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A q-HANKEL TRANSFORM ASSOCIATED TO THE QUANTUM

LINKING GROUPOID FOR THE QUANTUM SU(2) AND E(2)

GROUPS

KENNY DE COMMER AND ERIK KOELINK

(Communicated by Walter Van Assche)

Abstract. A q-analogue of Erdélyi’s formula for the Hankel transform of the
product of Laguerre polynomials is derived using the quantum linking groupoid
between the quantum SU(2) and E(2) groups. The kernel of the q-Hankel
transform is given by the 1ϕ1-q-Bessel function, and then the transform of
a product of two Wall polynomials times a q-exponential is calculated as a
product of two Wall polynomials times a q-exponential.

1. Introduction

In 1938 Arthur Erdélyi [3] proved the following formula for the Hankel transform
of the product of two Laguerre polynomials:∫ ∞

0

xνe−x2

L(ν−σ)
m (x2)L(σ)

n (x2)Jν(2xy)x dx =

(−1)m+n

2
yνe−y2

L(σ−m+n)
m (y2)L(ν−σ+m−n)

n (y2)

(1.1)

using integral representations for the Laguerre polynomials in case n = m, see [10]
for a proof and historic overview. In (1.1) we require n,m ∈ N, �ν > −1, y > 0,
σ ∈ C, and we use the standard notation for Laguerre polynomials and Bessel
functions as in e.g. [5]. There are many relations between Laguerre polynomials and
the Hankel transform, the most well-known being that the Laguerre polynomials
arise as the eigenfunctions of the Hankel transform. For some of these identities
there is a group theoretic interpretation, but as far as we know this is not the case
for Erdélyi’s identity (1.1).

We present a q-analogue of Erdélyi’s identity, which surprisingly does have a
quantum group theoretic derivation. The essential ingredient is the use of the
linking quantum groupoid between the quantum group analogues of SU(2) and the
double cover of E(2), the group of plane motions. This linking quantum groupoid
is studied extensively in [1], [2], and we recall the necessary results in Section 4.

In some sense the result is reminiscent of the quantum group theoretic derivation
of the addition formula for the little q-Legendre polynomials by Koornwinder [11]
and Graf’s addition formula for the 1ϕ1 q-Bessel functions [7, §6], which in turn is
motivated by [11]. The linking quantum groupoid allows us to connect these two
developments, and we obtain the q-analogue of (1.1) from this connection.
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2516 KENNY DE COMMER AND ERIK KOELINK

The contents of the paper are as follows. In Sections 2 and 3 we recall the
necessary preliminaries on special functions and quantum groups, and we recall as
well the definition of the standard Podleś sphere. In Section 4 we present the above
mentioned quantum linking groupoid and its comultiplication, which is employed
in Section 5 to derive a q-analogue of (1.1). Having the result at hand we can
then extend various of the parameters to a more general domain. The q-Hankel
transform is as in [13], and taking the inverse gives the same formula. In Remark
5.2(ii) we sketch an analytic, though verificational, proof.

Koornwinder’s addition formula [11] has been generalized to Askey-Wilson poly-
nomials in [8] using Koornwinder’s [12] twisted primitive elements in quantum
groups, and we expect that Theorem 5.1 can be extended in a similar way to the
level of the Askey-Wilson Hankel transform, see [9, Fig. 2.1]. From [1] we know that
there is also a quantum linking groupoid between the quantum group analogues of
SU(2) and the normalizer of SU(1, 1) in SL(2,C), the construction of which in-
volves non-standard Podleś spheres. It might be possible to obtain a similar result
in this case even though the unitary operator implementing the comultiplication
becomes more involved.

2. Preliminaries: q-special functions

In this section we recall the q-special functions needed, and we fix the notation.

2.1. Basic hypergeometric series. We follow the notation for basic hypergeo-
metric series in Gasper and Rahman [4], see also e.g. [5], [6]. Explicitly, we assume
0 < q < 1 and define the q-shifted factorials for a ∈ C, k ∈ N by

(a; q)k =
k−1∏
i=0

(1− aqi), (a; q)∞ = lim
k→∞

(a; q)k, (a1, · · · , ar; q)k =
r∏

i=1

(ai; q)k,

also allowing k = ∞ in the last definition. Then the basic (or q-)hypergeometric
series is
(2.1)

rϕs

(
a1, · · · , ar
b1, · · · bs

; q, z

)
=

∞∑
k=0

(a1, · · · , ar; q)k
(b1, · · · , bs; q)k

zk

(q; q)k

(
(−1)kq

1
2k(k−1)

)1+s−r

.

