract

Searches are performed for resonant and non-resonant Higgs boson pair production in the $hh \rightarrow \gamma\gamma b\bar{b}$ final state using 20 fb$^{-1}$ of proton–proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non-resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The corresponding limit observed for a narrow resonance ranges between 0.7 and 3.5 pb as a function of its mass.
Search for Higgs Boson Pair Production in the $\gamma\gamma \bar{b}b$ Final State using pp Collision Data at $\sqrt{s}=8$ TeV from the ATLAS Detector

Searches are performed for resonant and non-resonant Higgs boson pair production in the $hh \rightarrow \gamma\gamma \bar{b}b$ final state using 20 fb$^{-1}$ of proton–proton collisions at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the CERN Large Hadron Collider. A 95% confidence level upper limit on the cross section times branching ratio of non-resonant production is set at 2.2 pb, while the expected limit is 1.0 pb. The corresponding limit observed for a narrow resonance ranges between 0.7 and 3.5 pb as a function of its mass.

PACS numbers: 12.60.-i, 14.80.Da, 14.80.Ec

Within two years of discovering a new boson with a mass near 125 GeV [1,2], the ATLAS and CMS collaborations have completed a slate of measurements demonstrating that its spin and couplings conform to the predictions of the Standard Model (SM) Higgs boson within current experimental and theoretical uncertainties [3,4]. Despite the lack of deviations from SM predictions, the current experimental and theoretical uncertainties [3,4] and the large Higgs boson self-coupling, λ, are not expected to be observable with current LHC data sets. However, a variety of extensions to the SM would enhance Higgs boson pair production. In many two Higgs doublet models (2HDMs) [9-11] the heavier of the neutral scalar Higgs bosons, H, may decay to a pair of its lighter scalar partners, h. Depending on the parameters of the 2HDM, $H \rightarrow hh$ production cross sections may reach more than a picobarn [11]. Altering the Higgs boson self-coupling, λ_{hhh}, could also increase the non-resonant production rate. Such deviations could be observed with future data sets [8]. Larger enhancements in the $pp \rightarrow hh$ rate could arise from a direct $t\bar{t}hh$ vertex, which is natural in composite models [12,13], or from the addition of light colored scalars to the SM [14]. Resonant production of two Higgs bosons could also appear from the production and decay of gravitons, radions or stoponium [15,17], as well as from a hidden sector mixing with the observed Higgs boson [18].

The $\gamma\gamma \bar{b}b$ channel is a powerful final state in which to search for Higgs boson pair production [19] thanks to the large $h \rightarrow \bar{b}b$ branching ratio, clean diphoton trigger, excellent diphoton invariant mass resolution, and low backgrounds. This channel is particularly important in the search for resonances with mass, m_X, in the range $260 < m_X < 500$ GeV considered in this Letter, where backgrounds and combinatorics make other channels such as $t\bar{t}t\bar{t}$ or $b\bar{b}τ+τ$ challenging.

Processes that do not contain Higgs bosons are estimated from data; all other processes are simulated using Monte Carlo techniques. The standard ATLAS detector simulation [20] based on Geant4 [21] is used. The simulation parameters are tuned to describe soft components of hadronic final states [22,23]. Simulated minimum bias collisions are overlaid on the hard scatter process, and events are reweighted so that the average number of interactions per bunch crossing (~20) matches the observed distribution.

Background events with a single Higgs boson produced in association with a W or Z boson or tt are simulated with Pythia8 [24] using CTEQ6L1 parton distribution functions of the proton (PDFs) [25]. Higgs boson production via gluon or vector-boson fusion is simulated using CT10 PDFs [26] with Powheg-Box [27,28] interfaced to Pythia8 for showering and hadronization. Cross sections and associated uncertainties are taken from Ref. [29].

Two benchmark signal models are defined: SM Higgs boson pair production for the non-resonance search, and a gluon-initiated, spin-0 resonant state in the narrow-width approximation for the resonance search. Both models are generated using MadGraph5 [30,31] and CTEQ6L1 PDFs. A generator filter requires a pair of b-quarks and a pair of photons in each event. Pythia8 is used to decay the two Higgs bosons, and to shower and hadronize the events. The implementation of SM Higgs boson pair production includes the interference between diagrams with trilinear Higgs boson couplings and box diagrams. The next-to-leading-order inclusive production cross section of 9.2 fb is taken from Ref. [8]. Resonant samples are generated with a width of 10 MeV (corresponding to a narrow width approximation) at masses $m_X = 260, 300, 350, \text{ and } 500$ GeV. Production cross sections for benchmark 2HDM models are calculated with SusHi [32], and branching ratios with 2HDMC [33].

