Extended π-conjugated ruthenium zinc–porphyrin complexes with enhanced nonlinear-optical properties†

Zinc porphyrin dimers and trimers, in which the porphyrins are connected via a ruthenium metal core, exhibit large third-order nonlinear optical absorption coefficients and refractive indices. These properties are a result of the presence of multiple porphyrins, which lead to an extension of the π-conjugated system and the octupolar effect.

The design and synthesis of new materials possessing large nonlinear optical (NLO) responses is an area of increased interest in the domain of photonics. For such applications, π-conjugated organic molecules have received considerable attention because of their high NLO hyperpolarisabilities, fast responses and structural diversities. Organic third-order NLO materials typically require delocalised π-conjugated molecular components, which are substituted by electron-donating (D) and -accepting (A) groups with an extended π-conjugation. Porphyrins represent a class of attractive compounds for optoelectronic applications, because they possess an extended π-conjugated system that can be tuned by changing the nature of its substituents. In this context, non-symmetrically substituted porphyrins have more potential for NLO applications than symmetrical ones because of the higher hyperpolarisability of the framework of the former compounds. Octupolar ligands allow a higher electron mobility in comparison to the aromatic bridges to the porphyrins. The incorporation of these ligands allows a higher electron mobility in comparison to the Ru core and also a stable connection between the ruthenium core and the porphyrins.

We have synthesised two Ru–Zn–porphyrin complexes by reacting cis-Ru(DMSO)4Cl2 with Zn–Por in dimethylformamide (DMF), as shown in Scheme 1. The Ru-dimer was readily obtained by heating the reactants in a 1 : 2 ratio at 100 °C for 3 h, followed by the addition of NH4SCN at 130 °C over a period of 2 h, with a final yield of 38%. However, even long reaction times (up to 72 h) at high temperatures (130 °C) failed to afford any Ru-trimer. Only with the assistance of microwave irradiation (300 W) the Ru-trimer was finally synthesised by mixing the reactants in a 1 : 3 ratio in DMF at 130 °C for 2 h. After removing the solvent by rotary evaporation, the obtained solid residue was redissolved in ethanol. The product was then precipitated by adding a saturated aqueous solution of NH4PF6, filtered and dried under vacuum (yield: 45%). It has recently been reported that Ru(n) complexes with substituted nitrogen-containing heterocyclic ligands exhibit strong third-order NLO responses. These complexes might be employed as scaffolds for novel compounds with extended π-conjugated systems. Here, we report the synthesis of a series of three-dimensional (3D) octupolar π-delocalised ruthenium complexes equipped with Zn porphyrin (Zn–Por) pendant groups, which exhibit large third-order nonlinear optical effects.

The advantages of combining porphyrins and ruthenium complexes are many fold. Depending on their structure, both building blocks can be optimised to be chemically stable with rich redox chemistry and strong optical absorption, over a wide spectral range, which makes them efficient light-harvesting systems. The octahedral ruthenium complex is able to organise the porphyrin ligands in a 3D geometry, resulting in a long π-pathway for high degrees of electron delocalisation which facilitates their NLO responses. The conjugated system is enlarged by using quinoxaline–phenanthroline-type ligands, which act as aromatic bridges to the porphyrins. The incorporation of these ligands allows a higher electron mobility in comparison to the ruthenium core and the porphyrins.

We have synthesised two Ru–Zn–porphyrin complexes by reacting cis-Ru(DMSO)4Cl2 with Zn–Por in dimethylformamide (DMF), as shown in Scheme 1. The Ru-dimer was readily obtained by heating the reactants in a 1 : 2 ratio at 100 °C for 3 h, followed by the addition of NH4SCN at 130 °C over a period of 2 h, with a final yield of 38%. However, even long reaction times (up to 72 h) at high temperatures (130 °C) failed to afford any Ru-trimer. Only with the assistance of microwave irradiation (300 W) the Ru-trimer was finally synthesised by mixing the reactants in a 1 : 3 ratio in DMF at 130 °C for 2 h. After removing the solvent by rotary evaporation, the obtained solid residue was redissolved in ethanol. The product was then precipitated by adding a saturated aqueous solution of NH4PF6, filtered and dried under vacuum (yield: 45%). It has previously been reported that cis-Ru(DMSO)4Cl2 and trans-Ru(DMSO)4Cl2 are in equilibrium in solution, with the cis-isomer mostly being formed under irradiation and the cis-isomer by heating to high temperatures. In this case, the reaction conditions for the synthesis of the Ru-dimer were chosen such that only the cis-isomer was obtained (ESI† Fig. S1–S3).

The compounds were characterised by 1H NMR, mass spectrometry (ESI† Fig. S1–S6), and UV/vis absorption spectroscopy (Fig. 1). The signals of the protons in the 1H NMR spectrum of...
the Ru-trimer are broad compared to those of the Ru-dimer. Nevertheless, the integration values of the assignable signals were in good agreement with the expected values. Mass spectrometric analysis of the complexes by MALDI-TOF showed the expected molecular peak associated with the correct isotopic pattern. For the Ru-trimer, the laser power of the MALDI-TOF instrument had to be increased and therefore signals corresponding to the loss of one and two porphyrin units were also observed. A loss of one thiocyanate group was detected in the case of the Ru-dimer.