We assume that bi �∈ q−N for all i. The series terminates if ai ∈ q−N for some i. In
general, the radius of convergence is

• 1 in case r = s+ 1,
• ∞ if 1 + s > r, and
• 0 if 1 + s < r.

Note however that

(b1; q)∞ rϕs

(
a1, · · · , ar
b1, · · · bs

; q, z

)
is analytic in b1, and there is no need to exclude q−N for b1. In case b1 = q1−n,
n ∈ N, the summation starts at k = n.
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q-HANKEL TRANSFORM 2517

2.2. Wall polynomials. The Wall polynomials are defined as a subclass of the
little q-Jacobi polynomials, see [4],[6]. Explicitly, we define the Wall polynomials
for 0 < a < q−1 as

pn(x; a; q) = 2ϕ1

(
q−n, 0

aq
; q, qx

)
=

(−1)nq
1
2n(n+1)(ax)n

(aq; q)n
3ϕ2

(
q−n, q−n/a, 1/x

0, 0
; q, q

)(2.2)

see [11, (2.8)]. The Wall polynomials are q-analogues of the Laguerre polynomials
in view of

lim
q↑1

pn((1− q)x; qα; q) =
L
(α)
n (x)

L
(α)
n (0)

,

where the notation for Laguerre polynomials L
(α)
n (x) is the standard notation as

in e.g. [5, §4.6], [6, §1.11]. The orthogonality relations and the dual orthogonality
relations for the Wall polynomials are

∞∑
k=0

(aq)k

(q; q)k
pn(q

k; a; q)pm(qk; a; q) = δnm
(aq)n(q; q)n

(aq; q)n(aq; q)∞
,

∞∑
n=0

(aq; q)n
(aq)n(q; q)n

pn(q
k; a; q)pn(q

l; a; q) = δkl
(aq)−k(q; q)k

(aq; q)∞
,

(2.3)

where the dual orthogonality relations correspond to the orthogonality relations for
the Al-Salam–Carlitz II polynomials, see [6], [11, §2], [14, Prop. 3.3].

2.3. 1ϕ1 q-Bessel functions. For the 1ϕ1 q-Bessel functions (also known as Jack-
son’s third q-Bessel function or as the Hahn-Exton q-Bessel function) we follow
Koornwinder and Swarttouw [13]. Define the 1ϕ1 q-Bessel function of order ν

(2.4) Jν(x; q) = xν (q
ν+1; q)∞
(q; q)∞

1ϕ1

(
0

qν+1
; q, qx2

)
.

Note that this is well-defined for ν = n ∈ Z, see §2.1, and in this case we
have J−n(w; q

2) = (−q)nJn(wq
n; q2). We also have the symmetry Jν(q

α; q2) =
Jα(q

ν ; q2), see [13, Prop. 2.1]. Moreover, we have limq↑1 Jν((1 − q)x; q2) = Jν(x),
where Jν(·) is the Bessel function, see [13, §3]. The 1ϕ1 q-Bessel functions can
be obtained from the little q-Jacobi polynomials, see [13, §3], and the following
orthogonality relations hold:

(2.5)
∑
k∈Z

qk+nJk+n(q
l; q2) qk+mJk+m(ql; q2) = δnm, n,m, l ∈ Z.

The orthogonality relations can also be rewritten as a q-Hankel transform pair:
(2.6)

g(qn) =

∞∑
k=−∞

q2k Jν(q
k+n; q2) f(qk) ⇔ f(qk) =

∞∑
n=−∞

q2n Jν(q
k+n; q2) g(qn)

for f and g square integrable on qZ with respect to the counting measure, n, k ∈ Z,
see [13, §3]. Note that (2.6) can also be written using Jackson’s q-integral,

(2.7)

∫ ∞

0

f(x) dqx = (1− q)
∞∑

k=−∞
f(qk)qk,

for any function so that the sum converges.
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2518 KENNY DE COMMER AND ERIK KOELINK

3. Preliminaries: quantum groups and Podleś sphere

In this section we introduce the quantum group analogues of SU(2) and the

double cover Ẽ(2) of the group of plane motions E(2), as well as the standard
Podleś sphere, on the level of von Neumann algebras. The main tools are the
comultiplication and the corresponding action on the Podleś sphere. See [1], [2] for
precise information and references.

