Measurement of the forward-backward asymmetry in Λ_b^0 and $\bar{\Lambda}_b^0$ baryon production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

FERMILAB-PUB-15-080-E

1LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3Universidade Federal do ABC, Santo André, Brazil
4University of Science and Technology of China, Hefei, People’s Republic of China
5Universidad de los Andes, Bogotá, Colombia
6Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7Czech Technical University in Prague, Prague, Czech Republic
8Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9Universidad San Francisco de Quito, Quito, Ecuador
10LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15CEA, Ifa, SPP, Saclay, France
16IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21Institut für Physik, Universität Mainz, Mainz, Germany
22Ludwig-Maximilians-Universität München, München, Germany
23Panjab University, Chandigarh, India
24Delhi University, Delhi, India
25Tata Institute of Fundamental Research, Mumbai, India
26University College Dublin, Dublin, Ireland
27Korea Detector Laboratory, Korea University, Seoul, Korea
28CINVESTAV, Mexico City, Mexico
29Nikhef, Science Park, Amsterdam, the Netherlands
30Radboud University Nijmegen, Nijmegen, the Netherlands
31Joint Institute for Nuclear Research, Dubna, Russia
32Institute for Theoretical and Experimental Physics, Moscow, Russia
33Moscow State University, Moscow, Russia
34Institute for High Energy Physics, Protvino, Russia
35Petersburg Nuclear Physics Institute, St. Petersburg, Russia
36Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
37Uppsala University, Uppsala, Sweden
38Taras Shevchenko National University of Kyiv, Kiev, Ukraine
39Lancaster University, Lancaster LA1 4YB, United Kingdom
40Imperial College London, London SW7 2AZ, United Kingdom
41The University of Manchester, Manchester M13 9PL, United Kingdom
42University of Arizona, Tucson, Arizona 85721, USA
43University of California Riverside, Riverside, California 92521, USA
44Florida State University, Tallahassee, Florida 32306, USA
45Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46University of Illinois at Chicago, Chicago, Illinois 60607, USA
47Northern Illinois University, DeKalb, Illinois 60115, USA
48Northwestern University, Evanston, Illinois 60208, USA
49Indiana University, Bloomington, Indiana 47405, USA
50Purdue University Calumet, Hammond, Indiana 46323, USA
51University of Notre Dame, Notre Dame, Indiana 46556, USA
52Iowa State University, Ames, Iowa 50011, USA
53University of Kansas, Lawrence, Kansas 66045, USA
54Louisiana Tech University, Ruston, Louisiana 71272, USA
55Northeastern University, Boston, Massachusetts 02115, USA
56University of Michigan, Ann Arbor, Michigan 48109, USA
57Michigan State University, East Lansing, Michigan 48824, USA
58University of Mississippi, University, Mississippi 38677, USA
Hadroproduction of particles carrying a heavy quark \(Q = (b, c) \) proceeds through gluon-gluon fusion or quark-antiquark annihilations, followed by hadronization of the heavy quarks. At the parton level of leading-order (LO) Quantum Chromodynamics (QCD), \(Q \) and \(\bar{Q} \) quarks are produced symmetrically. Next-to-leading order (NLO) QCD effects can introduce a small asymmetry of \(\approx 1\% \) in \(Q \) and \(\bar{Q} \) momenta from interfering amplitudes. The hadronization process may also change the direction of the particle carrying the quark \(Q \) relative to the original \(Q \) direction and thus generate a significant asymmetry.

There have been few studies of this effect in bottom baryon production compared to bottom mesons. Production of heavy baryons is sensitive to effects of non-perturbative final state interactions of a QCD string connecting the \(b \) quark and a remnant of the proton. The production of the ground-state bottom baryon \(\Lambda_b^0 \) and its antiparticle \(\bar{\Lambda}_b^0 \) has been recently discussed by Rosner, who proposes the “string drag” mechanism that may favor production of \(\Lambda_b^0 \) baryons in the hemisphere containing the beam proton, and \(\bar{\Lambda}_b^0 \) baryons in the antiproton beam hemisphere. In the string drag picture, the QCD interaction between a \(b \) quark produced in the \(p\bar{p} \) collision and the remnant of the proton is described by a string with a linear potential. When the string breaks, it imparts an impulse to the quark along the beam axis. Assuming a string tension of 0.18 GeV\(^2\), Rosner made an approximate prediction for the shift in the particle longitudinal momentum relative to the axis along the beam direction of \(\Delta p_z = 1.4 \) GeV, resulting in a shift in rapidity of approximately \(\Delta y = 1.4 \) GeV\(/E \), where \(E \) is the energy of the particle and the rapidity is defined as \(y = \ln((E + p_z)/(E - p_z))/2 \). Another possible source of asymmetry in \(\Lambda_b^0 \) production is the coalescence of an intrinsic \(b \) quark at large momentum fraction \(x \) in the Fock state \(|uudb\rangle \) of the proton with a comoving diquark \(ud \) from the proton.

In this article, we present a study of the forward-backward production asymmetry of \(\Lambda_b^0 \) and \(\bar{\Lambda}_b^0 \) baryons using the fully reconstructed decay chain \(\Lambda_b^0 \rightarrow J/\psi \Lambda \), \(J/\psi \rightarrow \mu^+ \mu^- \), \(\Lambda
ightarrow p \pi^- \), and its charge conjugate. The forward \((F) \) category corresponds to a particle \(\Lambda_b^0 \) or \(\bar{\Lambda}_b^0 \) sharing valence quark flavors with a beam particle with the same sign of rapidity, and the backward \((B) \) category corresponds to the reverse association. In \(p\bar{p} \) collisions at D0, we choose the positive \(z \)-axis to be in the direction of the proton beam, so that the forward direction corresponds to a \(\Lambda_b^0 \) particle emitted with \(y > 0 \) or a \(\bar{\Lambda}_b^0 \) particle emitted at \(y < 0 \). In \(pp \) collisions, \(\Lambda_b^0 \)
Data (forward) pairs of oppositely charged tracks originating from a baryon candidates. The Λ candidates are formed from consistent with a....

Using the same data set, the D0 experiment has studied the forward-backward asymmetry in the production of B^{\pm} mesons, observing no rapidity dependence. The measured forward-backward asymmetry in the production of B^{\pm} mesons, where the forward category corresponds to B^{+} mesons produced at $y > 0$ and B^{-} mesons produced at $y < 0$, is $A_{FB}(B^{\pm}) = [-0.24 \pm 0.41 \text{ (stat)} \pm 0.19 \text{ (syst)}] \%$, integrated over rapidity.

The D0 detector consists of a central tracking system, calorimeters, and muon detectors. The central tracking system comprises a silicon microstrip tracker and a central fiber tracker, both located inside a 1.9 T superconducting solenoidal magnet. The tracking system is designed to optimize tracking and vertexing for pseudo-rapidities $|\eta| < 3$, where $\eta = -\ln[\tan(\theta/2)]$, and θ is the polar angle with respect to the proton beam direction. The tracking system can reconstruct the primary $p\bar{p}$ interaction vertex (PV) for interactions with at least three secondary tracks with a precision of $\approx 35 \mu m \approx 90 \mu m$ in the plane transverse to (along) the beam direction. The muon detector, positioned outside the calorimeter, consists of a central muon system covering the pseudorapidity region of $|\eta| < 1$ and a forward muon system covering the pseudorapidity region of $1 < |\eta| < 2$. Both central and forward systems consist of a layer of drift tubes and scintillators inside 1.8 T iron toroidal magnets and two similar layers outside the toroids. The toroid and solenoid magnet polarities were periodically reversed, allowing for a cancellation of first-order effects related to a possible instrumental asymmetry.

