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Abstract

We formalize higher dimensional and higher gauge WZW-type sigma-model local prequantum field
theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory
(the true home of the “FDA”-language used in the supergravity literature). We show generally how the
intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are
encoded precisely in (super-)L∞-extension theory and how the resulting “extended (super-)spacetimes”
formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra
homotopy theory that the complete super p-brane spectrum of superstring/M-theory is realized this way,
including the pure sigma-model branes (the “old brane scan”) but also the branes with tensor multiplet
worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the
higher symmetry algebra of 11-dimensional spacetime with an M2-brane condensate turns out to be the
“M-theory super Lie algebra”. We also observe that in this formulation there is a simple formal proof
of the fact that type IIA spacetime with a D0-brane condensate is the 11-dimensional sugra/M-theory
spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative
description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms
in stacky differential cohomology.
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1 Introduction: Traditional WZW and the need for higher WZW

For G be a simple Lie group, write g for its semisimple Lie algebra. The Killing form invariant polynomial
〈−,−〉 : Sym2g → R induces the canonical Lie algebra 3-cocycle

µ := 〈−, [−,−]〉 : Alt3(g) → R

which by left-translation along the group defines the canonical closed and left-invariant 3-form

〈θ ∧ [θ ∧ θ]〉 ∈ Ω3
cl,L(G) ,

where θ ∈ Ω1
flat(G, g) is the canonical Maurer-Cartan form on G. What is called the Wess-Zumino-Witten

sigma-model induced by this data (see for instance [28] for a decent review) is the prequantum field theory
given by an action functional, which to a smooth map Σ2 → G out of a closed oriented smooth 2-manifold
assigns the product of the standard exponentiated kinetic action with an exponentiated “surface holonomy”
of a 2-form connection whose curvature 3-form is 〈θ ∧ [θ ∧ θ]〉.

In the special case that φ : Σ2 → G happens to factor through a contractible open subset U of G –
notably in the perturbative expansion about maps constant on a point – the Poincaré lemma implies that
one can find a potential 2-form B ∈ Ω2(U) with dB = 〈θ ∧ [θ ∧ θ]〉|U and with this perturbative perspective
understood one may take the action functional to be simply of the naive form that is often considered in the
literature:

exp(iSWZW) := exp

(
i

∫

Σ2

LWZW

)
: φ 7→ exp

(
2πi

∫

Σ2

φ∗B

)
.

There are plenty of hints and some known examples which point to the fact that this construction of
the standard WZW model is just one in a large class of examples of higher dimensional boundary local
(pre-)quantum field theories [46, 36] which generalize traditional WZW theory in two ways:

1. the cocycle µ is allowed to be of arbitrary degree;

2. the Lie algebra g is allowed to be a (super-)Lie n-algebra for n ≥ 1 (L∞-algebra).

One famous class of examples of the first point are the Green-Schwarz type action functionals for the su-
per p-branes of string/M-theory [1]. These are the higher dimensional analog of the action functional for
the superstring that was first given in [29] and then recognized as a super WZW-model in [25], induced
from an exceptional 3-cocycle on super-Minkowski spacetime of bosonic dimension 10, regarded a super-
translation Lie algebra. Thess higher dimensional Green-Schwarz type σ-model action functionals are ac-
cordingly induced by higher exceptional super-Lie algebra cocycles on super-Minkowski spacetime, regarded
as a super-translation Lie algebra. Remarkably, while ordinary Minkowski spacetime is cohomologically fairly
uninteresting, super-Minkowski spacetime has a finite number of exceptional super-cohomology classes. The
higher dimensional WZW models induced by the corresponding higher exceptional cocycles account precisely
for the σ-models of those super-p-branes in string/M-theory which are pure σ-models, in that they do not
carry (higher) gauge fields (“tensor multiplets”) on their worldvolume, a fact known as “the old brane scan”
[1]. This includes, for instance, the heterotic superstring and the M2-brane, but excludes the D-branes and
the M5-brane.

However, as we discuss below in section 4, this restriction to pure σ-model branes without “tensor
multiplet” fields on their worldvolume is due to the restriction to ordinary super Lie algebras, hence to super
Lie n-algebras for just n = 1. If one allows genuinely higher WZW models which are given by higher cocycles
on Lie n-algebras for higher n, then all the super p-branes of string/M-theory are described by higher WZW
σ-models. This is an incarnation of the general fact that in higher differential geometry, in the sense of
[16, 45], the distinction between σ-models and (higher) gauge theory disappears, as (higher) gauge theories
are equivalently σ-models whose target space is a smooth higher moduli stack, infinitesimally approximated
by a Lie n-algebra for higher n.
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This general phenomenon is particularly interesting for the M5-brane (see for instance the Introduction
of [19] for plenty of pointers to the literature on this). According to the higher Chern-Simons-theoretic
formulation of AdS7/CFT6 in [49], the 6-dimensional (2, 0)-superconformal worldvolume theory of the M5-
brane is related to the 7-dimensional Chern-Simons term in 11-dimensional supergravity compactified on
a 4-sphere in direct analogy to the famous relation of 2d WZW theory to the 3d-Chern-Simons theory
controled by the cocycle µ (see [28] for a review). In previous work we have discussed the bosonic nonabelian
(quantum corrected) component of this 7d Chern-Simons theory as a higher gauge local prequantum field
theory [19, 20]; the discussion here provides the fermionic terms and the formalization of the 6d WZW-type
theory induced from a (flat) 7-dimensional Chern-Simons theory.

Up to the last section in this paper we discuss general aspects and examples of higher WZW-type sigma-
models in the rational/perturbative approximation, where only the curvature n-form matters while its lift to
a genuine cocycle in differential cohomology is ignored. However, in order to define already the traditional
WZW action functional in a sensible way on all maps to G, one needs a more global description of the WZW
term LWZW. Since [27, 26], this is understood to be a circle 2-connection/bundle gerbe/Deligne 3-cocycle
whose curvature 3-form is 〈θ ∧ [θ ∧ θ]〉, hence a higher prequantization [17] of the curvature 3-form, which,
following [16, 45] we write as a lift of maps of smooth higher stacks

B2U(1)conn

H(−)

��
G

LWZW

66♥♥♥♥♥♥♥♥

〈θ∧[θ∧θ]〉
// Ω3

cl ,

where B2U(1)conn denotes the smooth 2-stack of smooth circle 2-connections. Then for φ : Σ2 → G a
smooth map from a closed oriented 2-manifold to G, the globally defined value of the action functional is
the corresponding surface holonomy expressed as the composite

exp(iSWZW) := exp

(
2πi

∫

Σ2

[(−),LWZW]

)
: [Σ, G]

[Σ,LWZW] // [Σ,B2U(1)conn]
exp(2πi

∫
Σ2

)(−)
// U(1) ,

of the functorial mapping stack construction followed by a stacky refinement of fiber integration in differential
cohomology, as discussed in [21, 22].

Towards the end, in section 5 we demonstrate a general universal construction of such non-perturbative
refinements of all the local higher WZW terms considered in the main text. We show how these are in a
precise sense boundary local prequantum field theories for flat higher Chern-Simons type local prequantum
field theories as explained in [17, 46] (which is in line with the Chern-Simons theoretic holography in [49]).
Therefore we know in principle how to quantize them non-perturbatively in generalized cohomology, namely
along the lines of [36]. This, however, is to be discussed elsewhere.

2 Lie n-algebraic formulation of perturbative higher WZW

We start with the traditional WZW model and show how in this example we may usefully reformulate its
rationalized/perturbative aspects in terms of Lie n-algebraic structures. Then we naturally and seamlessly
generalize to a definition of higher WZW-type σ-models.

We recall the notion of L∞-algebra valued differential forms/connections from [44, 16] to establish our
notation. All the actual L∞-homotopy theory that we need can be found discussed or referenced in [18].
Just for simplicity of exposition and since it is sufficient for the present discussion, here we take all L∞-
algebras to be of finite type, hence degreewise finite dimensional; see [39] for the general discussion in terms
of pro-objects.
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A (super-)Lie n-algebra is a (super-)L∞-algebra concentrated in the lowest n degrees. Given a (super-)L∞-
algebra g, we write CE(g) for its Chevalley-Eilenberg algebra; which is a (Z × Z2)-graded commutative
dg-algebra with the property that the underlying graded super-algebra is the free graded commutative
super-algebra on the dual graded super vector space g[1]∗. These are the dg-algebras which in parts of the
supergravity literature are referred to as “FDA”s, a term introduced in [34] and then picked up in [3, 4, 13]
and followups. Precisely all the (super-)dg-algebras of this semi-free form arise as Chevalley-Eilenberg al-
gebras of (super-)L∞-algebras this way, and a homomorphism of L∞-algebras f : g → h is equivalently a
homomorphism of dg-algebras of the form f∗ : CE(h) → CE(g). See [18] for a review in the context of the
higher prequantum geometry of relevance here and for further pointers to the literature on L∞-algebras and
their homotopy theory.

