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Bayesian estimation of Gaussian graphical models has proven to be challenging because the conjugate prior dis-
tribution on the Gaussian precision matrix, the G-Wishart distribution, has a doubly intractable partition function.
Recent developments provide a direct way to sample from the G-Wishart distribution, which allows for more effi-
cient algorithms for model selection than previously possible. Still, estimating Gaussian graphical models with more
than a handful of variables remains a nearly infeasible task. Here, we propose two novel algorithms that use the
direct sampler to more efficiently approximate the posterior distribution of the Gaussian graphical model. The first
algorithm uses conditional Bayes factors to compare models in a Metropolis–Hastings framework. The second algo-
rithm is based on a continuous time Markov process. We show that both algorithms are substantially faster than
state-of-the-art alternatives. Finally, we show how the algorithms may be used to simultaneously estimate both
structural and functional connectivity between subcortical brain regions using resting-state functional magnetic
resonance imaging. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: conditional Bayes factors; functional connectivity; Gaussian graphical models

1 Introduction
A key objective in many areas of science is to uncover the interactions amongst a large number of variables based on
a limited amount of data. Examples include gene regulatory networks, where one wants to identify the interactions
amongst DNA segments; market basket analysis, where the relations are studied between customers based on their
purchase behaviour; or neuroscience, where the connections between segregated neuronal populations are linked to
cognitive ability and impairment. One way to estimate these relations is to employ Gaussian graphical models, where
the non-zero entries in the off-diagonal of a precision matrix correspond to the edges in a conditional independence
graph (Dempster, 1972). However, fully Bayesian estimation of the posterior of a Gaussian graphical model has
proven to be notoriously hard.

To allow Bayesian inference of the Gaussian graphical model, a conjugate prior (Diaconis & Ylvisaker, 1979) on a pre-
cision matrix restricted by the conditional independence graph G was constructed for decomposable graphs (Dawid &
Lauritzen, 1993) and later generalized to arbitrary graphs (Roverato, 2002). Subsequent work coined this distribution
the G-Wishart distribution (Atay-Kayis & Massam, 2005). A number of Monte Carlo algorithms for model estimation
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using the G-Wishart distribution have been developed (Piccioni, 2000; Mitsakakis et al., 2011; Dobra et al., 2011;
Wang & Li, 2012), but each of these algorithms required substantial computational resources due to difficulty with
sampling from the G-Wishart distribution. To address this bottleneck, a recent study proposed an efficient way to
directly sample from the G-Wishart distribution (Lenkoski, 2013) by scaling samples from a regular Wishart distri-
bution to fit the required dependency structure (Hastie et al., 2009). Even with the direct sampler, approximating
the Gaussian graphical model remained difficult because of the doubly intractable partition function of the G-Wishart
distribution. However, by combining features of the exchange algorithm (Murray et al., 2006) with reversible jump
sampling (Green, 1995), calculating the partition function may be circumvented (Lenkoski, 2013). The algorithm that
implements this idea, named the double reversible jump (DRJ) algorithm, provides substantial computational gains
compared with earlier approaches (Lenkoski, 2013).

Although the DRJ algorithm enables model selection in a more efficient manner than previously possible, computa-
tional costs remain a limiting factor in practical applications with a large number of variables. In this paper, we propose
two novel, faster, algorithms for Bayesian estimation of the Gaussian graphical model. In the first algorithm, we com-
bine the direct sampler (Lenkoski, 2013) with an efficient representation of the conditional Bayes factor (Cheng &
Lenkoski, 2012), which results in an elegant Metropolis–Hastings algorithm to which we will refer as the double con-
ditional Bayes factor sampler. In the second algorithm, we cast the double conditional Bayes factors algorithm in a
birth–death Markov chain Monte Carlo (MCMC) setting (Mohammadi & Wit, 2014). Here, rather than accepting or
rejecting a new state with an edge added or removed, we associate with these changes birth and death events, respec-
tively. These events occur with such rates that their equilibrium coincides with the posterior of interest (Stephens,
2000). Both algorithms provide substantial speed improvement over the status quo, as we show in simulations.

We also provide an application of our algorithms by estimating structural and functional connectivity between sub-
cortical structures using resting-state functional magnetic resonance imaging (fMRI). It is a major goal in cognitive
neuroscience to understand how spatially segregated neural populations are coupled, using indirect measures of neu-
ral activity such as functional magnetic resonance imaging (Smith et al., 2013; Salinas & Sejnowski, 2001). In this
context, the anatomical pathways between neural populations are referred to as structural connectivity, whereas cor-
related activity patterns between these populations are referred to as functional connectivity (Friston, 2011). Both
forms of connectivity may be estimated simultaneously using Gaussian graphical models. Here, the precision matrix
captures the functional interactions between variables, and the associated conditional independence graph represents
the direct connections between variables. Bayesian estimation of Gaussian graphical models is particularly relevant
because the posterior over precision matrices provides complete information about the strength of functional interac-
tions, and the posterior over conditional independence graphs allows one to associate a probability with a putative
direct connection between variables of interest.

2 Gaussian graphical models

2.1. Preliminaries
Let observed data X D .x1, : : : , xn/

T consist of n independent draws from a p-dimensional multivariate Gaussian
distribution N

�
0, K�1

�
, with zero mean and precision (inverse covariance) matrix K. Here, K 2 Pp, with Pp the space

of positive definite p � p matrices. The likelihood of K is given by

P.X j K/ D
nY

iD1

N
�
xi j 0, K�1

�
/ jKjn=2 exp

�
�
1

2
hK, Si

�
, (1)
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where S D XTX is the empirical covariance and h�, �i the trace inner product operator. The precision matrix has
the important property that zero elements correspond to conditional independencies. In other words, (1) specifies a
Gaussian Markov random field with respect to a graph G D .V, E/, with V D ¹1, : : : , pº and E � V � V, in which the
absence of a connection indicates independence, that is, .i, j/ 62 E! kij D 0. For convenience, throughout this paper,
we slightly abuse notation and use .i, j/ 2 G to indicate that the edge .i, j/ is present in E.

The dependency graph may be used to specify a prior distribution on the precision matrix, which is known as the
G-Wishart distribution (Roverato, 2002)

P .K j G, ı, D/ DWG.ı, D/ D
jKj.ı�2/=2

ZG.ı, D/
exp

�
�
1

2
hK, Di

�
1K2PG , (2)

in which PG is the space of positive definite p � p matrices that have zero elements wherever .i, j/ 62 G, ı is the prior
degrees of freedom, D is the prior scaling matrix and 1x evaluates to 1 if and only if x holds and to 0 otherwise. The
G-Wishart distribution is conjugate to the multivariate Gaussian likelihood in (1), so that

P.K j G, ı, D, X/ DWG.ı C n, DC S/ D
jKj.nCı�2/=2

ZG.ı C n, DC S/
exp

�
�
1

2
hK, DC Si

�
. (3)

Note that the Wishart distribution is a special case of the G-Wishart distribution, with which it coincides if G is a fully
connected graph. Importantly, the partition function ZG.ı, D/ depends on G, which makes the G-Wishart a doubly
intractable distribution. We return to the implications of this fact later on.

Central to this work is that we wish to perform model selection in Gaussian graphical models, which revolves around
the joint posterior

P.G, K j X/ / P.X j K/P.K j G/P.G/. (4)

In the remainder, we outline several algorithms to approximate this distribution.

2.2. Direct samples from the G-Wishart distribution
Because the prior P.K j G/ is WG.ı, D/, we need a way to draw samples from the G-Wishart distribution. Up until
recently, this was achieved using a block Gibbs sampler that updates K according to either the edges of G (Wang
& Li, 2012) or its clique decomposition (Piccioni, 2000). Although this enables model inference of P.G, K j X/, as
desired, both approaches require substantial computational effort, making them prohibitive for use in contexts with a
large number of variables. An alternative method was proposed that is more efficient (Lenkoski, 2013), which is an
adaptation of an algorithm for estimating the mode OK of the G-Wishart distribution (Hastie et al., 2009; Moghaddam
et al., 2009). The algorithm is as follows:

1. Sample † �W.ı, D/.
2. Let W D †.
3. Repeat for j D 1, 2, : : : , p until convergence:

(a) Let Nj � V be the set of variables that are connected to j in G. Form WNj and †Nj,j and solve

Ǒ�
j DW�1Nj

†Nj,j.

(b) Form Ǒj 2 Rp�1 by copying the elements of Ǒ�j to the appropriate locations and imputing zeros in those
locations not connected to j in G.
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(c) Replace Wj,�j and W�j,j with W�j,�j Ǒj.

4. Return K DW�1.

Conceptually, the algorithm draws a sample from a Wishart distribution, which is then iteratively scaled according to
the dependence structure in G. In practice, we observe that convergence (see step 3) is typically reached within a
handful of iterations, even for moderate to large p.

3 Sampling algorithms
The direct sampler paves the way for novel inference algorithms. Here, we introduce two novel algorithms for
approximation of the joint posterior in (4).

3.1. Double reversible jump sampler
As a baseline for comparison, we use the DRJ sampler (Lenkoski, 2013). This algorithm was shown to be more
efficient as previously used approaches and may be considered state of the art. It builds upon the reversible jump
sampler discussed in Dobra & Lenkoski (2011). The key idea offered by this approach is that it introduces an auxiliary
variable K0 � WG.ı, D/, as in the exchange algorithm (Murray et al., 2006), that is efficiently sampled using the
direct sampler discussed earlier. Because of the way this auxiliary variable is constructed, the doubly intractable
partition functions of the G-Wishart distribution are cancelled out in the calculation of the acceptance ratios of newly
proposed graphs.

3.2. Direct double conditional Bayes factor (DCBF) sampler
The DRJ algorithm provides a substantial improvement over previous algorithms, as it avoids the need to approximate
the ratio of partition functions or invoke the Gibbs sampling algorithm for drawing samples from the G-Wishart
distribution. Nonetheless, the algorithm can be simplified. In Cheng & Lenkoski (2012), it is shown that if G and QG
differ only in the edge e D .p � 1, p/ and G � QG, the odds ratio of these two models may be expressed as

P
�
X j QG, K, D

�
P.X j G, K, D/

D N.K, DC S/
ZG.ı, D/
ZQG.ı, D/

(5)

with

N.K, U/ � �p�1,p�1

�
2�

upp

	1=2
exp

2
41
2

upp

 
�p�1,p�1up�1,p

upp
�

Pp�2
lD1 �lp�1�lp

�p�1,p�1

!235 , (6)

where K D ˆTˆ, with ˆ the Cholesky decomposition of K. The term in (5) can be considered the conditional Bayes
factor of the comparison between G and QG. Similar to the DRJ approach, Cheng & Lenkoski (2012) propose to
augment the sampling process with an auxiliary variable K0 �WG.ı, D/. This results in a convenient acceptance ratio
for the addition of an edge to G

˛ D
N.K, DC S/

N
�
QK0, D

� P. QG/
P.G/

, (7)
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where the ratio is inverted if the edge is removed from G instead. Note that the variables G, K, U and D must be
permuted for each edge flip to place the particular edge under consideration in the position .p � 1, p/.

The algorithm described in Cheng & Lenkoski (2012) employs the block Gibbs sampler to sample from the G-Wishart
distribution. Instead we propose to make use of the direct sampler explained in Section 2.2 to arrive at the following
procedure for estimation of the Gaussian graphical model:

1. Let G D G[s] be the current graph and let K D K[s] �WG.ı C n, DC S/.
2. For each edge .i, j/ 2 G, do the following:

(a) Create a permutation of the variables so that .i, j/! .p � 1, p/. Permute G, K, D and S accordingly.
(b) Let QG D G [ .p � 1, p/ if .p � 1, p/ 62 G or QG D G n .p � 1, p/ if .p � 1, p/ 2 G.
(c) Draw QK0 �WQG.ı, D/.
(d) Accept the move from G to QG with probability ˛ as in (7).
(e) Restore the original ordering of G, K, D and S and draw QK �WQG.ı C n, DC S/

3. Set G[sC1] D QG and K[sC1] �WQG.ı C n, DC S/.

The usage of the direct sampler instead of the block Gibbs updates makes this direct DCBF algorithm computationally
much more efficient (Liang, 2010).

3.3. Double continuous time (DCT) sampler
A downside of the usage of an auxiliary variable scheme is that it decreases the acceptance probability of proposals,
as essentially two moves have to be accepted at once. This hampers mixing of the Markov chain, so that multimodal
distributions are approximated poorly. To improve acceptance, Mohammadi & Wit (2014) introduce a birth–death
continuous-time Markov process (Cappé et al., 2003) for Gaussian graphical models. Rather than accepting the
addition or removal of an edge, Mohammadi & Wit (2014) associate birth and death events with these changes,
respectively. Each edge dies independently of all others as a Poisson process with death rate de.G, K/. Because the
edges are independent, the overall death rate at a particular pair of graph G and precision K is d.K/ D

P
e de.G, K/.

Birth rates b.K/ are defined similarly but for non-edges instead.

Because the birth and death processes are independent Poisson processes, the expected time between two events is
1=.d.K/C b.K//. This time can be considered the process spent at any particular instance of .G, K/. The probability
of the death event of edge e 2 G is

P.death of edge e/ D
d.G, K/

b.G, K/C d.G, K/
, (8)

with again an analogous definition for the birth event for a non-edge.

Mohammadi & Wit (2014) show that the birth–death process has the posterior P.G, K j X/ as stationary distribution,
if for all edges and non-edges e

de. QG, QK/P. QG, QK j X/ D be.G, K/P.G, K j X/, (9)

for QG D G [ e. The birth and death rates may be chosen accordingly as

be.G, K/ D
P. QG, QK j X/
P.G, K j X/

for e 62 G and de.G, K/ D
P.G, K j X/

P. QG, QK j X/
for e 2 G. (10)

with again QG D G [ e.
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The key observation is that these birth–death rates can be computed using the double conditional Bayes factors as
in (7). Here, again, we make use of the exchange framework by introducing the auxiliary variable K0, such that explicit
evaluation of the partition functions is circumvented. This leads to a novel approach that we will refer to as the DCT
sampler given by the following:

1. Let G D G[s] be the current graph and let K D K[s] �WG.ı C n, DC S/.
2. For each non-edge e 62 G,

(a) Create a random permutation of the variables so that .i, j/ ! .p � 1, p/. Permute G, K, D and S
accordingly.

(b) Let QG D G [ e. Draw K0 �WQG.ı, D/
(c) Compute the birth rate be.G, K/ using (10).

3. Compute the total birth rate of the current state b.G, K/.
4. For each edge e 2 G,

(a) Create a random permutation of the variables so that .i, j/ ! .p � 1, p/. Permute G, K, D and S
accordingly.

(b) Let QG D G n e. Draw K0 �WQG.ı, D/
(c) Compute the death rate de.G, K/ using (10).

5. Compute the total death rate of the current state d.G, K/ and the waiting time between events w.G, K/ D
1=.d.K/C b.K//.

6. Create a birth or death event according to the probabilities of death events (8) and birth events, and set
G[sC1] D QG and K[sC1] �WQG.ı C n, DC S/.

4 Experiments
In this section, we first analyse the validity of the two proposed methods using an example with a known precision
matrix. Subsequently, we apply the algorithms in an explorative study to identify structural and functional connectivity
between subcortical brain structures.

4.1. Simulation
We compared the performance of the DRJ algorithm and the two novel algorithms using a simulation proposed by
Wang & Li (2012). In this example, we have p D 6 and n D 18. Furthermore, the precision matrix K is given by kii D 1

for i D 1, : : : , p, ki,iC1 D kiC1,i D 0.5 for i D 1, : : : , p � 1 and finally, k1p D kp1 D 0.4. The associated conditional
independence graph G follows as .i, j/ 2 G $ kij ¤ 0. The scatter matrix is then constructed as S D XXT D nK�1,
which corresponds to n independent observations of N

�
0, K�1

�
. Through exhaustive enumeration of all 32,768

possible graphs of size p, Wang & Li (2012) show that the posterior edge probabilities are

P..i, j/ 2 G j X/ D

0
BBBBBBB@

1 0.969 0.106 0.085 0.113 0.850
0.969 1 0.980 0.098 0.081 0.115
0.106 0.980 1 0.982 0.098 0.086
0.085 0.098 0.982 1 0.980 0.106
0.113 0.081 0.98 0.980 1 0.970
0.850 0.115 0.086 0.106 0.970 1

1
CCCCCCCA

, (11)
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and the expectation of K is

E.K j X/ D

0
BBBBBBB@

1.139 0.569 �0.011 0.006 �0.013 0.403
0.569 1.175 0.574 �0.008 0.005 �0.014
�0.011 0.574 1.176 0.574 �0.008 0.006
0.006 �0.008 0.574 1.175 0.573 �0.011
�0.013 0.005 �0.008 0.573 1.175 0.569
0.403 �0.014 0.006 �0.011 0.569 1.138

1
CCCCCCCA

. (12)

We approximate this ground truth using the three different algorithms, each implemented in MATLAB (The MathWorks,
Inc., Natick, MA, USA, Release 2014). Throughout, we use vague priors in the form of P.G/ / 1 for G and P.K j
G/ DWG.3, Ip/. The algorithms are each executed for 100,000 iterations, of which the first 50,000 are discarded as
burn-in. Conditional expectations for edges (i.e. edge probabilities) and precision matrices are then calculated as

E..i, j/ 2 G j X/ D
1

T

TX
tD1

1.i,j/2Gt and E.K j X/ D
1

T

TX
tD1

Kt (13)

for the DRJ and the double conditional Bayes factor algorithms, with T as the number of samples. For the DCT
algorithm, these expectations are calculated as

E..i, j/ 2 G j X/ D
1

W

TX
tD1

wt1.i,j/2Gt and E.K j X/ D
1

W

TX
tD1

wtKt, (14)

with W D
PT

tD1 wt. It is easy to see that this idea generalizes the discrete time MCMC approach by assuming wt D 1

for all t.

We quantify the approximation accuracy of the three algorithms in a number of ways. First, the accuracy of the edge
probabilities is expressed using the mean squared error with respect to the true probabilities in (11). Second, we
compute the Kullback–Leibler divergence (Kullback & Leibler, 1951) between the precision matrix obtained by Wang
& Li (2012) as given in (12) and OK � E.K j X/ using either of the algorithms. We also count the number of
unique models that each algorithm considers to express mixing behaviour. Next, we compute the marginal posterior
probability of the true graph. Finally, we compute the relative computational speeds of the algorithms. The results of
the comparison are shown in Table I. The algorithms have similar performance in approximating the desired posterior

Table I. Results for the comparison between the three described samplers on a simulated example,
averaged over ten simulations. Standard errors are indicated in parentheses. Shown are the MSE
of edge probabilities relative to (11), the KL divergence between the expected precision matrix
and (12), the number of unique models visited, the marginal posterior probability of the true graph
P.G j S/ and the relative speed of the algorithms compared with the DRJ baseline.

Algorithm MSE KL No. of models P.G j S/ Rel. speed

DRJ 5e-04 (4e-05) 1e-04 (2e-05) 1299 (31) 0.3674 (0.0008) 1 (0)
DCBF 5e-04 (2e-05) 1e-04 (1e-05) 1472 (23) 0.3826 (0.0040) 3.57 (1e-01)
DCT 1e-03 (1e-05) 7e-04 (3e-04) 1187 (35) 0.4277 (0.0008) 3.80 (1e-02)

MSE, mean squared error; KL, Kullback-Leibler divergence; DRJ, double reversible jump; DCBF, double
conditional Bayes factor; DCT, double continuous time.
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distribution, and each obtains the true graph as the mode of the approximated distribution. Contrary to Mohammadi
& Wit (2014), we do not find the continuous time algorithm to have the best mixing. In fact, of the three considered
models, the continuous time MCMC approach finds the smallest number of unique models. Note that the continuous
time approach may converge faster (Rao & Teh, 2012), but this is not apparent in this simulation. Finally, the efficiency
of our way of computing the conditional Bayes factor (see (5)) is demonstrated by a substantial speed increase, as the
DCBF algorithm is 3.57 times faster than the DRJ sampler, and the DCT algorithm is 3.80 times faster than the DRJ
algorithm, whereas the algorithm in Mohammadi & Wit (2014) is 1.79 times slower than the DRJ sampler.

4.2. Subcortical brain connectivity
As an explorative example, we estimate structural and functional connectivity in a fully Bayesian setting. In previous
work, functional connectivity has been estimated under the assumption that the underlying structural connectivity
was known (Hinne et al., 2014). Here, we address the more challenging problem of simultaneously estimating the
posterior distribution of both structural and functional connectivity.

4.2.1. Empirical data. The data consist of resting-state functional MRI data collected for one subject. We refer the
reader to van Oort et al. (2014) for details of the acquisition protocol. Preprocessing was performed using FSL
5.0 (Jenkinson et al., 2012) and consisted of the following steps. T1 images were linearly registered to MNI-152
space. Multi-echo volumes at each TR were combined (Poser et al., 2006). Motion correction was performed using
MCFLIRT, and estimated motion parameters were regressed out together with their temporal derivatives and mean
time courses for both WM and CSF. Finally, data were high-pass filtered at 0.001 Hz. Subcortical structures were
segmented using FSL FIRST (Patenaude et al., 2011), resulting in data for a total of 14 regions, consisting of bilateral
accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus (see Figure 1A). For each of these
regions, the signal was averaged over all voxels in that region and subsequently standardized to have zero mean and
unit variance.

Figure 1. Subcortical connectivity. A. Subcortical structures, consisting of bilateral accumbens, amygdala, caudate, hip-
pocampus, pallidum, putamen and thalamus. B. Posterior probabilities of structural connectivity (lower triangle) and
expected partial correlations between these structures (upper triangle). LH and RH indicate left hemisphere and right
hemisphere, respectively.

Stat 2014; 3: 326–336 333 Copyright © 2014 John Wiley & Sons, Ltd
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4.2.2. Bayesian structural and functional connectivity estimation. The human brain can be viewed as a complex
dynamical system, where ongoing changes in neuronal dynamics produce adaptive behaviour (Bullmore & Sporns,
2009). These dynamics can be expressed in terms of interactions between brain regions, which are commonly
referred to as functional connectivity. At the same time, direct functional interactions presuppose anatomical links
between brain regions, known as structural connectivity. For this reason, structural and functional connectivity must
be intimately related (Akil et al., 2011).

Functional connectivity is most easily expressed using a covariance matrix that, in the case of standardized data,
provides the correlation structure between different brain regions. However, this approach suffers from the drawback
that it cannot distinguish between direct and indirect connections. Alternatively, one may use partial correlations that
capture only direct effects, in the absence of confounding factors. The matrix of partial correlations R may be obtained
from a precision matrix using rij D 1 if i D j and rij D �kij=

p
kiikjj otherwise. Because functional coupling must be

accompanied by an anatomical connection, partial correlations between brain regions not only reveal the strength of
these couplings but also indicate which regions are physically connected. In other words, the joint posterior in (4)
becomes a distribution over functional connectivity K (or, equivalently, R) and structural connectivity G.

We proceed by approximating the joint posterior using both the DCBF algorithm and the DCT sampler. Both algorithms
were executed for 100,000 iterations, of which the first 50,000 were discarded as burn-in. Once again, we set
P.G/ / 1 and P.K j G/ D WG.3, Ip/. The algorithms yield almost identical results, as shown by an MSE of edge
probabilities of 0.0006 and a symmetrized Kullback–Leibler divergence of 0.0002.

Figure 1B shows the posterior edge probabilities and partial correlations produced by the DCBF algorithm. The struc-
tural connectivity estimate shows that the majority of edges is associated with either very high or very low edge
probabilities. The functional connectivity estimate shows that functional homologues in the left and right hemispheres
are associated with high partial correlations (expected partial correlations hri in the range [ 0.48, 0.73]), indicating
that these functional homologues have similar functional roles. Within a cortical hemisphere, the most salient func-
tional interactions (highest expected partial correlations with hri in the range [ 0.23, 0.61]) are given bilaterally by
amygdala–hippocampus, pallidum–putamen, accumbens–caudate, caudate–thalamus and hippocampus–thalamus.
These functional interactions can be explained by direct pathways and unobserved common inputs that induce a high
partial correlation. Interestingly, edges with high posterior probability (edge probability higher than 0.999) can be asso-
ciated with weak absolute partial correlations (with hri as low as 0.1). This indicates that there exist weakly coupled
regions (from the linear correlation point of view) that cannot be explained away by other functional interactions.

5 Discussion
We have proposed two novel algorithms for Bayesian model selection in a Gaussian graphical model. The first algo-
rithm combines a direct manner to sample G-Wishart variates (Lenkoski, 2013) with an efficient way of computing
conditional Bayes factors when comparing two different models (Cheng & Lenkoski, 2012), resulting in an improved
Metropolis–Hastings approach. The second approach integrates the direct sampler within a birth–death continuous
time Markov process (Mohammadi & Wit, 2014). Both algorithms provide accurate estimates of the posterior graphs
and precision matrices and are substantially faster (up to a factor of 3.80) than previously available alternatives. We
demonstrate the use of the algorithms by estimating, for the first time, both structural and functional connectivity
simultaneously using fMRI data.

In future work, we aim to improve mixing of the samplers by introducing moves between graphs that differ by more
than a single edge. Similarly, one may conceive events other than births and deaths of edges. In either case, the
corresponding conditional Bayes factors must be derived, and these should be more efficient to compute than a

Copyright © 2014 John Wiley & Sons, Ltd 334 Stat 2014; 3: 326–336
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series of consecutive edge additions and removals. We expect that this will further contribute to efficient estimation of
Gaussian graphical models.
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Khorshidi, G, Woolrich, MW, Barch, DM, Uğurbil, K & Van Essen, DC (2013), ‘Functional connectomics from
resting-state fMRI’, Trends in Cognitive Sciences, 17(12), 666–682.

Stephens, M (2000), ‘Bayesian analysis of mixture models with an unknown number of components — an alternative
to reversible jump methods’, Annals of Statistics, 28(1), 40–74.

van Oort, ESB, van Cappellen van Walsum, AM & Norris, DG (2014), ‘An investigation into the functional and
structural connectivity of the default mode network’, NeuroImage, 90, 381–389.

Wang, H & Li, SZ (2012), ‘Efficient Gaussian graphical model determination under G-Wishart distributions’, Electronic
Journal of Statistics, 6, 168–198.

Copyright © 2014 John Wiley & Sons, Ltd 336 Stat 2014; 3: 326–336


	Efficient sampling of Gaussian graphical models using conditional Bayes factors
	Introduction
	Gaussian graphical models
	Preliminaries
	Direct samples from the G-Wishart distribution

	Sampling algorithms
	Double reversible jump sampler
	Direct double conditional Bayes factor (DCBF) sampler
	Double continuous time (DCT) sampler

	Experiments
	Simulation
	Subcortical brain connectivity
	Empirical data.
	Bayesian structural and functional connectivity estimation.


	Discussion