The analysis described in this Letter uses the full $\sqrt{s}=8$ TeV data set of proton–proton collisions recorded by the ATLAS experiment in 2012, corresponding to an integrated luminosity of 20.3±0.6 fb$^{-1}$ [34]. Data quality criteria are applied to reject events with diminished detector performance [35,36]. A description of the ATLAS detector can be found elsewhere [37].

The photon and event selection for the present search largely follow those of existing ATLAS $h \rightarrow \gamma\gamma$ analyses [3,38]. Events are selected using a loose diphoton trigger that is nearly 100% efficient for events passing the offline photon selection. Photons are reconstructed starting from clusters of energy deposited in the electromagnetic calorimeter. Events are required to contain...
two photon candidates whose calorimeter energy clusters match the expectations for photon-induced electromagnetic showers. The pseudorapidity, η, of the two photons must fall within the geometric acceptance of the detector for photons, $|\eta| < 2.57$, excluding the region between the barrel and endcap calorimeters ($1.37 < |\eta| < 1.56$). The ratio of the transverse momentum of the leading (subleading) photon to the invariant mass of the pair, $p_T/m_{\gamma\gamma}$, must exceed 0.35 (0.25). The invariant mass of the pair is calculated as in Ref. [3]. Photons are required to be isolated: the energy in the calorimeter with tagging) with an efficiency of 70% for jets from semileptonic b-tagging. Events containing both a pair of photons and a dijet mass (m_{jj}) from the two leading jets satisfying $95 < m_{jj} < 135$ GeV, consistent with the decay of a Higgs boson, are kept for further study. The mass resolution for jets arising from noisy regions in the calorimeters, beam backgrounds, or cosmic rays are rejected. Low-p_T jets from additional proton–proton interactions in the same bunch crossing are rejected with a requirement on the scalar sum of the p_T of the tracks in a cone of $\Delta R = 0.2$ be must be less than 2.6 GeV. In addition, the photon pair must satisfy a broad requirement $105 < m_{\gamma\gamma} < 160$ GeV for an event to be considered [3] [38].

Jets are reconstructed from clusters of energy in the electromagnetic and hadronic calorimeters using the anti-k_t algorithm with a radius parameter of 0.4, starting from energy deposits grouped into topological clusters. Simulation is used to correct jets for instrumental effects and to account for the average energy in the detector in the event due to additional $p\bar{p}$ interactions and the underlying event. The calibration is refined using in situ measurements. Jets are required to fall within the tracker acceptance of $|\eta| < 2.5$ and satisfy $p_T > 35$ GeV, with the leading jet in the event required to have $p_T > 55$ GeV. Events with jets arising from noisy regions in the calorimeters, beam backgrounds, or cosmic rays are rejected. Low-p_T jets from additional proton–proton interactions in the same bunch crossing are rejected with a requirement on the scalar sum of the p_T of the tracks associated with the jet: for jets with $|\eta| < 2.4$ and $p_T < 50$ GeV, tracks associated with the hard scatter vertex must contribute over 50% of the sum.

Events containing both a pair of photons and a dijet mass (m_{jj}) from the two leading jets satisfying $95 < m_{jj} < 135$ GeV, consistent with the decay of a Higgs boson, are kept for further study. The mass resolution for pairs of b-tagged jets is approximately 13 GeV. The average reconstructed dijet mass is shifted downwards from the true value due to effects such as unmeasured neutrinos from semi-leptonic b-decays.

In the non-resonance search, the background and potential signal are fit to the unbinned $m_{\gamma\gamma}$ distribution of all events passing the dijet and diphoton selections described above. This fit has three components: the signal with a pair of Higgs bosons, the SM single Higgs boson background that is resonant in $m_{\gamma\gamma}$, and the continuum background. The combined acceptance and selection efficiency for the SM Higgs boson pair production signal is 7.4%. Simulation studies show that the continuum contribution in the signal region is split between events with two photons and events with a single photon in association with a jet faking the second photon. The b-tagged jets include real heavy-flavor jets and mis-tagged light-flavor jets. The contribution from dileptonic decays of $t\bar{t}$ events where two electrons fake the two photons is roughly 10% of the total background. The contribution from other processes is negligible.

The fit is performed simultaneously in two categories. The first category is the signal region, in which at least two jets are b-tagged. The second is a control region, containing events with fewer than two b-tags. The two classes of events are kinematically identical: in the signal region, the mass and p_T requirements defined above must be satisfied by the two leading tagged jets, whereas in the control region, they are met by the two leading jets.

Following earlier ATLAS analyses, the shape of the $m_{\gamma\gamma}$ resonance is described by the sum of a Crystal Ball function and a wide Gaussian component that models the tails of the distribution. An exponential function describes the continuum backgrounds that fall with $m_{\gamma\gamma}$. The slope of the exponential is shared in the fit between the two categories so that the control region constrains the background shape in the signal region. Figure 1 shows the separate diphoton mass distributions for events with ≥ 2 b-tags and events with ≤ 1 b-tag.

The search for resonant production of pairs of Higgs bosons starts with the same signal selection as above but imposes an additional requirement on $m_{\gamma\gamma}$. Due to the small number of expected events after this additional requirement, the resonance analysis proceeds as a counting

![FIG. 1](image_url)
The diphoton mass resolution, $\sigma_{m_{\gamma\gamma}}$, is set to the expected value of 1.6 GeV, and the diphoton mass is required to be within $\pm 2\sigma_{m_{\gamma\gamma}}$ of the Higgs boson mass, $m_h = 125.5$ GeV. The acceptance of this requirement on background events without Higgs bosons, $\epsilon_{m_{\gamma\gamma}}$, is measured by fitting an exponential function to the $m_{\gamma\gamma}$ sidebands for events with fewer than two b-tagged jets. For this fit, the $m_{\gamma\gamma}$ region of $m_h \pm 5$ GeV is excluded to eliminate any potential contamination from resonant Higgs boson production. For N observed events with two b-tags in the sideband ($|m_{\gamma\gamma} - m_h| > 2\sigma_{m_{\gamma\gamma}}$), the number of expected non-Higgs boson background events $(N_{m_{\gamma\gamma}})$ within $2\sigma_{m_{\gamma\gamma}}$ around m_h is given by:

$$N_{m_{\gamma\gamma}} = N \frac{\epsilon_{m_{\gamma\gamma}}}{1 - \epsilon_{m_{\gamma\gamma}}},$$

where the denominator compensates for the fact that $\epsilon_{m_{\gamma\gamma}} = 0.13$ is derived relative to the full $m_{\gamma\gamma}$ spectrum while N contains only those events in the sidebands.

Before reconstructing the four-object mass, $m_{\gamma\gamma\gamma\gamma}$, a scaling factor of m_h/m_{bb} is applied to the four-momentum of the bb system, where m_h is set to the value of 125 GeV used in simulation. This improves the $m_{\gamma\gamma\gamma\gamma}$ resolution by 30–60% depending on the mass hypothesis, without biasing or significantly altering the shape of the background. Requirements are then made on $m_{\gamma\gamma\gamma\gamma}$ to select the smallest window containing 95% of the signal events in the narrow-width simulation. These requirements vary linearly with the mass, m_X, of the resonance considered. The width of the signal window varies from 17 GeV at $m_X = 260$ GeV to 60 GeV at $m_X = 500$ GeV. The acceptance for the continuum background to pass this requirement, $\epsilon_{m_{\gamma\gamma\gamma\gamma}}$, also varies with m_X. It is measured using events in data with $|m_{\gamma\gamma} - m_h| < 2\sigma_{m_{\gamma\gamma}}$ and fewer than two b-tags. Studies in both data sidebands and simulation show that the shapes of $m_{\gamma\gamma\gamma\gamma}$ and $m_{\gamma\gamma\gamma\gamma}$ agree within statistical uncertainties. The distribution of $m_{\gamma\gamma\gamma\gamma}$ in data is fitted with a Landau function, which is integrated in the signal window to obtain $\epsilon_{m_{\gamma\gamma\gamma\gamma}}$ for each mass hypothesis. The bottom panel of Fig. 2 shows this fit. The value of $\epsilon_{m_{\gamma\gamma\gamma\gamma}}$ is small (< 8%) at low and high m_X, and peaks at 18% for $m_X = 300$ GeV. The combined acceptance and selection efficiency for a resonance signal to pass all requirements varies from 3.8% at $m_X = 260$ GeV to 8.2% at $m_X = 500$ GeV.

