Student performance of the general physical examination in internal medicine: an observational study

Catharina M Haring*, Bernadette M Cools, Jos WM van der Meer and Cornelis T Postma

Abstract

Background: Many practicing physicians lack skills in physical examination. It is not known whether physical examination skills already show deficiencies after an early phase of clinical training. At the end of the internal medicine clerkship students are expected to be able to perform a general physical examination in every new patient encounter. In a previous study, the basic physical examination items that should standardly be performed were set by consensus. The aim of the current observational study was to assess whether medical students were able to correctly perform a general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine.

Methods: One hundred students who had just finished their clerkship internal medicine were asked to perform a general physical examination on a standardized patient as they had learned during the clerkship. They were recorded on camera. Frequency of performance of each component of the physical examination was counted. Adequacy of performance was determined as either correct or incorrect or not assessable using a checklist of short descriptions of each physical examination component. A reliability analysis was performed by calculation of the intra class correlation coefficient for total scores of five physical examinations rated by three trained physicians and for their agreement on performance of all items.

Results: Approximately 40% of the agreed standard physical examination items were not performed by the students. Students put the most emphasis on examination of general parameters, heart, lungs and abdomen. Many components of the physical examination were not performed as was taught during precourses. Intra-class correlation was high for total scores of the physical examinations 0.91 (p <0.001) and for agreement on performance of the five physical examinations (0.79-0.92 p <0.001).

Conclusions: In conclusion, performance of the general physical examination was already below expectation at the end of the internal medicine clerkship. Possible causes and suggestions for improvement are discussed.

Keywords: General physical examination, Undergraduate medical education, Assessment

Background

The physical examination is a key component of clinical medicine. Critical decisions in patient management often emerge from physical examination findings. Repeated careful physical examination of recently admitted patients has been shown to change diagnoses and treatment in more than one in every four patients [1]. Achievement of proficiency in the performance of a physical examination should therefore be a priority in the training of medical students.

Nevertheless several studies have shown that many practicing doctors are frequently not fully competent in physical examination. For instance, a study on basic physical examination skills of internal medicine residents revealed important deficiencies [2]. Likewise, other studies show deficiencies in interns’ and students’ physical examination skills [3-5]. These studies evoke serious concerns about the general quality of clinical care, since physical examination is a critical factor in clinical decision making.
So, somewhere in the curriculum of the medical student the learning goals regarding physical examination are not met. It is possible that overall decline in physical examination skills already appears in an early stage of medical training, as has been shown for breast examination [6]. In general, students tend to start the clinical clerkships with some level of basic skills, in many curricula acquired during systematic skills training courses in preclinical and in early clinical courses. The internal medicine clerkship is to a large extent the setting in which the actual process of clinical skills acquisition is supposed to take place. As decline in physical examination skills could already occur at this stage, knowledge regarding the level of performance after the internal medicine clerkship is essential.

In our training region we expect students to perform a general screening physical in every encounter with a new patient, regardless of the presenting problem. This instructional design was chosen and implemented as a precaution not to cause cognitive overload in these students. Cognitive overload could easily occur since the students are only at a novice level considering history taking and clinical reasoning at this stage of their training and cases in internal medicine are often complex. The content of this general screening physical examination was previously set by consensus [7]. In this study we analyzed if medical students were able to correctly perform the consensus based core general physical examination regarding completeness as well as technique at the end of the clerkship internal medicine.

Methods
The physical examinations of 100 medical students were recorded at the completion of their internal medicine clerkship. During the eight weeks of this clerkship they were trained to perform physical examinations in clinical practice with real patients. This clerkship was preceded by systematic clinical skills training of 8 weeks duration. The students were instructed to do a standard general, or core physical examination, as they had learned during the systematic skills training and practiced during the clerkship. The examinations took place in a standard examination room at the outpatient clinic to which they were accustomed. Students had to bring their own instruments, like stethoscopes. Disposable items were provided. They had to examine a specially trained person who was instructed not to express any physical complaints during the examination. No other persons were present in the examination room. A camera was positioned at the head end of the examination bed.