The UV/vis absorption spectra of the Ru-dimer and Ru-trimer (Fig. 1) showed the characteristic Soret bands of the porphyrin units at 440 nm and 443 nm, respectively, both being red-shifted with respect to the Soret band of Zn–Por (436 nm). These shifts suggest the presence of electronic interactions between the porphyrin moieties and the Ru(II) core. Furthermore, the Soret band of the Ru-trimer was broadened, which indicates the presence of stronger electronic interactions. Upon excitation at the Soret band, the fluorescence emission of both complexes was totally quenched, which is in line with the known energy transfer processes between the Ru core and the Zn–Por moieties.

The third-order optical nonlinearities of the prepared complexes were measured by a closed-aperture (CA) z-scan technique using a home-built setup with a femtosecond laser as the light source (pulse width 100 fs and repetition rate 82 MHz). The method is based on measuring the nonlinear refractive index \(n^2 \) in \(n = n_0 + \Delta n = n_0 + n_L \) details are described elsewhere. A 1-mm-thick quartz cuvette containing a chloroform solution of the sample was moved along the beam direction by means of a motorised stage. The transmitted radiation was cut off by an on-axis aperture (transmittance \(S = 0.1 \)) and registered by a photodiode. Two-photon absorption effects were taken into account by performing the open-aperture (OA) z-scan measurements. It was found that the contribution of two-photon absorption to the CA z-scan results did not exceed 1–2% (see ESI† for details), which is why we excluded this from further considerations. The system was calibrated using CS2 as a reference. Fig. 2 shows typical dependences of the normalised transmission on the position of the sample with respect to the focal point of the lens (corresponding to \(z = 0 \)) for an incident laser at 800 nm.

The data were normalised over the transmission values far away from the focus (at large \(|z| \)). The clear antisymmetric shape of the curves indicates prominent self-defocusing of the light in all the studied samples. The experimental data were fitted with the following equation:

\[
T(z) \approx 1 - \frac{4\Delta \Phi_0}{\left(\frac{z^2}{2a_0^2} + 9\right) \left(\frac{z^2}{2a_0^2} + 1\right)}
\]

in which \(z_0 = \frac{\lambda a_0^2}{2k} \) is the Rayleigh length, \(k \) is the wavenumber of the light and \(a_0 \) is the beam waist. The fitting parameter \(\Delta \Phi_0 \) is the phase in the case of on-axis transmission (small \(S \)), which is related to the nonlinear refractive index in the following way:

\[
\Delta \Phi_0 = k\Delta nL_{\text{eff}} \]

where \(L_{\text{eff}} = (1 - e^{-2t})/2 \) is the effective thickness.
of the nonlinear media, and \(L \) is the physical thickness. Due to the low absorption of the samples, \(L \) was used instead of \(L_{\text{eff}} \), which introduced no significant experimental error. For each sample, several measurements were carried out at different light intensities, and the slope of the intensity dependence was used in the aforementioned calculations. Both Ru-trimer and Ru-dimer complexes were measured at the same concentration, but various powers were used (Fig. 2) in order to negate the effects of higher-order nonlinearities, which can modify the shape of the normalised transmission dependence.

When using the laser at 800 nm, the \(n_2 \) values were deduced to be \(-4.8 \times 10^{-11} \text{ cm}^2 \text{ W}^{-1}\) and \(-9.2 \times 10^{-11} \text{ cm}^2 \text{ W}^{-1}\) for the Ru-dimer and Ru-trimer, respectively, in contrast to that of \(-6.4 \times 10^{-12} \text{ cm}^2 \text{ W}^{-1}\) for the Zn–Por, at a concentration as low as \(10^{-4} \text{ M} \) in CHCl₃. The observed nonlinear optical refractive indices are among the highest values of the porphyrins studied so far. When compared to Zn–Por, enhancements of the nonlinear optical properties were studied by the concentration dependence of the nonlinear optical refractive indices (Fig. 3).

The effects of possible aggregation of the complexes on the nonlinear optical properties were studied by the concentration dependence of the nonlinear optical refractive indices (Fig. 3). It was found that the \(n_2 \) of the Ru-trimer and Ru-dimer scales linearly with the concentration, which indicates the absence of aggregation or other strong supramolecular interactions between both Ru-dimer and Ru-trimer complexes. These findings are in line with dynamic light scattering (DLS) analyses of solutions of the Ru-dimer and Ru-trimer, which showed that within the concentration range of \(10^{-4}–10^{-3} \text{ M} \) the average sizes of these complexes are about 4 nm and 5 nm in toluene.