3.1. The quantum SU(2) group. The quantum SU(2) group is one of the ear-
liest and most basic examples of a quantum group. It has been introduced by
Woronowicz [18], see also [17, §6.2] and references. The harmonic analysis and the
relation with q-special functions on the quantum SU(2) group is of great interest.

Definition 3.1. Let 0 < q < 1. The Hopf ∗-algebra (Pol(SUq(2)),Δ+) is the
universal unital ∗-algebra generated by elements α, γ which make the matrix u =(
α −qγ∗

γ α∗

)
a unitary corepresentation.

Definition 3.1 is a compact formulation due toWoronowicz’s result [18, Thm. 1.4].
In particular, the Hopf ∗-algebra Pol(SUq(2)) is generated by α and γ subject to
the relations

(3.1) αγ = qγα, αγ∗ = qγ∗α, γ∗γ = γγ∗, α∗α+ γ∗γ = 1 = αα∗ + q2γ∗γ

and with comultiplication Δ+ : Pol(SUq(2)) → Pol(SUq(2))⊗Pol(SUq(2)) given by

(3.2) Δ+(α) = α⊗ α− qγ∗ ⊗ γ, Δ+(γ) = γ ⊗ α+ α∗ ⊗ γ.

Associated to the Hopf ∗-algebra (Pol(SUq(2)),Δ+) there is a von Neumann
bialgebra (L ∞(SUq(2)),Δ+), which we now describe. We use the notation L (Z)
to denote the group von Neumann algebra of Z, i.e. the von Neumann algebra
generated by the bilateral unitary shift operator S : en 
→ en+1 acting on �2(Z),
where the en denote the standard orthonormal basis. In general, we will denote
em,n,... for em ⊗ en ⊗ . . . as an element in a tensor product of �2-spaces.

The explicit implementation of the comultiplication Δ+ in the following Defini-
tion-Proposition 3.2 is due to Koornwinder [11], Lance [14]. The formulation is
taken from [1, App. A].

Definition-Proposition 3.2. The von Neumann bialgebra (L ∞(SUq(2)),Δ+)
has as its underlying von Neumann algebra L ∞(SUq(2)) = B(�2(N))⊗̄L (Z), where
⊗̄ denotes the spatial tensor product of von Neumann algebras. The comultipli-
cation is given by Δ+(x) = W ∗

+(1 ⊗ x)W+, where W+ is a unitary map defined
by

W+ : (�2(N)⊗ �2(Z))⊗ (�2(N)⊗ �2(Z)) → (�2(Z)⊗ �2(Z))⊗ (�2(N)⊗ �2(Z))

ξ+r,s,p,t 
→ er,s,p,t, p ∈ N, r, s, t ∈ Z,
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q-HANKEL TRANSFORM 2519

where {ξ+r,s,p,t | p ∈ N, r, s, t ∈ Z} is an orthonormal basis of (�2(N) ⊗ �2(Z)) ⊗
(�2(N)⊗ �2(Z)) defined by

ξ+r,s,p,t =
∑

v,w∈N

v−w=t

P+(p, v, w)ev,r+p−w,w,s−p+v

P+(p, v, w) = (−q)p−wq(p−w)(v−w)

√
(q2p+2, q2w+2; q2)∞

(q2v+2; q2)∞

× (q2v−2w+2; q2)∞
(q2; q2)∞

pw(q
2p; q2v−2w; q2)

for p, v, w ∈ N.

Remark 3.3. (i) The fact that {ξ+r,s,p,t}p∈N,r,s,t∈Z is an orthonormal basis for the

space (�2(N) ⊗ �2(Z)) ⊗ (�2(N) ⊗ �2(Z)), i.e. that W+ is a unitary operator, is
equivalent to the orthogonality and dual orthogonality relations (2.3) for the Wall
polynomials, which can be stated as

∞∑
p=0

P+(p, v, w)P+(p, v′, w′) = δv,v′ if v − w = v′ − w′,

∑
v,w∈N

v−w=t

P+(p, v, w)P+(p′, v, w) = δp,p′ .
(3.3)

