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Abstract

In this paper, we discuss several additional properties a power linear
Keller map may have. The Structural Conjecture by Drużkowski in
[Dru] asserts that two such properties are equivalent, but we show
that one of this properties is stronger than the other. We even show
that the property of linear triangularizability is strictly in between.
Furthermore, we give some positive results for small dimensions and
small Jacobian ranks.

1 Introduction

Throughout this paper, we will write K for any field of characteristic zero,
K̄ for its algebraic closure, and K[x] = K[x1, x2, . . . , xn] for the polyno-
mial algebra over K with n indeterminates x = x1, x2, . . . , xn. Let F =
(F1, F2, . . . , Fn) : Kn → Kn be a polynomial map, that is, Fi ∈ K[x] for all
1 ≤ i ≤ n, or briefly F ∈ K[x]n. We view F and x as column matrices, as
well as ∂ = ∂1, ∂2, . . . , ∂n, where ∂i = ∂

∂xi
. Just like in F = (F1, F2, . . . , Fn),
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ture, Linearly triangularizable.

1

http://arxiv.org/abs/1302.6930v3


2 Michiel de Bondt and Dan Yan

we see any other tuple whose elements are separated by commas as a column
vector as well. Let M t be the transpose of a matrix M and write

JF =
(

∂(F t)
)t

=











∂1F1 ∂2F1 · · · ∂nF1

∂1F2 ∂2F2 · · · ∂nF2
...

...
. . .

...
∂1Fn ∂2Fn · · · ∂nFn











We say that a polynomial map F is a Keller map if detJF ∈ K∗. The well-
known Jacobian Conjecture, raised by O.-H. Keller in 1939 in [Kel], states
that a polynomial map F : Kn → Kn is invertible if it is a Keller map. This
conjecture is still open for all n ≥ 2. In [Dru, Th. 3], Ludwik Drużkowski
showed that it suffices to consider polynomial maps F : Cn → Cn of the
form F = x + (Ax)∗3, where A ∈ Matn(C) and M∗d is the d-th Hadamard
power (repeated Hadamard product with itself) of a matrix M .

In the same paper, Drużkowski also formulated the Structural Conjec-
ture, which asserts the following. Write M |x=G for the substitution of x by
G in a matrix M .

Structural Conjecture. If F = x + (Ax)∗3 and detJF = 1, then the
following conditions are equivalent.

(JC) det
(

(JF )|x=v1 + (JF )|x=v2

)

6= 0 for all v1, v2 ∈ C
n.

(**) There exist bi ∈ Cn and cj ∈ Cn such that ctjbi = 0 for every i ≥ j ≥ 1,

and F has the form x +
∑n−1

i=1 (ctix)3bi.

Actually, Drużkowski writes F = x +
∑n

j=1(a
t
jx)3ej instead of F = x +

(Ax)∗3, where ej is the j-th standard basis unit vector. Hence atj corresponds
to the j-th row Aj of A. Since the vectors cj and bi are viewed as column
matrices, the matrix product ctjbi has only one entry, which we see as an
element of C.

We call a polynomial map F over K linearly triangularizable if there
exists a T ∈ GLn(K) such that the Jacobian of T−1F (Tx) is a triangular
matrix. For Keller maps of the form F = x + H with H homogeneous
of degree d ≥ 2, the existence of such a T automatically means that the
diagonal of

J
(

T−1F (Tx)
)

= T−1(JH)|x=TxT

is zero, because JH has to be nilpotent due to the Keller condition.
We embed the Structural Conjecture in a more general scope, where F

has the form x + H such that JH is nilpotent, and compare its conditions
with linear triangularizability and other properties. We give positive results
in special cases and counterexamples in general. When we give counterex-
amples, we will give one of the form F = x + H with H homogeneous of
degree d and one of the form F = x + (Ax)∗d, for every d ≥ 3 and possibly
also for d = 2.
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2 Triangularization

In the following proposition, the conditions (JC) and (**) of the Structural
Conjecture are included in a chain of six properties. Furthermore, we gen-
eralize to maps x + H such that H has no constant terms instead of being
homogeneous.

Proposition 2.1. Let F = x + H be any polynomial map of degree d over
K. Then for

F is invertible(JC−)

det
(

d−1
∑

i=1

JF |x=vi

)

∈ K̄∗ for all vi ∈ K̄n(JC)

det
(

n
∑

i=1

JF |x=vi

)

∈ K̄∗ for all vi ∈ K̄n(JC+)

and for the existence of bi ∈ Kn, cj ∈ Kn and di ∈ {1, 2, . . . , d} such that
ctjbi = 0 for every i ≥ j ≥ 1, and

H =
N
∑

i=1

(ctix)dibi for some N ∈ N(*)

H =

n−1
∑

i=1

(ctix)dibi(**)

H =

n−1
∑

i=1

(ctix)dibi and b1, b2, . . . , bn−1 are linearly independent(***)

we have (JC−) ⇐ (JC) ⇐ (JC+) ⇐ (*) ⇐ (**) ⇐ (***).
Furthermore, (JC−), (JC) and (JC+) are satisfied when d ≤ 2.

Proof. Notice that the last two implications are trivial. The first two impli-
cations follow from [GdBDS, Cor. 2.3] and [GdBDS, Th. 3.5] respectively.
The last claim follows from the first two implications and [GdBDS, Prop.
3.1].

To show the third implication, assume that (*) holds and take v1, v2, . . . ,
vn ∈ K̄ arbitrary. Then

S :=

n
∑

k=1

(JH)|x=vk =

n
∑

k=1

N
∑

i=1

bi ·di(c
t
ivk)di−1 · cti =

N
∑

i=1

bi

(

di

n
∑

k=1

(ctivk)di−1
)

cti

It follows that in the expansion of SN+1, each term will have a factor ctj · bi
such that i ≥ j ≥ 1, which is zero by assumption. Hence SN+1 = 0. Thus S
is nilpotent and det(

∑n

i=1JF |x=vi) = det(nIn + S) = nn ∈ K̄∗.
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In the last section, we will show that (JC−) ; (JC) and (JC+) ; (*) ;

(**) ; (***), even in the case where H is homogeneous power linear, i.e.
H =

∑n

i=1(c
t
ix)dei for some ci ∈ Kn and a d ≥ 1. But first, we formu-

late a lemma and a theorem about the starred equations. We call H non-
homogeneous power linear if H =

∑n

i=1(c
t
ix)diei for some ci ∈ Kn and some

di ≥ 1.

Lemma 2.2. Let N ∈ N and suppose that there exist bi ∈ Kn, cj ∈ Kn and
di ∈ N such that

H =
N
∑

i=1

(ctix)dibi

Then the following statements are equivalent.

(i) There exists a σ ∈ SN such that ctσ(j)bσ(i) = 0 for every i ≥ j ≥ 1.

(ii) There exists a T ∈ GLn(K) such that the Jacobian of T−1(ctiTx)dibi is
lower triangular with zeroes on the diagonal for all i ≤ N .

Furthermore, if b1, b2, . . . , bN are linearly independent and σ satisfies (i),
then we can choose the T ∈ GLn(K) which satisfies (ii) such that

(1) bσ(i) = Ten−N+i

for each i.

Proof. We prove that (i) and (ii) are equivalent, showing the last claim
along the road.

(ii) ⇒ (i) Suppose that (ii) holds. Let mj be the number of trailing co-
ordinates zero of T tcj for each j. By reordering terms of H , we can
obtain that mj ≥ mi for each i ≥ j ≥ 1. By (ii),

(2) J
(

T−1(ctiTx)dbi
)

= T−1bi · di(c
t
iTx)di−1 · ctiT

is lower triangular with zeroes on the diagonal. Hence the number of
leading coordinates zero of T−1bi is at least n−mi ≥ n−mj for each
i ≥ j ≥ 1. Comparing the numbers of leading and trailing coordinates
zero, we get ctjbi = ctjT · T−1bi = 0 for all i ≥ j ≥ 1, which is (i) with
σ = 1. So we can take σ = 1 when mj ≥ mj+1 for each j already
before reordering the terms of H .

(i) ⇒ (ii) Suppose that (i) holds. Again by reordering terms of H , we can
obtain that σ = 1. Suppose that the vector space spanned by the
column vectors b1, b2, . . . , bN has dimension r. Then there are τ(1) <
τ(2) < · · · < τ(r) such that bτ(1), bτ(2), . . . , bτ(r) is a basis of this vector
space. Now choose τ(1) + τ(2) + · · · + τ(r) as large as possible. Then
bi is linearly dependent of bτ(k), bτ(k+1), . . . , bτ(r) for all k and all i >
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τ(k−1), where τ(0) = 0 and where zero vectors are linearly dependent
of the empty set. Furthermore, ctibτ(k) = ctibτ(k+1) = · · · = ctibτ(r) = 0
for all k and all i ≤ τ(k) on account of (i) with σ = 1.

Take T ∈ GLn(K) such that the last r columns of T are bτ(1), bτ(2), . . . ,
bτ(r), in that order. Then we have (1) with σ = 1 if b1, b2, . . . , bN are
linearly independent. Take i ≤ N arbitrary. It suffices to show that
(2) is lower triangular with zeroes on the diagonal. This is trivial when
bi = 0, so assume that bi 6= 0. Then by definition of r and τ , there
exists a k ≥ 1 such that τ(k) ≥ i > τ(k−1). As we have seen above, bi
is linearly dependent of bτ(k), bτ(k+1), . . . , bτ(r) and ctibτ(k) = ctibτ(k+1) =
· · · = ctibτ(r) = 0.

Hence T−1bi is linearly dependent of en−r+k, en−r+k+1, . . . , en and ctiT ·
en−r+k = ctiTen−r+k+1 = · · · = ctiTen = 0 by definition of T . Conse-
quently, all nonzero entries of (2) are within the submatrix consisting
of rows n−r+k, n−r+k+1, . . . , n and columns 1, 2, . . . , n−r+k−1
of it. Since i was arbitrary, we obtain (ii).

Theorem 2.3. Let x + H be any map of degree d ≥ 1 over K such that
H(0) = 0. Then we have the following.

(i) H is of the form (*), if and only if there exists a T ∈ GLn(K) such
that the Jacobian of T−1H(Tx) is lower triangular with zeroes on the
diagonal, i.e. H is linearly triangularizable and JH is nilpotent.

(ii) H is of the form (**), if and only if there exists bi, cj ∈ Kn and there
exists a T ∈ GLn(K) such that H =

∑n−1
i=1 (ctix)dibi and the Jacobian

of T−1(ctiTx)dibi is lower triangular with zeroes on the diagonal for all
i ≤ n− 1.

(iii) H is of the form (***), if and only if there exists a T ∈ GLn(K) such
that each component of T−1H(Tx) is a power of a linear form and the
Jacobian of T−1H(Tx) is lower triangular with zeroes on the diagonal.

Proof. Since the three results have similarities, we structure the proof as
follows.

Only-if-parts. All only-if-parts follow immediately from (i) ⇒ (ii) in lem-
ma 2.2, except the claim that each component of T−1H(Tx) is a power
of a linear form in (iii). So assume that H is of the form (***). By
(***) and (1), we have that

T−1H(Tx) =
n−1
∑

i=1

T−1(ctσ(i)Tx)dibσ(i) =
n−1
∑

i=1

(ctσ(i)Tx)diei+1

for some σ ∈ Sn−1. So T−1H(Tx) is of the desired form.
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If-parts. The if-part of (ii) follows immediately from (ii) ⇒ (i) of lemma
2.2. To prove the if-part of (i), suppose that T−1H(Tx) has a lower tri-
angular Jacobian with zeroes on the diagonal. Then there exists an r ∈
N, such that we can write the (i+ 1)-th component of T−1H(Tx) as a
linear combination of r powers of linear forms ctjTx in K[x1, x2, . . . , xi],
for each i ≥ 1. Furthermore, the first component of T−1H(Tx) is zero
on account of H(0) = 0. Hence we have

T−1H(Tx) =
n−1
∑

i=1

r
∑

j=1

(

ctr(i−1)+jTx
)dr(i−1)+jei+1

= T−1

n−1
∑

i=1

r
∑

j=1

(

ctr(i−1)+jTx
)dr(i−1)+jTei+1

Taking br(i−1)+j = Tei+1 for all i and for all j with 1 ≤ j ≤ r, we have

H =

n−1
∑

i=1

r
∑

j=1

(ctr(i−1)+jx)dr(i−1)+jbr(i−1)+j =

r(n−1)
∑

i=1

(ctix)dibi

Furthermore, for each j, the Jacobian of (ctjTx)djT−1bj only has non-
zero entries within the submatrix consisting of row i+ 1 and columns
1, 2, . . . , i of it by definition of cj and bj , where i = ⌈j/r⌉. Hence
the Jacobian of (ctjTx)djT−1bj is lower triangular with zeroes on the
diagonal for all j. Now the if-part of (i) follows from (ii) ⇒ (i) of
lemma 2.2. The if-part of (iii) follows as well, because we can take
r = 1 in that case, so that r(n − 1) = n − 1 and the bi’s are linearly
independent.

3 Positive results

First, we formulate a theorem about maps x+H such that H is homogeneous
and JH is nilpotent.

Theorem 3.1. Assume that H ∈ K[x]n is homogeneous of degree d ≥ 1,
such that JH is nilpotent. Then we have (***) (and hence five ⇒’s) if n ≤
2, and (*) (and hence three ⇒’s) if n = 3 or n = 4 = d + 2. Furthermore,
the implication chain (JC) ⇒ (JC+) ⇒ (*) holds when n = 4 = d + 1.