![Fig. 2 CA z-scan curves of normalised transmittance of Zn–Por, Ru-dimer, and Ru-trimer, respectively, as a function of the sample position with respect to the focus of the lens (\(z = 0 \)). The solid lines show the fits to the experimental data, see eqn (1)]. Solutions: 10^{-4} \text{ M in chloroform; laser wavelength: } 800 \text{ nm}. Note that the power of the laser needs to be decreased (to 0.4 mW) when measuring the Ru-dimer and Ru-trimer in order to obtain proper curves with suitable amplitudes due to the enhanced NLO effects.

![Fig. 3 Concentration dependence of the nonlinear refractive index (absolute value) of the Ru-dimer (red circles) and the Ru-trimer (blue open squares) in chloroform. The solid lines are linear fits to the experimental data.]

Table 1 Analysis of the nonlinear coefficients \((n_2) \) in terms of the number of porphyrins and normalised by the \(n_2 \) of Zn–Por

<table>
<thead>
<tr>
<th>Compound</th>
<th>(n_2) \text{ (cm}^2 \text{ W}^{-1})</th>
<th>(n_2) normalised by porphyrin (\text{ (cm}^2 \text{ W}^{-1})</th>
<th>(n_2) normalised by (n_2) of Zn–Por</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn–Por</td>
<td>(-6.4 \times 10^{-12})</td>
<td>(-6.4 \times 10^{-12})</td>
<td>1</td>
</tr>
<tr>
<td>Ru-dimer</td>
<td>(-4.8 \times 10^{-11})</td>
<td>(-2.4 \times 10^{-11})</td>
<td>7.5</td>
</tr>
<tr>
<td>Ru-trimer</td>
<td>(-9.2 \times 10^{-11})</td>
<td>(-3.1 \times 10^{-11})</td>
<td>14.3</td>
</tr>
</tbody>
</table>

\(a \) Solutions: 10^{-4} \text{ M in chloroform. Laser wavelength: } 800 \text{ nm.}\n
It is worth noticing that Zn–Por itself displays a relatively high third-order nonlinear optical susceptibility because of the presence of the quinoxaline–phenanthroline ligand, which is an electron acceptor group that increases the hyperpolarisability of the porphyrin. However, it is found that the specific nonlinear refractive indices of the porphyrins (normalised by the number of porphyrins: 2 or 3 in the case of the Ru-dimer and Ru-trimer, respectively) are increased by a factor of 4 in the case of the Ru complexes as compared to Zn–Por. We can conclude that the higher \(n_2 \) value in the case of the ruthenium complexes is not only due to the presence of two or three Zn–Por moieties instead of a single one, but rather related to the extended \(\pi \)-conjugation, which leads to a strong induced optical hyperpolarisability.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(n_2) \text{ (cm}^2 \text{ W}^{-1})</th>
<th>(n_2) normalised by porphyrin (\text{ (cm}^2 \text{ W}^{-1})</th>
<th>(n_2) normalised by (n_2) of Zn–Por</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn–Por</td>
<td>(-6.4 \times 10^{-12})</td>
<td>(-6.4 \times 10^{-12})</td>
<td>1</td>
</tr>
<tr>
<td>Ru-dimer</td>
<td>(-4.8 \times 10^{-11})</td>
<td>(-2.4 \times 10^{-11})</td>
<td>7.5</td>
</tr>
<tr>
<td>Ru-trimer</td>
<td>(-9.2 \times 10^{-11})</td>
<td>(-3.1 \times 10^{-11})</td>
<td>14.3</td>
</tr>
</tbody>
</table>
and dichloromethane, respectively (ESI† Table S1). These sizes are in agreement with the estimated values of the diameters of the complexes, obtained by Molecular Modelling studies (ESI† Fig. S8).

In conclusion, we have synthesised two new complexes based on Zn-porphyrins that are attached to a ruthenium(n) core and investigated their third-order nonlinear optical properties. The nonlinear refractive coefficient of these ruthenium complexes was found to be in the order of 10^{-10} cm2 W$^{-1}$ at a concentration as low as 10^{-4} M. This large optical nonlinearity is in line with an extended electron delocalisation over the ruthenium central core and the porphyrins. Ongoing studies are directed towards the investigation of the relationship between the supramolecular architecture of the extended π-conjugated porphin complexes and their nonlinear optical responses.

The Dutch National Research School Combination Catalysis (NRSC-C) is acknowledged for financial support. The research was further supported by the European Research Council (ERC) Starting grant for J.A.A.W.E. (NANOCAT-259064) and ERC Advanced grant for R.J.M.N. (ALPROS-290886), by the Netherlands Organization for Scientific Research (NWO) with Veni (J.X.), Vidi (J.A.A.W.E.) and Vici (A.E.R.) grants, by The Royal Netherlands Academy of Arts and Sciences (KNAW) with support from the J.W. Zwanenburg Fund, by the Ministry of Education, Culture and Science (Gravity program 024.001.035).

Notes and references

† The nonlinear-optical response of the quartz cuvette itself and the solvent (CHCl$_3$) was measured to be less than 0.1% of that of all the samples.