Candidate events are required to include a pair of oppositely charged muons. At least one muon is required to be detected in the muon chambers in front of and behind a toroid magnet. The other muon may be detected only in front of the toroid or as a minimum ionizing particle in the calorimeter. Each muon candidate is required to match a track found in the central tracking system.

To form Λ^0_b and $\bar{\Lambda}^0_b$ candidates, muon pairs in the invariant mass range $2.9 < M(\mu^+\mu^-) < 3.3$ GeV, consistent with a J/ψ meson decay, are combined with Λ baryon candidates. The Λ candidates are formed from pairs of oppositely charged tracks originating from a common vertex, consistent with a decay $\Lambda \rightarrow p\pi^-$ or $\bar{\Lambda} \rightarrow \pi^-\pi^+$. The charged particle with the higher momentum is assigned the proton mass. A previous analysis has shown that the misassignment of the proton track is negligible. The Λ candidate is required to have an invariant mass between 1.107 GeV and 1.125 GeV and a transverse momentum greater than 1.8 GeV. The separation of the Λ decay vertex from the PV in the transverse plane must be between 0.5 and 25 cm. A kinematic fit of the parameters of tracks forming the Λ^0_b candidate is performed by constraining the dimuon invariant mass to the world-average J/ψ mass, and constraining the $J/\psi\Lambda$ system to originate from a common decay vertex (DV). The modified track parameters are used in the calculation of the Λ^0_b invariant mass. We require $5.0 < M(J/\psi\Lambda) < 6.2$ GeV.

To suppress the large background from prompt J/ψ production, we require a significant separation of the DV from the PV. To reconstruct the PV, tracks are selected that do not belong to the Λ^0_b decay. We constrain the transverse position of the PV to the average beam location in the transverse plane. We define the signed decay length of a Λ^0_b baryon, L_{xy}, as the vector pointing from the PV to the DV projected on the direction of the Λ^0_b transverse momentum \vec{p}_T. We require L_{xy} to be greater than three times its uncertainty.
The mass distributions for Λ_0^b candidates in the range $0.5 < |y| < 1.0$ in the forward and backward categories are shown in Fig. 1. Binned maximum-likelihood fits of a Gaussian signal function and a second-order Chebyshev polynomial for the background yield a forward (backward) signal with a mean mass of $M(\Lambda_0^b) = 5618.1 \pm 4.3$ MeV (5619.9 ± 4.7 MeV), consistent with the world-average Λ_0^b mass [3]. The width depends on y and varies between about 30 and 50 MeV. The average reconstructed p_T of Λ_0^b candidates is $\langle p_T \rangle = 9.9$ GeV after background subtraction.

The production rates of forward and backward Λ_0^b and Σ_b^0 baryons are extracted from fits to the invariant mass distributions of forward and backward candidates in four rapidity bins in the range $0.1 < |y| < 2$, as defined in Table I. We reject the region $|y| < 0.1$ where the asymmetry may be diluted by forward-backward migration due to the finite polar angle resolution [4].

Samples of fully simulated Monte Carlo (MC) signal events are obtained at LO with PYTHIA [3] and at NLO with MC@NLO [10], using the parton distribution function sets CTEQ6L1 and CTEQ6M1 [11], respectively. PYTHIA generates $b\bar{b}$ quark pairs via direct $2 \rightarrow 2$ processes ($q\bar{q}$, $gg \rightarrow b\bar{b}$) and decays of gauge bosons, as well as through flavor excitation processes like $bg \rightarrow b\bar{g}$, and gluon splittings, $g \rightarrow b\bar{b}$. The event generator MC@NLO is interfaced with HERWIG [12] for parton showering and hadronization. After hadronization, bottom hadron decays are simulated with EVTGEN [13]. In the simulation, the Λ_0^b and Σ_b^0 baryons are forced to decay to J/ψ,Λ, $J/\psi \rightarrow \mu^+\mu^-$, using the phase space (PHSP) and vector lepton-levoronzon (VLL) models in EVTGEN. The detector response is simulated with GEANT3 [14] and multiple $p\bar{p}$ interactions (pile-up) are modeled by overlapping hits from random bunch crossings in data. A MC sample generated with PYTHIA, 30 times the number of signal events in the data sample, is used to obtain efficiencies for reconstructing Λ_0^b baryons in each of the four rapidity intervals shown in Table I. The Λ_0^b efficiencies are suppressed by the large transverse momentum requirement on the Λ candidates and by the low reconstruction efficiency for the long-lived Λ baryon.