If H is power linear in addition, then the above claims even hold when
we replace the estimates on n by estimates on rkJH.

Proof. We show the equivalent properties in (i) and (iii) of theorem 2.3
respectively instead of (*) and (***). We start with the cases where H is
only homogeneous.

The case n ≤ 2 follows from [Che, Lem. 3] and the case n = 3 follows
from [dBvdE, Th. 1.1]. The case n = 4 = d+2 follows from a corresponding
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strong nilpotence result in [MO], and the equivalence of strong nilpotence
and the property in (i) of theorem 2.3, which is proved in [vdEH]. The
case n = 4 = d + 1 follows from [dB1, Th. 4.6.5] and the fact that F =
x + H , with H as in [dB1, Th. 4.6.5], does not satisfy (JC), because the
rightmost two columns of (JF )|x=(1,i,0,0) + (JF )|x=(1,−i,0,0) are equal, where
H =

(

0, λx3
1, x2(x1x3 − x2x4) + p(x1, x2), x1(x1x3 − x2x4) + q(x1, x2)

)

.
Assume from now on that H is power linear in addition. The case

rkJH ≤ 2 follows from [TdB, Th. 4.7], because K = C is not used in its
proof, or theorem 3.2 below. The cases rkJH = 3 and rkJH = 4 = d + 2
follow by way of [Che, Th. 2] from the cases n = 3 and n = 4 = d+2 respec-
tively. The case rkJH = 4 = d + 1 follows from the case n = 4 = d + 1 by
way of a variant of [Che, Th. 2], namely with (*) replaced by (JC) ⇒ (*).
To prove this variant, one can follow the proof of [Che, Th. 2], to see that
it suffices to show that F1 = T−1 ◦ F ◦ T satisfies (JC) if F does, in that
proof.

In theorem 3.2 below, which is the non-homogeneous variant of theorem 3.1,
we must replace the estimates on n and rkJH of theorem 3.1 by estimates
on n + 1 and rkJH + 1 respectively, except the estimate n ≤ 2 for (**) ⇒
(***), and the estimate rkJH ≤ 2 for (***), which can be maintained.

Theorem 3.2. Assume that H ∈ K[x]n has degree d, such that H(0) = 0
and JH is nilpotent. Then we have (***) (and hence five ⇒’s) if n ≤ 1,
both (*) and (**) ⇒ (***) (and hence four ⇒’s) if n = 2, and (*) (and
hence three ⇒’s) if n = 3 = d + 1. Furthermore, the implication chain
(JC) ⇒ (JC+) ⇒ (*) holds when n = 3 = d.

If H is power linear in addition, then the above claims even hold when we
replace the estimates on n by estimates on rkJH, and additionally (***)
(and hence five ⇒’s) holds when rkJH = 2.

Furthermore, if we replace (*) and (***) by their equivalences in (i) and
(iii) of theorem 2.3, then the condition H(0) = 0 is no longer necessary.

Proof. We show the equivalent properties in (i) and (iii) of theorem 2.3
respectively instead of (*) and (***). We start with the cases where H only
has a nilpotent Jacobian.

The case n = 1 is trivial, because H = 0 in that case. Notice that in the
cases n = 2 and n = 3 = d + 1, the homogeneization xd

n+1H(x−1
n+1x, 0) of H

has a strongly nilpotent Jacobian on account of theorem 3.1. By substituting
xn+1 = 1, we see that the Jacobian of H itself is strongly nilpotent as well.
By the equivalence of strong nilpotence and the property in (i) of theorem
2.3, which is proved in [vdEH], we have the property in (i) of theorem 2.3,
and hence also (*), when n = 2 or n = 3 = d + 1. This gives the case
n = 3 = d+ 1, and also the case n = 2, because (**) and (***) are trivially
equivalent when n = 2.

In order to prove the case n = 3 = d, assume that H does not have the
property in (i) of theorem 2.3. By [dB1, Cor. 4.6.6], we may assume that
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the first components of T−1H(Tx) equals λ ∈ K for some T ∈ GL3(K).
Following the proof of [dB1, Th. 4.6.5], we see that T−1H(Tx) =

(

λ, x1·
(x2 − x1x3) + p(x1), (x2 − x1x3) + q(x1)

)

for some T ∈ GL3(K). Since the
rightmost two columns of (JF )|x=(i,0,0) + (JF )|x=(−i,0,0) are equal, we see
that (JC) does not hold, as desired.

Assume from now on that H is (non-homogeneous) power linear in ad-
dition. The cases rkJH = 3 = d and rkJH = 3 = d+ 1 follow in a similar
manner as the cases rkJH = 4 = d+1 and rkJH = 4 = d+2 respectively
in theorem 3.1. So assume that rkJH ≤ 2. Take λ and µ as in lemma 3.3
below. If µtH is a power of a linear form, then we take T ∈ GLn(K) such
that λt and µt are the first two rows of T−1, in that order, and for the re-
maining rows of T−1 we transpose standard basis unit vectors. Since λt and
µt generate the row space of JH , we see that λtT = e1 and µtT = e2 gener-
ate the row space of J (T−1H(Tx)). Using additionally that µtH ∈ K[λtx],
we obtain that T−1H(Tx) ∈ K×K[x1]×K[x1, x2]

n−2 has a lower triangular
Jacobian with zeroes on the diagonal. So we have (i) of theorem 2.3 and
hence also (*).

So assume that µtH is not a power of a linear form. By lemma 3.3 below,
we have

(3) µtH = ν1(λ
tx)d1 + ν2(λ

tx)d2 + · · · + νr(λ
tx)dr

where r ≥ 2, ν ∈ (K \ {0})r and {0, 1} ∋ λtH ≤ d1 < d2 < · · · < dr. Take
T ∈ GLn(K) such that λt is the first row of T−1. Let V ∈ Matr,n({0, 1})
such that Vij = 1, if and only if degHj = di. Without worrying about linear
independence of rows at this stage, take for each i with 2 ≤ i ≤ r, the
(i + 1)-th row of T−1 equal to T−1

i+1 = ν−1
i µt ∗ Vi, where ∗ is the Hadamard

product and Vi is the i-th row of V . Then by definition of Vi, the (i+ 1)-th
component T−1

i+1H of T−1H is ν−1
i times the homogeneous part of degree di

of (3), which is ν−1
i νi(λ

tx)di = (λtx)di , for each i with 2 ≤ i ≤ r.
Still without worrying about linear independence of rows, take the second

row of T−1 equal to

T−1
2 = ν−1

1

(

µt −
(

µt ∗ (V2 + · · · + Vr)
))

Since µt ∗Vi = νiT
−1
i+1 for each i with 2 ≤ i ≤ r by definition of T−1, we have

(4) T−1
2 = ν−1

1

(

µt − (ν2T
−1
3 + · · · + νrT

−1
r+1)

)

and the second component of T−1H equals

T−1
2 H = ν−1

1

(

µtH − (ν2T
−1
3 H + · · · + νrT

−1
r+1H)

)

= ν−1
1

(

µtH − (ν2(λ
tx)d2 + · · · + νr(λ

tx)dr)
)

which by (3) is equal to ν−1
1 ν1(λ

tx)d1 = (λtx)d1 . Thus for each i ∈ {1, 2, . . . ,
r}, the (i + 1)-th component of T−1H is equal to (λtx)di .
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Since {0, 1} ∋ λtH ≤ d1 < d2 < · · · < dr, we have deg T−1
1 H =

deg λtH < λtH and the degrees of the first r + 1 components of T−1H
are strictly increasing. Hence by T−1

1 = λt 6= 0, the first r + 1 rows of
T−1 are indeed linearly independent. Take transposed standard basis unit
vectors for the remaining rows of T−1. By λtT = et1, we get that the first
r + 1 components of T−1H(Tx) are λtH, xd1

1 , xd2
1 , . . . , xdr

1 , so T−1H(Tx) ∈
K×K[x1]

r×K[x]n−r−1. Furthermore, we see that T−1H(Tx) is power linear.
By (4), we have

∑r

i=1 νiT
−1
i+1 = µt, so µt is a linear combination of the

first r + 1 rows of T−1. Since λt and µt generate the row space of JH
and are linear combinations of the first r + 1 rows of T−1, we see that λtT
and µtT generate the row space of (JH) · T and are linear combinations
of et1, e

t
2, . . . , e

t
r+1. From the fact that H is (non-homogeneous) power lin-

ear, we can deduce that the row space of (JH) · T is the same as that of
J
(

T−1H(Tx)
)

. Hence T−1H(Tx) ∈ K[x1, x2, . . . , xr+1]
n. Since we obtained

above that T−1H(Tx) ∈ K × K[x1]
r × K[x]n−r−1 as well, we can deduce

that T−1H(Tx) ∈ K ×K[x1]
r ×K[x1, x2, . . . , xr+1]

n−r−1. Hence T−1H(Tx)
has a lower triangular Jacobian with zeroes on the diagonal. So we have (i)
of theorem 2.3 and hence also (*).

Lemma 3.3. Assume that H ∈ K[A1x,A2x, . . . , Anx]n, where Aj is the
j-th row of a matrix A ∈ Matn(K) such that rkA ≤ 2 and JH is nilpotent.
Then there exists linearly independent λ, µ ∈ Kn, such that µtH ∈ K[λtx]
has no terms of degree less than λtH ∈ {0, 1}, and λt and µt generate the
row space of A.

Proof. Using the case n = 2 of theorem 3.2 (instead of the case n = 3 of
theorem 3.1), we obtain by similar techniques as in the proof of the case
rkJH = 3 of theorem 3.1 that there exists a T ∈ GLn(K) such that ATx ∈
K[x1, x2]

n and the Jacobian of T−1H(Tx) ∈ K[x1, x2]
n is lower triangular

with zeroes on the diagonal. By a subsequent linear conjugation on the first
two coordinates, we can even obtain in addition that the first component
of T−1H(Tx) is contained in {0, 1}, and that the second component of
T−1H(Tx) has no constant term if the first component already has.

Now take for λt the first row of T−1 and for µt the second row of T−1.
Then λtH(Tx) ∈ {0, 1} and ATx ∈ K[x1, x2]

n. Furthermore, µtH(Tx) ∈
K[x1] only has terms of degree greater than deg λtH(Tx), and hence no
terms of degree less than λtH(Tx) (∈ {0, 1}) itself. Thus substituting x =
T−1x gives the desired results.

Notice that in the case where H is power linear and rkJH = 1 in theorem
3.2, we can even get T−1H(Tx) ∈ k[x1]

n in (iii) of theorem 2.3, namely
by taking λt in the row space of JH . This is similar to the case where H
is power linear and rkJH = 2 in theorem 3.1, in the proof of which T is
taken such that T−1H(Tx) ∈ k[x1, x2]

n in (iii) of theorem 2.3. It is however
not always possible to take T such that T−1H(Tx) ∈ k[x1, x2]

n in (iii) of
theorem 2.3 when H is power linear and rkJH = 2 in theorem 3.2, which
the reader may show by taking e.g. H =

(

0, xd
1, x

d−1
1 , (x2 + x3)

d
)

.
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Theorems 3.1 and 3.2 contain positive results with estimates on rkJH ,
but for power linear H only. Theorem 3.4 below however comprises two
results with estimates on rkJH , without the requirement that H is power
linear. Furthermore, the homogeneous counterexamples (9) and (10) later
in this article show that the estimates in theorem 3.4 cannot be improved,
even if we have the extra condition that H is homogeneous.

Theorem 3.4. Assume that H ∈ K[x]n has degree d, such that H(0) = 0
and JH is nilpotent. If rkJH = 1 or rkJH = 2 = d, then H is of the
form (*).

Furthermore, if we replace (*) by its equivalent in (i) of theorem 2.3,
then the condition H(0) = 0 is no longer necessary.

Proof. We show the equivalent property in (i) of theorem 2.3 instead of (*).
The case rkJH ≤ 1 follows from a corresponding strong nilpotence result
in (2) ⇒ (3) of [dB2, Th. 4.2], and the equivalence of strong nilpotence and
the property in (i) of theorem 2.3, which is proved in [vdEH].

So assume that rkJH = 2 = d and suppose without loss of generality
that H(0) = 0. The additional claim that the diagonal is zero follows from
the nilpotency of JH , so we do not need to worry about that any more. By
lemma 3.5 below, there exists a T ∈ GLn(K) such that for H̃ := T−1H(Tx),
we have one of the following cases, which we treat individually.

• H̃ ∈ K[x1, x2]
n.

Then by theorem 3.2, (H̃1, H̃2) has the property in (i) of theorem 2.3.
Hence we can choose T such that Jx1,x2(H̃1, H̃2) is lower triangular.
It follows that J H̃ is lower triangular as well, which is the property
in (i) of theorem 2.3.

• H̃3 = H̃4 = · · · = H̃n = 0.
Then by [vdE, Th. 7.2.25], we have

(H̃1, H̃2) = (bg(ax1 − bx2) + d, ag(ax1 − bx2) + c)

where a, b, c, d ∈ K[x3, x4, . . . , xn] and g is an univariate polynomial
over K[x3, x4, . . . , xn]. Hence aH̃1 − bH̃2 ∈ K[x3, x4, . . . , xn]. Using
that deg(H̃1, H̃2) = 2, we see that either g is constant or both a and
b are constant.

In both cases, there exists a nontrivial K-linear combination of H̃1

and H̃2 which is contained in K[x3, x4, . . . , xn]. By choosing T ap-
propriate, we can get H̃2 ∈ K[x3, x4, . . . , xn], in which case J H̃ is
upper triangular. By a subsequent conjugation of H̃ with the map
(xn, xn−1, . . . , x2, x1), we get the desired lower triangular form of the
Jacobian, which gives the property in (i) of theorem 2.3.

• H̃2 = H̃2
3 6= 0 and H̃4 = H̃5 = · · · = H̃n = 0.

If H̃3 ∈ K[x4, x5, . . . , xn], then J H̃ is upper triangular, and a subse-
quent conjugation of H̃ with the map (xn, xn−1, . . . , x2, x1) gives the
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desired result. So assume that H̃3 /∈ K[x4, x5, . . . , xn]. Using poly-
nomial extension of scalars on the case n = 3 = d + 1 of theorem
3.2, it follows that there exists a T̃ ∈ GL3

(

K(x4, x5, . . . , xn)
)

such

that Jx̃

(

T̃−1(H̃1, H̃2, H̃3)|x̃=T̃ x̃

)

is lower triangular with zeroes on the
diagonal, where x̃ = x1, x2, x3.

By clearing denominators in the first row of T̃−1, we see that there
exists a nonzero λ ∈ K[x4, x5, . . . , xn]3 such that λ1H̃1+λ2H̃2+λ3H̃3 ∈
K[x4, x5, . . . , xn]. Since H̃2 and H̃3 have different positive degrees with
respect to x̃, it follows that λ1 6= 0 and that H̃1 ∈ K[H̃3, x4, x5, . . . ,
xn].

Now take S ∈ GLn(K) such that the i-th row of S−1 equals eti for all
i ≥ 4 and the third row of S−1 equals J H̃3. Then only the first three
components of S−1H̃(Sx) are nonzero, and we have H̃3(Sx) = x3 and
(Sx)i = xi for all i ≥ 4. Consequently, the first three components of
S−1H̃(Sx) are contained in K[x3, x4, x5, . . . , xn]. Hence the Jacobian
of S−1H̃(Sx) is upper triangular, and a subsequent conjugation of H̃
with the map (xn, xn−1, . . . , x2, x1) gives the desired lower triangular
form of the Jacobian. This gives the property in (i) of theorem 2.3.

Lemma 3.5. Assume that H ∈ K[x]n has degree 2, such that H(0) = 0 and
rkJH ≤ 2. Then there exists a T ∈ GLn(K) such that H̃ := T−1H(Tx)
has one of the three forms that are specified in the proof of theorem 3.4.

Proof. We can choose T such that H̃1, H̃2, . . . , H̃r have linearly independent
quadratic parts over K, H̃r+1, H̃r+2, . . . , H̃s are linear forms which are inde-
pendent over K, and H̃s+1 = H̃s+2 = · · · = 0. If s ≤ 2, then H̃ = T−1H(Tx)
has the second form in the proof of theorem 3.4, so assume that s ≥ 3. We
distinguish three cases.

• r ≤ 1.
Then H̃2 and H̃3 are linear forms which are independent over K. Hence
we can take S ∈ GLn(K) such that the first two rows of S−1 are J H̃2

and J H̃3. By the chain rule, J
(

H̃2(Sx)
)

= et1 and J
(

H̃3(Sx)
)

= et2,

so H̃2(Sx) = x1 and H̃3(Sx) = x2. Hence H̃(Sx) ∈ K[x1, x2]
n and

S−1H̃(Sx) = (TS)−1H((TS)x) satisfies the first form in the proof of
theorem 3.4.

• r ≥ 3.
Since rkJ H̃ = 2, the rows of J (H̃1, H̃2, H̃3) are linearly dependent
over K(x) and hence also over K[x]. By looking at leading homoge-
neous parts, we see that rkJ (H̄1, H̄2, H̄3) ≤ 2, where H̄i is the leading
and quadratic homogeneous part of H̃i for each i ≤ 3. By [dB1, Th.
4.3.1], there exists linear forms p, q such that H̄1, H̄2, H̄3 are linearly
dependent over K of p2, pq and q2. Furthermore, p and q are inde-
pendent over K, and p2, pq and q2 are in turn linearly dependent
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over K of H̄1, H̄2, H̄3. Thus there exists an L ∈ GL3(K) such that
L
(

H̄1, H̄2, H̄3

)

= (p2, pq, q2).

Take S ∈ GLn(K) such that the first two rows of S−1 are J p and J q,
in that order. Then L

(

H̄1(Sx), H̄2(Sx), H̄3(Sx)
)

= (x2
1, x1x2, x

2
2). The

minor determinants of size 2 of Jx1,x2(x
2
1, x1x2, x

2
2) are 2x2

2, 4x1x2 and
2x2

1, which are also linearly independent over K. It follows that

detJx1,x2,xi

(

L
(

H̃1(Sx), H̃2(Sx), H̃3(Sx)
))

6= 0

holds if i ≥ 3 and the last column of the Jacobian matrix on the left
hand side, which can only be constant, is nonzero. Hence L

(

H̃1(Sx),

H̃2(Sx), H̃3(Sx)
)

∈ K[x1, x2]
3. Since the first two rows of its Jaco-

bian are linearly independent over K and L is invertible, H̃(Sx) ∈
K[x1, x2]

n holds as well. So S−1H̃(Sx) = (TS)−1H((TS)x) satisfies
the first form in the proof of theorem 3.4.

• r = 2.
If s ≥ 4, then we can proceed as in the case r ≤ 1, but with H̃3 and
H̃4 instead of H̃2 and H̃3. So assume that s = 3.

Since multiplication of the third row of J H̃ by 2H̃3 does not change
the rank of J H̃, we have rkJ (H̃1, H̃2, H̃

2
3) ≤ 2. Let H̄i be the leading

homogeneous part of H̃i for each i ≤ 3. If H̄2
3 is linearly independent

over K of H̄1 and H̄2, then we can proceed as in the case r ≥ 3 to
obtain that H̃i(Sx) ∈ K[x1, x2] for each i 6= 3 and H̃3(Sx)2 ∈ K[x1, x2]
for some S ∈ GLn(K). So S−1H̃(Sx) = (TS)−1H((TS)x) satisfies the
first form in the proof of theorem 3.4 in that case.

So assume that H̄2
3 is linearly dependent over K of H̄1 and H̄2. Then we

can choose T such that H̄2 = H̄2
3 . If the linear part of H̃2 is dependent

over K of H̃3, then we can choose T such that even H̃2 = H̃2
3 . Since

s = 3, we see that H̃ = T−1H(Tx) has the third form in the proof of
theorem 3.4 in that case.

So assume that the linear part of H̃2 is independent over K of H̃3.
Then H̃2 − H̃2

3 and H̃3 are linear forms which are independent over
K. Since J (H̃2 − H̃2

3 ) = J H̃2 − 2H̃3J H̃3, we can replace H̃2 by
H̃2 − H̃2

3 without affecting the Jacobian rank of H̃, and proceed as
in the case r ≤ 1 to obtain that et1 and et2 are in the row space
of J H̃(Sx) for some S ∈ GLn(K). Hence H̃(Sx) ∈ K[x1, x2]

n and
S−1H̃(Sx) = (TS)−1H((TS)x) satisfies the first form in the proof of
theorem 3.4.

4 Lemmas

The lemmas in this section are required for the proofs that the counterex-
amples in the next section are indeed counterexamples.
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Lemma 4.1. Let d ≥ 1 and a1, a2, . . . , a2d+2 ∈ Kn be pairwise linearly
independent. Suppose that for all j ≥ min{3, d2} and all k with 3 ≤ k ≤
d+ 2, the set {aj , ak, ak+d} consist of two or three vectors which are linearly
independent (depending on whether j ∈ {k, k + d} or not).

If

(5)
2d+2
∑

i=1

λi(a
t
ix)d = 0

for some λi ∈ K, not all zero, then λ1λ2 6= 0.

Proof. Assume that (5) holds. Since a1 and a2 are linearly independent, we
may assume without loss of generality that λ3 6= 0. If d = 1, then λ1λ2 = 0
implies that either a1 or a2 is linearly dependent of a3 and a4, which is a
contradiction. Hence the following cases remain.

• d = 2.
Since a4, a5 and a6 are linearly independent and d = 2, we may
assume without loss of generality that a1, a3, a6 are linearly inde-
pendent vectors. Consequently, there exists a b1 ∈ Kn such that
bt1a1 = bt1a6 = 0 6= bt1a3. Applying bt1∂ on (5) gives

5
∑

i=2

µi(a
t
ix)1 = 0

where µi = 2λib
t
1ai for all i. Since a3, a4, a5 are linearly independent

and µ3 6= 0, we have µ2 6= 0 as well. Hence λ2 6= 0. In a similar manner,
λ1 6= 0 follows.

• d > 2.
Since a3, ad+2 and a2d+2 are linearly independent, there exists a b2 ∈
Kn such that bt2ad+2 = bt2a2d+2 = 0 6= bt2a3. Applying bt2∂ on (5) gives

d+1
∑

i=1

µi(a
t
ix)d−1 +

2d+1
∑

i=d+3

µi(a
t
ix)d−1 = 0

where µi = dλib
t
2ai for all i. Since µ3 6= 0, it follows by induction on d

that µ1µ2 6= 0. Hence λ1λ2 6= 0.

Lemma 4.2.

(6)
d

∑

i=0

(−1)i
(

d

i

)

(x1 + ix3)
d =

d
∑

i=0

(−1)i
(

d

i

)

(x2 + ix3)
d

and if d ≥ 2 and ζdinK is a primitive d-th root of unity, then

(7)

d−1
∑

i=0

ζ id(ζ
i
dx1 + x2 + x3)

d +

d−1
∑

i=0

ζ id(ζ
i
dx1 + x2 − x3)

d = 2d2xd−1
1 x2
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Proof. We first prove (6). Assume that (6) holds when we replace d by d−1.
By substituting x2 = x1 + x3 on both sides, we obtain

d−1
∑

i=0

(−1)i
(

d− 1

i

)

(x1 + ix3)
d−1 =

d−1
∑

i=0

(−1)i
(

d− 1

i

)

(x1 + (i + 1)x3)
d−1

= −
d

∑

i=1

(−1)i
(

d− 1

i− 1

)

(x1 + ix3)
d−1

By
(

d

i

)

=
(

d−1
i−1

)

+
(

d−1
i

)

, both sides combine to

0 =

d
∑

i=0

(−1)i
(

d

i

)

(x1 + ix3)
d−1 =

1

d
∂1

d
∑

i=0

(−1)i
(

d

i

)

(x1 + ix3)
d

Hence the left hand side of (6) is contained in K[x3]. By a symmetry argu-
ment, (6) follows by induction on d, because the case d = 0 is trivial.

Assume that d ≥ 2 and that ζd ∈ K is a primitive d-th root of unity. By
substituting x2 = x2 ± x3 in

(8)
d−1
∑

i=0

ζ id(ζ
i
dx1 + x2)

d = d2xd−1
1 x2

we get (7). So in order to prove (7), it suffices to show (8). This can be done
as follows.

d−1
∑

i=0

ζ id(ζ
i
dx1 + x2)

d =

d−1
∑

i=0

ζ id

d
∑

j=0

(

d

j

)

(ζ idx1)
jxd−j

2

=

d
∑

j=0

(

d

j

)

xj
1x

d−j
2

d−1
∑

i=0

ζ
i(j+1)
d

=

(

d

d− 1

)

xd−1
1 x1

2

d−1
∑

i=0

1

= d2xd−1
1 x2

Notice that (7) is not true for d = 1. The proof uses ζd ∈ K to obtain that
ζ1d , ζ

2
d , . . . , ζ

d−1
d are principal as d-th roots of unity, and additionally d ≥ 2

to obtain that ζd+1
d is principal as a d-th root of unity.

Lemma 4.3. To write xd−1
1 x2 as a linear combination of xd

1 and other d-th
powers of linear forms, at least d such powers are necessary besides xd

1.

Proof. The case d = 1 is easy, so let d ≥ 2 and suppose that xd−1
1 x2

can be written as a linear combination of xd
1, (a

t
3x)d, (at4x)d, . . . , (atd+1x)d.

Assume without loss of generality that n ≥ 2d + 2 and that the vectors
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e1, a3, a4, . . . , ad+1 are pairwise linearly independent. By applying ∂2 on this
linear combination, we obtain that

xd′

1 = λ3(a
t
3x)d

′

+ λ4(a
t
4x)d

′

+ · · · + λd′+2(a
t
d′+2x)d

′

where d′ = d − 1. Take a1 = e1 and take a2 linearly independent of
a1, a3, . . . , ad′+2. Next, take ai linearly independent of a1, a2, . . . , ai−1 for
all i with d′ + 3 ≤ i ≤ 2d′ + 2. Then lemma 4.1 with d replaced by d′ gives
a contradiction.

5 Counterexamples

We start with giving counterexamples x+H to (JC−) ⇒ (JC) and (JC+) ⇒
(*), such that H is homogeneous of degree d ≥ 3 and d ≥ 2 respectively.
With known techniques, these counterexamples can be improved to coun-
terexamples of the form x + (Ax)∗d.

Theorem 5.1. If n = 4 and d ≥ 3, then

(9) H = xd−3
1

(

0, 0, x2(x1x3 − x2x4), x1(x1x3 − x2x4)
)

is a homogeneous counterexample of degree d to (JC−) ⇒ (JC).
If n = 5 and d ≥ 2, then

(10) H =
(

0, 0, xd−1
2 x4, x

d−1
1 x3 − xd−1

2 x5, x
d−1
1 x4

)

is a homogeneous counterexample of degree d to (JC+) ⇒ (*).
Furthermore, there exist a power linear counterexample to (JC−) ⇒ (JC)

for each d ≥ 3, and a power linear counterexample to (JC+) ⇒ (*) for each
d ≥ 2.

Proof. Assume first that n = 4 and H is as in (9). Since the components of
H are composed of the invariants x1, x2, x1x3 − x2x4 of x + H , we see that
x + H is a quasi-translation, i.e. x − H is the inverse of x + H . One can
compute that the trailing principal minor matrix of size 2 of (d−1)I4+(d−2)·
(JH)|x=(1,0,0,0) + (JH)|x=(1,c,0,0) equals

(

d− 1 + c −c2

d− 1 d− 1 − c

)

and that its determinant equals c2(d−2)+(d−1)2. So if we take c = d−1√
d−2

i,
then

det
(

(d− 1)I4 + (d− 2)(JH)|x=(1,0,0,0) + (JH)|x=(1,c,0,0)

)

= 0

which contradicts (JC−) ⇒ (JC).
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Assume next that n = 5 and H is as in (10). Then one can compute that

JH =













0 0 0 0 0
0 0 0 0 0
∗ ∗ 0 b 0
∗ ∗ a 0 −b
∗ ∗ 0 a 0













for certain polynomials a, b. The form on the right hand side does not change
by substitution and adding copies of JH with different substitutions, so
∑n

i=1(JH)|x=vi is nilpotent for all vi ∈ Kn. This gives (JC+).
On the other hand, (JH)|x1=0 · (JH)|x2=0 is a lower triangular matrix

with diagonal (0, 0, xd−1
1 xd−1

2 ,−xd−1
1 xd−1

2 , 0), so (JH)|x1=0 ·(JH)|x2=0 is not
nilpotent. By [vdEH], we see that H is a counterexample to (JC+) ⇒ (*).

To obtain power linear counterexamples, we can use the concept of GZ-
pairing in [GZ]. For that purpose, let H be any of the above two maps.
By [GZ, Th. 1.3], there exists an N > n and an A ∈ MatN(K), such that
x + H and X + (AX)∗d are GZ-paired through matrices B ∈ Matn,N(K)
and C ∈ MatN,n(K), where X = (x1, x2, . . . , xN ). Take M ∈ MatN,N−n(K)
such that the columns of M form a basis of kerB and define T̄ = (C | M).

Then one can show that T̄ is as in the proof of [Che, Th. 2], with F =
X + (AX)∗d and F1 = (x + H, . . .). Now one can use similar techniques
as in the proof of theorem 3.1 to obtain that (AX)∗d is a counterexample
as well as H , or use the following invariance results for GZ-pairing. The
GZ-invariance of (JC−) follows from [GZ, Th. 1.3 (9)] and that of (*) from
[LDS, Th. 3 (2)]. The GZ-invariance of (JC) and (JC+) can be proved with
techniques in the proof [GZ, Th. 2.4].

Example 5.2. Let x = (x1, x2, . . . , x5) and X = (x1, x2, . . . , x13). Take H as
in (10) and

G =
(

0, 0, (x4 − x1)
3, (x4 + x1)

3, x3
4, (x4 − x2)

3, (x4 + x2)
3,

(x3 − x1)
3, (x3 + x1)

3, x3
3, (x5 − x2)

3, (x5 + x2)
3, x3

5

)

Then kerJxG is trivial and 6H = BG, where

B =













1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 −2 −1 −1 2
0 0 1 1 −2 0 0 0 0 0 0 0 0













has full rank. Hence there exists a matrix C such that BC = I5. Conse-
quently, x + H and X + 1

6
G(BX) are GZ-paired through B and C.

In the next theorem, we give threedimensional counterexamples F = x+H
to (*) ⇒ (**) and (**) ⇒ (***), such that H is homogeneous of degree
d ≥ 3. The techniques in the proof of the previous theorem to get coun-
terexamples of the form F = x + (Ax)∗d do not work, so we improve our
counterexamples to that form by hand.
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Theorem 5.3. Assume that d ≥ 2, and either

(11)



































H1

H2

H3

H4
...

Hd+2

Hd+3

Hd+4
...

H2d+2



































:=



































0
νxd

1

xd
1 − xd

2

(x1 + 2x3)
d

...
(x1 + dx3)

d

(x2 + x3)
d

(x2 + 2x3)
d

...
(x2 + dx3)

d



































or

(12)



































H1

H2

H3

H4
...

Hd+2

Hd+3

Hd+4
...

H2d+2



































:=



































0
νxd

1

xd−1
1 x2

(ζdx1 + x2 + x3)
d

...
(ζd−1

d x1 + x2 + x3)
d

(x1 + x2 − x3)
d

(ζdx1 + x2 − x3)
d

...
(ζd−1

d x1 + x2 − x3)
d



































for some ν ∈ K, where ζd is a primitive root of unity of K in the case of
(12). Then 2d + 2 ≥ 6,

(13) d(x1 + x3)
d = H3 +

d
∑

i=2

(−1)i
(

d

i

)

Hi+2 −
d

∑

i=1

(−1)i
(

d

i

)

Hi+d+2

in the case of (11) and

(14) (x1 + x2 + x3)
d = 2d2H3 − ζdH4 − ζ2dH5 − · · · − ζ2d−1

d H2d+2

in the case of (12), and there exists a T ∈ GL2d+2(K) such that T (H(T−1x))
is power linear if n = 2d + 2.

If 3 ≤ n ≤ 2d + 2, then H = (H1, H2, . . . , Hn) is of the form (*) and we
have the following.

(i) If H is of the form (**), then c1 and c2 are linearly independent linear
combinations of e1 and e2.

(ii) H is of the form (**), if and only if either H is as in (11) or H is as
in (12) with H2 = 0 = d− 2.
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(iii) H is of the form (***), if and only if H is as in (11) with H2 6= 0.

Proof. Since JH is lower triangular with zeroes on the diagonal, it follows
from (i) of theorem 2.3 that H is of the form (*). By (6) and (7) in lemma
4.2, we get (13) and (14) respectively. So H is a linear triangularization of
a power linear map if n = 2d + 2.

In the case of (11), set

at2+ix := x1 + ix3 atd+2+ix := x2 + ix3

for i = 1, 2, . . . , d. In the case of (12), set

at2+ix := ζ i−1
d x1 + x2 + x3 atd+2+ix := ζ i−1

d x1 + x2 − x3

for i = 1, 2, . . . , d. Then Hi = (atix)d for all i ≥ 4 and the left hand side of
(13) or (14) respectively is a multiple of (at3x)d. Hence the linear span S of
H3, H4, . . . , Hn is contained in that of (at3x)d, (at4x)d, . . . , (at2d+2x)d.