In a previous study we reported the consensus the trainers in our region had reached on the components of the physical examination that should be included in a standard general or core physical examination [7]. The time of the study, this consensus was constructed but not yet integrated in physical examination training. Therefore we could then analyze whether students perform a physical examination as generally expected at that time. An adapted checklist containing 59 items was constructed. The adapted checklist contained four more items than the original list. Two original items (reflexes of the upper extremities and reflexes of the lower extremities) were subdivided to be able to observe performance of the individual maneuvers. One last item (measuring blood pressure on both arms) was added after group discussion with regional trainers. A list of 30 extra items not included in the standard was added to the checklist to facilitate the recording of extra performed items. For each standardized item a short description was included as to how it should be performed in accordance with the preferred textbook and linked website with examples of the physical examination on each topic [8]. These descriptions were considered the gold standard and were used for rater instruction. In the checklist the performance of the physical examination items could be scored as: adequate, inadequate or technique not completely visible and assessable. Inspection was only taken into account as indeed performed if students clearly spent time to inspect a certain part of the body. One physician (CH) noted the frequency and adequacy of performance of all components of the physical examination for 100 students. For analysis of the reliability of the observations, five physical examinations were randomly selected and rated by three physicians, all experienced in physical examination training. Inter-rater reliability was estimated by calculation of the intra-class correlation coefficient for total scores of the physical examinations and for agreement on performance of all 59 items per physical examination. Intra-class correlation coefficients were computed, using an absolute agreement definition. All statistics were calculated using the SPSS 16.0 package program.

Total scores of the five physical examinations were computed as follows: Students received two points for an adequately performed item, one point for an inadequately performed item and no points when an item was omitted. When an item was done but the technique was not assessable on the recording, the item was registered as missed value and not included in the analysis.

Student participation was on a voluntary basis. The standardized patients were all actors that regularly participate in physical examination training sessions. They were all asked informed consent before participation. Approval of the institutional ethical review board was not required according to the guidelines of the institutional research board based on the Dutch law (WMO).

Results
The 100 recordings were assessed and analyzed. In general the students performed a physical examination that was
less extensive than expected by their supervisors (Table 1).
On average 36 of the 59 items were completed. The frequency
with which an item was performed varied widely
between 100 and 0 times. The percentage of students con-
ducting an item adequately varied considerably between
the items. There were eight items, listed in Table 2, not
included in the standard physical examination that were
done extra by more than five percent of the students.
The performance of the items was in the majority of
cases easily visible on the recording (Table 1). Only 107
(2.9%) of the items could not be adequately assessed,
mostly caused by the students positioned between the
patient and the camera. Inter-rater reliability expressed
as the intra-class correlation coefficient for the total
scores of the physical examinations was 0.91 (p <0.001).
For five physical examinations rated by three different
physicians this ranged from 0.79 to 0.92 (p < 0.001) per
physical examination scored (Table 3).

Discussion
This study shows that medical students in general did
not perform an adequate standard physical examination
at the end of the internal medicine clerkship. Approx-
imately 40% of the items that should be performed were
omitted, while many items were performed incorrectly.
This is a relevant and important problem. The standard
by which the students were assessed was a core physical
examination defined by the clinical teachers and practicing
physicians of our university medical centre and its affili-
ated clinics. A full head-to-toe exam is at present under
reconsideration in many respects, therefore a 55-item core
exam covering the most important topics as basis for a
further analysis and management plan could be seen as a
reasonable to fulfill goal during the initial clinical training.
In this study the students were instructed to perform a
physical examination of a simulated patient as they them-
selves deemed adequate. As far as we know this is the first
description of such a set-up at the end of a clerkship.
The outcome of this study should raise concern. During
the clerkship of internal medicine, students are supposed
to practice and ultimately master the general physical
examination. It appears that deficiencies in the execution
of the physical examination are nevertheless already pre-
sent at the end of the basic training in internal medicine.
What is worrisome is that some elements defined as
components of a core physical examination were omitted
by over 90% of the students. The students involved in
this research knew they were being observed, and it is
therefore very possible that they performed an even more
thorough examination than otherwise would have been
done under routine circumstances. It is known that physi-
cians perform a more extensive physical examination in an
examination setting as opposed to what they actually do
when they are observed in a doctor-patient encounter [9].

Inter-rater reliability with respect to total scores of the
physical examinations was excellent. Indicating that pro-
ducing a total score of a complete physical examination
by this checklist, consisting of many items, could be done
reliably. This has been shown before in a larger study
where an inter-rater variability of total encounter scores of
an 138-item head-to-toe physical examination by trained
patient instructors showed an intra-class correlation coef-
ficient of 0.95 [10]. We were also able to reach high intra-
class correlation coefficients for absolute agreement on
performance of individual total physical examinations.
This implies that, when using experienced raters, per-
formance of an individual total physical examination can
be reliably assessed as a whole and provides solid ground
for feedback.

There appear to be various underlying potential causes
for the discrepancy between expected and actual perform-
ance in physical examination in this early phase of clinical
training. From a previous study we know that students will
be confronted with different opinions of their supervisors
concerning the extent of the physical examination that
should be performed when examining a patient for the
first time. In addition, students may see their supervisors
perform less extensive physical examinations [7]. What
adds to the problem is that the student’s interaction with
patients is rarely observed. Deficiencies arising during the
clerkships will not be noted and corrected and hence there
is possibly little direct formative feedback during and
about patient contacts. We know that in practice direct
observation of physical examination skills appears not to
be standard practice [11,12]. Some researchers even noted
that 80% of students reported never being observed by
faculty while performing a complete physical examina-
tion [13]. Apparently, supervising physicians tend to
rely mainly on the written or oral report of the physical
examination presented by the student and assume it
was complete and accurately performed [14].