The total background from sources without Higgs boson decays in the resonance analysis N_B is given by:

$$N_B = N \frac{\epsilon_{m_{\gamma\gamma}}}{1 - \epsilon_{m_{\gamma\gamma}}},$$

where N_B and $\epsilon_{m_{\gamma\gamma}}$ are functions of m_X. Uncertainties on this extrapolation are described below.

Because they are not accounted for by the above $m_{\gamma\gamma}$ sideband techniques, contributions from single Higgs bosons produced in association with jets (particularly with $c\bar{c}$ or $b\bar{b}$ pairs) are estimated using simulation. In the resonance analysis, the yield from the non-resonant SM hh processes is similarly included. SM cross sections and branching fractions are assumed in all cases.

Most systematic uncertainties are small when compared to statistical uncertainties, in particular for the resonance search.

The evaluation of experimental uncertainties on photon identification (2.4%) and isolation efficiencies (2%) follow the methods used in the inclusive ATLAS $h \rightarrow \gamma\gamma$ analyses. The theoretical uncertainties on the single Higgs boson backgrounds are similarly adopted. Uncertainties from the modeling of Higgs bosons produced in association with extra heavy-flavor quarks are estimated from comparisons of data to simulation predictions for both tt and W boson production with extra heavy-flavor jets. The tt (W boson) study provides the uncertainty on extra heavy-flavor content in gluon- (quark-)initiated final states, leading to a 14% uncertainty on the combined single Higgs boson contribution in the signal region. PDF and scale uncertainties on SM hh production are taken from Ref. [8].

Because of the cuts on the ratio $p_T/m_{\gamma\gamma}$, photon energy scale uncertainties are negligible. The uncertainty of 13% on the diphoton mass resolution in the non-resonance search is implemented in the resonance analysis as a 1.6% uncertainty on the number of events migrating into and out of the signal region. This represents the fraction of events where an upward variation of the photon resolution causes the diphoton mass to leave the $m_h \pm 2\sigma_{m_{\gamma\gamma}}$ window required for the signal region. The uncertainty on m_h impacts the peak position in $m_{\gamma\gamma}$ in

![FIG. 2. (Upper plot) The constrained four-object invariant mass, $m_{\gamma\gamma\gamma\gamma}$, for data events in the resonance signal region. The expected backgrounds are also shown. A narrow width resonance at 300 GeV is displayed for comparison only. (Lower plot) The diphoton invariant mass spectrum in the continuum background from events with fewer than two b-tags and the corresponding fitted curve, the shape of which is also used in the upper plot.](image-url)
the signal plus background fit of the non-resonance analysis, and in the resonance search it is transformed into a 1.7% uncertainty on the number of signal events in the mass window. The uncertainty for the acceptance of the $m_{\gamma\gamma}$ cuts on non-Higgs boson backgrounds is estimated by comparing fits of $m_{\gamma\gamma}$ to data in control regions with reversed photon identification or b-tagging requirements, and using different functional forms. The largest deviation observed from these fits (11%) is used for all searches.

Three components contribute to the uncertainty on $\epsilon_{m_{\gamma\gamma}}$, and are combined in quadrature. (1) The limited number of events in the control region with fewer than two b-tags used for the Landau fit lead to a relative statistical uncertainty of 3–18% that varies as a function of m_X. (2) The $m_{\gamma\gamma j}$ shape for untagged jets might not exactly mirror the one for tagged jets. The tagged and untagged samples are compared in simulation and the relative difference in $\epsilon_{m_{\gamma\gamma}}$ is taken as the uncertainty. This value varies with m_X and is always less than 30%. (3) Finally, an uncertainty of 16–30%, depending on m_X, is included to cover the choice of the analytic function. This was evaluated via comparisons of Landau shapes to alternate functions in simulation, including Landau shapes where the width varies with $m_{\gamma\gamma}$, as well as Crystal Ball functions. Potential contamination from single Higgs boson processes in the control region is estimated to be less than 4% and is subtracted with negligible impact on the shape.

Uncertainties due to the b-tagging calibration are typically 2–4% for both the single Higgs boson and signal processes. Uncertainties due to the jet energy scale are 7% (22%) for single Higgs boson backgrounds in the non-resonance (resonant) analysis, and 1.4% (4.4%) for signal processes. Uncertainties due to the jet energy resolution are 4.8% (21%) for single Higgs boson backgrounds, and 6.3% (9.3%) for signal processes. The uncertainty on the integrated luminosity is 2.8%. It is derived, following the same methodology as that detailed in Ref. [53], from a preliminary calibration of the luminosity scale derived from beam-separation scans performed in November 2012.