Definition 2.1. For g a Lie n-algebra, and X a smooth manifold, a flat g-valued differential form on X
(of total degree 1, with g regarded as cohomologically graded) is equivalently a morphism of dg-algebras
A∗ : CE(g) → Ω•

dR(X) to the de Rham complex. Dually we write this as1 A : X → g. These differential
forms naturally pull back along maps of smooth manifolds, and we write Ω1

flat(−, g) for the sheaf, on smooth
manifolds, of flat g-valued differential forms of total degree 1.

Notice that, in general, these forms of total degree 1 involve differential forms of higher degree with
coefficients in higher degree elements of the L∞-algebra:

Example 2.2. For n ∈ N write R[n] for the abelian Lie n-algebra concentrated on R in degree −n. Its
Chevalley Eilenberg algebra is the dg-algebra which is genuinely free on a single generator in degree n + 1.
A flat R[n]-valued differential form is equivalently just an ordinary closed differential (n+ 1)-form

Ω1
flat(−,R[n]) ≃ Ωn+1

cl .

Definition 2.3. A (p+2)-cocycle µ on a Lie n-algebra g is a degree p+2 closed element in the corresponding
Chevalley-Eilenberg algebra µ ∈ CE(g).

Remark 2.4. A (p+2)-cocycle on g is equivalently a map of dg-algebras CE(R[p+1]) → CE(g) and hence,
equivalently, a map of L∞-algebras of the form µ : g → R[p+ 1]. So, if {ta} is a basis for the graded vector
space underlying g, then the differential dCE is given in components by

dCE t
a =

∑

i∈N

Caa1···ait
a1 ∧ · · · tai ,

where {Caa1···ai} are the structure constants of the i-ary bracket of g. Consequently, a degree p+ 2 cocycle
is a degree (p+ 2)-element

µ =
∑

i

µa1...ait
a1 ∧ · · · tai

such that dCE µ = 0.

Example 2.5. For {ta} a basis as above and ω ∈ Ω1
flat(X, g) a g-valued 1-form on X , the pullback of the

cocycle is the closed differential (p+ 2)-form which in components reads

µ(ω) =
∑

i

µa1···aiω
a1 ∧ · · · ∧ ωai ,

where ωa = ω(ta).

Remark 2.6. Composition ω 7→ ( X
ω // g

µ // R[p+ 1] ) of g-valued differential forms ω with an L∞-

cocycle µ yields a homomorphism of sheaves

Ω1
flat(−, µ) : Ωflat(−, g) // Ωp+2

cl .

1The reader familiar with L∞-algebroids should take this as shorthand for the L∞-algebroid homomorphism from the
tangent Lie algebroid of X to the delooping of the L∞-algebra g.
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This is the sheaf incarnation of µ regarded as a universal differential form on the space of all flat g-valued
differential forms. More on this is below in 5.

Example 2.7. By the Yoneda lemma, for X a smooth manifold, morphisms2 X → Ω1
flat(−, g) are equiva-

lently just flat g-valued differential forms on X . Specifically, for G an ordinary Lie group, its Maurer-Cartan
form is equivalently a map

θ : G // Ω1
flat(−, g) .

Therefore, given a field configuration φ : Σ2 → G of the traditional WZW model, postcomposition with θ
turns this into

φ∗θ : Σ
φ // G

θ // Ω1
flat(−, g) .

Here if g is represented as a matrix Lie algebra then this is the popular expression φ∗θ = φ−1dφ

Definition 2.8. Given an L∞-algebra g equipped with a cocycle µ : g → R[p + 1] of degree p + 2, a
perturbative σ-model datum for (g, µ) is a triple consisting of

• a space X ;

• equipped with a flat g-valued differential form θglobal : X → Ω1
flat(−, g) (a “global Maurer-Cartan

form”);

• and equipped with a factorization LWZW through ddR of µ(θglobal), as expressed in the following
diagram

X
θglobal //

LWZW $$❍
❍❍

❍❍
❍❍

❍❍
❍ Ωflat(−, g)

µ // Ωp+2
cl .

Ωp+1

ddR

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

The action functional associated with this data is the functional

SWZW : [Σ, X ] // R

given by

φ 7→

∫

Σ

LWZW(φ) ,

where the integrand is the differential form

LWZW(φ) : Σ
φ // X

LWZW // Ωp+1
cl .

Remark 2.9. Here X actually need not be a (super-)manifold but may be a smooth higher (super-) stack,
hence what we may suggestively call higher super orbi-space. We make this precise below in section 5.

Remark 2.10. The notation θglobal serves to stress the fact that we are considering globally defined one-
forms on X as opposed to cocycles in hypercohomology, which is where the higher Maurer-Cartan forms
on higher (super-)Lie groups take values, due to presence of nontrivial higher gauge transformations. See
section 5 for more discussion.

2of sheaves, by thinking of X as the sheaf C∞(−, X).
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Remark 2.11. The diagram in Def. 2.8 manifestly captures a local description, when X is a contractible
manifold. An immediate global version is captured by the following diagram

Σ
η // X

θglobal //

LWZW %%❑❑
❑❑

❑❑
❑❑

❑❑
❑ Ωflat(−, g)

µ // Ωp+2
cl ,

Bp+1U(1)conn

F(−)

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

where Bp+1U(1)conn is the stack of U(1)-(p + 1)-bundles with connections, and F(−) is the curvature mor-
phism; see, for instance, [16]. This globalization is what one sees, for example, in the ordinary WZW model.
This, too, we come to below in section 5.

Finally, we notice for discussion in the examples one aspect of the higher symmetries of such perturbative
higher WZW models:

Definition 2.12. Given a (super-) L∞-algebra g, its graded Lie algebra of infinitesimal automorphisms is
the Lie algebra whose elements are graded derivations v ∈ Der(Sym•g[1]∗) on the graded algebra underlying
its Chevalley-Eilenberg algebra CE(g), acting as the corresponding Lie derivatives.

3 Boundary conditions and brane intersection laws

In the context of fully extended (i.e. local) topological prequantum field theories, one has the following
general notion of boundary condition, see [36, 46].

Definition 3.1. A prequantum boundary condition for an open brane (hence a “background brane” on which
the given brane may end) is given by boundary gauge trivializations φbdr of the Lagrangian restricted to the
boundary fields, hence by diagrams of the form

Boundary Field

xxqqq
qq
qq
qq
qq
q

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗

∗

0 &&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼ Bulk Fields

Lagrangianvv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

Phases ,

φbdr

≃

rz ♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠

where “Phases” denotes generally the space where the Lagrangian takes values.

Specializing this general principle to our current situation, we have the following

Definition 3.2. A boundary condition for a rational σ-model datum, (X, g, µ) of Def. 2.8, is

1. an L∞-algebra Q and a homomorphism Q −→ g,

2. equipped with a homotopy φbrd of L∞-algebras morphisms

Q

{{✇✇
✇✇
✇✇
✇✇
✇✇

$$❍
❍❍

❍❍
❍❍

❍❍
❍

∗

0 ##❋
❋❋

❋❋
❋❋

❋❋
g .

µ{{✈✈
✈✈
✈✈
✈✈
✈

R[p+ 1]

φbdrw� ✈✈
✈✈
✈✈
✈✈
✈

✈✈
✈✈
✈✈
✈✈
✈
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Remark 3.3 (Background branes). Since g is to be thought of as the spacetime target for a σ-model, we are
to think of Q→ g in Def. 3.2 as a background brane “inside” spacetime. For instance, as demonstrated below
in Section 4, it may be a D-brane in 10-dimensional super-Minkowski space on which the open superstring
ends, or it may be the M5-brane in 11-dimensional super-Minowski spacetime on which the open M2-brane
ends. To say then that the p-brane described by the σ-model may end on this background brane Q means
to consider worldvolume manifolds Σn with boundaries ∂Σp+1 →֒ Σp+1 and boundary field configurations
(φ, φ|∂) making the left square in the following diagram commute:

∂Σp+1
φ|∂Σ //

��

Q //

��

∗

��
Σp+1

φ // g µ
// R[p+ 1] .

φbdr
qy ❦❦❦❦

❦❦
❦❦❦

❦❦❦

The commutativity of the diagram on the left encodes precisely that the boundary of the p-brane is to sit
inside the background brane Q. But now – by the defining universal property of the homotopy pullback of
super L∞-algebras – this means, equivalently, that the background brane embedding map Q → g factors
through the homotopy fiber of the cocycle µ. If we denote this homotopy fiber by ĝ, then we have an
essentially unique factorization as follows

∂Σp+1
φ|∂Σ //

��

Q

��

//❴❴❴❴❴❴ ĝ //

��

∗

��
Σp+1

φ // g g µ
// R[p+ 1] ,

φuniv.
bdr

s{ ♥♥♥
♥♥♥♥♥♥
♥♥♥

where now ĝ → g is the homotopy fiber ĝ of the cocycle µ. Notice that here in homotopy theory all diagrams
appearing are understood to be filled by homotopies/gauge transformations, but only if we want to label
them explicitly do we display them.