Most of the systematic uncertainties in the production cross sections of Λ_0^b and Σ_b^0 baryons arise from uncertainties in the kinematic acceptance and detection efficiency of final-state particles and cancel in the measurements of the asymmetry A and ratio R. The remaining uncertainties are due to the signal and background shapes assumed in the mass fits and the different efficiencies of forward and backward particle reconstruction. The uncertainty from the signal shape is estimated by comparing the results of the central fits with the results obtained when the width parameters for the forward and backward categories are constrained to be equal. The sensitivity to the background shape is estimated by increasing the lower mass requirement to $M(J/\psi\Lambda) > 5.2$ GeV, thus excluding the mass range where feed-down from multi-body bottom baryon decays may be present. The estimate of the uncertainty on the detection efficiency is based on the average deviation from unity of the ratio R of reconstructed events in four rapidity intervals for a sample of MC events generated with no asymmetry. Adding the uncertainties in quadrature results in a total systematic uncertainty of $\pm 4\%$. The systematic uncertainties are summarized in Table I.

The fitted signal yields and the resulting forward-backward asymmetry A are presented in Table I. We observe that there is a weak correlation between rapidity y and the averaged value of background-subtracted transverse momentum $\langle p_T \rangle$ of Λ_0^b candidates. The asymmetry integrated over $|y|$, taking into account the rapidity dependent efficiency ϵ, is $A = 0.04 \pm 0.07$ (stat) ± 0.02 (syst).

The forward-backward asymmetry as a function of $|y|$ is shown in Fig. 2. There is a wide range of model predictions for this asymmetry. The “Heavy Quark Reconstruction” model [13], as shown in Fig. 2, predicts a modest asymmetry, reaching $\approx 2\%$ near $|y| = 2$. While PYTHIA predicts no asymmetry, the MC@NLO generator interfaced with HERWIG predicts a large asymmetry, reaching 100% close to $|y| = 2$. Our results are consistent with no asymmetry within the large uncertainties, although they show a trend of increasing asymmetry with increasing $|y|$ that could be interpreted as the effect of the longitudinal momentum imparted to a Λ_0^b or Σ_b^0 particle by the beam remnant. Assuming a shift of $\Delta p_T = 1.4$ GeV in the particle longitudinal momentum, as estimated by Rosner [2], we have simulated the effect by adding 1.4 GeV (-1.4 GeV) to the Λ_0^b (Σ_b^0) baryon p_T in the generated PYTHIA events. As shown in Fig. 2, our result is in good agreement with this prediction. We find our results in disagreement with the large asymmetry predicted by MC@NLO+HERWIG.

The results for the backward-to-forward ratio R for the same rapidity intervals are given in Table I and shown in Fig. 3 where we compare with the results for the ratio of cross sections, $\sigma(\Sigma_b^0)/\sigma(\Lambda_0^b)$, for the 6 rapidity bins reported by the CMS Collaboration [16]. All results are presented as functions of the “rapidity loss”, defined as the difference between the rapidity and the averaged value of background-subtracted transverse momentum $\langle p_T \rangle$ of Λ_0^b candidates. The D0 result for the ratio R integrated over rapidity, taking into account the rapidity dependent efficiency ϵ, is $R = 0.92 \pm 0.12$ (stat) ± 0.04 (syst), to be compared with the value of $R = 1.02 \pm 0.07$ (stat) ± 0.09 (syst) reported by the CMS Collaboration.

In order to verify that detector effects on R and A are not significant, the analysis was repeated considering candidates with $y > 0$ (or $y < 0$) only, and Λ_0^b (or Σ_b^0) only. Within statistical uncertainties, all results are consistent with each other and with the measurements listed.
TABLE I: Efficiencies ϵ, averaged values of background-subtracted transverse momenta $<p_T>$, backward and forward fitted yields for the signal $N(B)$ and $N(F)$, forward-backward asymmetries A, and cross section ratios R in four intervals of rapidity. Uncertainties on $<p_T>$, $N(B)$ and $N(F)$ are statistical only. Uncertainties on ϵ arise from the statistical precision of the simulated event samples.

| $|y|$ | ϵ (%) | $<p_T>$ (GeV) | $N(B)$ | $N(F)$ | $A \pm$ (stat) \pm (syst) | $R \pm$ (stat) \pm (syst) |
|-----|--------------|---------------|--------|--------|-----------------------------|-----------------------------|
| 0.1-0.5 | 0.70 \pm 0.01 | 10.2 \pm 0.1 | 125 \pm 18 | 92 \pm 17 | 0.15 \pm 0.11 \pm 0.03 | 1.36 \pm 0.32 \pm 0.06 |
| 0.5-1.0 | 1.01 \pm 0.01 | 10.0 \pm 0.1 | 135 \pm 19 | 154 \pm 22 | 0.07 \pm 0.10 \pm 0.02 | 0.88 \pm 0.18 \pm 0.04 |
| 1.0-1.5 | 0.97 \pm 0.01 | 9.7 \pm 0.1 | 123 \pm 16 | 158 \pm 23 | 0.12 \pm 0.10 \pm 0.02 | 0.78 \pm 0.15 \pm 0.04 |
| 1.5-2.0 | 0.32 \pm 0.01 | 9.8 \pm 0.2 | 22 \pm 9 | 33 \pm 10 | 0.21 \pm 0.24 \pm 0.02 | 0.67 \pm 0.34 \pm 0.03 |

TABLE II: Systematic uncertainties (in %) on the measurement of the backward-to-forward ratio R.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal shape</td>
<td>2</td>
</tr>
<tr>
<td>Background shape</td>
<td>2</td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>3</td>
</tr>
<tr>
<td>Total syst. uncertainty</td>
<td>4</td>
</tr>
</tbody>
</table>

FIG. 2: (color online) Measured forward-backward asymmetry A versus rapidity $|y|$ compared to predictions of the Heavy Quark Recombination model and a simulated effect of the longitudinal momentum shift due to beam drag (see Ref. and text). The background asymmetry is obtained from $J/\psi/\Lambda$ candidates in the Λ^0_b mass sidebands (uncertainties are small compared to the symbol size). Measurements are placed at the centers of the rapidity intervals defined in Table I.

In Table I, we find a negligible forward-backward asymmetry in the four intervals of rapidity in a sample of background candidates obtained from the Λ^0_b mass sidebands (region above and below the Λ^0_b signal region defined in Fig. with no L_{xy} requirement.

In summary, we have presented a measurement of the forward-backward asymmetry in the production of Λ^0_b and Λ^0_b baryons as a function of rapidity $|y|$. Together with related results from the LHC, the data show a tendency of forward particles that share valence quarks with beam remnants, to be emitted at larger values of rapidity, corresponding to smaller rapidity loss, than their backward counterparts. The measured ratio of the backward-to-forward production rate at the mean transverse momentum of $<p_T> = 9.9$ GeV, averaged over rapidity in the range $0.1 < |y| < 2.0$, is $R = 0.92 \pm 0.12$ (stat) ± 0.04 (syst). The measured forward-backward asymmetry is $A = 0.04 \pm 0.07$ (stat) ± 0.02 (syst).

We would like to thank W. K. Lai and A. K. Leibovich for providing predictions of the Heavy Quark Recombination model for the D0 kinematic range, and J. L. Rosner for useful discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center “Kurchatov Institute” of the Russian Federation, and Russian Foundation for
Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine).