(ii) Using the explicit expression (2.2) for the Wall polynomial as a 3ϕ2-function
we find that P+(p, v, w)(−q)−p is symmetric in p, v and w. The expression for
P+(p, v, w) coincides with the notation as in [1, Def. 0.4, App. A]. The identification
with [11, (2.5)] is P+(p, v, w) = (−1)pPv(q

2p; q2(w−v) | q2).
(iii) The embedding of Pol(SUq(2)) into L ∞(SUq(2)) is given by

(3.4) αen,k =
√
1− q2n en−1,k, γen,k = qn en,k+1,

with the convention e−1 = 0 in �2(N), so that e−1,k = 0. The fact that the comulti-
plication (3.2) agrees with Definition-Proposition 3.2 follows from suitable contigu-
ous relations for the Wall polynomials, hence the P+-functions, see [1, App. A].
(In 2004 Groenevelt (unpublished notes) obtained the same result.) For this the
sign-difference with the notation of Koornwinder [11] is essential.
(iv) A straightforward calculation shows that with respect to the standard basis we
have

W+ em,k,n,l =
∑
p∈N

P+(p,m, n)ek+n−p,l−m+p,p,m−n.

3.2. The quantum Ẽ(2) group.

Definition-Proposition 3.4. The von Neumann bialgebra (L ∞(Ẽq(2)),Δ0) has

as its associated von Neumann algebra L ∞(Ẽq(2)) = B(�2(Z))⊗̄L (Z). The co-

multiplication Δ0(x) = W ∗
0 (1 ⊗ x)W0 for all x ∈ L ∞(Ẽq(2)) is defined by the

unitary map

W0 : (�
2(Z)⊗ �2(Z))⊗ (�2(Z)⊗ �2(Z)) → (�2(Z)⊗ �2(Z))⊗ (�2(Z)⊗ �2(Z))

ξ0r,s,p,t 
→ er,s,p,t,
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2520 KENNY DE COMMER AND ERIK KOELINK

where {ξ0r,s,p,t | r, s, p, t ∈ Z} is the orthonormal basis of (�2(Z)⊗ �2(Z))⊗ (�2(Z)⊗
�2(Z)) defined by

ξ0r,s,p,t =
∑

v,w∈Z

v−w=t

P 0(p, v, w)ev,r+p−w,w,s−p+v

for p, r, s, t ∈ Z, where P 0(p, v, w) = (−q)p−w Jv−w(q
p−w; q2) for p, v, w ∈ Z.

Remark 3.5. (i) Using the explicit expression (2.4) and the symmetries for the

1ϕ1 q-Bessel functions as in [13, Prop. 2.1, (2.6)] we find that P 0(p, v, w)(−q)−p is
symmetric in p, v and w. The expression for P 0(p, v, w) coincides with the notation
as in [1, Prop. 0.6, App. A]. From (2.5) and the symmetries for the 1ϕ1 q-Bessel
functions we find that (2.5) gives

∞∑
p=−∞

P 0(p, v, w)P 0(p, v′, w′) = δv,v′ if v − w = v′ − w′,

∑
v,w∈Z

v−w=t

P 0(p, v, w)P 0(p′, v, w) = δp,p′ .
(3.5)

Note that (3.5) are equivalent to {ξ0r,s,p,t}r,p,s,t∈Z being an orthonormal basis, hence
W0 is a unitary operator. See [1, Prop. 4.2, App. A] for the implementation of the
comultiplication, and also [7] where the implementation is implicit.
(ii) Define

(3.6) vem,k = em−1,k, v ∈ L ∞(Ẽq(2)),

and let n denote the unique unbounded normal operator affiliated with L ∞(Ẽq(2))
satisfying

nem,k = qmem,k+1.

Then v and n are the generators of the quantum group Ẽq(2) as introduced by
Woronowicz [19]. In particular,

(3.7) Δ0(v) = W ∗
0 (1⊗ v)W0 = v ⊗ v.

as follows from P 0(p, v, w) = P 0(p − 1, v − 1, w − 1), see [1, App. A] for more
information.
(iii) Note that limN→∞ P+(p+N, v +N,w +N) = P 0(p, v, w), and then (3.3) go
over into (3.5), cf. [13, §3, App. A]. One may consider this limit as a reflection

of the contraction procedure of the quantum SU(2) group to the quantum Ẽ(2)
group, see [20, §2].

3.3. The standard Podleś sphere. The Podleś spheres are a 1-parameter family
of quantum analogues of the 2-sphere originally introduced in [15]. We need one
particular case, see [1] for more details.

Definition 3.6. Let 0 < q < 1. The ∗-algebra Pol(S2
q ) is generated by elements

X, Y and Z satisfying X∗ = Y , Z∗ = Z and

XZ = q2ZX, Y Z = q−2ZY, XY = Z − q2Z2, Y X = Z − q−2Z2.

Then Pol(S2
q ) is the polynomial ∗-algebra associated to the standard Podleś sphere

S2
q . The algebra Pol(S2

q ) carries a coaction Υ: Pol(S2
q ) → Pol(SUq(2)) ⊗ Pol(S2

q ),
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q-HANKEL TRANSFORM 2521

determined by

Υ

⎛⎝ X
1− (1 + q2)Z

Y

⎞⎠ =

⎛⎝ α2 −γ∗α −q(γ∗)2

(1 + q2)αγ 1− (1 + q2)γ∗γ (1 + q2)γ∗α∗

−qγ2 −α∗γ (α∗)2

⎞⎠⊗

⎛⎝ X
1− (1 + q2)Z

Y

⎞⎠ .

Remark 3.7. (i) The map φ : Pol(S2
q ) → Pol(SUq(2)) defined by

X 
→ −γ∗α Z 
→ γ∗γ Y 
→ −α∗γ

embeds Pol(S2
q ) as a left coideal in Pol(SUq(2)). The embedding is equivariant:

(id⊗ φ)Υ = Δ+φ.
(ii) The operators on �2(N) defined by
(3.8)

X en = −qn−1
√
1− q2n en−1, Z en = q2n en, Y en = −qn

√
1− q2n+2 en+1

represent Pol(S2
q ) faithfully. Set U : en,k 
→ en,n+k, so that U ∈ B(�2(N) ⊗ �2(Z))

is unitary. Then (3.8) and (3.4) are related by U , so U(x ⊗ 1)U∗ = φ(x) for all
x ∈ Pol(S2

q ).

4. Quantum linking groupoid

The quantum linking groupoid relates the quantum group analogues of SU(2)
and the double cover of E(2) as given in Definition-Propositions 3.2 and 3.4. In
order to describe the construction briefly we start with an explicit realisation of the
Podleś sphere, see [1], [2] for more information.

4.1. Implementation of the Podleś sphere and quantum linking groupoid.
We define

N = B(�2(N), �2(Z))⊗̄L (Z) ⊂ B(�2(N)⊗ �2(Z), �2(Z)⊗ �2(Z))

and we equip it with the normal linear map

(4.1) Δ0+ : N → N⊗̄N, Δ0+(x) = W ∗
0 (1⊗ x)W+ x ∈ N,

which is easily seen to be well-defined using the bicommutant theorem.
Then Δ0+ can be shown to be coassociative, and to turn N into a “linking

bimodule coalgebra” between L ∞(Ẽq(2)) and L ∞(SUq(2)). Together with the
space of adjoint operators and the function algebras on the two quantum groups, it
can be considered as a quantum groupoid, called “linking quantum groupoid”, see
[1], [2].

Definition-Proposition 4.1. [2, §3] Define the unitary operator

G : �2(N)⊗ �2(Z)⊗ �2(N) → �2(Z)⊗ �2(Z)⊗ �2(N)

G : ηr,p,t 
→ et−p,r,p, ηr,p,t =
∑

v,w∈N

v−w=t

P+(p, v, w)ev,r+p−w,w,
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2522 KENNY DE COMMER AND ERIK KOELINK

where p ∈ N, r, t ∈ Z. Then G ∈ N⊗̄B(�2(N)) and G implements Υ: Pol(S2
q ) →

Pol(SUq(2))⊗ Pol(S2
q ), i.e.

Υ(x) = G∗(1⊗ x)G, ∀x ∈ Pol(S2
q ).

Moreover, (Δ0+ ⊗ id)(G) = G13G23.

The last formula of Proposition 4.1 means that G is to be seen as a unitary
projective corepresentation of L ∞(SUq(2)). Together with the explicit implemen-
tation of the comultiplication Δ0+ it is the crucial formula for this paper. In Section
5 this identity is converted into a q-analogue of Erdélyi’s formula. This formula
follows from the general construction as described in [2, §2] introduced to study
Morita equivalence of quantum groups.

We can expand G by

(4.2) G =
∑

n,m∈N

Gmn ⊗ emn, Gmn : ea,b 
→ P+(m, a, n)ea−n−m,b+n−m,

where emn ∈ B(�2(N)) is the matrix-unit defined by emnek = δnkem.
Finally, we define

(4.3) G(l)
mn = vlGmn ∈ B(�2(N)⊗�2(Z), �2(Z)⊗�2(Z)), G(l) =

∑
m,n∈N

G(l)
mn⊗emn,

where v is the shift operator (3.6). Then Proposition 4.1 and (3.7) imply

(4.4) (Δ0+ ⊗ id)(G(l)) = G(l)
13 G

(l)
23 .

Moreover, from (4.2) and (3.6) we find
(4.5)

G(l)
mn : �

2(N)⊗ �2(Z) → �2(Z)⊗ �2(Z), G(l)
mn : ea,b 
→ P+(m, a, n)ea−l−n−m,b+n−m.

5. A q-analogue of Erdélyi’s formula

The goal of this section is to prove a first q-analogue of Erdélyi’s formula (1.1)
on the lowest level of the q-scheme as discussed in [9, Fig. 1.2, §4].

Theorem 5.1. Recall the notation of (2.2), (2.4) for Wall polynomials and little
q-Bessel functions. Write p̃n(x; a; q) = (qa; q)n pn(x; a; q). Then we have

∞∑
p=0

q2pqpν(q2+2p; q2)∞ p̃n(q
2p; q2σ; q2) p̃m(q2p; q2(ν−σ); q2) Jν(zq

p; q2)

= (−q)n+mzνq(m−n)2q2nσ+2m(ν−σ)(z2q2(1+n+m); q2)∞

× p̃n(z
2q2(n+m); q2(ν−σ+m−n); q2) p̃m(z2q2(n+m); q2(σ+n−m); q2),

where �ν > −1, z ∈ C with | arg z| < π, n,m ∈ N, σ ∈ C.

Remark 5.2. (i) Write Eq2(z) = (−z; q2)∞ for the big q-exponential function [4,
§1.3], and write p̌n(x; a; q) = (qa; q)∞pn(x; a; q). Then using the notation (2.7), we
can rewrite the result of Theorem 5.1 as

1

1− q

∫ ∞

0

xνEq2(−q2x2) p̌n(x
2; q2σ; q2)p̌m(x2; q2(ν−σ); q2)Jν(zx; q

2) xdqx

= (−q)n+mzνq(m−n)2q2nσ+2m(ν−σ)Eq2(−z2q2(1+n+m))

× p̌n(z
2q2(n+m); q2(ν−σ+m−n); q2)p̌m(z2q2(n+m); q2(σ+n−m); q2).

(5.1)
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Replacing x, z by x
√
1− q, z

√
1− q and using the q-Gamma function, we see that

we can take the formal limit q ↑ 1 of (5.1) to (1.1).
(ii) The special case n = m = 0 is

(5.2)
∞∑
p=0

q2pqpν(q2+2p; q2)∞Jν(zq
p; q2) = zν(z2q2; q2)∞,

which is directly proved using the q-binomial formula and the big q-exponential
function, see [4, §1.3], after using (2.4) and interchanging summations. In the same
spirit we can evaluate the left hand side of Theorem 5.1 in the case m = 0, which
gives a series expansion in z (up to zν). Expanding the right hand side of Theorem
5.1 in the same way, we see that we need the q-Chu-Vandermonde summation
[4, (1.5.3)] to establish equality. The case for arbitrary degrees m can be obtained
by induction with respect to m, and using the three-term recurrence relation for
the Wall polynomials both in the degree n as in m. Note that this is a verificational
proof, and completely different in spirit from e.g. Rahman’s [16] analytic proof of
Koornwinder’s [11] addition formula for the little q-Legendre polynomials. It would
be desirable to have an analytic proof of Theorem 5.1 in the style of Rahman [16].
(iii) We need the additional freedom of l introduced in (4.3) in order to get the
result of Theorem 5.1 in full generality.
(iv) Theorem 5.1 can be viewed as a q-Hankel transform. The inverse, see [13, (3.4)],
can be written down, and the resulting inverse identity is equivalent to Theorem
5.1 for z = qr, r ∈ Z.