Limitations
In our university medical centre the clerkship in internal
medicine is preceded by two four week courses of system-
atic skills training including communication and history
taking, clinical reasoning and physical examination. Stu-
dents must pass a 12 station objective structured clinical
examination (OSCE) in order to be admitted to the next
part of the clerkships which is an introductory clerkship.
Physical examination is an integral part of this OSCE.
Thereafter the students follow a 4 week introductory
course in a clinical setting during which they are intensively
observed in their patient encounters and also assessed in
their clinical competence including physical examination.
The training in these courses is provided by experienced
clinical teachers. Only if they also pass this training success-
fully are they admitted to the internal medicine clerkship.
<table>
<thead>
<tr>
<th>Maneuver</th>
<th>Performed n = 100</th>
<th>Performed adequate (%) if technique assessable</th>
<th>Performed, technique not assessable n = 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auscultation of the abdomen</td>
<td>100</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>Measuring blood pressure</td>
<td>100</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Percussion of the lungfields</td>
<td>100</td>
<td>57</td>
<td>5</td>
</tr>
<tr>
<td>Palpation of the lymph nodes of the head and neck</td>
<td>100</td>
<td>54</td>
<td>15</td>
</tr>
<tr>
<td>Inspection of the oral cavity and pharynx</td>
<td>100</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Auscultation of the lungfields</td>
<td>99</td>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>Light and deep palpation of the abdomen</td>
<td>99</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>Auscultation of the heart</td>
<td>98</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Percussion of the abdomen</td>
<td>98</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Palpation of the dorsalis pedis artery</td>
<td>97</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Palpation of the liver</td>
<td>97</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Assessment of the level of diaphragmatic dullness</td>
<td>95</td>
<td>82</td>
<td>10</td>
</tr>
<tr>
<td>Counting pulse rate</td>
<td>94</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>Palpation of the posterior tibial artery</td>
<td>92</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>Percussion of the liver span</td>
<td>91</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Palpation of the spleen</td>
<td>91</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>Patellar tendon reflex</td>
<td>91</td>
<td>94</td>
<td>3</td>
</tr>
<tr>
<td>Testing pupillary light reflex</td>
<td>91</td>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td>Assessment of sinus tenderness</td>
<td>87</td>
<td>99</td>
<td>6</td>
</tr>
<tr>
<td>Auscultation of the carotid artery</td>
<td>85</td>
<td>99</td>
<td>2</td>
</tr>
<tr>
<td>Palpation of the femoral artery</td>
<td>85</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>Assessment of extracocular muscle strength</td>
<td>85</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>Achilles tendon reflex</td>
<td>83</td>
<td>84</td>
<td>16</td>
</tr>
<tr>
<td>Biceps tendon reflex</td>
<td>80</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Measuring jugular venous pressure</td>
<td>78</td>
<td>46</td>
<td>8</td>
</tr>
<tr>
<td>Measuring weight</td>
<td>76</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Palpation carotid artery</td>
<td>75</td>
<td>99</td>
<td>3</td>
</tr>
<tr>
<td>Examination of the thyroid gland</td>
<td>75</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>Plantar reflex</td>
<td>73</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Measuring height</td>
<td>72</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Inspection of the conjunctiva</td>
<td>72</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>Percussion of the heart</td>
<td>71</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Percussion of the spleen</td>
<td>68</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Measuring blood pressure standing</td>
<td>65</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>Assessment of cardiac movements</td>
<td>64</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Measuring blood pressure on both arms</td>
<td>61</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Auscultation of the femoral artery</td>
<td>56</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>Palpation of the popliteal artery</td>
<td>56</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Examination of peripheral edema</td>
<td>48</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>Assessment of kidney tenderness</td>
<td>43</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Palpation of the inguinal lymph nodes</td>
<td>38</td>
<td>71</td>
<td>0</td>
</tr>
<tr>
<td>Percussion of the spine</td>
<td>37</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Palpation of the axillary lymph nodes</td>
<td>36</td>
<td>63</td>
<td>4</td>
</tr>
</tbody>
</table>
Although we presuppose that competence in physical examination at the beginning of the clerkship is accurate given all of this training, this was not determined by the same extended test procedure as we used in this study. The study did not take place in real time by observation of real patient encounters during the clinical clerkship. For organizational reasons, privacy and ethical concerns we chose for a set-up with standardized patients. This may have influenced the behavior of the students. However, to limit this effect, the setting was the clinical environment to which the students were accustomed.