The crucial implication to emphasize is that what used to be regarded as a background brane Q on
which the σ-model brane Σn may end is itself characterized by a σ-model map Q → ĝ, not to the original
target space g, but to the extended target space ĝ. In the class of examples discussed below in Section 4, this
extended target space is precisely the extended superspace in the sense of [14].

Remark 3.4. The L∞-algebra ĝ → g is the extension of g classified by the cocycle µ, in generalization to
the traditional extension of Lie algebras classified by 2-cocycles. If µ is an (n2 + 1)-cocycle on an n1-Lie
algebra g for n1 ≤ n2, then the extended L∞-algebra ĝ is an Lie n2-algebra. See [18] for more details on
this.

Proposition 3.5. The Chevalley-Eilenberg algebra CE(ĝ) of the extension ĝ of g by a cocycle µ admits, up
to equivalence, a very simple description; namely, it is the differential graded algebra obtained from CE(g)
by adding a single generator cn in degree n subject to the relation

dCE(ĝ) cn = µ .

Here we are viewing µ as a degree n+ 1 element in CE(g), and hence also in CE(ĝ).

Proof. First observe that we have a commuting diagram of (super-)dg-algebras of the form

CE (ĝ) CE
((

R
id
→ R

)
[n− 1]

)
oo

CE (g)

OO

CE(R[n])

OO

oo

.

7



Here the top left dg-algebra is the dg-algebra of the above statement, the top morphism is the one that sends
the unique degree-(n + 1)-generator to µ and the unique degree-n generator to cn, the vertical morphisms
are the evident inclusions, and the bottom morphism is the given cocycle. Consider the dual diagram of
L∞-algebras

ĝ //

��

(R
id
→ R)[n− 1]

��
g

µ // R[n] .

Then observe that the underlying graded vector spaces here form a pullback diagram of linear maps (the
linear components of the L∞-morphisms). From this the statement follows directly with the recognition
theorem for L∞-homotopy fibers, theorem 3.1.13 in [18]. �

Remark 3.6. The construction appearing in Prop. 3.5 is of course well familiar in the “FDA”-technique in
the supergravity literature [13], and we recall famous examples below in Section 4. The point to highlight
here is that this construction has a universal L∞-homotopy-theoretic meaning, in the way described above.

The crucial consequence of this discussion is the following:

Remark 3.7. If the extension ĝ itself carries a cocycle µQ : ĝ → R[n] and we are able to find a local
potential/Lagrangian LWZW for the closed (n+1)-form µQ (and we will see in the full description in 5 that
this is always the case), then this exhibits the background brane Q itself as a rational WZW σ-model, now
propagating not on the original “target spacetime” g but on the “extended spacetime” ĝ.

Remark 3.8. Iterating this process gives rise to a tower of extensions and cocycles

̂̂g

��

µ3 // R[n3]

ĝ

��

µ2 // R[n2]

g
µ1 // R[n1] ,

which is like a Whitehead tower in rational homotopy theory, only that the cocycles in each degree here
are not required to be the lowest-degree nontrivial ones. In fact, the actual rational Whitehead tower is an
example of this. In the language of Sullivan’s formulation of rational homotopy theory this says that gn is
exhibited by a sequence of cell attachments as a relative Sullivan algebra relative to g.

Since this is an important concept for the present purpose, we give it a name:

Definition 3.9. Given an L∞-algebra g, the brane bouquet of g is the rooted tree consisting of, iteratively, all
possible equivalence classes of nontrivial R[•] extensions (corresponding to equivalence classes of nontrivial
R[•]-cocycles) starting with g as the root.

8



g2,1

""❊
❊❊

❊❊
❊❊

❊
· · · g2,k

||②②
②②
②②
②②

g3,1

||②②
②②
②②
②②

g1,1

""❊
❊❊

❊❊
❊❊

❊
g1,2

||②②
②②
②②
②②

g3,2oo

g g3,3

bb❊❊❊❊❊❊❊❊

g3

OO

This brane bouquet construction in L∞-homotopy theory that we introduced serves to organize and formalize
the following two physical heuristics.

Remark 3.10 (Brane intersection laws). By the discussion above in Remark 3.3, each piece of a brane
bouquet of the form

g2

��

µ2 // R[n2]

g1
µ1 // R[n1]

may be thought of as encoding a brane intersection law, meaning that the WZW σ-model brane corresponding
to (g1, µ1) can end on the WZW σ-model brane corresponding to (g2, µ2). Therefore, the brane bouquet
of some L∞-algebra g lists all the possible σ-model branes and all their intersection laws in the “target
spacetime” g.

Remark 3.11 (Brane condensates). To see how to think of the extensions ĝ as “extended spacetimes”,
observe that by Prop. 3.5 and Def. 2.1 a σ-model on the extension ĝ of g which is classified by a (p + 2)-
cocycle µ is equivalently a σ-model on g together with an p-form higher gauge field on its worldvolume, one
whose curvature (p + 1)-form satisfies a twisted Bianchi identity controled by µ. The examples discussed
below in Section 4 show that this p-form field (“tensor field” in the brane literature) is that which is “sourced”
by the charged boundaries of the original σ-model branes on g. For instance for superstrings ending on D-
branes it is the Chan-Paton gauge field sourced by the endpoints of the open string, and for M2-branes
ending on M5-branes it is the latter’s B-field which is sourced by the self-dual strings at the boundary of the
M2-brane. In conclusion, this means that we may think of the extension ĝ as being the original spacetime g

but filled with a condensate of branes whose σ-model is induced by µ.

4 Example: Super p-branes and their intersection laws

We now discuss higher rational/perturbative WZW models on super-Minkowski spacetime regarded as the
super-translation Lie algebra over itself, as well as on the extended superspaces which arise as exceptional
super Lie n-algebra extensions of the super-translation Lie algebra. We show then that by the brane inter-
section laws of Remark 3.10 this reproduces precisely the super p-brane content of string/M-theory including
the p-branes with tensor multiplet fields, notably including the D-branes and the M5-brane. The discussion
is based on the work initiated in [4] and further developed in articles including [14]. The point here is to
show that this “FDA”-technology is naturally and usefully reformulated in terms of super-L∞-homotopy
theory, and that this serves to clarify and illuminate various points that have not been seen, and are indeed
hard to see, via the “FDA”-perspective.
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We set up some basic notation concerning the super-translation- and the super-Poincaré super Lie alge-
bras, following [4]. For more background see lecture 3 of [23] and appendix B of [38].

Write o(d−1, 1) for the Lie algebra of the Lorentz group in dimension d. If {ωa
b}a,b is the canonical basis

of Lie algebra elements, then the Chevalley-Eilenberg algebra CE(o(d − 1, 1)) is generated from elements
{ωab}a,b in degree (1, even) with the differential given by3 dCE ω

a
b := ωac ∧ ω

c
b. Next, write iso(d − 1, 1)

for the Poincaré Lie algebra. Its Chevalley-Eilenberg algebra in turn is generated from the {ωab} as before
together with further generators {ea}a in degree (1, even) with differential given by dCE e

a := ωab ∧ e
b. Now

for N denoting a real spinor representation of o(d − 1, 1), also called the number of supersymmetries (see
for instance part 3 of [23]), write {Γa} for a representation of the Clifford algebra in this representation
and {Ψα}α for the corresponding basis elements of the spinor representation. There is then an essentially
unique symmetric Spin(d− 1, 1)-equivariant bilinear map from two spinors to a vector, traditionally written
in components as

(ψ1, ψ2)
a := i

2ψΓ
aψ .

This induces the super Poincaré Lie algebra sisoN (d − 1, 1) whose Chevalley-Eilenberg super-dg-algebra is
generated from the generators as above together with generators {Ψα} in degree (1, odd) with the differential
now defined as follows

dCE ω
a
b = ωac ∧ ω

c
b ,

dCE e
a = ωab ∧ e

b + i
2ψ ∧ Γaψ ,

dCE ψ
α = 1

4ω
a
b ∧ ΓabΨ .

Here and in the following Γa1···ap denotes the skew-symmetrized product of the Clifford matrices and in
the above matrix multiplication is understood whenever the corresponding indices are not displayed. In
summary, the degrees are

deg(ea) = (1, even), deg(ωa) = (1, even), deg(ψα) = (1, odd), deg(dCE) = (1, even) .

Notice that this means that, for instance, ea1 ∧ ea2 = −ea1 ∧ ea2 and ea ∧ ψα = −ψα ∧ ea but ψα1 ∧ ψα2 =
+ψα

2

∧ ψα1 .

Example 4.1. For Σ a supermanifold of dimension (d;N), a flat siso(d − 1, 1)-valued differential form
A : CE(siso(d−1, 1) → Ω•

dR(Σ), according to Def. 2.1 and subject to the constraint that the Rd;N -component
is induced from the tangent space of Σ (this makes it a Cartan connection) is

1. a vielbein field Ea := A(ea),

2. with a Levi-Civita connection Ωab := A(ωab) (graviton),

3. a spinor-valued 1-form field Ψα := A(ψα) (gravitino),

subject to the flatness constraints which here say that the torsion of of the Levi-Civita connection is the super-
torsion τ = Ψ ∧ ΓaΨ ∧ Ea and that the Riemann curvature vanishes. This is the gravitational field content
(for vanishing field strength here, one can of course also consider non-flat fields; see [44]) of supergravity
on Σ, formulated in first order formalism. By passing to L∞-extensions of siso this is the fomulation of
supergravity fields which seamlessly generalizes to the higher gauge fields that higher supergravities contain,
including their correct higher gauge transformations. This is the perspective on supergravity originating
around the article [4] and expanded on in the textbook [13]. Recognizing the “FDA”-language used in this
book as secretly being about Lie n-algebra homotopy theory (the “FDA”s are really Chevalley-Eilenberg
algebras super-L∞-algebras) allows to uncover some natural and powerful higher gauge theory and geometric
homotopy theory [45] hidden in traditional supergravity literature.

The super translation Lie algebra corresponding to the above is the quotient

R
d;N := siso(d− 1, 1)/o(d− 1, 1)

3Here and in all of the following a summation over repeated indices is understood.
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whose CE-algebra is as above but with the {ωab} discarded. We may think of the underlying super vector
space of Rd;N as N -super Minkowski spacetime of dimension d, i.e. with N supersymmetries. Regarded as a
supermanifold, it has canonical super-coordinates {xa, ϑα} and the CE-generators ea and ψα above may be
identified under the general equivalence CE(g) ≃ Ω•

L(G) (for a (super-)Lie group G with (super-)Lie algebra
g) with the corresponding canonical left-invariant differential forms on this supermanifold:

ea = ddR x
a + ϑΓa ddR ϑ ,

ψα = ddR ϑ
α .

This defines a morphism θ : CE(Rd;N) → Ω•|•(Rd;N ) to super-differential forms on super Minkowski space,
and via Def. 2.1 this is the Maurer-Cartan form, Example 2.7, on the supergroup Rd;N of supergranslations
As such {ea, ψα} is the canonical super-vielbein on super-Minkowski spacetime.

Notice that the only non-trivial piece of the above CE-differential remaining on CE(Rd;N) is

dCE(Rd;N ) e
a = ψ ∧ Γaψ .

Dually this is the single non-trivial super-Lie bracket on Rd;N , the one which pairs two spinors to a vector.
All the exceptional cocycles considered in the following exclusively are controled by just this equation and
Lorentz invariance.

We next consider various branches of the brane bouquet, Def. 4.14, of these super-spacetimes Rd,N .

4.1 N = 1 σ-model super p-branes — The old brane scan

As usual, we write N for a choice of number of irreducible real (Majorana) representations of Spin(d− 1, 1),
and N = (N+, N−) if there are two inequivalent chiral minimal representations. For instance, two important
cases are

d = 10 d = 11
N = (1, 0) = 16 N = 1 = 32

For 0 ≤ p ≤ 9 consider the dual bispinor element

µp := ea1 ∧ · · · ∧ eap ∧ (ψ ∧ Γa1···apψ) ∈ CE(Rd;N) ,

where here and in the following the parentheses are just to guide the reader’s eye. Observe that the differential
of this element is of the form

dCE µp ∝ ea1 ∧ · · · ∧ eap−1 ∧ (ψΓa1···ap ∧ ψ) ∧ (ψ ∧ Γapψ) .

This is zero precisely if after skew-symmetrization of the indices, the spinorial expression

ψΓ[a1···ap ∧ ψ ∧ ψ ∧ Γap]ψ = 0

vanishes identically (on all spinor components). The spinorial relations which control this are the Fierz
identities. If this expression vanishes, then µp is a (p+2)-cocycle on Rd;N=1, Def. 2.3, hence a homomorphism
of super Lie n-algebras of the form

µp : Rd;N=1 // R[p+ 1] .

If this is the case then, by Def. 2.8, this defines a σ-model p-brane propagating on Rd;N=1.

The combinations of d and p for which this is the case had originally been worked out in [1]. The inter-
pretation in terms of super-Lie algebra cohomology was clearly laid out in [5]. See [9, 10, 11] for a rigorous
treatment and comprehensive classification for all N . The non-trivial cases (those where µp is closed but
not itself a differential) correspond precisely to the non-empty entries in the following table.
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d\p 1 2 3 4 5 6 7 8 9

11
(1)

m2brane

10
(1,0)

stringhet

(1,0)
ns5branehet

9 (1)

8 (1)

7 (1)

6
(1,0)

littlestring
(1,0)

5 (1)

4 (1) (1)

3 (1)

This table is known as the “old brane scan” for string/M-theory. Each non-empty entry corresponds to a
p-brane WZW-type σ-model action functional of Green-Schwarz type. For (d = 10, p = 1) this is the original
Green-Schwarz action functional for the superstring [29] and, therefore, we write stringhet in the respective
entry of the table (similarly there are cocycles for type II strings, discussed in the following sections), which
at the same time is to denote the super Lie 2-algebra extension of R10,N=1 that is classified by µp in this
dimension, according to Remark 3.4:

stringhet

��
R10;N=(1,0) µ1 // R[2] .

This Lie 2-algebra has been highlighted in [30, 6].

Analogously we write m2brane for the super Lie 3-algebra extension of R11;N=1 classified by the nontrivial
cocycle µ2 in dimension 11 (this was called the supergravity Lie 3-algebra sugra11 in [44])

m2brane

��
R11;N=1 µ2 // R[3] ,

and so on.

While it was a pleasant insight back then that so many of the extended objects of string/M-theory do
appear from just super-Lie algebra cohomology this way in the above table, it was perhaps just as curious
that not all of them appeared. Later other tabulations of string/M-branes were compiled, based on less
mathematically well defined physical principles [15]. These “new brane scans” are what make the above an
“old brane scan”. But we will show next that if only we allow ourselves to pass from (super-)Lie algebra
theory to (super-) Lie n-algebra theory, then the old brane scan turns out to be part of a brane bouquet
that accurately incorporates all the information of the “new brane scan”, all the branes of the new brane
scan, altogether with their intersection laws, with their tensor multiplet field content and its correct higher
gauge transformation laws.
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4.2 Type IIA superstring ending on D-branes and the D0-brane condensate

We consider the branes in type IIA string theory and point out how their L∞-homotopy theoretic formulation
serves to provide a formal statement and proof of the folklore relation between type IIA string theory with
a D0-brane condensate and M-theory.

Write N = (1, 1) = 16+ 16′ for the Dirac representation of Spin(9, 1) given by two 16-dimensional real
irreducible representations of opposite chirality. We write {Γa}a=1,··· ,10 for the corresponding representation
of the Clifford algebra and Γ11 := Γ1Γ2 · · ·Γ10 for the chirality operator. Finally write R10;N=(1,1) for the
corresponding super-translation Lie algebra, the super-Minkowski spacetime of type IIA string theory.

Definition 4.2. The type IIA 3-cocycle is

µstringIIA
:= ψ ∧ ΓaΓ11ψ ∧ ea : R10;N=(1,1) // R[2] .

The type IIA superstring super Lie 2-algebra is the corresponding super L∞-extension

stringIIA

��
R10;N=(1,1)

µstringIIA // R[2] .

Its Chevalley-Eilenberg algebra is that of R10;N=(1,1) with one generator F in degree (2, even) adjoined and
with its differential being

dCE F = µstringIIA
= ψ ∧ ΓaΓ11ψ ∧ ea.

This dg-algebra appears as equation (6.3) in [14]. It can also be deduced from op.cit. that the IIA string
Lie 2-algebra of Def. 4.2 carries exceptional cocycles of degrees p+ 2 ∈ {2, 4, 6, 8, 10} of the form

µdpbrane := C ∧ eF

:=

(p+2)/2∑

k=0

cpk (e
a1 ∧ · · · ∧ eap−2k) ∧

(
ψΓa1 · · ·Γap−2kΓ11ψ

)
F ∧ · · · ∧ F︸ ︷︷ ︸
k factors

,
(1)

where {cpk ∈ R} are some coefficients, and where C denotes the inhomogeneous element of CE(R10;N=(1,1))
defined by the second line. For each p ∈ {0, 2, 4, 6, 8} there is, up to a global rescaling, a unique choice of
the coefficients cpk that make this a cocycle. This is shown on p. 19 of [14].

Remark 4.3. Here the identification with physics terminology is as follows

• F is the field strength of the Chan-Paton gauge field on the D-brane, a “tensor field” that happens to
be a “vector field”;

• C =
∑
p k

pψ e ∧ · · · ∧ e︸ ︷︷ ︸
p factors

ψ is the RR-field.

It is interesting to notice the special nature of the cocoycle for the D0-brane:

Remark 4.4. According to (1) for p = 0, the cocycle defining the D0-brane as a higher WZW σ-model is
just

µd0brane = ψΓ11ψ .

Since this independent of the generator F , it restricts to a cocycle on just R10;N=(1,1) itself.
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Concerning this, we highlight the following fact, which is mathematically elementary but physically
noteworthy (see also Section 2.1 of [14]), as it has conceptual consequences for arriving at M-theory starting
from type IIA string theory.

Proposition 4.5. The extension of 10-dimensional type IIA super-Minkowski spacetime R10;N=(1,1) by the
D0-brane cocycle as in Remark 4.4 is the 11-dimensional super-Minkowski spacetime of 11-dimensional
supergravity/M-theory:

R11;N=1

��
R

10;N=(1,1) µd0brane // R[1] .

Proof. By Prop. 3.5 the Chevalley-Eilenberg algebra of the extension classified by µd0brane is that of
R10;N=(1,1) with one new generator e11 in degree (1, even) adjoined and with its differential defined to be

dCE e
11 = µd0brane = ψΓ11ψ .

An elementary basic fact of Spin representation theory says that the N = 1-representation of the Spin group
Spin(10, 1) in odd dimensions is the N = (1, 1)-representation of the even dimensional Spin group Spin(9, 1)
regarded as a representation of the Clifford algebra {Γa}10a=1 with Γ11 adjoined as in Def. 4.2. Using this,
the above extended CE-algebra is exactly that of R11;N=1 . �

Remark 4.6. In view of Remark 3.11 the content of Prop. 4.5 translates to heuristic physics language as: A
condensate of D0-branes turns the 10-dimensional type IIA super-spacetime into the 11-dimensional space-
time of 11d-supergravity/M-theory. Alternatively: The condensation of D0-branes makes an 11th dimension
of spacetime appear.

In this form the statement is along the lines of the standard folklore relation between type IIA string
theory and M-theory, which says that type IIA with N D0-branes in it is M-theory compactified on a
circle whose radius scales with N ; see for instance [8, 37]. See also [32] for similar remarks motivated from
phenomena in 2-dimensional boundary conformal field theory. Here in the formalization via higher WZW
σ-models a version of this statement becomes a theorem, Prop. 4.5.

Remark 4.7. The mechanism of remark 4.6 appears at several places in the brane bouquet. First of all, since
by Prop. 1 the D0-brane cocycle is a summand in each type IIA D-brane cocycle, it follows via the above
translation from L∞-homotopy theory to physics language that: Any type IIA D-brane condensate extends
10-dimensional type IIA super-spacetime to 11-dimensional super-spacetime. If we lift attention again from
the special case of D-branes of type IIA string theory to general higher WZW-type σ-models, then this
mechanism is seen to generalize: the 10-dimensional super-Minkowski spacetime itself is an extension of the
super-point by 10-cocycles (one for each dimension):

R10;N=(1,1)

��
R0;N=(1,1)

∑10
a=1 (−)Γa(−) // R[1] .

Here the cocycle describes 10 different 0-brane σ-models, each propagating on the super-point as their target
super-spacetime. Again, by remark 3.11, this mathematical fact is a formalization and proof of what in
physics language is the statement that Spacetime itself emerges from the abstract dynamics of 0-branes.
This is close to another famous folklore statement about string theory. In our context it is a theorem.
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4.3 Type IIB superstring ending on D-branes and S-duality

We consider the branes in type IIB string theory as examples of higher WZW-type σ-model field theories
and observe how their L∞-homotopy theoretic formulation serves to provide a formal statement of the
prequantum S-duality equivalence between F-strings and D-strings and their unification as (p, q)-string bound
states.

WriteN = (2, 0) = 16+16 for the direct sum representation of Spin(9, 1) given by two 16-dimensional real
irreducible representations of the same chirality. We write {Γa}a=1,··· ,10 for the corresponding representation
of the Clifford algebra on one copy of 16 and Γa⊗σi for the linear maps on their direct sum representation that
act as the ith Pauli matrix on C2 with components Γa, under the canonical identification 16⊕16 ≃ 16⊗C2.
Finally write R10;N=(2,0) for the corresponding super-translation Lie algebra, the super-Minkowski spacetime
of type IIB string theory.

There is a cocycle µstringIIB
∈ CE(R10;N=(2,0)) given by

µstringIIB
= ψ ∧ (Γa ⊗ σ3)ψ ∧ ea .

The corresponding WZW σ-model is the Green-Schwarz formulation of the fundamental type IIB string. Of
course we could use in this formula any of the σi, but one fixed such choice we are to call the type IIB string.
That the other choices are equivalent is the statement of S-duality, to which we come in a moment. The
corresponding L∞-algebra extension, hence by Remark 3.11 the IIB spacetime “with string condensate” is
the homotopy fiber

stringIIB

��
R10;N=(2,0)

µstringIIB // R[2] .

As for type IIA, its Chevalley-Eilenberg algebra CE(stringIIB) is that of R
10;N=(2,0) with one generator F in

degree (2, even) adjoined. The differential of that is now given by

dCE F = µstringIIB

= ψ ∧ (Γa ⊗ σ3)ψ ∧ ea .

Now this Lie 2-algebra itself carries exceptional cocycles of degree (p+ 2) for p ∈ {1, 3, 5, 7, 9} of the form

µdpbrane := C ∧ eF

:=

(p+2)/2+1∑

k=0

cpk (e
a1 ∧ · · · ∧ eap−2k) ∧

(
ψ ∧ (Γa1 · · ·Γap−2k ⊗ σ1/2)ψ

)
F ∧ · · · ∧ F︸ ︷︷ ︸
k factors

,
(2)

where on the right the notation σ1/2 is to mean that σ1 appears in summands with an odd number of
generators “e”, and σ2 in the other summands. The corresponding WZW models are those of the type IIB
D-branes.

Remark 4.8. According to expression (2) the cocycle of the D1-brane is of the form

µd1brane = ψ ∧ (Γa ⊗ σ1) ∧ ea ,

which is the same form as that of µstringIIB
itself, only that σ3 is replaced by σ1. In fact since this is the

D-brane cocycle which is independent of the new generator F , it restricts to a cocycle on just R
10;N=(2,0)

itself. So the cocycle for the “F-string” in type IIB is on the same footing as that of the “D-string”. Both
differ only by a “rotation” in an internal space.

15



Remark 4.9. There is a circle worth of L∞-automorphisms

S(α) : R10;N=(2,0) → R
10;N=(2,0) ,

hence a group homomorphism
U(1) → Aut(R10;N=(2,0)) ,

given dually on Chevalley-Eilenberg algebras by

ea 7→ ea

ψ 7→ exp(ασ2)ψ .

This mixes the cocycles for the F-string and for the D-string in that for a quarter rotation it turns one into
the other

S(π/4)∗(µstringIIA
) = µd1brane ,

and for a rotation by a general angle it produces a corresponding superposition of both. In particular, we
can form bound states of F -strings and D1-branes by adding these cocycles

µ(p,q)string = p µstringIIB
+ q µd1brane ∈ CE(R10;N=(2,0)) .

These define the (p, q)-string bound states as WZW-type σ-models.

4.4 The M-theory 5-brane and the M-theory super Lie algebra

We discuss here the single M5-brane as a higher WZW-type σ-model, show that it is defined by a 7-cocycle
on the M2-brane super Lie-3 algebra and observe that this 7-cocycle is indeed the relevant fermionic 7d
Chern-Simons term of 11-dimensional supergravity compactified on S4, as required by AdS7/CFT6 in the
Chern-Simons interpretation of [49]. We see that the truncation of the symmetry algebra of this higher
5-brane superalgebra to degree 0 is the “M-algebra”.

Write N = 1 = 32 for the irreducible real representation of Spin(10, 1). Write {Γa}11a=1 for the correspond-
ing representation of the Clifford algebra. Finally write R11;N=1 for the corresponding super-translation Lie
algebra. According to the old brane scan in section 4.1, the exceptional Lorentz-invariant cocycle for the
M2-brane is

µm2brane = ψ ∧ Γabψ ∧ ea ∧ eb .

The Green-Schwarz action functional for the M2-brane is the σ-model defined by this cocycle

R11;N µm2brane // R[3] .