Proof of Theorem 5.1. We start with the corepresentation property of G(l), see
(4.4), in combination with the implementation of the comultiplication as in Propo-
sition 4.1 to find the operator identity

(5.3) W ∗
0,12G

(l)
23W+,12 = G(l)

13 G
(l)
23 :

(
�2(N)⊗ �2(Z)

)⊗2 ⊗ �2(N) →
(
�2(Z)

)⊗4 ⊗ �2(N).

Since (5.3) is an identity for operators, we let (5.3) act on the basis vector ea,b,c,d,e,
a, c, e ∈ N, b, d ∈ Z. The action of the left hand side of (5.3) on this basis vector
can be calculated using Remark 3.3(iv), (4.5) and Definition-Proposition 3.4, and
we find

(5.4)
∑

p,m∈N

P+(p, a, c)P+(m, p, e)ξ0b+c−p,d−a+p,p−l−m−e,a−c+e−m ⊗ em,

with ξ0rspt as in Definition-Propostion 3.4. The action of the right hand side of (5.3)
on this basis vector can be calculated using (4.5) and we find

(5.5)
∑

m,r∈N

P+(m, c, e)P+(r, a,m)ea−l−r−m,b−r+m,c−l−e−m,d+e−m,r.

Since (5.3) leads to the equality of (5.4) and (5.5) as identity in �2(Z)⊗4⊗ �2(N),
we can take inner products with an arbitrary basis vector eu,v,w,x,y ∈ �2(Z)⊗4 ⊗
�2(N) to obtain a scalar identity. A calculation shows that the inner product with
(5.5) gives

P+(d+ e− x, c, e)P+(y, a, d+ e− x)

in case

(5.6) d+ e− x = c− l − e− w = −b+ y + v = a− l − y − u ∈ N,
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and 0 otherwise. A calculation shows that the inner product with (5.4) gives

∞∑
p=0

P+(p, a, c)P+(y, p, e)P 0(p− l − y − e, a− c+ e− y + w,w).

in case u−w = a− c+ e− y, v+w = b+ c− l− y− e, and x−u = d+ y+ e−a+ l,
and 0 otherwise. Assuming these conditions, which match the equalities in (5.6),
and eliminating superfluous parameters we obtain

∞∑
p=0

P+(p, a, c)P+(y, p, e)P 0(p− l − y − e, a− c+ e− y + w,w)

=

{
P+(c− l − e− w, c, e)P+(y, a, c− l − e− w), c− l − e− w ∈ N

0, c− l − e− w ∈ Z<0.

(5.7)

Using the symmetry in Remark 3.3(ii), we write P+(y, p, e) = (−q)y−pP+(p, e, y),
P+(y, a, c− l− e−w) = (−q)l+e+w+y−cP+(c− l− e−w, a, y) and P+(c− l− e−
w, c, e) = P+(c− l− e−w, e, c). Next use the explicit expressions of P+ and P 0 in
terms of Wall polynomials and q-Bessel functions to find

∞∑
p=0

q2pqp(a−c+e−y)(q2+2p; q2)∞pc(q
2p; q2a−2c; q2)

× py(q
2p; q2e−2y; q2)Ja−c+e−y(q

p−l−y−e−w; q2)

= C(−q)y+c(q2+2(c−l−e−w); q2)∞

× pc(q
2(c−l−e−w); q2e−2c; q2)py(q

2(c−l−e−w); q2a−2y; q2),

where

C = qc(a−c)qy(e−y)q(−l−e−w)(e−c)q(c−l−e−w−y)(a−y) (q
2+2e−2c, q2+2a−2y; q2)∞

(q2+2a−2c, q2+2e−2y; q2)∞
.

Replacing (c, a−c, y, e−y,−l−y−e−w) by (n, σ,m, ν−σ, z′) we obtain the result

for z = qz
′
, z′ ∈ Z, ν, σ ∈ Z after a straightforward calculation.

Replacing qz
′
by z, and removing zν from both sides, we see that we can extend

by analytic continuation in z. Similarly, we can extend analytically in ν to �ν > −1.
Since the resulting identity is a Laurent polynomial in q2σ and the convergence is
uniform in q2σ on bounded sets we find that the resulting identity is valid for
arbitrary σ ∈ C. �

Note added in proof

In J. Math. Phys. 55 (2014), 101702, Groenevelt provides an alternative proof
to Theorem 5.1 by studying Racah coefficients for the quantized function algebra
of the quantum SU(2) group. Moreover, Groenevelt presents generalizations of the
result as well.
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