The combined signal plus background fit for the non-resonance analysis is shown in Fig. 2. Within a $\pm 2\sigma_{m_{\gamma\gamma}}$ window around the Higgs boson mass, 1.5 events are expected, with 1.3 ± 0.5 from the continuum background and 0.17 ± 0.04 from single Higgs boson production, which is dominated by tth events. About 0.04 events are expected from SM Higgs boson pair production. Five events are observed, corresponding to 2.4σ from the background-only hypothesis. The 95% confidence level (CL) upper limit on the Higgs boson pair production cross section is calculated using the frequentist CL$_S$ method [51]. Exclusions and significances are evaluated using pseudo-experiments. Assuming SM branching ratios for the light Higgs boson decays, the expected upper limit is $1.0^{+0.5}_{-0.2}$ pb; the observed limit is 2.2 pb.

For the resonance analysis, as before, SM branching fractions for the light Higgs boson are assumed. The expected exclusion improves from 1.7 to 0.7 pb as a function of m_X from 260 to 500 GeV, as shown in Fig. 3. This behavior derives from increased event-level acceptance at larger masses. The observed exclusion ranges from 3.5 to 0.7 pb. The five events selected in the $m_{\gamma\gamma}$ signal region are shown in $m_{\gamma\gamma}$ in Fig. 2. The local probability of compatibility to the background-only hypothesis, p_0, reaches a minimum of 0.002 at $m_X = 300$ GeV, corresponding to 3.0σ. After accounting for the look-elsewhere effect [52, 53], the global probability of such an excess occurring at any mass in the range studied is 0.019, corresponding to 2.1σ. The number of events lying within the $m_{\gamma\gamma}$ window of each mass hypothesis is readily apparent in ‘steps’ in the exclusion plot.

The limits derived are juxtaposed in Fig. 3 with the expectation from a sample type I 2HDM [52, 53] not excluded by current data with $\cos(\beta - \alpha) = -0.05$ and $\tan(\beta) = 1$. The heavy Higgs bosons are taken to be degenerate in mass, and the mass of the lightest CP-even Higgs boson is set to 125 GeV. All major production mechanisms of $H \to hh$ are considered. Cross sections and branching ratios were calculated as described in Ref. [53].

In conclusion, this Letter presents searches for resonant and non-resonant Higgs boson pair production using 20.3 fb$^{-1}$ of proton–proton collision data at $\sqrt{s} = 8$ TeV generated by the Large Hadron Collider and recorded by the ATLAS detector in 2012. A 95% confidence level upper limit is placed on the non-resonant production cross section at 2.2 pb, while the expected limit is $1.0^{+0.5}_{-0.2}$ pb. The difference derives from a small excess of events, corresponding to 2.4σ.

In the search for a narrow resonance decaying to a pair of Higgs bosons, the expected exclusion on the production cross section falls from 1.7 pb for a resonance at 260 GeV to 0.7 pb at 500 GeV. The observed exclusion ranges from 0.7–3.5 pb. It is weaker than expected for...
resonances below 350 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNER and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRCIES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[41] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
[44] T. Barillari et al., Report No. ATL-LARG-PUB-2009-

Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

Fysiska institutionen, Lunds universitet, Lund, Sweden

Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain

Institut für Physik, Universität Mainz, Mainz, Germany

School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

Department of Physics, University of Massachusetts, Amherst MA, United States of America

Department of Physics, McGill University, Montreal QC, Canada

School of Physics, University of Melbourne, Victoria, Australia

Department of Physics, The University of Michigan, Ann Arbor MI, United States of America

Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America

(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America

Group of Particle Physics, University of Montreal, Montreal QC, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

Nagasaki Institute of Applied Science, Nagasaki, Japan

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb IL, United States of America

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York NY, United States of America

Ohio State University, Columbus OH, United States of America

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America

Department of Physics, Oklahoma State University, Stillwater OK, United States of America

Palacký University, RCPTM, Olomouc, Czech Republic

Center for High Energy Physics, University of Oregon, Eugene OR, United States of America

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America

Petersburg Nuclear Physics Institute, Gatchina, Russia

(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America

(a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia