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It is well established that it is possible to observe spontaneous, highly structured, fluctuations in human brain ac-
tivity from functional magnetic resonance imaging (fMRI) when the subject is ‘at rest’. However, characterising
this activity in an interpretable manner is still a very open problem.
In this paper, we introduce a method for identifying modes of coherent activity from resting state fMRI (rfMRI)
data. Our model characterises a mode as the outer product of a spatial map and a time course, constrained by
the nature of both the between-subject variation and the effect of the haemodynamic response function. This
is presented as a probabilistic generative model within a variational framework that allows Bayesian inference,
even on voxelwise rfMRI data. Furthermore, using this approach it becomes possible to infer distinct extended
modes that are correlated with each other in space and time, a property which we believe is neuroscientifically
desirable.
We assess the performance of our model on both simulated data and high quality rfMRI data from the Human
Connectome Project, and contrast its propertieswith those of both spatial and temporal independent component
analysis (ICA). We show that our method is able to stably infer sets of modes with complex spatio-temporal
interactions and spatial differences between subjects.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Using resting state fMRI it is possible to generate enormously rich
data sets that capture some of the complexity of the brain's intrinsic dy-
namics and connectivity. However, generating representations that
meaningfully simplify the data, while still capturing these dynamics, is
an immensely challenging problem.

Initial analyses of rfMRI data focused on finding regions of highly
correlated activity (Biswal et al., 1995), with spatial independent
component analysis (sICA) coming to prominence as a robust method
for extracting regions consistent with knowledge from task analyses
(Kiviniemi et al., 2003; Smith et al., 2009).

Recently, there has been much interest in techniques which analyse
functional connectivity across the brain, including the potentially time-
varying or non-stationary nature of these connections (E.A. Allen et al.,
2014; Baker et al., 2014; Cribben et al., 2012; Seghier and Friston,
al Magnetic Resonance Imaging
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2013). However, for all but the simplest analysis techniques it is
necessary to work in a lower dimensional space than the hundreds of
thousands of voxels in a typical rfMRI data set. This is typically achieved
either by extracting parcels from an anatomical atlas, or using high-
dimensional sICA (Kiviniemi et al., 2009; Smith et al., 2013a). However,
it is well known that “[i]nconsistent or imprecise node definitions can
have a major impact on subsequent analyses” (Fornito et al., 2013),
which again throws the question of how best to generate meaningful
representations of resting state activity into sharp relief.

Therefore, an aim has become to find an interpretable and robust
way of representing rfMRI data, at the same time as capturing as
much of the complex temporal dynamics as possible.

Definitions

For this paper, we will use the following definitions. We will take a
network to be a set of interacting elements—synonymous with the
mathematical formalism of a graph as a set of nodes and edges. Func-
tional connections, that is to say the edges between nodes, may vary
in their presence and strength over time.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.01.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.neuroimage.2015.01.013
mailto:samuel.harrison@ndcn.ox.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2015.01.013
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/10538119
www.elsevier.com/locate/ynimg


218 S.J. Harrison et al. / NeuroImage 109 (2015) 217–231
Wedefine a parcel to be a set of voxels actingwith a single represen-
tative time course. These are often derived from a ‘hard’ parcellation of
grey matter into multiple non-overlapping regions (Rubinov and
Sporns, 2010; Yeo et al., 2011; Craddock et al., 2012). However, given
the trend for using components from a high-dimensional sICA for con-
nectivity analyses (E.A. Allen et al., 2014; Kiviniemi et al., 2009; Smith
et al., 2013a), we relax this definition slightly. In the spatial domain, a
parcel is taken to represent a set of positive weights, potentially varying
in magnitude, with limited overlap between different parcels. The defi-
nition we have given therefore allows, for example, blurred boundaries
or parcels that contain bilaterally paired regions.

We define a mode as any spatial distribution over the brain that
shares a common time course. This is similar to a parcel, but the defini-
tion iswider as this imposes no restrictions on the spatial properties. For
example, multiple modes can be highly overlapping, and individual
modes can include anti-correlated regions (meaning that some regions
within the mode have a negative spatial weight and others have a pos-
itive one). A mode—as an extended spatial distribution having common
temporal dynamics—can be defined either in terms of a spatial
voxelwise map, or as a weighted set of spatial parcels.

In general, it is possible to take the time courses from either parcels
or modes and use these as the nodes to examine in a subsequent
network analysis, but we will focus on modes here.

Current methods

Many techniques have been proposed to identify modes or parcels.
Perhaps the simplest is to extract time courses from labelled regions
in a pre-defined anatomical atlas, though the validity of this has been
called into question as the correspondence between anatomical land-
marks and functional regions is unclear (Fornito et al., 2013). The obvi-
ous alternative is to use a pre-defined atlas containing regions based on
previous functional studies, an approachwhich is likely to have a higher
validity.

However, the arguable weakness of atlas-based approaches is their
reliance on the registration process to enforce consistency across sub-
jects. There is an enormous amount of interesting structure present in
rfMRI data, and it seems reasonable to assume that this could be
harnessed to inform the specification of functional regions. In fact, one
of the key assertions we make in this paper is that it is possible to at-
tempt to use the characteristics of the rfMRI data to correct for subject
mis-alignments.

There have therefore been a large number of strategies proposed
that attempt to infer functional regions from the data—so called ‘data-
driven’ approaches. Temporally consistent co-activation is the implic-
it assumption that defines both parcels and modes, but by itself this
does not lead to a unique decomposition. Therefore, it is necessary
to add additional constraints to make the inference problem
identifiable.

Themostwidely used data-driven approach is to look formodes that
are independent using ICA. Due to the large numbers of voxels and
relatively few time points of early studies, spatial ICA gave the most ro-
bust decompositions and therefore became the dominant approach.
However, almost as soon as it was introduced, concerns were raised.
Given that “[distinct] large scale neuronal dynamics can share a substan-
tial anatomical infrastructure” (Friston, 1998; Smith et al., 2012), it is un-
clear how well sICA will decompose extended modes that spatially
overlap. These concerns were allayed to some extent by Beckmann
et al., who showed that in the presence of noise ICA components can
still contain strong residual dependencies, and highly correlated maps
can be recovered by a simple thresholding step (Beckmann et al.,
2005). What is perhaps less clear is what, if any, biases are introduced
when the data has a high SNR or when large groups are analysed, both
cases where the inferred maps are expected to contain very little noise.

An alternative approach is to look for temporally independent
modes, which has recently become possible as studies of large cohorts
acquired at low TR have generated enough time points for temporal
ICA (tICA) to operate robustly (Smith et al., 2012), albeit still most
likely requiring the concatenation of several fMRI data sets to
achieve reasonable reproducibility. This allows spatially overlapping
modes to be identified, at the expense of placing restrictions on the
global temporal dynamics—as well as this being a concern in and of
itself, this restriction will also limit any subsequent network analy-
ses of the mode time courses. As Smith et al. discuss, temporally in-
dependent functional modes (TFMs) are forced to have orthogonal
time courses, meaning that further analysis of the temporal interac-
tions between different modes is not straightforward (Smith et al.,
2012).

As well as the choice of spatial or temporal independence, various
extensions have been proposed to extract meaningful subject-specific
information from group ICA decompositions (Damoiseaux et al., 2006;
Filippini et al., 2009; Varoquaux et al., 2010; Erhardt et al., 2011).

While each ICA strategy has its own advantages, the fundamental
issue with all ICA-based approaches is that “it is not clear that, from a
neuroscientific point of view, independence is the right concept to iso-
late brain networks, as no functional system is fully segregated”
(Varoquaux et al., 2010).What is perhaps surprising is how demonstra-
bly well ICA approaches work, given that their central assumptions are
often violated (Hyvärinen, 2013); for example, forms of ICA have been
developed that explicitly incorporate information derived from the re-
sidual statistical dependencies between components (Hyvärinen and
Hoyer, 2000; Hyvärinen et al., 2001). Therefore, while ICA approaches
have been particularly useful for characterising fMRI data, one would
hope that a less restrictive set of assumptions could engender decompo-
sitions with even higher validities.

Other data-driven approaches suggested have had varying degrees
of success. Many are based on machine learning techniques, where
the key assumptions underpinning the algorithms are only loosely re-
lated to the expected properties of rfMRI data. These include clustering
approaches (Yeo et al., 2011; Craddock et al., 2012), regularised variants
of principal component analysis (PCA) (G.I. Allen et al., 2014), non-
negativematrix factorisation (Lee et al., 2011), image gradient detection
in correlation maps (Cohen et al., 2008) and hidden Markov models
(Eavani et al., 2013) to name but a few.

Finally, there are a few approaches which try to explicitly model
rfMRI data. The multi-subject dictionary learning (MSDL) approach of
Varoquaux et al. (2011) forms a model that explicitly looks for modes/
parcels, and there are some conceptual similarities with our approach.
Their algorithm contains a hierarchical model for spatial subject vari-
ability, a constraint favouring simultaneously smooth and sparse spatial
distributions as well as the ability to capture the temporal correlations
between modes.

Due to the similarities between our approaches, we will give a brief
description of themost recent version of theirmodel, of whichmore de-
tails can be found in the work of Abraham et al. (2013). Their spatial
model at the group level is detailed, simultaneously enforcing non-
negativity, sparsity and spatial contiguity. The subject maps are
modelled by including a set of additive, Gaussian-distributed deviations
from the group maps. Their time series model specifies that there
should be a consistent between-mode correlation structure but does
not restrict the form of the time series; therefore, it does not model
any haemodynamic processes. Finally, these constraints are combined
with a noise model, and the resulting cost-function governing their de-
composition is solved with a computationally efficient stochastic gradi-
ent descent approach. The most recent results they report are on an
rfMRI data set consisting of 48 subjects.

In this paper, we develop an analysis technique that explicitly
models some of the key properties of resting state modes within a
Bayesian framework. The Bayesian approach allows very flexible
models to be constructed in a principled manner; crucially, we solve
the system using a variational approach, thereby making the algorithm
efficient enough to work on full fMRI data sets.



Fig. 1. Diagrammatic representation of the probability density function for the delta-
Gaussian mixture model. The relative contribution of each component is governed by
the parameter π, while the Gaussian component is parameterised by its mean, μ, and
standard deviation, σ.
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The paper is structured as follows. First, we describe our model and
the approaches needed tomaintain tractabilitywhen doing Bayesian in-
ference.We then present our results, including both verification on sim-
ulated data and details of the modes inferred on fMRI data from the
Human Connectome Project (Van Essen et al., 2013) (HCP). Finally, we
discuss the implications of our results and key areas for future
investigation.

Model

We aim to identify extended functional modes which are not re-
stricted to being orthogonal, or non-overlapping, to each other in
space or in time. In general terms, we define a hierarchical model that
allows us to flexibly capture the spatial variation of modes across sub-
jects, while still keeping track of key properties at the group level. We
simultaneously enforce that the temporal characteristics of modes
must relate to the haemodynamics that drive the BOLD signal. Finally,
by doing inference in a Bayesian setting, the extent to which our
modes explain the data is automatically traded off against how well
they align with our prior beliefs.

As themodes we infer are defined by the generative model outlined
below, we will refer to them as probabilistic functional modes (PFMs).

The model is built on the same matrix factorisation approach that
underpins PCA, ICA, non-negative matrix factorisation and several
other well established methods for analysis of rfMRI. The approach is
to decompose an fMRI run into the product of two matrices, which in
the case of rfMRI are interpreted as a set of mode spatial maps and
time courses respectively.

The fMRI data are acquired with V voxels and T time points, giving
the data matrix DV × T for a single run. If we infer a set of M PFMs then
we look for spatial maps, PV × M, and time courses AM × T. In general
we infer a small number of PFMs relative to V and T, which gives a par-
simonious set of modes. However, this means that the factorisation will
not be exact, so we express the data as the contribution from the PFMs
and a noise term, ε, to give

D ¼ PAþ ε: ð1Þ

In order to infer both the group-level properties and any interesting
subject variability, we explicitly account for the full set of all runs,D. This
contains data from each subject within the set of subjects S, and in gen-
eral each subject, s, will have a set of multiple runs Rs.

D ¼ D srð Þn o
r∈Rs

� �
s∈S

ð2Þ

We then assume that the noise and time courses will be randomly
varying in each run, but that each subject has a set of mode spatial
maps that are consistent across all their runs. This extends Eq. (1) to
give

D srð Þ ¼ P sð ÞA srð Þ þ ε srð Þ
: ð3Þ

To formulate this as a probabilistic model we place priors on both
the PFM spatial maps and time courses, as well as modelling the contri-
bution from the noise. The forms of these distributions are explained in
the following sections.

Spatial prior

For each voxel v in the spatial map of PFM m we want to assess
whether, given the noise level and time course, the data supplies
enough evidence to suggest that there is genuinely an effect present in
that voxel. There is a direct conceptual link between this approach
and the traditional approach of significance testing within the general
linear model framework for task fMRI data.
If there is insufficient evidence a posteriori for an effect we should
just set the weight at that voxel to zero. However, if there is evidence
for an effect, then we are interested in both its size and how it varies
over subjects.

To express this model probabilistically, we formulate a delta-
Gaussian mixture model, a natural extension of the spike-slab distribu-
tion (Titsias and Lzaro-Gredilla, 2011). This contains a delta component
at zero to capture the effects that are not present or too weak to be
observed, and a Gaussian to model the observable effects and their
variability over subjects. This is parameterised by the probability of an
effect being present, π, as well as the mean, μ, and standard deviation,
σ, of the Gaussian. There is also a binary indicator variable, q, to capture
which component eachweight is drawn from. Crucially, we have placed
no explicit prior on the relationship between the spatial distributions of
different modes, so there is no explicit penalty on voxels being present
in multiple modes. Similarly, the fact that the non-zero weights are
drawn from a Gaussian means that they can be either positive or nega-
tive, thereby allowing modes containing anti-correlated regions—if the
data supports that inference. This has the form given in Eq. (4) and is
shown graphically in Fig. 1. Note that the inference on this model auto-
matically combines the evidence from each of the runs available for a
given subject, weighted to take into account the signal to noise ratio of
the time courses.

p P sð Þ
vmjq sð Þ

vm ¼ 1
� �

¼ N P sð Þ
vmjμvm;σ

2
vm

� �
p P sð Þ

vmjq sð Þ
vm ¼ 0

� �
¼ δ P sð Þ

vm

� �

p q sð Þ
vm

� �
¼ πvmð Þq

sð Þ
vm 1−πvmð Þ1−q sð Þ

vm

ð4Þ

The three parameters at each voxel, π, μ and σ, parameterise the dis-
tribution of the observed spatial maps over subjects. They succinctly
capture our beliefs about the answers to three very pertinent questions:
does a voxel contribute to a given PFM? If so, how big is the contribution
and how much does it vary from subject to subject?

As is standard, we place a beta-hyperprior on π and an inverse
gamma hyperprior on σ. Finally, we place a spike-slab hyperprior on
each mode's voxelwise means, with precision γ and sparsity λ, as in
Eq. (5).

p μvmjρvm ¼ 1ð Þ ¼ N μvmj0;γ−1
m

� �
p μvmjρvm ¼ 0ð Þ ¼ δ μvmð Þ

p ρvmð Þ ¼ λð Þρvm 1−λð Þ1−ρvm

ð5Þ
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The spike-slab hyperprior allows us to regularise the group spatial
maps, if required, by altering the λ parameter. Intuitively, λ represents
the proportion of voxels we expect to be non-zero a priori in each
mode's group level spatial map. In reality, as we expect modes to be
spatially distributed and overlapping, we set λ N M−1.

Note that when we present groupmaps we show the marginal pos-
terior mean of the whole spatial distribution, E ρvmμvmjD½ �, rather than
just the μ parameters.

Temporal prior

When looking at rfMRI data, the spectral characteristics of the
neurally-driven BOLD signal are dominated by the haemodynamic
response function (HRF). In other words, we know that any non-
artefactualmode time courseswe observewill be dominated by low fre-
quencies, almost regardless of the frequency content of the underlying
neuronal processes.

Therefore, we formulate a temporal prior that captures the auto-
correlation induced by the HRF. For a neuronal signal, x(t), and a linear
HRF, h(t), the observed signal y(t) is a simple convolution of x(t) and
h(t). If we assume that the neuronal process is white on the time scale
of the fMRI acquisitions then it is straightforward to show that the
auto-correlation induced in the observed signal is just the auto-
correlation of the HRF, namely

E y t1ð Þy t2ð Þ½ � ¼
X
τ
h τð Þh τ− t1−t2ð Þð Þ: ð6Þ

We assume a canonical double-gamma HRF and use this correlation
structure to construct a full covariancematrix,KA, for all the time points
in a given run. We also place a standard inverse gamma hyperprior, α,
on the overall precision. Therefore, the prior on the time course for
PFM m, which we denote Am

(sr) ∈ ℝ1× T, becomes

p A srð Þ
m jα

� �
¼ N A srð Þ

m j0;α−1KA

� �
: ð7Þ

Of course, it is well known that the HRF is both highly variable and
much more complex (Aguirre et al., 1998; Handwerker et al., 2004;
Kriegeskorte et al., 2010) than the canonical linear HRF assumed
here. However, this is a probabilistic prior, rather than a hard
constraint, so there is scope for the inferred time courses to match
the temporal structure in the data. Similarly, this form of prior on
the covariance structure is predicated on a white neuronal process.
Some current theories, based on evidence from electrophysiology
(Siegel et al., 2012) and biophysical models (Deco et al., 2011), pre-
dict that the neural basis of rfMRI activity is correlations between
the envelopes of higher frequency signals, where these amplitude
correlations occur at ‘ultraslow’ timescales (biased towards frequen-
cies less than 0.1 Hz). On the other hand, current evidence suggests
that neuronal process are white over the range of frequencies esti-
mable at typical fMRI sampling rates (Niazy et al., 2011) and that
structure, consistent with the rfMRI literature, is present at surpris-
ingly high frequencies (Baker et al., 2014).

Given the wide range of temporal models present in the literature,
we make the pragmatic decision to choose a very simple linear model
to capture the gross properties of the HRF and rely on the Bayesian in-
ference procedure to be flexible enough to capture some of the more
complex properties. This also has the advantage of being computation-
ally efficient.

Noise model

Thefinal part of themodel to specify is thenoise. This is simplywhite
Gaussian noisewith amean for each voxel, v. The overall noise precision
for each run,ψ, takes a standard gamma hyperprior, while themean has
a Gaussian hyperprior.

p ε srð Þ
t

� �
¼ N ε srð Þ

t jν srð Þ
; ψ srð Þ� �−1

I
� �

¼ p D srð Þ
t −P sð ÞA srð Þ

t

� �
:

ð8Þ

Variational inference

The aim is then to carry out Bayesian inference on this model.
However, calculating the full posterior analytically is intractable and a
sampling procedure for a model with this many parameters would be
prohibitively slow.

Therefore, we use a variational approach. In this framework the
posterior is chosen to take a simplified, parameterised form, with the
parameters chosen to best approximate the true posterior. We denote
the simplified posterior distributions q(x), and in this case the approxi-
mation we make is to factorise the posterior over the variables, Θ, to
give

p ΘjDð Þ≈∏
θ∈Θ

q θð Þ: ð9Þ

While this is an approximation, it is very efficient and allows us to do
Bayesian inference over large sets of rfMRI runs simultaneously.

Of course, while this approximation allows us to proceed, it intro-
duces a deviation from the true posterior and the implications of this
are very hard to quantify. This reinforces the need to evaluate the results
critically. Our tests with simulations and real data, described later, lead
us to believe that the effects of this approximation are not too
pernicious.

As we have taken all of our distributions from the conjugate expo-
nential family the variational update rules are somewhat routine
(Winn et al., 2005); therefore, we will not provide them in the body of
this paper but in the Supplementary material. This also contains the
graphical model and the values of the parameters we use for the prior
distributions for both simulations and real data.

Model identifiability

The identifiability of our decomposition is guaranteed by virtue of a
non-Gaussian spatial prior, as is the case with both sICA and MSDL,
amongst many others. However, this does not imply an equivalence be-
tween decompositions as all threemodels have fundamentally different
formulations of this spatial prior. Furthermore, compared to sICA, both
our approach and MSDL explicitly model subject variability,

Our HRF-based prior on the time courses strongly predisposes the
decomposition to identify modes that are neural in origin, rather than
those which represent structured artefacts. However, the time course
prior is rotationally invariant across modes. Therefore, it can only help
identify the subspace the BOLD signal resides in, but crucially does not
aid in the unmixing of the modes. This limitation arises because of the
assumption of a linear HRF operating on independent neural time
courses. Intuitively, if the set of inferred time courses are all consistent
with the frequency spectrum implied by our HRF, then any linear com-
bination of said time courses would satisfy our temporal constraints
equally well.

Finally, ourmethodworks on the full data. ICA, for example, normal-
ly operates in a reduced PCA subspace, of the same rank as the final de-
composition, and is therefore completely reliant on the PCA step to
separate the BOLD signal and the noise. It seems somewhat unlikely
that the PCA step will perfectly separate the two, and this is deleterious
as the ICA components will be contaminated by any noise that enters
the PCA subspace, while they will be ‘blind’ to any genuine signal that
is excluded by the PCA step. While there is a computational trade-off,
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a more holistic approach, modelling both the BOLD signal and the noise
simultaneously, seems to be attractive.

Results

Simulated data

In order to test the efficacy of ourmethodwe simulated an fMRI data
set containing an embedded ground truth set ofmodes. This allows us to
compare the accuracy of our model against other commonly used
approaches, under the assumptions of the simulations.

Data generation
The data was simulated to represent a scaled-down version of the

HCP acquisition protocols, where each subject was scanned four times
for 15 minutes at a TR of 0.72 s, yielding 4800 time points per subject.
However, as we are looking to repeatedly simulate data of this form,
only 12,500 voxels and 30 subjects—representing 144,000 time points
—are simulated. This is compared to the actual set of 90,000 HCP
‘grayordinates’ and over 500 subjects released to date. This represents
a data reduction by approximately a factor of 7 in both the spatial and
temporal domains compared to the HCP data set we use in subsequent
analyses. While somewhat arbitrary, this yields test data sets that are
computationally manageable, while having the same ratio of spatial to
temporal data points as in the HCP andwhere the various test–retest re-
liabilities are consistent with what we observe on the real data.

The mode activity itself was simulated as follows and this process is
outlined schematically in Fig. 2.What follows is a brief description of the
salient properties of our simulations. A much more detailed account,
along with all the parameter values used and some examples of typical
simulated data, can be found in the Supplementary material.

Firstly, a spatial ‘atlas’, of 200 binary, non-overlapping, continuous,
random parcels was generated, mimicking a one-dimensional hard
parcellation model. Random, smooth spatial warps were applied to
generate subject-specific versions of the group atlas, with the maxi-
mum possible spatial shift limited to 1.5 times the average parcel
Fig. 2. Procedure for generating our simulated rfMRI da
width—in this case just under 100 voxels. These warps are meant to
be a simplified representation of both instances where the registration
does not bring regions into alignment, and instances of genuine topo-
logical reorganisation.

The spatial distribution of 25 modes was specified as a sparse set of
weights, describing how strongly each parcel was associated with each
mode. The weights could be positive or negative, thereby allowing
modelling of within-mode anti-correlations. There was also a prefer-
ence for mode weights to be similar in adjacent parcels. This generates
modes with greater continuous spatial extent than individual parcels,
increasing the robustness to misalignments at the parcel level. The
mode sparsities were beta-distributed, with mean 0.08 and variance
7.5 × 10−4. Each mode is therefore associated with about 16 parcels
on average or, in other words, each parcel was present in about 2
modes. Finally, subject-specific mode weights were generated by
adding a sparse set of deviations around the group weights. A simple
matrix multiplication of the parcel atlas by the mode weights gives
the mode maps in voxel space.

In the temporal domain, mode time courses were simulated before
the action of the HRF, at a temporal resolution of 0.1 s. These time
courses were not white, but had an increased power spectral density
at less than 0.1 Hz; as mentioned previously, this allows us to investi-
gate how our model performs when the implicit assumption of a
white neuronal process is violated. There was a group-level pattern of
temporal correlations between modes, though there were variations
at both the subject and run level. Finally, the time courses were
thresholded based on amplitude, such that the smallest 80% of time
points were set to zero, to introduce temporal non-Gaussianities.

To illustrate the strength of the induced correlations between
modes, we plot a set of both spatial and temporal correlation coeffi-
cients from a single simulated subject in Fig. 3. Note that the presence
of non-zero correlations between the ground truthmodes, both spatial-
ly and temporally, goes against prior constraints in PCA/ICAmodels, but
we believe that this makes neuroscientific sense.

In order to generate the BOLD signal, the neuronal activity in each
voxel was calculated using the mode time courses, weights and the
ta. V: voxels; T: time points; N: parcels;M: modes.



Fig. 3. Examples of the ground truth spatial and temporal between-mode correlation coefficients for one subject in the simulated data tests.
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spatial atlas. These voxel time courses were then convolved with a
linear HRF—this was randomly drawn from a basis set and varied over
both subjects and space (Woolrich et al., 2004). A nonlinear saturation
function, loosely based on a second-order Volterra kernel approxima-
tion (Friston et al., 1998), was then applied. Finally, spatio-temporally
white noise was added to achieve an overall signal to noise ratio
of −10 dB.1
Methods and scoring
We compared the PFMs inferred by ourmethod to themodes recov-

ered by PCA, sICA, tICA and stICA. The stICA approach has two main
steps: sICA is used to find the 200 parcels in the spatial atlas, before
tICA is used to identify the modes in this reduced space. The results
from these two steps are then combined to recover the mode maps in
voxel space and, like the other methods, stICA is only scored based on
the recovery of the modes. Note that stICA was the approach used by
Smith et al. when characterising TFMs with tICA (Smith et al., 2012).
The ICA techniques used the FastICA toolbox (Hyvärinen, 1999) and
were compared before and after a final dual regression step (Beckmann
et al., 2009), a technique for estimating subject-specific versions of
group-level modes.

The results we present here are from tests where all methods were
tasked with identifying the set of 25 ground truth modes. Of course, it
is specious to assume that the ‘true’ number of modes is known, so
the Supplementary material contains results for cases where methods
were asked to recover either 15 or 40 modes. This allows us to assess
how robust the methods are to misspecification of the number of
modes, which is likely to be the case on real data.

Methodswere scored on how accurately they recovered the subject-
specific spatial maps and time courses, as well as how accurately they
could recover the between-mode spatial and temporal correlation
structures. Furthermore, themethodswere run twice on each simulated
data set. This allowed us to assess the relationship between test–retest
reliability and accuracy relative to the ground truth.

We use a correlation coefficient to score the accuracy of the recovery
of the spatial maps and time courses for the different methods. For this
paper we use the sample Pearson correlation coefficient, with the slight
modification that we do not remove means. We have taken this
approach because the matrix factorisation, while being ambiguous
with regard to the relative scalings of the maps and time courses, is
not invariant to shifts in themeans. Modeswerematched to the ground
truth using the Hungarian algorithm (Kuhn, 1955) based on the sum of
the map and time course scores.

Once modes have been paired with their nearest ground truth
counterparts, we calculate the decomposition accuracies. In the spatial
1 In other words, the ratio of the BOLD signal variance to the noise variance is 0.1.
domain this is the correlation between the inferred and true versions
of the subject-specific maps, and the correlations between true and
estimated time courses in the temporal domain. We present the
mean, over subjects, of these correlations for each mode in the figures.

In order to evaluate how well methods recovered the inter-mode
correlation structures, we recorded the RMS error between each ele-
ment of the inferred and ground truth correlation matrices; again, this
is calculated separately for spatial and temporal correlation coefficients
and takes into account the pairing of the inferred modes to the ground
truth. In this case, the mean used to calculate the RMS error is again
taken over subject-specific correlation matrices.

Test–retest scores were calculated using the samemethod as above,
except that rather than comparing the ground truth and inferred
mode maps, the two sets of maps resulting from different random
initialisations of the various algorithms were matched and scored.
Note that test–retest reliability is distinct from, though closely related
to, split-half reproducibility, ametric commonly used to evaluate the re-
liability of components from real data (Groppe et al., 2009). As we use
these simulations to evaluate the relationship between test–retest
reliability and ground truth accuracy, we will persist with this as our
performance metric on real rfMRI data.

Results
Fig. 4 contains the scores that capture how accurately the various

methods recovered the ground truth modes. These results are com-
pared with the test–retest reliability for four of the methods we tested
in Fig. 5.

Out of the traditional ICA approaches, sICA is by some distance the
most accurate. This is perhaps somewhat surprising given that these
simulations are based around modes, rather than parcels, and that
there are far more time points than voxels. However, the spatial map
distributions are strongly non-Gaussian and the sICA decompositions
are very robust, leading us to believe that, for these simulations, the lim-
iting factor for sICA is the restriction that the solution has to lie on the
manifold of uncorrelated maps.

Both tICA and stICA perform relatively poorly. It has long been
known that with small numbers of time points tICA is much less robust
than sICA (Friston, 1998; McKeown et al., 1998); however, each of our
simulated data sets has over five times as many time points as the
data set used in the paper which introduced tICA as a method for
identifying modes from rfMRI data (Smith et al., 2012), so we would
not expect this to be the limiting factor. Again, restricting the search
space to temporally uncorrelated modes is bound to be detrimental.
However, this problem is compounded by the blurring action of the
HRF severely reducing the strength of the observable temporal non-
Gaussianities. Finally, in this case the two-step stICA approach does
not seem to improve performance compared to running tICA directly.
However, it seems likely that some of the key benefits of this approach
on real data, for example the ability to remove artefactual components



Fig. 4. Accuracy in recovery of the ground truth on simulated data. Multiple data sets were simulated, and the accuracy with which the above data characteristics are inferred, for each of
the 25modes, is shown for eachmethod. Dual regression is indicated by the suffix DR. GTg illustrates the scores that are achieved if the subjectmaps are just set to themean of the ground
truth subject maps; as such, it both illustrates the amount of subject variability in the data and is also a useful benchmark for those methods which do not model individual subjects.
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at the sICA stage or to renormalise parcel time courses that are acquired
in regionswith different sensitivities, are not being fully captured by our
simulations.

For all the ICA approaches, dual regression allows the inference of
subject specific maps and time courses, offering only modest improve-
ments in performance in the spatial domain.

Our method performs the most accurately out of the various
methods on test here—it is able to infer both temporally and spatially
correlated features reliably from this data. However,what is particularly
encouraging is the lack of systematic bias in the inferred PFMs, as
illustrated in Fig. 5a. Ground truth accuracy is strongly correlated with
test–retest reliability, a property one expects where estimation is
accurate, and is particularly useful as the latter is usually the only per-
formance metric available on real data. In contrast, for all the ICA
methods repeatability is essentially independent of accuracy; the ICA al-
gorithms show reliable convergence to relatively inaccurate solutions.
Though it is an obvious point, it is one that is perhaps worth repeating:
test–retest reliability is only a necessary, rather than sufficient, condi-
tion for successful inference.

The Supplementary material contains the equivalent set of results
when the algorithms are asked to infer a different number of modes
to the set in the ground truth. What is striking is how consistent the
relative accuracy of the methods is. This suggests that when there is a
mismatch in dimensionality, as is likely the case on real data, the results
can still be trusted. Similarly, if we look at the recovery of the BOLD
subspacewe can see that the PFMs recover this muchmore consistently
as dimensionality varies. For the methods that rely on PCA to find the
subspace, as dimensionality increases more variance is explained. The
issue is that if this extra variance represents noise the accuracy will
actually reduce. However, for the PFMs there is an explicit prior on
haemodynamic time courses which seems to suppress the amount of
noise introduced into the subspace by the extra components.



Fig. 5.Accuracy in recovery of ground truth subject-specific spatialmaps plotted against test–retest reliability for fourmethods tested on simulateddata. Eachmethodwas run twice on the
same data set; both the accuracy scores, as plotted in Fig. 4a, and the test–retest reliability, scored using the same correlationmetric, were calculated for eachmode. The grey line indicates
equality between the two scores, whereas the red line indicates the range of scores possible if the inferred maps are just the ground truth maps with independent additive noise.
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In summary, the results from our simulations lead us to believe that
the PFMs our method infers have interesting and valid spatial and tem-
poral interactions. Furthermore, we believe that, for our method, test–
retest reliability will be a useful indicator of accuracy on real rfMRI data.
HCP data

For the subsequent analyses we use rfMRI acquired as part of the
HCP—full details of the various acquisitions can be found in publications
from the project (Van Essen et al., 2012; Smith et al., 2013b).

Each subject has four 15-minute rfMRI runs, acquired using multi-
band acceleration with a TR of 0.72 s to give 1200 time points per run.
The runs are sampled into the standard set of just over 90,000
grayordinates and then FIX cleaned (Salimi-Khorshidi et al., 2014;
Griffanti et al., 2014) to automatically remove as many structured arte-
facts as possible. These cleaned runs are then aligned using MSM
(Robinson et al., 2013, 2014), a flexible framework for surface-based
registration based on information from multiple modalities. In this
case, registration is driven by both structural and functional features.
Cortical folding patterns and myelin maps were used as the structural
features. The functional features were subject-specific low dimensional
sICA components, extracted by running ICA on the group followed by
dual regression.
Weused all 209 of the subject data sets publicly available at the time
these analyses were run.

Note that the set of grayordinates includes both cortical and subcor-
tical structures, and all algorithms were run on the full set of vertices.
However, the following figures only show the results on the cortical
surfaces.

Test–retest reliability
In order to evaluate how stable our algorithm is on real data we ran

two analyses, both looking to extract 30 PFMs from the full set of
available HCP data. The convergence of the PFM maps, from different
random initialisations, is shown in Fig. 6. The PFM numbers we assign
here are used consistently in all subsequent sections. The maps them-
selves can be found in the Supplementary material.

The choice of 30 PFMs was somewhat arbitrary, though it did seem
to give sets ofmodes that related, to a reasonable extent, to some spatial
maps reported in the literature. If the dimensionality was increased, to
the region of 100 PFMs, we observed that a set of PFMs with a similarly
large spatial extent was inferred, often closely matching to the results
presented here. The remaining PFMs were either eliminated from the
model or seemed to capture subject-specific artefacts. This is an area
that clearly warrants further investigation and we would hope to be
able to reliably identify larger numbers of modes with more data sets
and more iterations of the analysis.



Fig. 6. Plot showing the convergence of PFMmaps over two separate runs of our algorithm. The similarity ismeasured by the correlation coefficients between the bestmatched group-levelmaps
fromeachanalysis. The algorithmwas run for 1000 iterations; a blue line is plotted after every 100 iterationswithdarker lines indicatingmore iterations.Wealsoplot an indication of the strength
of the spatial weights in the various maps. For each analysis we calculate the standard deviation of the mapweights for each PFM, before normalising these by the size of the global component
(PFM 1). Then, after the PFMs have been matched, we plot the maximum standard deviation for each pair. A value of close to zero suggests a pairing between maps that have been eliminated
from the model by the implicit Bayesian model regularisation.
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As Fig. 6 shows, the algorithm clearly converges to a stable set of
PFMs, though the Bayesianmodel regularisation automatically eliminates
some of the thirty from the model. Twelve PFMs are inferred with a cor-
relation coefficient of above 0.9, with a further five scoring above 0.8.

However, there are examples of plausible PFMs that are only present
in one of the analyses. For example, PFMs 10 and 12 have low reliabil-
ities despite having very plausible spatial distributions. By way of con-
trast, PFMs 26 to 30 are neither strongly reproduced nor consistent
with previously reported results. This is exactly as we would expect
given our simulated data results, wherewe observed that low reproduc-
ibility does not necessarily imply low accuracy. It is highly unlikely that
a random initialisation will lead to the most stable decomposition, as
several similar Bayesian methods have noted (Groves et al., 2011), but
it is important to show that the algorithm can converge from disparate
start points in parameter space, as demonstrated here.
Fig. 7. Five example group spatialmaps for PFMs identifiedby ourmethod. For eachPFMwe rep
appropriate. Cortical surface views were generated using ConnectomeWorkbench (www.hum
spatial maps and time courses is dependent, albeit weakly, on the specific prior parameters (giv
the maps presented here, but have simply displayed the posterior mean with a representative
Interactions between ‘cognitive’ modes
To illustrate the advantages of having a method that can flexibly

infer both spatial and temporal interactions we will focus on five PFMs
that relate to areas associated with higher cognitive functions. The spa-
tial maps for these PFMs are shown in Fig. 7.

These are based on one of the analyses used to illustrate test–retest
reliability, where we extracted 30 PFMs. The full set of extracted spatial
maps is shown in the Supplementary material.

The dorsal (visual) attention system (DA, Fig. 7a) is associated with
top down control of externally directed attention (Corbetta and
Shulman, 2002). The default mode (DM, Fig. 7d) is thought to be
involved in self-directed thought and background levels of attention
(Raichle et al., 2001; Buckner et al., 2008). The third well-established
mode is the fronto-parietal control system (FPC), thought to flexibly
couple with either the DA or DM in order to mediate between internal
ort the test–retest reliability score aswell as the commonname reported in the literature, if
anconnectome.org/connectome/connectome-workbench.html). The relative scaling of the
en in the Supplementary material). Therefore, we have not applied any normalisations to
colour encoding.

http://www.humanconnectome.org/connectome/connectome-workbench.html


Fig. 8. Spatial and temporal interactions between the five PFMs shown in Fig. 7. Firstly, the correlationmatrices for each subject's spatial map and time courses are computed and Fisher trans-
formed. A t-test is performed on each element of these correlationmatrices—nowpooling across subjects—before conversion to the z-statisticswe report here. Partial correlations are displayed
as the 5 × 5 subset of the full 30 × 30 partial correlation matrices; in other words, they are calculated after orthogonalisation with respect to the twenty five PFMs not highlighted here.
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and external attention (Vincent et al., 2008; Spreng et al., 2010; Cole
et al., 2013). Our method splits this into left and right lateralised
forms, which we will term the lFPC (Fig. 7b) and the rFPC (Fig. 7c).

Finally, we have also highlighted a mode which, like the DM, is
strongly present in the posteromedial cortex (PMC) and inferior parietal
lobule2 (PMPL, Fig. 7e). This is present in three distinct regions of the
PMC and these are, from anterior to posterior, the retrosplenial cortex,
the posterior cingulate cortex (PCC) and the anterior bank of the
parieto-occipital sulcus (V6A (Sereno et al., 2013)/POS2 (Glasser and
Van Essen, 2011)).

It is no great surprise that it is possible to identify several different
modes that contain regions within the PMC, as this is an area of cortex
that has repeatedly been associated with high functional heterogeneity.
For example, patterns of resting state correlations have been shown to
be strongly dependent on which area of the PMC is used as the seed
(Margulies et al., 2009; Cauda et al., 2010). Similarly, PMC regions are
often highlighted by network analyses (van den Heuvel and Sporns,
2013), for example as functional (Buckner et al., 2009; Sepulcre et al.,
2012; Zuo et al., 2012), or structural ‘hubs’ (van den Heuvel et al.,
2010). Even within modes, the PMC has often been identified as a cru-
cial nexus, with network analyses frequently suggesting that, within
the DM, all roads lead to the PCC (Buckner et al., 2008; Fransson and
Marrelec, 2008).

Given the wealth of fMRI literature, it would be tempting to start
assigning roles to those modes, such as the PMPL, that do not closely
correspondwith previously characterised functional systems. However,
entertaining as it would be to speculate on the cognitive function of
modes, this is not something we can do with any great confidence
given that “a solid first-order understanding of cortical parcellation re-
mains elusive” (Van Essen and Glasser, 2014). All the results presented
here are from analyses of high resolution, surface-based data acquired
at low TR—without this high quality surface data it is extremely unlikely
that it would be possible to disentangle these modes at all. That being
the case, the exact correspondence between these results and those
based upon relatively low resolution, volume-based data, used by
many of the studies we have cited, is unclear.

What we can do, however, is use these PFMs to illustrate how our
method deals with modes that are both spatially and temporally cor-
related. The full and partial spatial correlations between the PFMs
we have highlighted are shown in Fig. 8a, with the equivalent
temporal correlations displayed in Fig. 8b. The fact that there are
many non-zero spatial and temporal correlations between modes is
2 It therefore bears a passing resemblance to a parcel identified by Power et al. (2011),
though as their parcels could not spatially overlap this is certainly ambiguous.
evidence in itself that neither sICA nor tICA would be able to accurately
infer this exact set of modes' spatial maps and time courses.

The temporal partial correlations between thewell established PFMs
are consistent with their previous characterisations. The DM strongly
anti-correlates with the DA, while the lFPC and rFPC are strongly cor-
related with each other. Both the DA and DM are partially correlated
with the two elements of the FPC, though more weakly. If we now
look at the full correlations then the spatial and temporal correla-
tions show a similar pattern of positive and negative correlations be-
tween the PFMs.

However, if we look at the interactions of the PMPLwe see that there
are large, positive spatial correlationswith the other four PFMswhereas
there is a mixture of positive and negative temporal correlations. The
partial correlations show that the PMPL, like the DM, is anti-
correlated with the DA; however, it seems to only weakly interact
with the DM. What is especially intriguing is that the PMPL does
not symmetrically correlate with the lFPC and rFPC. Rather, it
seems to weakly anti-correlate with the lFPC but strongly correlate
with the rFPC.

The interesting point about this set of interactions is that the spatial
correlations are not trivially predictive of the temporal correlations, and
vice versa, once again suggesting our approach can identify sets of PFMs
with complex spatio-temporal structure.

Subject variability
One important component of our model is the ability to explicitly

model differences between subjects. In Fig. 9 we look at three subject-
specific variants of the DA.

While the subject variants are unsurprisingly much noisier than the
group map, they are all recognisably the same PFM. What is perhaps
surprising is the amount of variation in the locations of key spatial
features.

For example, the spatial weights in the ventral premotor cortex
(vPMC) only appear relatively weakly in the group map. If we look at
the three subject variants we can see that this appears strongly in the
first two subjects—though in the second subject at a distinctly different
position to the peak of the group activation—whereas in the third sub-
ject there seem to be no strong spatial weights in that region at all.

Similarly, there is a large amount of variability in the locations of the
large spatial weights that encircle visual areaMT. In subject 1 the region
of large weights in the posterior temporal lobe (pTL)3 is completely
3 At the group level at least, these weights seem to be focused around a bridging gyrus
linking the posterior middle temporal gyrus and posterior inferior temporal gyrus, with
excursions into both of these temporal gyri.



Fig. 9. Example subject variants of the dorsal attention PFM spatial map (the group map is also shown also in Fig. 7a). Only the left lateral cortical surface is shown. The borders shown
delineate the ROIs used in subsequent analyses. Cortical surface views were generated using Connectome Workbench (www.humanconnectome.org/connectome/connectome-
workbench.html).
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spatially separated from the other areas, whereas in subject 3 there is a
large swathe of strongweights included in the mode linking this region
to the rest of the strongly weighted regions within the parietal lobe.

To try to quantify these observations, we carried out an ROI analysis
on the subject variants of theDA. The variability across subjects of the spa-
tial activations in the three ROIs shown in Fig. 9 is plotted in Fig. 10. We
chose ROIs in the left hemisphere, comprising the region of high activity
in the pTL, the weak activity at the group level in the vPMC and a control
region, not involved in the DA, situated in the motor cortex (MC).

The ROI in theMC shows a close to zeromean correlation, with a de-
gree of variability which we expect represents a baseline—simply
reflecting the relatively small number of grayordinates and the
inherently noisy estimates of the individual subject maps. Both the
pTL and vPMC shownon-zeromean correlations, as expected. However,
the pTL exhibits amuch larger degree of variability than theMC, and the
vPMC is more variable again.

We hypothesise that the high variability, relative to the control, in
these regions is mainly attributable to the spatial mismatch between
subjects. In other words, in the well aligned subjects the ROIs appear
very similar, whereas when the alignment is less accurate the activity
within the ROIs barely overlaps at all, leading to very dissimilar ROIs be-
tween some subjects. Given this variability, it seems highly unlikely that
the region in the vPMC, for example, could be identified reliablywithout
recourse to its strong connectivity to the rest of the DA. This raises sev-
eral questions about how subject variability influences the appropriate
dimensionality of functional parcellations—a point we will return to in
the discussion.

Finally, given that theMSM registration is already informed by func-
tional features, these spatial shifts are somewhat surprising. One
Fig. 10. Histograms of the Fisher transformed correlation coefficients between the DAmap wei
were extracted and the full subjects-by-subjects correlation matrix, between these sets of weig
and collected into the histograms shown here. In this case, due to the highly different group
demeaned.
possibility is that there is simply a fundamental difference between
the measures of similarity we are examining and the metric implied
by the particular choice of functional features for registration. To clarify
the impact of the functional information on the registration, we re-ran
our algorithm on two different random subsets of 50 subjects: one
where MSM had been informed by sulcal depth, myelination and
subject-specific low dimensional sICA components (MSMAreal Features)
and the other where MSM had been driven by sulcal depth alone
(MSMSulc). We then compared how similar the inferred subject maps
were under each of the registration schemes. The results are plotted in
Fig. 11.

What is striking is the large shift in the positivemode of the distribu-
tion. When subjects are registered with functional information, their
subject-specific maps look much more alike, exactly as expected.
However, the high variability between subjects, evenwith the improve-
ments from MSM registration, remains a pressing issue.

Comparison with sICA and tICA
As well as comparing the reliability of different decompositions

through test–retest reliability, it is also instructive to look at where the
similarities and differences lie between approaches. For example,
given that the HCP represents a step change in data quality, quantity
and preprocessing, it could be that any new results from our decompo-
sition relate to the data, rather than the method.

To this end, we ran 30 dimensional sICA and tICA on the HCP data
and looked at the spatial similarities between the ICA modes and
those inferred by our method in the previous section. The results are
plotted in Fig. 12 and the ICAmaps are shown in the Supplementaryma-
terial alongside the PFMs they are paired with here. The Supplementary
ghts within the three ROIs shown in Fig. 9a. For each ROI, each subject's PFMmapweights
hts, was calculated. The elements of the correlation matrices are then Fisher transformed
mean activities within ROIs, correlation coefficients are taken after the ROIs have been

http://www.humanconnectome.org/connectome/connectome-workbench.html
http://www.humanconnectome.org/connectome/connectome-workbench.html


Fig. 11.Histograms of the Fisher transformed correlation coefficients between the subject-
specific PFMmaps under two different registration schemes. MSMAreal Features (Areal) reg-
istered subjects using structural and functional information, whereasMSMSulc (Sulc) used
purely structural features. For both sets of results we remove the scores relating to both
the global PFMand any artefactual PFMs. Then, for eachPFM retainedwe calculate the cor-
relation coefficients between all pairs of subject specific maps. The histogram pools these
scores over all PFMs and subject pairs.
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material also contains a similar plot, illustrating the similarity between
the sICA and tICA spatial maps.

Most of the PFMs have a fairly close correspondence with a mode
identified by one of the ICA methods but crucially neither sICA nor
tICA can account for all PFMs; this suggests that our method is identify-
ing a genuinely different decomposition to either ICA approach. That is
not to say that wewould expect different algorithms to inferwholly un-
related sets of modes. Given that they are all run on the same data and
are built on matrix factorisation models, it is natural to expect a fairly
large degree of similarity between decompositions—indeed, the oppo-
site would be a major cause for concern in light of the wealth of litera-
ture characterising resting state modes.

Discussion

In this paper, we have introduced a new method for identifying
modes from rfMRI. It can disentangle sets of modes with complex
spatio-temporal interactions, as well as inferring information about
the nature of variations across subjects. Our results suggest that our
method is at least as robust as current popular methods, despite fitting
amore complexmodel to the data. Furthermore, the non-trivial tempo-
ral correlation structureswe identify, in agreementwith existing results
from both the task and resting state literature, give us confidence that
we can identify modes with the kind of dynamics that will be amenable
to non-stationary functional connectivity network analyses.
Fig. 12. Similarity between the spatial maps identified by our method and both tICA and
sICA. Each method was tasked with inferring 30 modes from 209 subjects worth of HCP
data. The modes inferred by sICA and tICA were matched to the PFMs from our method
and the spatial correlation coefficients between the maps are plotted here. The PFM
numbers relate to the numberings in the Supplementary material and are organised into
several loose functional categories: a global component (PFM 1); motor (2–4); visual
(5–10); auditory (11) and cognitive (12–20). PFMs 21–30 were either harder to classify
or eliminated from the model.
Nodes: modes or parcels?

Our model is explicitly based around the concept of modes, in that
we deliberately place few hard restrictions on the spatial structure of
the components we infer. This naturally leads to identification of
components that, due to their large spatial extent and prominent anti-
correlations, often superficially resemble previous results from tICA
analyses. These PFMs are clearly interesting in their own right; however,
given the recent interest in non-stationary functional network analyses,
high-dimensional parcellations, based around spatially compact and
positively correlated regions, have come to the fore.

Ultimately, the choice of whether to analyse modes or parcels de-
pends on, to varying extents, the research question, data properties
and personal preferences. Here, we briefly discuss the implications of
our results for this choice.

Network analyses
From a network analysis perspective, both parcels and modes are

fundamentally looking for the same thing—ways to simplify the repre-
sentation of voxelwise rfMRI connectivity with as little information
loss as possible. This naturally leads to the definition of regions as
groups of voxels that share a common time course, a concept which
can be formalised mathematically as a matrix factorisation approach
(Eq. (1)).

While there is a common mathematical grounding, parcels have
come to the fore for several reasons. Firstly, network analyses of parcel
time courses are arguably more interpretable; the interactions between
distinct brain regions are a conceptually simpler construct than those
between gross cortical ensembles that potentially overlap and contain
anti-correlations. Secondly, if we could identify a high dimensional
parcellation reliably, then mode structures should naturally fall out of
any subsequent network analysis—the concern is that the spatial scale
ofmodes leads to loss of useful information. Indeed, the characterisation
of temporal functional modes using tICA was explicitly based around
this notion: a high dimensional set of parcels was identified before
these were combined into a temporally independent set of modes.
Note that this is the stICA approach we investigate in our simulations.

It is not unreasonable to assume that the higher the dimensionality
of the parcellation the richer the description of the data. However, the
crux of the matter is that the parcellation has to be both meaningful
and reliable. Therefore, in light of subject variability and noisy data, it
is imperative that the suitability of any parcellation comes under
rigorous scrutiny; if this is improperly defined all subsequent network
analyses will be rendered meaningless.

Implications of subject variability
The results we have presented from our modelling of subject vari-

ability lead us to believe that spatial mismatches are one of the biggest,
if not the biggest, sources of currently observable differences between
subjects. These mismatches presumably reflect some combination of
misalignments, either arising from cases where the registration is not
able to make functional regions perfectly coincident, or, alternatively,
cases where registration could not possibly work as the areal topology
is genuinely different between subjects.

For example, given the variability in spatial location of the region in
the vPMC that correlateswith the rest of theDA,we donot believe that a
group-level parcellation at this spatial scale4 would be robust enough to
enforce functional correspondence across subjects.

The only reason our model can reliably find this region, despite its
variable spatial location, is that it consistently correlates with the
much larger spatial regions of the DA in the parietal and temporal
lobes. Crucially, themode as awhole is large enough to be robust to var-
iations in functional localisation across subjects. However, this does not
4 This ROI contains around 450 voxels, whichwould lead to a spatial atlas of around 200
regions if hemispheres were treated independently.



229S.J. Harrison et al. / NeuroImage 109 (2015) 217–231
hold if the distinct regions that form themode—in other words, the par-
cels wewould hope to uncover from a higher dimensional analysis—are
considered separately from each other.

Again, this is a particular surprise given we are already using func-
tional registration—in this case using MSM, though several methods
have been proposed (Conroy et al., 2013; Li and Fan, 2014)—and as
we show in Fig. 11 it is working well. Our model for subject variability
is not explicitly designed to capture spatial shifts, though the fact that
it can correct for them to some extent is particularly encouraging. Our
view is that the relationship between models like ours and functional
registration algorithms should be a symbiotic one, where better charac-
terisation of functional data can be used to increase the accuracy of the
registrations, and improved registration allows functional information
to be spatially localised with increasing specificity.

Spatial templates
In their discussion of the work of Saygin et al. (2012), which used

connectivity rather than spatial information to predict functional re-
sponses, Jbabdi and Behrens noted that “[b]y mapping onto a purely
spatial template, we lose a great deal of detail that is present in individ-
ual responses, andwe are left to interpret only the spatial peaks that are
consistent across subjects” (Jbabdi and Behrens, 2012). Hopefully, what
we have shown here is that provided spatially consistent peaks do exist,
it is then possible to recover some of the information about individual
responses. An interpretation of theway ourmodel for subject variability
is able to infer this information is that it, very naïvely, uses the strong
connectivities between the different regions that form a PFM to correct
for spatial variability.

However, while our model should ameliorate these problems to
some extent, this is by no means addressing the pivotal issues head-
on. That a voxel or region should be intrinsically defined by its connec-
tions seems an eminently sensible approach; how this transition from a
spatial to a connectivity-based template is achieved in practice is an ex-
tensive area for future research.

Finally, we believe that it is this need for spatially consistent peaks to
exist that severely restricts the minimum spatial extents of modes. Our
finding from the test–retest reliability scores, that around 20 PFMs are
reliably identified, does seem to agree with previous results. For exam-
ple, in their analysis, Yeo et al. examined the stability of non-
overlapping parcels identified with a clustering approach (Yeo et al.,
2011). They found that therewere peaks in the stability of the clustering
when 7, 10, 12 or 17 parcels were identified—a result that is perhaps
challenging to reconcile with the current tendency to use high-
dimensional parcellations. The improvements in alignment offered by
MSM and our relaxation of some of the spatial assumptions they
made, especially allowing overlap, leads us to believe that our method
would naturally find more PFMs. However, we only find a few more
PFMs; our interpretation of both these findings is that modes have to
cover a surprisingly large spatial area in order to be robust to subject
variability.

Computational considerations

Crucially, our algorithm operates on the full voxelwise data. Having
to work in a reduced dimensionality subspace, for example a small set
of PCA components, is a fundamental limit for several algorithms—
including the ICA approacheswe have tested here.While post-hoc tech-
niques, like dual regression, can go some way towards alleviating this,
there seem to be advantages to working with the full data.

However, for projects like the HCP with very large cohorts, simulta-
neously workingwith hundreds of runs in this way poses a not insignif-
icant computational challenge. For example, simply loading the data
from the 209 subjects we have analysed in this paper requires nearly
700 GB of memory. Similarly, our algorithm took almost a week to run
on this data, typically utilising twelve cores of the machine. By way of
comparison, the incremental group PCA, used as a first step for the ICA
approaches, still takes several days to run on the same data, albeit
with much smaller memory requirements (Smith et al., 2014).

These types of computational issueswill only becomemore pressing
as these large projects become the norm—the HCP alonewill ultimately
contain six times as many subjects as analysed here. In a sense, the
approach to these computational issues is the fundamental difference
between our approach and MSDL. Our spatial prior still allows for sub-
jectmodelling, but by choosing not to impose a spatial smoothness con-
straint the computational complexity of our algorithm is reduced,
thereby allowing the analysis of hundreds of subjects simultaneously.
As discussed earlier, similar simplifications were made for the HRF
modelling too. We are not trying to claim that ours is the optimal solu-
tion, as the MSDL cost functions clearly have their own advantages.
However, the trade-off betweenmodel complexity and data throughput
is likely to come under increasing scrutiny as the amount of available
data swells.

Bayesian modelling

One of the major driving forces behind some of our choices when
developing our probabilistic model was ensuring that the model
remained amenable to Bayesian inference; for example, the variational
approximation introduces deviations from the ‘true’ posterior, but is ex-
tremely computationally efficient. Given these trade-offs, it would be
reasonable to ask whether the benefits of a fully Bayesian model really
do outweigh the costs, especially as in the results presented here we
have tended to focus on very simple summary statistics of our posterior
distribution—often simply the posterior mean of the parameters in
question.

We firmly believe that full Bayesian modelling is a useful approach,
for several reasons. Firstly, by not only learning parameters, but also
their associated uncertainty, the overall inference improves.

Secondly, the posterior distribution is an enormously rich descrip-
tion of the data. While this is challenging to visualise, we expect that
this will contain genuinely interesting information. Furthermore, this
is information that could be incorporated into any subsequent network
analysis.

Finally, and perhaps most importantly, the Bayesian approach gives
a principled framework inwhich to build and comparemodels.Wehave
made several distinct modelling choices—looking for modes rather than
parcels or considering a canonical linear HRF, for example. However,
these are choices; it would be straightforward to alter the model to re-
flect a different set of assumptions. What we have demonstrated here
is that it is possible to build ambitious models, tailored to fMRI data,
that are computationally feasible even for huge numbers of subjects.

Algorithm

We refer to our approach/software as PROFUMO (PRObabilistic
FUnctional MOdes). Our hope is that a future version of PROFUMO can
be made publicly available as part of FSL.
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