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ABSTRACT
One of the major goals in metagenomics is to identify the organisms present in a
microbial community from unannotated shotgun sequencing reads. Taxonomic pro-
filing has valuable applications in biological and medical research, including disease
diagnostics. Most currently available approaches do not scale well with increasing
data volumes, which is important because both the number and lengths of the reads
provided by sequencing platforms keep increasing. Here we introduce FOCUS, an
agile composition based approach using non-negative least squares (NNLS) to report
the organisms present in metagenomic samples and profile their abundances. FO-
CUS was tested with simulated and real metagenomes, and the results show that our
approach accurately predicts the organisms present in microbial communities. FO-
CUS was implemented in Python. The source code and web-sever are freely available
at http://edwards.sdsu.edu/FOCUS.

Subjects Computational Biology
Keywords Metagenomes, Modeling, k-mer

INTRODUCTION
Microbes are more abundant than any other cellular organism (Whitman, Coleman &

Wiebe, 1998), and it is important to understand which organisms are present and what

they are doing (Handelsman, 2004). In many environments a majority of the microbial

community members cannot be cultured, and metagenomics is a powerful tool to directly

probe uncultured genomes and understand the diversity of microbial communities by

using only their DNA (Sharon & Banfield, 2013).

Understanding microbial communities is important in many areas of biology. For

example, metagenomes can distinguish taxonomic and functional signatures of microbes

associated with marine animals (Trindade-Silva et al., 2012) or disease states (Belda-Ferre

et al., 2012). Large sequencing volumes, short read lengths, and sequencing errors make

the task of identifying the diversity of organisms present in metagenomes challenging
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(Mande, Mohammed & Ghosh, 2012). Many programs exist for this and they are either

homology- or composition-based.

Homology-based programs normally use the BLAST program (Altschul et al., 1997) to

identify the best hit in a large database output. In MG-RAST (Meyer et al., 2008) sequences

are aligned to a set of databases in order to classify the metagenomic sample. MetaPhlAn

(Segata et al., 2012) and GenomePeek (K McNair, R Edwards, unpublished data) use a

reduced database containing only marker genes, e.g., unique clades and housekeeping

genes, allowing the BLAST search to be fast. PhymmBL (Brady & Salzberg, 2011) improves

the BLAST results using interpolated Markov models. GASiC (Lindner & Renard, 2013)

uses Bowtie (Langmead et al., 2009) and the reference genomes similarities to correct the

observed abundance estimated. Parallel-Meta (Su, Xu & Ning, 2012) a fast program, which

requires a GPU, uses megaBLAST (Zhang et al., 2000) and HMM (Hidden Markov Model)

to improve the homology result. Most of these applications classify sequences individually,

and generate a taxonomic profile by summing the bins.

In general, composition-based approaches use oligonucleotide (k-mer) frequencies.

Taxy (Meinicke, Aßhauer & Lingner, 2011) uses oligonucleotide distributions in

metagenomes and in reference genomes and uses mixture modeling to identify the

organisms present in the metagenome, and RAIphy (Nalbantoglu et al., 2011) identifies

organisms using oligonucleotides and relative abundance index.

We developed a new approach that reconstructs a taxonomic profile using an ensemble

k-mer composition of the entire metagenome. We compute the optimal set of organism

abundances using non-negative least squares (NNLS) to match the metagenome k-mer

composition to organisms in a reference database. k-mers have previously been used to

cluster unknown sequences (Teeling et al., 2004; McHardy et al., 2007) and NNLS has been

used to identify the genera present in metagenomic samples based on variations in gene

count (Carr, Shen-Orr & Borenstein, 2013). Here we combine these two approaches in

FOCUS, an ultra fast, accurate, composition based approach to identify the taxa present in

a metagenome. We compare the performance of FOCUS to GASiC, MetaPhlAn, RAIphy,

PhymmBL, Taxy, and MG-RAST.

METHODS
FOCUS workflow is described in Fig. 1. As in most composition-based approaches, a

training set is pre-generated using the complete genomes information, and here the

non-negative least squares (NNLS) is applied to compute the relative abundance of each

organism in the database into the unknown data.

Reference dataset
FOCUS requires a group of reference genomes to model and identify the organisms present

in a metagenome. 2,766 complete genomes were downloaded from the SEED servers

(Aziz et al., 2012) on 20 December 2013 (see Table S1). k-mer frequencies (k = 6–8,

default: k = 7) were calculated for both strands using Jellyfish 1.1.6 (Marçais & Kingsford,

2011), reducing the number of dimensions (Strous et al., 2012), and k-mer counts were
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Figure 1 Workflow of the FOCUS program.

normalized by the sum of frequencies. The user can also create their own training set,

which is scalable to the quickly increasing number of available reference genomes because

it also uses Jellyfish in the k-mer counting.

Simulated and real metagenomes
In order to evaluate FOCUS performance, a simulated dataset of short sequences

(SimShort), containing 500,000 single 100 nt reads, was created using the supplied

error model for Illumina GA IIx with TrueSeq SBS Kit v5-GA using GemSim (McElroy,

Luciani & Thomas, 2012) (Table S2). The previous published high complexity sim-

ulated dataset (SimHC) from FAMeS (Mavromatis et al., 2007) was also used in the

evaluation. Moreover, real metagenomic datasets were selected as test cases: one under

healthy conditions, one under disease conditions (MG-RAST accession 4447943.3 and

4447192.3) (Belda-Ferre et al., 2012), one fecal sample from a healthy individual

(MG-RAST accession 4440945.3) (Kurokawa et al., 2007), and three hundred datasets

from the Human Micriobiome Project (HMP) (Consortium, 2012) (Table S3) were selected

as a test case.

Non-negative least squares (NNLS)
The estimation of a parameterized model to understand some data is a fundamental

problem in data modeling. Nevertheless, the estimation is not always easy, e.g., in problems

like metagenome profiling that cannot have negative values for the fitted parameters. In

such case, a solution can be estimated using NNLS, which is defined as:

Silva et al. (2014), PeerJ, DOI 10.7717/peerj.425 3/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.425/supp-2
http://dx.doi.org/10.7717/peerj.425/supp-2
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447943.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4447192.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://metagenomics.anl.gov/linkin.cgi?metagenome=4440945.3
http://dx.doi.org/10.7717/peerj.425/supp-3
http://dx.doi.org/10.7717/peerj.425/supp-3
http://dx.doi.org/10.7717/peerj.425


Given a matrix A ∈ Rmxn and a vector b ∈ Rm , where m ≥ n, find a non-negative vector

x ∈ Rn to minimize the function (1).

f (x) = 1/2 ∥ Ax − b∥2, where x ≥ 0 and
n

i=i

xi = 1. (1)

In FOCUS, the reference matrix A is composed of m k-mer frequencies from n genomes,

while a vector describing the user’s metagenomic dataset is calculated from the k-mer

frequencies of both strands from the dataset using Jellyfish. FOCUS uses non-negative

least squares to compute the set of k-mer frequencies x that explains the optimal possible

abundance of k-mers in the user’s metagenome by selecting the optimal number of

frequencies from the matrix A. We minimize the sum of squared differences (1) using

the open source Scipy library (Jones, Oliphant & Peterson, 2001) which has a module for

the NNLS algorithm which solves the KKT (Karush–Kuhn–Tucker) conditions (Lawson

& Hanson, 1974). We added Tikhonov regularization (Garda & Galias, 2012) to deal with

genomes that have similar k-mer compositions.

Jackknife resampling of the data
We implemented a jackknife resampling strategy to assess the robustness of the results.

50% of the reads were randomly resampled 1000×, and the species frequencies recalcu-

lated. For each species, these 1000 frequencies were averaged and the standard deviation

calculated to estimate the spread.

Web-based and graphical user interface version
As an alternative to the command line version of the program, we have created a

user-friendly web version and a graphical user interface (GUI) for Microsoft Windows

users. The web server and the GUI are available at http://edwards.sdsu.edu/FOCUS.

RESULTS AND DISCUSSION
Evaluation and comparison with other tools
All tools were run using default parameters and their default reference database, either

online (MG-RAST) or using one core on a server with 24 processors × 6 cores Intel(R)

Xeon(R) CPU X5650 @ 2.67 GHz and 189 GB RAM. We only compared GASiC to the

SimHC dataset which had the results previously published (Lindner & Renard, 2013). We

tried to run the tool; however, it requires a large amount of storage during the process to

save its output data.

For the real data, three hundred and three metagenomic datasets were selected. First,

the metagenomic sample of the human oral cavity from diseased conditions was used.

MetaPhlAn apparently over predicted the genera Veillonella due to the short genome, and

Taxy did not predict Prevotella hits (see Fig. 2) as described in Belda-Ferre et al. (2012).

FOCUS was able to profile the organisms in only 41 s. Taxy took about 45 s, MetaPhlAn

took about 3 min, RAIphy took 52 min, MG-RAST took 3 days, and PhymmBL took

1 week and 6 days. Using random subsets for the oral metagenome, we tested the tools
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Figure 2 Genera-level taxonomy classification sorted by FOCUS prediction for the metagenome from a diseased human oral cavity using
FOCUS, MetaPhlAn, MG-RAST, PhymnBL, RAIphy, Taxy, and FOCUS (mean). Error bars represent the standard deviation uncertainty in tested
metagenome.

scalability and showed that FOCUS and Taxy profile metagenomes in constant time

(see Fig. 3).

The oral metagenome from the healthy condition was used. MetaPhlAn possibly over

predicted the genera Neisseria, and Taxy was not able to predict Rothia hits (see Fig. 4).

FOCUS profiled the metagenome in only 35 s. Taxy took about 41 s, MetaPhlAn took about

2 min, RAIphy took 48 min, MG-RAST took 3 days, and PhymmBL took 9 days.

A fecal metagenome from a healthy individual was used. All the tools predicted that

Bifidobacterium and Enterococcus were the two most abundant genera in the sample.

However, RAIphy apparently under predicted the genera Bifidobacterium (see Fig. 5).

For this small dataset, FOCUS profiled the metagenome in 35 s. Taxy took about 40 s,

MetaPhlAn took only 30 min, RAIphy took about 4 min, MG-RAST took 3 days, and

PhymmBL took 2 days and 14 h.

Three hundred metagenomic samples (254 GB total) from HMP were analyzed at all the

taxonomy levels using FOCUS (Table S4) in about 1 h and 20 min and compared with the

published results from MetaPhlAn’s paper (Segata et al., 2012) by calculating the Euclidean

distance between the results (see Fig. 6). For most of the samples, FOCUS and MetaPhlAn

have similar predictions at the genera level but vary at the species level. However, for some

samples in the posterior fornix and most of the samples from the anterior nares there were

differences at all levels which may reflect the additional genome sequencing of isolates from

those passages that has occurred since 2012. Other tools were not included in the analysis

due to the CPU processing time.
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Figure 3 Scalability test using different sub-sets of the human oral cavity under disease metagenome
using FOCUS, MetaPhlAn, MG-RAST, PhymnBL, RAIphy, Taxy.

Figure 4 Genera-level taxonomy classification sorted by FOCUS prediction for the metagenome from a healthy human oral cavity using
FOCUS, MetaPhlAn, MG-RAST, PhymnBL, RAIphy, Taxy, and FOCUS (mean). Error bars show the standard deviation for the real metagenome.
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Figure 5 Genera-level taxonomy classification sorted by FOCUS prediction for the metagenome from a fecal metagenomic sample of a healthy
human using FOCUS, MetaPhlAn, MG-RAST, PhymnBL, RAIphy, Taxy, and FOCUS (mean). Error bars show the standard deviation for the real
metagenome.

Figure 6 Heat-map representing the distance between the FOCUS and MetaPhlAn results for 300 metagenomes from the Human Microbiome
Project across 15 body sites. The distance was computed using the Euclidean distance between the results of both tools.

For the simulated data, we removed species from the reference dataset that are present

in this dataset and tried to predict the genera present in the SimShort dataset. A major

limitation of many of the approaches discussed here is that the underlying databases

cannot be changed. Only FOCUS, RAIphy, GASiC, and PhymmBL allow the end user to

change their reference database. FOCUS and PhymmBL best predicted the correct genera

while RAIphy could not correctly predict their abundance (Fig. 7). FOCUS had the fastest

performance (45 s); RAIphy took about 2 h, while PhymmBL took approximately 5 days.

Figs. S1–S5 show the same comparison for other taxonomy resolutions.

For the SimHC simulated metagenomes, the genera present in the dataset were deleted

from the training dataset, and we evaluated the class-level prediction. The tested tools

correctly predicted the classes, except that RAIphy over predicted the top two classes
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Figure 7 Genera-level taxonomy classification for the SimShort dataset using FOCUS, PhymnBL, RAIphy, and FOCUS (mean).

Figure 8 Class-level taxonomy classification for the SimHC dataset using FOCUS, PhymnBL, RAIphy, and FOCUS (mean).

(see Fig. 8). Again, FOCUS was the fastest tool (30 s) in comparison to RAIphy, which

took about 1 h and 50 min, and PhymmBL, which took about 4 days. See Figs. S6–S8 for

other taxonomy levels.

Furthermore, for the SimHC dataset, we ran all the previously used tools and the GASiC

published results to evaluate the genera-level prediction. GASiC and PhymmBL had the

best predictions, and FOCUS failed in the prediction of 4 minor genera probably because

many organisms present in the SimHC dataset were not included in the FOCUS database

(see Fig. 9). We did not compare the running time because we extracted the GASiC results
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Figure 9 Genera-level taxonomy classification for the SimHC dataset using FOCUS, MetaPhlAn, MG-RAST, PhymnBL, RAIphy, Taxy, GASiC,
and FOCUS (mean).

from its paper; however, in the original paper it took 2 days and needed at least 500 GB of

storage to analyze the SimHC simulated metagenome.

The very small standard deviations observed after jackknife re-sampling indicate

the robustness of our results. Furthermore, in order to show a quantitative evaluation

between the real and predicted abundance for the synthetic metagenomes, we computed

the Euclidean distance between the real and predicted abundances for all the simulated

data presented above (see Fig. 10). For some of the tools, only genus level predictions are

available, but for RAIphy, PhymmBL, and FOCUS we included all taxonomic levels. The

data demonstrate that FOCUS had the best prediction in more than half of test cases.

These tests were performed on a server; however, FOCUS is also ultra fast on a simple

computer. For example, we profiled the real dataset in 1 min and 45 s using an Intel(R)

Core(TM) i3 @2.53 GHz and 1 GB RAM. In addition to the Web server, we have developed

a stand-alone version that runs on the Windows® platform.

Limitations
As with other methods created to profile metagenome sequences, FOCUS depends on a

curated database of microbial reference genomes in order to predict a specific genus. If a

reference genome is absent, the tool will predict the closest reference available.

CONCLUSIONS
Here we present FOCUS, an agile solution to identify the organisms present in metage-

nomic samples that does not rely on mapping individual reads, but instead determines

the taxonomic composition of the entire metagenome at once by using NNLS. This makes

FOCUS an extremely fast and scalable solution to profile the focal taxa in a metagenome.
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Figure 10 Numerical evaluation between the real and predicted abundance for the synthetic
metagenomes computed by the Euclidean distance between the real and the predicted values.

FOCUS reports very similar species compositions as currently available, state of the art

metagenome profiling tools.

Availability and requirements
Project name: FOCUS

Project and web server home page: http://edwards.sdsu.edu/FOCUS

Operating system: the program has a command line version that works on OS X and

Unix, and a GUI for Microsoft Windows users.

Programming language: Python 2.7.

Other requirements: Numpy (http://www.numpy.org), Scipy (http://scipy.org),

Jellyfish (http://www.cbcb.umd.edu/software/jellyfish), and Python programming

language (http://www.python.org).

License: GNU GPL3.

Any restrictions to use by non-academics: no special restrictions.
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