Students were not aware of the test criteria when they participated in the study. It could be argued that they may have performed better if they had been informed. Our argument for the taken strategy was to get a better reflection of what they actually do in practice. We argued that if we provided the criteria, they would act upon these and not perform as if in real practice.

Table 1 Actual student performance of the general physical examination in internal medicine (Continued)

<table>
<thead>
<tr>
<th>Extra performed physical examination item</th>
<th>Percentage of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global inspection of the extremities</td>
<td>31 39 0</td>
</tr>
<tr>
<td>Palpation of the abdominal aorta</td>
<td>30 43 0</td>
</tr>
<tr>
<td>Inspection of the abdomen</td>
<td>22 95 0</td>
</tr>
<tr>
<td>Assessment of skin turgor</td>
<td>19 90 0</td>
</tr>
<tr>
<td>Inspection of the chest</td>
<td>16 94 0</td>
</tr>
<tr>
<td>Triceps tendon reflex</td>
<td>11 63 0</td>
</tr>
<tr>
<td>Palpation of the breasts</td>
<td>9 56 0</td>
</tr>
<tr>
<td>Counting breathing frequency</td>
<td>6 100 0</td>
</tr>
<tr>
<td>Percussion of the bladder</td>
<td>5 100 0</td>
</tr>
<tr>
<td>Applying vertical pressure to the spine</td>
<td>2 100 0</td>
</tr>
<tr>
<td>Total inspection of the skin</td>
<td>2 50 0</td>
</tr>
<tr>
<td>Assessment of sensibility</td>
<td>2 0 0</td>
</tr>
<tr>
<td>Inspection of the breasts</td>
<td>1 100 0</td>
</tr>
<tr>
<td>Assessment of the curvature and mobility of the spine</td>
<td>1 0 0</td>
</tr>
<tr>
<td>Assessment of strength of the upper extremities</td>
<td>1 0 0</td>
</tr>
<tr>
<td>Assessment of strength of the lower extremities</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

Table 2 Extra performed physical examination, not included in the standard physical examination, performed by more than 5% of the students.

Table 3 Interrater reliability

<table>
<thead>
<tr>
<th>Performed physical examination</th>
<th>ICC</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 1</td>
<td>0.87</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Student 2</td>
<td>0.79</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Student 3</td>
<td>0.85</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Student 4</td>
<td>0.82</td>
<td>P < 0.001</td>
</tr>
<tr>
<td>Student 5</td>
<td>0.92</td>
<td>P < 0.001</td>
</tr>
</tbody>
</table>

Interrater reliability for five complete physical examinations of five randomly chosen students rated by three physicians.
examination should be obligatory and not an option. Finally, a skills improvement program throughout the clinical clerkships might increase the frequency in which physical examination is used, as has been shown previously for residents [16]. If students cannot perform this core exam completely or correctly, they may not develop the necessary range of normal findings by own experience, and may be developing incorrect habits that will remain with them in their clinical practice. Even residents are only rarely directly observed. This indicates a need for continuous monitoring of the development of proficiency of the physical examination skills and remedial teaching if necessary.

Conclusion
Performance of the general physical examination was already below expectation at the end of the internal medicine clerkship.

Competing interest
The authors declare that they have no competing interest.

Authors’ contributions
CH participated in the design of the study, acquisition of data, analyzed the data, and drafted the manuscript. JM participated in the design of the study and revised the manuscript. BC participated in acquisition and interpretation of data. CP participated in the design of the study, acquisition of data, coordination of the study, and revised the manuscript. All authors have read and approved the manuscript.

Authors’ information
Catharina M Haring, MD is a nephrologist and working as a Researcher in Medical Education at the Radboud University medical center. Her main medical education interest is preclinical medical education at the department of Internal Medicine of the Radboud University medical center. Her main medical education interest is assessment of clinical competence in Internal Medicine. Cornelis T Postma, MD PhD is associate professor of Medicine and principal lecturer in medical education at the department of Internal Medicine of the Radboud University medical center. His main medical education interests are in the training of practical medical education and medical competence, and in the field of clinical assessment. Jos WM van der Meer, MD, PhD is emeritus Professor of Medicine, principle lecturer in medical education and former head of the department of Internal Medicine of the Radboud University medical center. Bernadette M Cools, MD is an internist and junior principal lecturer in medical education at the department of Internal Medicine of the Radboud University medical center. Her main medical education interest is preclinical systematic skills training.

Acknowledgements
We would like to thank Yvonne Hoogeveen for critically reading and correcting English language in the manuscript.

Received: 2 December 2013 Accepted: 3 April 2014
Published: 8 April 2014

References

Cite this article as: Haring et al.: Student performance of the general physical examination in internal medicine: an observational study. BMC Medical Education 2014 14:73.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit