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Abstract Here we report that the modulation of alpha

activity by covert attention can be used as a control signal

in an online brain–computer interface, that it is reliable,

and that it is robust. Subjects were instructed to orient

covert visual attention to the left or right hemifield. We

decoded the direction of attention from the magnetoen-

cephalogram by a template matching classifier and pro-

vided the classification outcome to the subject in real-time

using a novel graphical user interface. Training data for the

templates were obtained from a Posner-cueing task con-

ducted just before the BCI task. Eleven subjects partici-

pated in four sessions each. Eight of the subjects achieved

classification rates significantly above chance level. Sub-

jects were able to significantly increase their performance

from the first to the second session. Individual patterns of

posterior alpha power remained stable throughout the four

sessions and did not change with increased performance.

We conclude that posterior alpha power can successfully

be used as a control signal in brain–computer interfaces.

We also discuss several ideas for further improving the

setup and propose future research based on solid hypoth-

eses about behavioral consequences of modulating neuro-

nal oscillations by brain computer interfacing.
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Introduction

A functional brain-computer interface (BCI) to be used in

natural settings must provide a robust and reliable output (van

Gerven et al. 2009). Most of the noninvasive BCI research

focuses on using electrophysiological measurements due to

their high temporal resolution. However, our daily environment

is full of electromagnetic noise. Coping with environmental

noise can be solved on two fronts: either by incorporating

advanced signal analyses technique or by choosing a strong,

robust control signal to start with. Alpha oscillations are the

strongest measurable signals from the human brain by extra-

cranial electrophysiology and they are strongly modulated by

attention tasks (Klimesch 2012). Therefore they constitute a

putative robust control signal for communicating one’s inten-

tion. Here, we provide evidence that posterior alpha-band

activity can be used as a reliable control signal for continuous

online brain-computer interfacing.

The role of human alpha oscillation in attention pro-

cesses has been studied intensively in the past. Increased

attention strongly involves the inhibition of task-irrelevant

information. Recent investigations suggest that alpha-band

activity reflects the degree of functional inhibition of sen-

sory regions (Klimesch 1999; Jensen and Mazaheri 2010;

Foxe and Snyder 2011; Jensen et al. 2012; Klimesch 2012).

Sensory regions that are not involved in the current task are

functionally disengaged and show high alpha activity. In

contrast, low alpha activity can be observed in regions that

are processing relevant information. During covert atten-

tion to either the left or right hemifield, the alpha laterali-

zation thus reflects a relative suppression of the task-

irrelevant ipsilateral hemisphere, resulting in increased

alpha-band power. Likewise, the relative contralateral

alpha-band decrease allows efficient processing in the task-

relevant hemisphere processing the attended information.
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In the past, hypothesis-driven brain-computer interfac-

ing has been proposed as a tool to augment human behavior

(Jensen et al. 2011; Horschig et al. 2014a). This requires

the control signal to satisfy three conditions: First, a brain-

computer interface control signal should allow for fast and

reliable classification (van Gerven et al. 2009). Second, it

must be a robust correlate of behavioral performance. In

the past, the distribution of posterior alpha power has been

successfully linked to behavioral performance (Thut et al.

2006; Kelly et al. 2009; Händel et al. 2011; Meeuwissen

et al. 2011; Park et al. 2014). Third, in order to train human

behavior, the control signal must be trainable as well. Here,

we will corrobate findings that alpha oscillations provide a

robust control signal independent of advanced signal

analyses techniques and we will show that training of alpha

oscillations results in better classification by reduced trial-

by-trial variability.

Several studies have used off-line analysis to show that

alpha power is a robust signal which can be used in a BCI

setup involving spatial attention. In 2005 Kelly et al.

showed that posterior steady-state evoked response in the

alpha-band power can potentially be used as a control

signal for a brain–computer interface. Their work was later

extended by van Gerven et al. (2009) who demonstrated

that spontaneous alpha band activity modulated by spatial

attention can be decoded as well. A similar approach was

recently used by Tonin et al. (2012) showing that appro-

priate feature selection in time–frequency and sensor-space

can improve classification performance. In 2007, Rihs et al.

(2007) showed that the distribution of posterior alpha

reflects two-dimensional attention mapping, which can

successfully be used for continuous two-dimensional con-

trol in an offline setting (Bahramisharif et al. 2010). Treder

et al. (2011) further showed that visuo-spatial attention

shifts can be decoded by using alpha-band power and that

classification rates correlate with the strength of resting

state alpha-power. While these studies do suggest that

modulations in alpha power can be used for BCI control,

all studies relied on offline analyses after data acquisition.

Recently, Tonin et al. (2013) showed for the first time that

covert attention brain-computer interfacing is possible

using electronencephalography in an online setup.

Here we show that posterior alpha-band power can be

used as a BCI control signal using magnetoencephalography

(MEG). In contrast to the paradigm of Tonin et al. (2013),

we present subjects with continuous feedback while per-

forming the BCI task. In addition, we hypothesize that the

strength of lateralized alpha power predicts the individual

subjects’ classification rate. Furthermore, we investigate

whether the ability to gain control over the BCI signal

increases over multiple sessions, specifically predicting that

subjects will be able to improve their performance after the

initial session. Lastly, we investigate the robustness of the

alpha lateralization pattern, specifically predicting that is

stable across sessions and tasks.

Materials and Methods

Participants

Eleven healthy subjects with normal or corrected-to-nor-

mal vision (mean age: 24.1 ± (SD) 4.2 years) participated

in the experiment after providing written informed consent

according to the Declaration of Helsinki and the local

Ethics board. All subjects were free of neurological or

psychiatric disorder. The study was approved by the local

ethics committee (CMO region Arnhem/Nijmegen).

Data Acquisition

The ongoing brain activity was recorded using a whole-head

magnetoencephalogram (MEG) system with 275 axial gra-

diometers (CTF MEG Systems, VSM MedTech Ltd.) at a

sampling frequency of 1,200 Hz. Our setup consisted of four

computers, see Fig. 1. For online data streaming, we set up

an IPC shared memory segment and network accessible

buffer at the data ‘‘acquisition computer’’ using the FieldTrip

MATLAB toolbox (Jensen et al. 2011; Oostenveld et al.

2011). Data from the buffer was read over a TCP network

connection by the ‘‘realtime computer’’ that was dedicated to

online signal analysis. The results of the online analysis were

written back to the network buffer and read out by the

‘‘stimulus computer’’ that was dedicated to stimulus pre-

sentation and to experiment management. Finally, we used

an EyeLink 1000 eyetracker (SR Research Ltd., Canada)

with a dedicated ‘‘eye tracker computer’’ sending eye posi-

tion and blink data to the acquisition computer.

During the experiment, the subject’s head position was

continuously recorded using three coils, two placed at the

ear canals and one at the nasion. During inter-trial intervals

and experimental breaks, when no other data processing

occurred, the realtime computer analyzed the MEG data

from the high frequency signals produced by the head coils

and gave visual feedback about the current head position to

the experimenter (Stolk et al. 2013). When any coil moved

more than 2.5 mm away from its initial position, we

instructed the subject during the next experimental break to

realign his/her head to the initial head position and pro-

vided visual feedback of the head position to the subject

(Stolk et al. 2013). In the beginning of the second, third and

fourth session we realigned subjects to the head position of

the first session. On average the head position varied by

8 ± 3.8 mm across sessions.

The eye position and blinks were monitored using the

eye tracker. Subjects were instructed to fixate on the center
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of the screen throughout the experiment. We provided

feedback to the subject in case of eye blinks or when the

eye position deviated more than three visual degrees from

central fixation. Visual feedback was given by changing the

color of the central fixation marker. In case of such arti-

facts, the training task was restarted in order to get an

artifact-free signal. In the BCI task we provided the same

visual feedback, but instead of restarting a trial we stopped

upcoming classifications until a full artifact-free period was

available again (for timing details, see below).

Experimental Paradigm and Stimulus Presentation

Overall Procedure

Each subject participated in four sessions on separate days.

Sessions were typically scheduled to be a maximum of

1 week (7 days) apart (on average 5 days ± (SD) 5 days).

Exceptions are Subjects 1, 2 and 6. Subject 1 had his

second session 9 days after the first session, and his last

session 26 days after the third. Subject 2 had her second

session 13 days after her first, and her last one 9 days after

the third session. Subject 6 had his second session 13 days

after his first. The overall procedure is depicted in Fig. 2.

Each session consisted of two tasks: a training task and a

BCI task. The training part was used to determine indi-

vidual templates of brain activity during covert spatial

attention. In the BCI task these templates were used to

decode the attended hemifield. The general stimulus setup

for the training and BCI task were kept as similar as pos-

sible. Figure 3 shows the visual display used for both the

training task and the BCI task. Subjects fixated on a yel-

low-orange central fixation ball in the centre of the screen

(1 visual degree radius). Six degrees to the left and right on

the screen, we presented two doughnut-shaped wheels

(inner radius of 0.5 visual degrees; outer radius 1�; the

center of each wheel was located 2 visual degrees below

the midline).

Fig. 1 The BCI setup. The subject is seated in the magnetically

shielded room. Data from the MEG system and eyetracker were sent

to the ‘‘acquisition computer‘‘. The acquisition computer makes all

data available in a shared memory segment from where it is copied to

a network accessible buffer. The ‘‘realtime computer’’ polls the buffer

continuously for relevant trigger values. Upon relevant triggers, i.e.

during trials, the realtime computer reads data from the buffer,

analyzes those and accordingly writes a trigger as control signal back

to the buffer. The ‘‘stimulus computer’’ controls the experimental

paradigm and provides visual output to the subject’s screen. Visual

output is either determined by the paradigm in the training task, or

dependent on eye movements or on the classification outcome, in

which case the stimulus computer reads the triggers from the buffer.

Furthermore, the stimulus computer sends triggers indicating start and

end time of individual trials to the buffer
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Stimulus Equipment

Stimulus presentation was performed using MATLAB and

Psychtoolbox (Brainard 1997; Pelli 1997) and a liquid

crystal display video projector (SANYO PROxtraX mul-

tiverse; refresh rate of 60 Hz), back projecting onto a

screen in the magnetically shielded room using two front-

silvered mirrors. The distance to the screen as well as the

size of the displayed screen size was measured individually

for each subject to calibrate the stimulus sizes and dis-

tances in visual degrees, ensuring the same stimulus

properties across sessions and subjects.

Experimental Paradigm

The training task resembled a Posner-cueing task (Posner

1980), where subjects had to fixate centrally and received a

cue for 0.5 s instructing the side to covertly attend. After the

presentation of the spatial cue, the wheels started rotating

either to the left or to the right with a constant velocity of

0.3� per frame (18� per second). After a 1.5–2 s random

interval, we presented vertically oriented bars in the center

of both wheels for 0.1 s. The subjects’ task was to identify

whether the bar on the attended side was tilted to the left or

to the right. They indicated the perceived tilt by pressing

one of two buttons with their dominant hand. The tilt

direction of the distracter bar at the unattended side was

independent of the attended bar. The contrast of the pre-

sented bars was adjusted per hemifield so that on average 4

of the last 5 trials were discriminated successfully, forcing

subjects to remain attentive throughout the training. The

training part consisted of 96 trials (48 per hemifield). A

break was introduced every 16 trials (8 per hemifield).

In the BCI task we used the same visual setup without

the tilted bars appearing. In the beginning of each trial,

subjects received a cue instructing them which side to

attend. Subsequently the wheels started rotating in the

direction of covert attention as assessed by a template

matching classifier based on the templates from the training

task (described in more detail below). At each update step

(called a ‘‘subtrial’’), the rotation velocity of the wheels

was changed by 0.3� per frame (18� per second). If the

classifier identified attention to the right side, the wheel

was accelerated in the clockwise direction (or decelerated

in the counter-clockwise direction). If the classifier iden-

tified attention to the left side, the wheel was immediately

accelerated in the counter-clockwise direction (or decel-

erated in the clockwise direction). Consequently, the

momentary rotation speed was the cumulative sum of the

previous accelerations and decelerations in the current trial.

For example, if a trial consisted of 25 subtrials, of which 15

were classified as ‘‘attention right’’ and 10 as ‘‘attention

left’’ outputs, then at the end of the trial the wheels rotated

by 1.5� per frame (90� per second) to the clockwise

direction. An update was performed as fast as possible,

with 2.5 ± 0.2 (SD) classifications per second on average

(0.4 s per classification). Subjects were instructed to make

the wheel rotate as fast as possible to the cued direction.

One trial lasted 10 s. The BCI task consisted of 40 trials

(20 per hemifield) for each session, resulting in

4033 ± 355 (SD) classifications on average per subject.

Thus, the BCI training per session was 400 s, i.e. just under

7 min. The attended hemifield was randomized within and

across 4 blocks of 10 trials. After each trial, subjects

received a scoreboard overview with their performance in

the BCI task (see Fig. 4).

Fig. 2 Experimental setup. Each subject participated in four sessions.

Each session was split into a training part and a feedback part. The

training part was a Posner-cueing task, which consisted of 96 trials,

48 for attention to the right and 48 for attention to the left. The

feedback part, the online BCI task, consisted of 40 trials, each lasting

10 s
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Data Processing and Classification

Online Data Analysis of the Training Task

For each trial of the training task we analyzed data 1 s

before stimulus onset, i.e. 1 s before the vertical bars

appeared. A window size of 1 s was chosen to achieve a

spectral resolution of 1 Hz; both van Gerven et al. (2009)

and Tonin et al. (2012) showed that window sizes much

shorter than 1 s result in less reliable classification results,

whereas 1 s of data is sufficient for a reliable estimation

and classification. After the training task, but before the

start of the BCI task, we computed the power spectral

density of all trials of the planar gradient transformed data

(see Bastiaansen and Knösche 2000). We computed the

power around individual alpha frequency band (IAF-band)

of the subject in occipital sensors according to (Thut et al.

2006) by averaging the power spectra of all 96 training task

trials. The individual alpha peak frequency (IAF) is defined

as the frequency corresponding to the peak in the alpha

range (8–12 Hz; Doppelmayr et al. 1998; Klimesch 1999),

and the IAF-band ranges from IAF - 4 to IAF ? 2 Hz.

Sensors of Interest

Subjects had to covertly attend to the left or right hemifield

during the training task. Covert attention elicits a robust

lateralization pattern in the alpha-band around 10 Hz

(Worden et al. 2000; Thut et al. 2006; Foxe and Snyder

2011). We used this signal to create individual templates

for attention left and attention right, respectively.

To select sensors of interest for the left and right tem-

plates for each subject, we computed the alpha modulation

index (AMI) based on the IAF-band from all 96 training

task trials. The AMI is defined as the relative difference

between attention left and attention right trials:

AMIc ¼
a
 

c � a~c

a
 
c þ a~c

Here, a
 
c denotes averaged power in the individual alpha-

frequency band of the average of all attention left trials of

the planar gradient representation of MEG sensor c and a~c

the respective power of all attention-right trials. The AMI

is stronger when alpha power is highly lateralized for

attention to the left versus right hemifield, i.e. it reflects a

state of high attention to the attended side (Thut et al. 2006;

Gould et al. 2011; Haegens et al. 2011; Horschig et al.

2014a). For each occipital sensor, we averaged the AMI

over the set of adjacent sensors. Then, we stored the set s of

adjacent, occipital sensors which resulted in the most

positive and and the most negative AMI in the training

task. Eventually, we created left and right attention tem-

plate, defined as a
 
s and a~s respectively, by averaging the

data of the left and right training trials at those sensors.

Online Data Processing in the BCI Task

The parameters of the BCI task analysis were identical to

the training phase analysis. One second after the spatial cue

we analyzed the last second of MEG data, and as soon as

the analysis was done we again analyzed the last second of

MEG data, and so forth in a sliding window fashion (see

Fig. 2). The analysis of one window including transferring

data over the network, testing for head and eye movements

and feeding the data back to the subject took *400 ms on

average with a mean jitter of 30 ms. We used a template-

matching algorithm to determine the rotation direction and

Fig. 3 The visual stimuli used in the training and BCI task. Subjects

were fixating on the central fixation element throughout the task. Two

seconds after the beginning of each trial, a centrally presented cue

(0.5 s) instructed the direction of covert attention. In the training task,

the wheels rotated into a random direction with a fixed velocity for a

random interval (1.5–2 s). Subsequently left- or right-tilted bars were

shortly flashed on each side in the middle of the rotating wheels. The

subject had to report the orientation of the bar on the attended side by

pressing one of two buttons. The visual setup of the BCI task

resembled the one of the training task, but without appearing bars. In

the BCI task the direction and velocity of the wheels’ rotation were

determined by the outcome of the template matching classifier
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speed of the wheels using the left and right attention

templates a
 
s and a~s obtained from the training phase (see

last section). For each subtrial i, we computed the IAF-

band power ais of the sensor set s by multiplying the data of

the last 1 s with a Hanning taper and applying a Fourier

transform as described above. Then, we computed the

classification result as

Ci ¼ þ1; if ðq i � q~iÞ[ bt�1

�1; if ðq i � q~iÞ� bt�1

�
;

where q
 
t corresponds to Pearson’s correlation coefficient

between the left attention template a
 
s and the IAF-band

power of the sensors of interest in the current trial ais, and

q~i the respective analogue for right attention. bt�1 corre-

sponds to the correlation bias term and is described below.

Thus, for each subtrial i we computed the difference in

correlation coefficients and classified whether their differ-

ence was bigger or smaller than bt�1. The classification

outcome Ci was immediately written to the buffer and then

read out by the stimulus PC that updated the wheel rotation

(see Fig. 1). Here ?1 defines a classification to the left and

-1 a classification to the right. The final classification of

trial t result was determined by the summation of all

classification outcomes Ci of the current trial t:

Ct ¼
Xn
i¼k

Ci;

where n corresponds to the total number of subtrials so far

and k is the index of the first subtrial in trial t. The final

classification result Ct was then converted to a final score

and visualized to the subject as described above (see also

Fig. 2). If Ct was positive, the trial was classified as

‘‘attention left’’, if Ct was negative, the trial was classified

as ‘‘attention right’’ and if Ct was zero, the trial was

unclassified.

To control for systematic biases in the classification, we

implemented a correlation bias correction term. The idea

behind the correlation bias correction term is that on

average, subjects should perform equally well for both

directions. The correlation bias correction term changes the

Fig. 4 Example screen of the ‘scoreboard’ that was shown to the

subjects after each of the 40 trials in a session. On top, the score of the

last trial based on the rotation velocity reflecting the classification was

displayed and beneath the summed score of all trials. In the bottom

half, the score of the 40 individual trials of this session were shown. A

green disk indicated a trial in which the wheel rotated to the cued

(‘‘correct’’) direction. A red disk indicated a trial in which the wheel

rotated opposite to the cued direction. The size of the disks

represented the final velocity, where bigger meant faster. For

motivational reasons, a final velocity of 0 (thus as many correct as

incorrect classifications) was indicated by a small green disk. This

example scoreboard is from session three of Subject 1 with a

performance of 92.5 % across trials (in 37 trials out of 40 trials the

wheels rotated to the correct direction—the best subject and session)
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decision boundary: instead of comparing the difference of

correlation coefficients with zero, we compared whether

the difference was higher or lower than this bias. There-

fore, we defined the correlation bias term b as the differ-

ence between the average correlation coefficients for all

attention left and all attention right trials (including train-

ing trials):

bt ¼
Xn
i¼1

q
 

i � q~i

n

In other words, we computed the average difference in

correlation coefficients for attention left and attention right

over all subtrials. Note that the classification result Ci is

computed using the bias term from the previous trial bt�1

such that the decision boundary stays constant within trial

t.

Assessment of Online Results

We assessed whether subjects gain control over the feed-

back signal by collapsing data over all four sessions per

subject and applied a binomial test. Shifts of eye gaze

towards the attended side would confound the alpha power

lateralization, hence we verified whether eye positions can

account for the online classification rate. To test for this

confound, we trained a classifier on the eye position data,

and correlated the classification performance with the

online results. We trained a support vector machine clas-

sifier on the data of the three eye tracker channels (hori-

zontal and vertical eye position and pupil dilation) of the

training trials of each session. Subsequently we used this

classifier to classify the individual subtrials of the online

BCI task. We applied the same cumulative scheme as we

applied online to obtain one classification outcome for each

trial, and then averaged the classification rates across ses-

sions. In addition we computed the information transfer

rate measured in bits per minute for subtrials (Obermaier

et al. 2001; McFarland et al. 2003):

ITR ¼ log2 Nð Þ þ P log2 Pð Þ þ 1� Pð Þ log2ð
1� P=N � 1

� �h �
� 60=T

The first part of the formula pertains to the number of bits

transmitted per subtrial, with N as the number of possible

symbols (here: N = 2), P the classification accuracy and T

the length of a subtrial in seconds (here: T = 1 s).

Relationship Between Classification Result and the Alpha

Modulation Index (AMI)

To test whether the relation between strength of alpha

lateralization predicts the individual online classification

rate, we correlated the AMI with the average classification

performance during the online BCI task, where the AMI is

defined as the relative difference in the alpha-band for

attention left and right trials for all sensors (see ‘‘Sensors of

Interest’’ section).

Improvements Across Sessions

We assessed whether subjects show a significant increase

in online classification rate across sessions. We compared

the classification performances between two consecutive

sessions by one-sided paired Wilcoxon sign-rank test.

Subsequently, we computed the absolute classification bias

defined as the absolute difference between classification

rates of attention left versus right trials. Note that the

absolute classification bias is different from the bias cor-

rection term (see ‘‘Online data processing in the BCI

task’’). The absolute classification bias is measured as

classifier performance, whereas the bias correction term

constitutes the classifier decision boundary. We applied a

linear trend analysis across sessions to assess whether the

absolute classification bias systematically decreased over

sessions.

Variability Across Sessions and Tasks

In a further offline analysis, we assessed whether the pat-

tern of hemispheric alpha band lateralization remained

stable across session and tasks. Since we repositioned

subjects to approximately the same head position in the

MEG helmet, we were able to investigate how well the

templates from a specific session generalize to the other

sessions. We tested three different schemes to create tem-

plates: The online templates scheme refers to the templates

we used for the online classification, i.e. those that were

obtained from the Posner-cueing task conducted just before

the BCI task. The cross-session template scheme is testing

the BCI data of one session using the templates obtained

from training data of the other sessions. For the feedback-

template scheme, we tested templates obtained from the

BCI data of one session and classified the BCI data

remaining session. In addition, we tested whether a support

vector machine (SVM) can outperform the template

matching algorithm. We used the same sensor selection

procedure as for the online training templates, but trained

an SVM on the training data and classified data of the BCI

task. For assessing similarity across these different tem-

plate and classification schemes, we correlated the classi-

fication performances using (nonparametric) Spearman

correlations and performed paired Wilcoxon sign-rank tests

on the individual classification rates per session.
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Results

Assessment of Online Results

In the BCI task, subjects had to covertly attend to either the

left or right hemifield while continuously receiving feed-

back about the side of attention as classified from the brain-

activity. Feedback was provided by bilaterally presented

wheels rotating in the direction of decoded attention (see

Fig. 3). Overall performance of the subjects was assessed

by pooling the trials from all four sessions together. Eight

out of eleven subjects performed significantly above

chance level (i.e. they were able to rotate the wheels in the

right direction in at least 93 out of 160 trials; p\ 0.05;

Binomial test, see Fig. 5a). Two subjects achieved an

average classification rate significantly above 70 % (suc-

cess in at least 124 out of 160 trials), which has been

reported as a requirement for obtaining a subjective feeling

of control (Kübler et al. 2004); however when considering

the individual sessions, 7 of the 11 subjects performed at or

above 70 % in at least one of the four sessions (Fig. 5b).

The average information transfer rate (ITR) in session four

is 2.0 bits/min, with a maximum of 8.9 bits/min for Subject

1. Overall, results show that subjects can achieve control

over the BCI signal after one session of only 7 min.

A potential concern is that subtle overt eye-movements

accounted for the changes in parietal alpha power. We

correlated the offline eyetracker classification results with

the online template matching accuracy (see Methods). We

found no correlation between eyetracker classification rate

and the template matching classification rate (Fig. 6,

p[ 0.3).

Relationship Between Classification Result

and the Alpha Modulation Index (AMI)

Since covert visual attention elicits a well-studied alpha

modulation in parieto-occipital sensors, we investigated

Fig. 5 Classification rates per subject. The dotted horizontal bars

indicate the 50 % (lower one) and 70 % (upper one) significance

level. The GA column represents the grand-average over subjects.

a Cumulative classification accuracy. Subject 2, 3, 5, 6, 7 and 9

perform significantly better than chance level, Subject 1 and 10

achieve a performance significantly above 70 %. Example of

topographic plots of the alpha modulation index in the BCI sessions

are shown for three subjects (2, 7 and 10) b Accuracy across sessions

for all subjects. Subjects 1 and 10 perform significantly better than

70 % in session 2, 3 and 4. Subject 5 performs significantly better

than 70 % in session 4
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how this related to the template matching classification

performance. We asked whether the alpha power modu-

lated by covert attention is correlated with the average

classification performance during the online BCI task.

Figure 7a shows the average AMI of the training phase (-1

to 0 s relative to stimulus presentation) averaged over

sessions and then over subjects. The topographic plot

shows a relative increase in alpha power around left pari-

eto-occipital sensors and a decrease around right parieto-

occipital sensors. We correlated the average session AMI

of the sensors of interest with the online classification

performance over subjects (Spearman correlation) and

observed a strong significant correlation between the online

classification performance and the AMI of the training

trials (r2 = 0.6888, p = 0.0021; Fig. 7b). Thus, we con-

clude that the classification result obtained from the tem-

plate pattern classification strongly reflects the individual

strength of alpha lateralization.

Improvements Across Sessions

We assessed whether subjects show a significant increase

in online classification rate across sessions. On average,

subjects reached significant control in the second session,

but not in the first session (see Fig. 5b). We compared the

classification performance in the first session with the

classification performance of the second session using a

one-sided paired Wilcoxon sign-rank test. We found that

subjects show a significant training effect (Z = -1.74,

p = 0.04) after session 1, but we found no significant

improvement from session 2 to session 3 or 4 (all p[ 0.3).

Subject 9 complained about tiredness and lack of focus in

session three and four, resulting in a tremendous drop in

classification performance from 78 % in the first two ses-

sions to 50 % in the last session. Other subjects show a

huge increase in classification performance not after the

first, but after the second or third session (e.g. Subject 5 or

8). We conclude that subjects in general learn to control the

BCI within just one session.

Subsequently, we explored what factors might have

caused such an improvement. In the pilot experiments we

observed a strong bias towards one side in terms of alpha

lateralization, with some subjects being significantly better

for attending the left compared to the right side and vice

versa. We hypothesize that if subjects gain control over the

BCI, the average classification rate will increase and the

classification bias towards one side will be reduced.

Therefore, we computed the absolute classification bias for

all subjects and each session (Fig. 8), which is defined as

the absolute difference between classification rates of

attention left versus right trials.1 A linear trend analysis

revealed that the absolute classification bias dropped from

16.8 % in the first session to 6.8 % in the fourth session

(F(3, 30) = 3.0303, p\ 0.05). We can conclude that as

subjects learnt to control the BCI, the bias towards one

hemifield was reduced.

Variability Across Sessions and Tasks

Finally, we asked whether the hemispheric alpha band

lateralization remained stable or whether it changed with

the BCI training. Since we repositioned subjects to

approximately the same head position in the MEG helmet,

we were able to investigate how well the templates from a

specific session generalize to the other sessions. Figure 9

shows the classification performance obtained applying

different templates or classifiers. The templates we used for

the online classification were obtained from a Posner-

cueing task conducted just before the BCI task (black bars

in Fig. 9). We classified the BCI data of a given session

when using the templates obtained from another training

session (red bar in Fig. 9). This cross-session classification

resulted in accuracies highly correlated over subjects with

the online classification results (black bars in Fig. 9), in

which we used the training template from the same session

(r2 = 0.75, p\ 0.001). Note that although the obtained

classification rates are comparable with the online case, for

example Subject 4 shows a huge increase in classification

rate from 56.25 % (chance level) to 68.75 % (significantly

above chance level). This improvement is marginally sig-

nificant (Wilcoxon paired sign-rank test, Z = 1.83,

p = 0.07). On the grand-average level, however, we found

similar classification rates (Wilcoxon paired sign-rank test,

1 Note that the absolute classification bias is different from the bias

correction term (see Online data processing in the BCI task). The

absolute classification bias is measured as classifier performance,

where the bias correction term constitutes the classifier decision

boundary.

Fig. 6 Correlation between offline eyetracker classification rate and

online template matching classification over subjects. There was no

significant correlation (r2 = 0.1, p[ 0.32)
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Z = -0.24, p = 0.81), indicating that the training tem-

plates are exchangeable over sessions.

We also investigated whether online classification per-

formance is influenced by the heterogeneity between the

training task that the templates are created from and BCI

task. We created templates from BCI data of one session

and classified the remaining sessions (Fig. 9, yellow bar).

Again classification rates are strongly correlated over

subjects with the online classification rate (r2 = 0.49,

p = 0.016). Note that Subject 11 obtains a classification

performance significantly above chance, which she did not

before. This improvement is, however, not significantly

different from the online results (Wilcoxon paired sign-

rank test, Z = 1.1, p = 0.27). We conclude that templates

based on the BCI data result in neither significantly better

nor worse classification rates (Wilcoxon paired sign-rank

test, Z = -1.07, p = 0.28).

Finally, we ask whether a more advanced machine

learning technique, support vector machine (SVM), can

outperform the template matching algorithm (Fig. 9, white

bar). Also here we found a strong correlation over subjects

with the template matching classifier we applied online

(r2 = 0.59, p = 0.0059) and found no significant increase

in classification performance compared to the online

accuracies (Wilcoxon paired sign-rank test, Z = -1.34,

p = 0. 18). Summarizing, the analyses above demonstrate

that classifying based on the alpha lateralization pattern is

reliable and robust, independent of the classifier and

remains stable across different sessions and between dif-

ferent experimental tasks (Posner-cueing task versus BCI

task).

Discussion

In this study we demonstrated that posterior alpha power

modulated by covert attention can be used as a control

signal for an online brain-computer interface. This was

achieved using MEG and a simple template matching

approach. The classifier made use of the well-established

hemispheric lateralization of alpha band power with

respect to direction of covert attention. Eight out of eleven

subjects were able to perform better than chance level in

the online setup. Over the course of the experiment, sub-

jects were able to increase their classification performance.

We showed that improved performance over time was

accomplished by reducing the individual bias towards the

left of the right. Interestingly, classification accuracy was

not increased by different training templates. This means

Fig. 7 Alpha modulation index (AMI) averaged over subjects and the

relation to the online classification performance across subjects.

a Topography of anticipatory alpha (prestimulus) in the training trials

averaged over subjects. b Spearman correlation between the AMI

from the training trials and the online classification accuracy over

subjects (r2 = 0.6888, p = 0.0021). A high alpha lateralization in the

training task is predictive of better online control in the BCI task

Fig. 8 Absolute bias across subjects and sessions. The absolute bias

is defined as the absolute difference in classification performance

between the attention left and the attention right condition. The

absolute bias gradually decreases from the first session to the fourth

session as assessed by a linear trend analysis (F(3, 30) = 3.0303,

p\ 0.05), showing that subjects gain better control over their alpha

lateralization with increasing training
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that the pattern of alpha lateralization remains stable over

sessions and tasks, but that the individual ability to shift

and maintain attention was trained. Overall, the study

revealed new characteristics about the robustness and

trainability of alpha lateralization and demonstrates that it

is feasibility to use posterior alpha power as an online

brain-computer interface signal.

The design of our BCI paradigm is based on more than a

decade of cognitive neuroscience investigation of covert

attention (Worden et al. 2000; Thut et al. 2006; Foxe and

Snyder 2011). In particular these studies have demon-

strated that posterior alpha activity is robustly lateralized

when covert attention is directed to the left or right

hemifield. Here, we show that a simple template matching

approach yields performance comparable to other studies,

both in terms of classification rate as well as information

transfer rate per subtrial. On trial level, our paradigm

yielded an average performance of around 66 % in the last

session, which is in between the offline studies by van

Gerven et al. van Gerven et al. (2009) and Kelly et al.

(2005) and the online study by Tonin et al. (2013). On

subtrial level, Subject 1 obtained a maximal information

transfer rate of 8.9 bits/min which is comparable to the

maximum ITR found by Kelly et al. (7.5 bits/min) and van

Gerven et al. (8.89 bits/min). Also, the average ITR in

session four of 2.0 bits/min is comparable to the values

reported by van Gerven et al. (2009). It should be noted

that the paradigms used by Kelly et al. and van Gerven

et al. are not applicable for continuous control while

receiving feedback. In both paradigms, cueing one side was

followed by a change in visual stimulation at that side. In a

real BCI setting, the attended side cannot be known

beforehand; thus no stimulation at a single hemifield can

occur. Tonin et al. (2013) provided discrete feedback at the

end of a trial. To the best of our knowledge, our paradigm

presents the first reported approach where simultaneously

continuous feedback and BCI control can be achieved in a

covert attention paradigm. This is a crucial aspect for a

real-life application of the BCI. We conclude that posterior

alpha power can be used as a brain–computer interface

control signal based using a simple template matching

approach.

We would like to suggest some improvements to the

proposed brain–computer interfacing paradigm. First, we

used rather long trials of 10 s each. While this is perfectly

fine for training of alpha lateralization, it is impractical for

swift responses. For example, to reduce the time until a

decision is made, feedback could be stopped once the

cumulative evidence in favour of one of the sides exceeds a

threshold. There might be individual optimal time windows

to boost ITR (Tonin et al. 2012; van Gerven et al. 2009).

Second, for some subjects we found that the templates

obtained from the training data were not optimal to achieve

significant control (Subject 4 and Subject 11). In general, a

training template from the same day resulted in similar

classification results when compared to a training template

from any other day. However, in Fig. 9 we show that

individual subject could have benefitted more from other

templates than the ones we used online. For 10 out of 11

subjects, we found at least one set of templates that resulted

in performance significantly above chance, suggesting that

there is room to improve the training template construction.

Moreover, we observe that good templates can be created

in a single training session and used throughout or can later

Fig. 9 Classification accuracy of different classifier schemes. The

black bar shows the online classification rate (i.e. reproduces Fig. 5a).

The red bar shows the classification rate obtained when applying a

training template of one session and testing on the BCI data of the

three other sessions. The yellow bar shows the classification rate

obtained when creating templates from the BCI data of one session

and tested on the BCI data of the three remaining sessions. The white

bar shows the classification rate obtained by a SVM classifier trained

on the training templates of one session and tested on data of the BCI

task of that session. The GA column represents the grand average

results over subjects. The horizontal bar indicates the 50 % chance

level. * indicates a significance from the 50 % chance level and **

indicates significance from 70 % accuracy. No significant interactions

within subjects were found
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extended by BCI data. Hence we could skip the training

part in subsequent sessions without a significant drop in

individual performance. Third, we use short training ses-

sions of 40 trials times 10 s only, i.e. in total only 400 s of

training data per session. It remains to be tested whether

more BCI trials per session can result in better or faster

subject learning. Fourth, our data shows that subjects can

improve their performance after the first session. However,

individual subjects showed huge increases in performance

only after the third or fourth session (see Fig. 5b). It

remains to be tested whether training would further benefit

from more than 4 training sessions, as for instance often

30–40 sessions are used in neurofeedback sessions in

clinical settings (Fuchs et al. 2003; van Dongen-Boomsma

et al. 2013; Vollebregt et al. 2013). These improvements

might increase usability and lead to a better user experi-

ence by faster classification results.

Further, there are a number of technical improvements

that could decrease feedback delay. The main contribution

to the delay between the subject’s intention and the visual

feedback is due to the delayed and jittered availability of

the MEG data in the IPC shared memory buffer due to

block size mismatch in the MEG digital processing hard-

ware. We measured this delay to be in the range of

100–200 ms. Part of the issue is caused by the online head

localization, which adds a relatively coarse block-wise

processing step in the MEG processing stream. Optimizing

the acquisition settings might allow for some reduction in

delay and jitter. Furthermore, CTF/MISL, the manufacturer

of our MEG machine, recently designed new electronics

that also promises a smaller delay. Reducing the feedback

delay and the jitter might improve usability and efficacy of

the paradigm as well. Moreover, although we show no

further improvement in classification rate when using a

support vector machine in contrast to the template match-

ing algorithm, applying more advanced machine learning

techniques such as common spatial patterns (Pfurtscheller

et al. 2000; Guger et al. 2000), Kalman filtering (Sykacek

et al. 2004) or Bayesian classifiers using priors (Lotte et al.

2007; Tonin et al. 2013) based on the current wheel rota-

tion might increase classification accuracy. We believe that

if improvements are incorporated, the user experience and

classification rates will improve.

We showed that subjects using this brain–computer

interface improve their ability to modulate their posterior

alpha activity (see Figs. 5, 7 and 8). This increased mental

control might have longer lasting behavioural conse-

quences in terms of allocating spatial attention. For

example, subjects might become better at processing the

attended hemifield by reducing contralateral alpha power,

thereby becoming better at processing the attended stimuli.

Also, subjects might become better in ignoring the unat-

tended hemifield, which would come along with an

increase in ipsilateral alpha power. Future research should

aim at investigating the behavioural consequences of sub-

jects’ ability to allocate attention after such training

(reviewed in Horschig et al. 2014b). Eventually the pro-

posed brain-computer interface control signal could for

example be used in ADHD patients, who have a reduced

capability of maintaining hemispheric alpha lateralization

(ter Huurne et al. 2013).

Conclusion

In this study we have shown the feasibility of using pos-

terior alpha power as a brain–computer interface control

signal in a covert attention paradigm while participants

received continuous feedback on their performance. Par-

ticipants quickly obtained control in the setup and showed

improvement during the course of the four sessions. Given

the strong correlation between posterior alpha power and

behavioural performance demonstrated in earlier studies,

we hypothesize brain-computer interface training of pos-

terior alpha oscillations to improve the ability to allocate

and maintain spatial attention.
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