By the L∞-theoretic brane intersection law of Remark 3.10, for the M2-brane to end on another kind of
brane, that other WZW model is to have the extended spacetime µm2brane (the original spacetime including
a condensate of M2s) as its target space. By Prop. 3.5, the Chevalley-Eilenberg algebra of the M2-brane
algebra is obtained from that of the super-Poincaré Lie algebra by adding one more generator c3 with
deg(c3) = (3, even) with differential defined by

dCE c3 := µm2brane

= ψ ∧ Γabψ ∧ ea ∧ eb
.

We can then define an extended spacetime Maurer-Cartan form θ̂ in Ω1
flat(R

11;N ,m2brane), extending the
canonical Maurer-Cartan form θ in Ω1

flat(R
11;N ,Rd;N), by picking any 3-form C3 ∈ Ω3(R11;N ) such that

ddRC3 = ψΓab ∧ ψ ∧ ea ∧ eb.
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Next, for every (n+ 1) cocycle on m2brane we get an n-dimensional WZW model defined on R11;N this
way. In particular, the next one we meet is the M5-brane cocycle. Indeed, there is the degree-7 cocycle

µ7 = ψΓa1···a5ψea1 ∧ · · · ea5 + C3 ∧ ψΓ
abψ ∧ ea ∧ eb : m2brane // R[6]

that was first observed in [4], then rediscovered several times, for instance in [47], in [7] and in [14]. Here we
identify it as an L∞ 7-cocycle on the m2brane super Lie 3-algebra. The L∞-extension of m2brane associated
with the 7-cocycle is a super Lie 6-algebra that we call m5brane.

It follows from this, with remark 3.10, that the M2-brane may end on a M5-brane whose WZW term
LWZW locally satisfies

dLWZW = µ7 = ψΓa1···a5ψea1 ∧ · · · ea5 + C3 ∧ ψΓ
abψ ∧ ea ∧ eb

This is precisely what in [7] is argued to be the action functional of the M5-brane (here displayed in the
absence of the bosonic contribution of the C-field). However, in order to get the expected structure of gauge
transformations, we need to go further. Namely, while the above local expression for the action functional
appears to be correct on the nose, its gauge transformations are not as expected for the M5: for the M5-
brane worldvolume theory the 2-form with curvature C3 is supposed to be a genuine higher 2-form gauge
field on the worldvolume, directly analogous to the Neveu-Schwarz B-field of 10-dimensional supergravity
spacetime; see [19]. As such, it is to have gauge transformations parameterized by 1-forms. But in the above
formulation fields are maps Σ6 → R

11;N into spacetime itself, and as such have no gauge transformations
at all. We can fix this by finding a better space X̂. In fact we should take that to be m2brane itself. As
indicated above, this is an extension

R[2] // m2brane // R11;N ,

and, hence, a twisted product of spacetime with R[2], the infinitesimal version of the moduli space of 2-form
connections. We see this more precisely below in Section 5.

Remark 4.10. By AdS7/CFT6 duality and by [49] the M5-brane is supposed to be the 6-dimensional
WZW model which is holographically related to the 7-dimensional Chern-Simons term inside 11-dimensional
supergravity compactified on a 4-sphere in analogy to how the traditional 2d WZW model is the holographic
dual of ordinary 3d Chern-Simons theory. By our discussion here that 7d Chern-Simons theory ought to be
the one given by the 7-cocycle. Indeed, we observe that this 7-cocycle does appear in the compactification
according to D’Auria-Fre [4]. Back in that article these authors worked locally and discarded precisely this
term as a global derivative, but in fact it is a topological term as befits a Chern-Simons term and may not
be discarded globally. This connects the discussion here to the holographic AdS7/CFT6-description of the
single M5-brane. Now a coincident N -tuple of M5-branes is supposed to be determined by a semisimple
Lie algebra and nonabelian higher gauge field data. Since AdS7/CFT6 is still supposed to apply, we are to
consider the nonabelian contributions to the 7-dimensional Chern-Simons term in 11d sugra compactified
to AdS7. These follow from the 11-dimensional anomaly cancellation and charge quantization. Putting this
together as discussed in [19, 20] yields the corresponding 7d Chern-Simons theory. Among other terms it is
controled by the canonical 7-cocycle µso

7 on the semisimple Lie algebra so. Since this extends evidently to
a cocycle also on the super Poincaré Lie algebra, we may just add it to the bispinorial cocycle that defines
the single M5, to get

R11;N=1 × so(10, 1)
ψe5ψ+〈ω∧[ω∧ω]∧[ω∧ω]∧[ω∧ω]〉 // R[6] .

By the general theory indicated here this defines a 6-dimensional WZW model. By the discussion in [19, 20]
it satisfies all the conditions imposed by holography. It is to be expected that this is part of the description
of the nonabelian M5-brane.
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Finally it is interesting to consider the symmetries of the M5-brane higher WZW model obtained this
way.

Definition 4.11. The polyvector extension [2] of sIso(10, 1) – called the M-theory Lie algebra [47] – is the
super Lie algebra obtained by adjoining to sIso(10, 1) generators {Qα, Z

ab} that transform as spinors with
respect to the existing generators, and whose non-vanishing brackets among themselves are

[Qα, Qβ] = i(CΓa)αβPa + (CΓab)Z
ab ,

[
Qα, Z

ab
]

= 2i(CΓ[a)αβQ
b]β .

Proposition 4.12. The degree-0 piece of the graded Lie algebra of infinitesimal automorphisms of m2brane,
Def. 2.12, is the “M-theory algebra” polyvector extension of the 11d super Poincaré algebra of Def. 4.11.

Proof. We leave this as an exercise to the reader. Hint: under the identification of FDA-language with
ingredients of L∞-homotopy theory as discussed here, one can see that this involves the computations dis-
played in [12]. �

4.5 The complete brane bouquet of string/M-theory

We have discussed various higher super Lie n-algebras of super-spacetime. Here we now sum up, list all
the relevant extensions and fit them into the full brane bouquet. To state the brane bouquet, we first need
names for all the branches that it has

Definition 4.13. The refined brane scan is the following collection of values of triples (d, p,N).

D
= p = 0 1 2 3 4 5 6 7 8 9

11 (1) m2brane (1) m5brane

10
(1,1)

D0brane

(1,0) stringhet
(1,1) stringIIA
(2,0) stringIIB
(2,0) D1brane

(1,1)
D2brane

(2,0)
D3brane

(1,1)
D4brane

(1,0) ns5branehet
(1,1) ns5braneIIA
(2,0) ns5braneIIB
(2,0) D5brane

(1,1)
D6brane

(2,0)
D7brane

(1,1)
D8brane

(2,0)
D9brane

9 (1)
8 (1)
7 (1)
6 (2,0) sdstring (2,0)
5 (1)
4 (1) (1)
3 (1)

The entries of this table denote super-L∞-algebras that organize themselves as nodes in the brane bouquet
according to the following proposition.

Proposition 4.14 (The brane bouquet). There exists a system of higher super-Lie-n-algebra extensions of
the super-translation Lie algebra Rd;N for (d = 11, N = 1), (d = 10, N = (1, 1)), for (d = 10, N = (2, 0)) and
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for (d = 6, N = (2, 0)), which is jointly given by the following diagram

ns5braneIIA

D0brane

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

D2brane

%%❑❑
❑❑

❑❑
❑❑

❑❑
D4brane

��

D6brane

yysss
ss
ss
ss
s

D8brane

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐

KK

DD✟✟✟✟✟✟✟✟✟ sdstring

d=6
N=(2,0)

❳❳❳❳
❳❳❳❳

❳❳❳❳

++❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳

stringIIA

d=10
N=(1,1)

��

stringhet

d=10
N=1

✐✐✐✐
✐✐✐✐

✐

tt✐✐✐✐
✐✐✐✐

✐

littlestringhet

d=6
N=1

❢❢❢❢❢
❢❢❢❢❢

❢❢❢❢❢

rr❢❢❢❢❢❢
❢❢❢❢❢

❢❢❢❢

OO

T

��

m5brane // m2brane d=11
N=1

// Rd;N ns5branehet
d=10
N=1

oo

stringIIB

d=10
N=(2,0)ssss

99ssss

(p, q)stringIIB

d=10
N=(2,0)

OO

Dstring

d=10
N=(2,0)❑❑❑❑

ee❑❑❑❑

(p, q)1brane

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
(p, q)3brane

::ttttttttt

(p, q)5brane

OO

(p, q)7brane

dd❏❏❏❏❏❏❏❏❏

(p, q)9brane

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

oo
S

//

where

• An object in this diagram is precisely a super-Lie-(p + 1)-algebra extension of the super translation
algebra Rd;N , with (d, p,N) as given by the entries of the same name in the refined brane scan, def.
4.13;

• every morphism is a super-Lie (p + 1)-algebra extension by an exceptional R-valued o(d)-invariant
super-L∞-cocycle of degree p+ 2 on the domain of the morphism;

• the unboxed morphisms are hence super Lie (p + 1)-algebra extensions of Rd;N by a super Lie algebra
(p+ 2)-cocycle, hence are homotopy fibers of the form

pbrane

��

⌋
// ∗

��
Rd;N

some cocycle // R[p+ 1] ,

• and the boxed super-L∞-algebras are super Lie (p+1)-algebra extensions of genuine super-L∞-algebras
(which are not plain super Lie algebras), again by R-cocycles

p2brane

��

⌋
// ∗

��
p1brane

some cocycle // R[p2 + 1] .

Proof. Using prop. 3.5 and the dictionary that we have established above between the language used in
the physics literature (“FDA”s) and super-L∞-algebra homotopy theory, this is a translation of the following
results that can be found scattered in the literature (some of which were discussed in the previous sections).
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• All N = 1-extensions of Rd;N=1 are those corresponding to the “old brane scan” [1]. Specifically the
cocycle which classifies the super Lie 3-algebra extension m2brane → R11;1 had been found earlier in
the context of supergravity around equation (3.12) of [4]. These authors also explicitly write down
the “FDA” that then in [44] was recognized as the Chevalley-Eilenberg algebra of the super Lie 3-
algebra m2brane (there called the “supergravity Lie 3-algebra”). Later all these cocycles appear in the
systematic classification of super Lie algebra cohomology in [9, 10, 11].

• The 7-cocycle classifying the super-Lie-6-algebra extension m5brane → m2brane together with that
extension itself can be traced back, in FDA-language, to (3.26) in [4]. This is maybe still the only
previous reference that makes explicit the Lie 6-algebra extension (as an “FDA”), but the corresponding
7-cocycle itself has later been rediscovered several times, more or less explicitly. For instance it appears
as equations (6) and (9) in [7]. A systematic discussion is in section 8 of [14].

• The extension stringIIA → R10;N=(1,1) by a super Lie algebra 3-coycle and the cocycles for the further
higher extensions D(2n)brane → stringIIA can be traced back to section 6 of [14].

• The extension stringIIB → R10;N=(2,0) by a super Lie algebra 2-coycle and the cocycles for the further
higher extensions D(2n + 1)brane → stringIIA, as well as the extension ns5braneIIB → Dstring follow
from section 2 of [40].

�

Remark 4.15. The look of the brane bouquet, Prop. 4.14, is reminiscent of the famous cartoon that displays
the conjectured coupling limits of string/M-theory, e.g. figure 4 in [48], or fig. 1 in [37]. Contrary to that
cartoon, the brane bouquet is a theorem. Of course that cartoon alludes to more details of the nature of
string/M-theory than we are currently discussing here, but all the more should it be worthwhile to have a
formalism that makes precise at least the basic structure, so as to be able to proceed from solid foundations.

5 Non-perturbative higher WZW models on higher super-orbispaces

In this final section we give a non-perturbative (globalized) refinement of the perturbative higher WZW-
models that we discussed so far. These non-perturbative higher WZW models are naturally formulated not
just in higher Lie theory as used so far, but in genuine higher differential geometry, which means in higher
smooth and supergeometric stacks. In the language of physics, stacks may best be thought of as higher or-
bispaces, the generalization of orbifolds and more generally of orbispaces (dropping the finiteness condition)
to the case where there are not just gauge transformations between points, but also higher gauge transfor-
mations between these. The idea of considering σ-models on orbifold target spaces is traditionally familiar,
and here we generalize this naturally by allowing these target spaces to be such higher (super-)orbispaces.
The reader can find an exposition of the technology relevant for the following in [22], a collection of all the
relevant definitions and constructions in [17], and the full technical details in [45].

In higher (super-)differential geometry every (super-) L∞-algebra g has Lie integrations to higher smooth
(super-)groups G; see [16] for details. (For g = stringhet the Lie integration is discussed in [31].) For instance,
the abelian L∞-algebra R[n] integrates to the circle n+1-group BnU(1). This is at the same time the higher
moduli stack for circle n-bundles (also called (n− 1)-bundle gerbes).

Recall then from the Introduction that a perturbative higher WZW model of dimension n is all encoded
by a morphism of (super-)L∞-algebras of the form

µ : g // R[n] .

Therefore, its non-perturbative refinement is to be an n-form connection on a circle n-bundle over the higher
group G. The latter is given by a morphism of higher smooth (super-)groups the form

Ωc : G // BnU(1) .
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(This is the higher and smooth analog of the canonical morphism G → K(Z, 3) defining the fundamental
class [ωG] ∈ H3(G;Z) for a compact, simple and simply connected Lie group G, in the traditional WZW
model.) Equivalently, this is a morphism of the corresponding delooping stacks

c : BG // Bn+1U(1) .

It is shown in [16] that this always and canonically exists, it is just the Lie integration c = exp(µ) of the
original L∞-cocycle. 4

Now, as indicated in the Introduction, the local Lagrangian for the non-perturbative WZW model is to
be an n-connection on this n-bundle whose curvature n+1-form is µ(θglobal), the value of the original cocycle
applied to a globally defined Maurer-Cartan form on G. Every higher group (in cohesive geometry [45]) does
carry a higher Maurer-Cartan form (see also [17]), given by a canonical map θG : G → ♭dRBG with values
in the (nonabelian) de Rham hypercohomology stack ♭dRBG. Exactly as [ωG] for a Lie group is represented
by the closed left-invariant 3-form ωG = µ(θG ∧ θG ∧ θG), where θG is the Maurer-Cartan form of G, the
morphism Ωc has a canonical factorization

G

Ωc **❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯
θG // ♭dRBG

♭dRc // ♭dRBn+1U(1)

BnU(1) ,

curv

OO

where ♭dRBG and ♭dRB
nU(1) are the higher smooth stacks of flat G-valued and of flat BnU(1)-valued

differential forms, respectively, θG is the Maurer-Cartan form, and curv : BnU(1) → ♭dRB
n+1U(1) is the

canonical curvature morphism (see [16, 17] for details).

There is, however, a fundamental difference between the general case of a higher smooth group and the
classical case of a compact Lie group. Namely, the higher Maurer-Cartan form θG : BG→ ♭dRBG will not,
in general, be represented by a globally defined flat differential form with coefficients in the L∞-algebra g.
In other words, we do not have, in general, a factorization

Ω1
flat(−; g)

��
G

::

θG // ♭dRBG

as in the case of compact Lie groups. Rather, in general θG is a genuine hyper-cocycle: a collection of local
differential forms on an atlas for G, with gauge transformations where their domain of definition overlaps
and higher gauge transformations on higher intersections. The universal way to force a globally defined
curvature form is to consider the smooth stack G̃ which is the universal solution to the above factorization
problem. That is, we consider the (higher) smooth stack G̃ defined as the following homotopy pullback

G̃
θglobal //

⌋
//

��

Ω1
flat(−; g)

��
G

θG // ♭dRBG

in higher supergeometric smooth stacks. In conclusion then the non-perturbative WZW-model induced by
the cocycle µ is to be an n-connection local Lagrangian of the form

LWZW : G̃ // BnU(1)conn ,

4Here and in the following we use U(1) = R/Z for brevity, but in general what appears is R/Γ, for Γ →֒ R the discrete
subgroup of periods of µ; see [16] for details.

21



satisfying two conditions:

1. its curvature (n+ 1)-form is the evaluation of µ on the globally defined Maurer-Cartan form;

2. the underlying n-bundle is the higher group cocycle Ωc given by Lie integration of µ.

The following proposition now asserts that this indeed exists canonically and is essentially uniquely.

Proposition 5.1. On G̃ there is an essentially unique factorization of the globally defined invariant form
µ(θglobal) through an extended WZW action functional LWZW

G̃

LWZW $$❏
❏

❏
❏

❏
❏
θglobal // Ωflat(−, g)

µ // Ωn+1
cl

BnU(1)conn ,

F(−)

88rrrrrrrrrr

such that the underlying smooth class G→ BnU(1) is the looping of the exponentiated cocycle c = exp(µ).

Proof. One considers the smooth stacks ♭BG and ♭Bn+1U(1) of G-principal bundles and U(1)-principal
(n + 1)-bundles with flat connections, respectively, together with the canonical morphisms ♭dRBG → ♭BG
and ♭dRB

n+1U(1) → ♭Bn+1U(1) (again, see [16, 17] for definitions). By naturality of these morphisms one
has a homotopy commutative diagram of the form

♭dRBG
♭dRc //

��

♭dRB
n+1U(1)

��
♭BG

♭c // Bn+1U(1) .

Then, by naturally of the inclusions Ω1
flat(−; g) → ♭dRBG and Ωn+1

cl = Ω1
flat(−;R[n]) → ♭dRB

n+1U(1), one
has a homotopy commutative diagram

Ω1
flat(−; g)

µ //

��

Ωn+1
cl

��
♭dRBG

♭dRc // ♭dRBn+1U(1) .

Finally, since by definition ♭dRBG is the homotopy fiber of the forgetful morphism ♭BG → BG, we have a
homotopy pullback diagram of the form

G ≃ ΩBG //

��

♭dRBG

��
∗ // ♭BG .

Pasting together the above three diagrams and the homotopy commutative diagram defining G̃ we obtain
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the big homotopy commutative diagram

G̃

yysss
ss
ss
ss
ss
s

θglobal

''PP
PP

PP
PP

PPP
PP

G

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

θ

%%❏❏
❏❏

❏❏
❏❏

❏❏
❏

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

Ω1
flat(−, g)

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦ µ

&&▼▼
▼▼

▼▼
▼▼

▼▼

∗

��❅
❅❅

❅❅
❅❅

❅❅
♭dRBG

yyttt
tt
tt
tt
t

♭dRc

''❖❖
❖❖

❖❖❖
❖❖❖

❖❖
Ωn+1

cl ,

xxqqq
qq
qq
qq
q

♭BG

♭c %%❑❑
❑❑

❑❑
❑❑

❑❑
♭dRB

n+1U(1)

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♭Bn+1U(1)

and hence the homotopy commutative diagram

G̃

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈

µ(θglobal)

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

∗

0 ##❍
❍❍

❍❍
❍❍

❍❍
❍ Ωn+1

cl

yysss
ss
ss
ss
s

♭Bn+1U(1)

as the outermost part of the above big diagram. Then, by the universal property of the homotopy pullback,
this factors essentially uniquely as

G̃

��

µ(θglobal)

��

LWZW

��✤
✤
✤

BnU(1)conn

zz✈✈✈
✈✈
✈✈
✈✈
✈✈ F(−)

&&▲▲
▲▲

▲▲
▲▲

▲▲

∗

0 $$❍
❍❍

❍❍
❍❍

❍❍
❍ Ωn+1

cl ,

xxrrr
rr
rr
rr
r

♭Bn+1U(1)

u} rr
rr
rr
rr
rr
r

rr
rr
rr
rr
rr
r

where we have used the fact that the stack BnU(1)conn of U(1)-n-bundles with connection is naturally the
homotopy fiber of the inclusion Ωn+1

cl → ♭Bn+1U(1); see [16]. �

Remark 5.2. The above proposition has been stated having in mind a cocycle with integral periods, so
that R/Z ∼= U(1). The generalization to an arbitrary subgroup of periods Γ →֒ R is immediate.

Remark 5.3. The construction of the full higher WZW term LWZW in Prop. 5.1 turns out to canonically
exhibit the higher WZW-type theory as the boundary theory of a higher Chern-Simons-type theory, in the
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precise sense of Def. Prop. 3.1. To see this, first recall from [17, 46, 45] that an (n + 1)-dimensional local
Chern-Simons-type prequantum field theory for a cocycle c : BG→ Bn+1U(1) as above is a map of smooth
higher moduli stacks of the form

LCS : BGconn → Bn+1U(1)conn

which fits into a homotopy commutative diagram of the form

♭BG
♭c //

��

♭Bn+1U(1)

��
BGconn

��

LCS // Bn+1U(1)conn

��
BG

c // Bn+1U(1) .

This hence is a refinement to differential cohomology that respects both the inclusion of flat higher connec-
tions as well as the underlying universal principal n-bundles. In [16] is given a general construction of such
LCS by a stacky/higher version of Chern-Weil theory, which applies whenever the cocycle µ is in transgres-
sion with an invariant polynomial on the L∞-algebra g. For instance ordinary 3d Chern-Simons theory is
induced this way from the transgressive 3-cocycle 〈−, [−,−]〉 on a semisimple Lie algebra, and the nonabelian
7d Chern-Simons theory on String 2-connections which appears in quantum corrected 11d supergravity is
induced by the corresponding 7-cocycle [19].

Now by pasting this diagram below the diagram

G̃
θglobal

⌋
//

��

Ω1
flat(−, g)

��

µ // Ωn+1
cl

��
G

θG // ♭dRBG
♭dRc // ♭dRBn+1U(1)

appearing in the proof of Prop. 5.1 we obtain the homotopy commutative diagram of smooth higher moduli
stacks

G̃
θglobal

⌋
//

��

Ω1
flat(−, g)

��

µ // Ωn+1
cl

��
G

θG

⌋
//

��

♭dRBG
♭dRc //

��

♭dRB
n+1U(1)

��
∗ //

��

♭BG
♭c //

��

♭Bn+1U(1)

��
∗ // BGconn

LCS // Bn+1U(1)conn .
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Inside the above diagram one reads the correspondence

G̃

yysss
ss
ss
ss
ss
s

θglobal

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

∗

0 %%❑❑
❑❑

❑❑
❑❑

❑❑
❑ BGconn ,

LCSww♦♦♦
♦♦♦

♦♦
♦♦♦

Bn+1U(1)conn

LWZW
s{ ♦♦♦

♦♦♦
♦♦♦

♦♦♦
♦

♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦

which equivalently expresses the higher WZW term as a cocycle in degree n differential cohomology twisted
by the Chern-Simons term evaluated on the globally defined Maurer-Cartan form. According to definition
3.1 this precisely exhibits LWZW as a boundary condition for LCS.

This general mathematical statement seems to be well in line with the relation between higher Chern-
Simons terms and higher WZW models found in [49]. Notice that with LWZW realized as a boundary theory
of LCS this way, any further boundary of LWZW, notably as in Def. 3.2, makes that a corner of LCS. In
fact, in [46] is shown that LCS itself is already naturally a boundary theory for a topological field theory
of yet one dimension more, namely a universal higher topological Yang-Mills theory. Hence we find here a
whole cascade of corner field theories of arbitrary codimension. For instance from the results above we have
the sequence of higher order corner theories that looks like

M2-brane
�

� ends on // M5-brane
�

� WZW boundary of // 7d CS in 11d Sugra
�

� boundary of // 8d tYM .

Such hierarchies of higher order corner field theories have previously been recognized and amplified in string
theory and M-theory [41, 42, 43]. More discussion of the above formalization of these hierarchies in local
(multi-tiered) prequantum field theory is in [46]. Closely related considerations have appeared in [24].

To further appreciate the abstract construction of the higher WZW term LWZW in Prop. 5.1, it is helpful
to notice the following two basic examples, which are in a way at opposites ends of the space of all examples.

Example 5.4. For g an ordinary (super-)Lie algebra and G an ordinary (super-)Lie group integrating it, we
have ♭dRBG ≃ Ω1

flat(−, g) [45]. This implies that in this case G̃ ≃ G, hence that there is no extra “differential
extension”. Now for µ a 3-cocycle, the induced LWZW is the traditional WZW term, refined to a Deligne
2-cocycle/bundle gerbe with connection as in [27, 26].

Example 5.5. For g = R[n] we can take the smooth higher group integrating it to be the (n + 1)-group
G = BnU(1). In this case, as shown in [45], the definition of G̃ is precisely the characterization of the moduli
n-stack of U(1)-n-bundles with connections, so that

G̃ ≃ BnU(1)conn

in this case. Then for µ : g → R[n] the canonical cocycle (the identity), it follows that LWZW is the identity,
hence is the canonical U(1)-n-connection on the moduli n-stack of all U(1)-n-connections. This describes
the extreme case of a higher WZW-type field theory with no σ-model fields and only a “tensor field” on its
worldvolume, and whose action functional is simply the higher volume holonomy of that higher gauge field.

Generic examples of higher WZW theories are twisted products of the above two basic examples:

Example 5.6. Consider K a higher (super-)group extension of a Lie (super-)group G of the form

BnU(1) // K // G .

For instance G may be a translation super-group Rd;N and K the Lie integration of one of the extended
superspaces such as m2brane considered above (spacetime filled with a brane condensate, Remark 3.11). This
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means that K is a twisted product of the (super-)Lie group G and the (n+ 1)-group BnU(1), which appear
in examples 5.4 and 5.5 above. Since the construction of LWZW in the proof of Prop. 5.1 suitably respects
products, it follows that the field content of a higher WZW model on the higher smooth (super-)group K is
a tuple consisting of

1. a σ-model field with values in G;

2. an n-form higher gauge field,

both subject to a twisting condition which gives the higher gauge field a twisted Bianchi identity depending
on the σ-model fields.

In particular, for the extended spacetime given by an M2-brane condensate in 11-dimensional (N = 1)-
super spacetime, this says that the M5-brane higher WZW model according to Section 4.4 has fields given
by a multiplet consisting of embedding fields into spacetime and a 2-form higher gauge field (“tensor field”)
on its worldvolume. Notice that the higher gauge transformations of the 2-form field are correctly taken into
account by this full (in particular non-perturbative) construction of the WZW term as a higher prequantum
bundle.
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[3] R. D’Auria, P. Fré, and T. Regge, Graded Lie algebra, cohomology and supergravity, Riv. Nuovo Cimento
3 (1980), 1–37.
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