(i) Claim. If µtH and µ2H2 are both linearly dependent over K of the
same power of a linear form in x1 and x2 for some µ ∈ Kn, then µ is
a linear combination of e1 and e2.

To prove the claim, assume that µtH and µ2H2 are as above. Then
there exists a nontrivial linear combination a2 of e1 and e2 such that
both µtH and µ2H2 are linearly dependent of (at2x)d. On account of
H1 = 0, we have

0xd
4 + (µ2H2 − µtH) + µ3H3 + µ4H4 + · · · + µnHn = 0

Take a1 = e4. By (13) and (14) respectively, there exist a λ ∈ K2d+2

with λ1 = 0, such that

λ1(a
t
1x)d + λ2(a

t
2x)d + λ3(a

t
3x)d + · · · + λ2d+2(a

t
2d+2x)d = 0

Furthermore, there exists an injective linear map which maps (µ3, µ4,
. . . , µn) to (λ3, λ4, . . . , λ2d+2). By lemma 4.1 and λ1 = 0, we have
λ = 0. Thus µ3 = µ4 = · · · = µn = 0. So µ is a linear combination of
e1 and e2 and the claim has been proved.

Suppose that H is of the form (**). Since ctjbi = 0 for all i ≥ j ≥ 1,
we have

(15) ct1H = ct1

n−1
∑

i=1

(ctix)dbi =
n−1
∑

i=1

ct1bi(c
t
ix)d = 0

thus c1 is a linear combination of e1 and e2 on account of the above
claim. Using (15) again, we see that c1 is linearly dependent of e1 if
H2 6= 0. Hence (ct1x)d and H2 are linearly dependent of the same power
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of a linear form in x1 and x2. By using ctjbi = 0 for all i ≥ j ≥ 1 again,
we obtain that

(16) ct2H = ct2

n−1
∑

i=1

(ctix)dbi =
n−1
∑

i=1

ct2bi(c
t
ix)d = ct2b1(c

t
1x)d

It follows from the above claim that c2 is a linear combination of e1
and e2 as well.

Suppose that c1 and c2 are linearly dependent. Then there exist a
nontrivial linear combination a2 of e1 and e2 such that both c1 and c2
are linearly dependent of a2. Using the claim with µ1 = µ2 = 0, and
µtH = 0 and µtH = (at2x)d respectively, we obtain dimS = n− 2 and
(at2x)d /∈ S.

The space S∗ generated by (ct1x)d, (ct2x)d, . . . , (ctn−1x)d, which contains
S, is generated by n− 2 powers of linear forms, namely (at2x)d, (ct3x)d,
(ct4x)d, . . . , (ctn−1x)d. Hence S∗ ⊇ S and dimS∗ ≤ n − 2 = dimS. It
follows that S = S∗. Since (at2x)d /∈ S and (at2x)d ∈= S∗, we have a
contradiction, so c1 and c2 are indeed linearly independent.

(ii) If H is as in (11), then we can take

c1 = e1 b1 = νe2 + e3

c2 = e2 b2 = −e3

ci = ai+1 bi = ei+1

for all i > 2, which shows that H is of the form (**). If H is as in (12)
with H2 = 0 = d− 2, then we can take

c1 = e1 + e2 b1 = 1
4
e3

c2 = e1 − e2 b2 = −1
4
e3

ci = ai+1 bi = ei+1

for all i > 2, which shows that again H is of the form (**).

Conversely, suppose that H is as in (12) and of the form (**). By
lemma 4.3, at least d powers of linear forms are necessary to write H2

and H3 as linear combinations of them if H2 = 0, and at least d + 1
such powers otherwise. Now assume that H2 6= 0 or d ≥ 3. Then there
are at least 3 powers of linear forms necessary to write H2 and H3 as
linear combinations of them. Hence there exist a linear combination h
of H2 and H3 which is not a linear combination of (ct1x)d and (ct2x)d.

Since dimS∗ ≤ n− 1 < n, there exists a nonzero µ ∈ Kn such that

µ1(c
t
1x)d + µ2(c

t
2x)d + µ3h + µ4H4 + µ5H5 + · · · + µnHn = 0
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By applying ∂3 on both sides, we get

(17) dµ4(a
t
4x)d

′

+ · · · + dµd+2(a
t
d+2x)d

′

− dµd+3(a
t
d+3x)d

′

− dµd+4(a
t
d+4x)d

′

− · · · − dµ2d+2(a
t
2d+2x)d

′

= 0

where d′ = d − 1 and µn+1 = µn+2 = · · · = µ2d+2 = 0. Take a′1 = e4
and a′2 = ad+3. Additionally set a′i+1 = ai+2 and a′i+d = ai+d+2 for all
i with 2 ≤ i ≤ d. By lemma 4.1 with d and a replaced by d′ and a′

respectively, we get µ4 = µ5 = · · · = µ2d+2 = 0. Hence h is a linear
combination of (ct1x)d and (ct2x)d. Contradiction, so H is not of the
form (**).

(iii) Assume first that H2 6= 0. If H is as in (11), then we can take the cj’s
and the bi’s as in (ii), and we have (***). If H is as in (12), then by
(ii), H is not of the form (**) and hence neither of the form (***).

Assume next that H2 = 0 and that H is of the form (***). By H1 =
H2 = 0 and the fact that c2 is linearly dependent of e1 and e2, we have
ct2H = 0. Consequently, ct2b1 = 0 on account of (16). By definition of
(***), we have ct1bi = ct2bi = 0 for all i. Since c1 and c2 are linearly
independent, we have a contradiction with the independence of the
bi’s.

We can make non-homogeneous variants of (9) and (10) as follows. In (9),
we can replace x2 by 1, remove H2, and replace xi by xi−1 for all i ≥ 3. In
(10), we can replace xd−1

2 by xd−2
1 , remove H2, and replace xi by xi−1 for

all i ≥ 3. In this manner, we get rid of the second coordinate, such that
both the dimension and the Jacobian rank respectively decrease by one, in
return for abandoning homogeneity, just as with most of theorem 3.2 with
respect to theorem 3.1.

The maps H = (0, xd
1−xd−1

1 ) and H = (0, 0, xd
1−xd−1

1 ) are additional non-
homogeneous counterexamples to (*) ⇒ (**) and (**) ⇒ (***) respectively.
By comparing the counterexamples with the positive results of theorems 3.1,
3.2 and 3.4, we get the following four questions.

The first two questions are whether (JC) implies (JC+) in general and
whether (JC+) implies (*) in dimension three if JH is nilpotent (if F sat-
isfies (JC+), then by [GdBDS, Th. 3.9]), JH gets nilpotent in additon if
we compose F with some linear map). In case H is homogeneous, then the
questions are whether (JC) implies (JC+) in general and whether (JC+) im-
plies (*) in dimension four, which are the last two questions. By theorems
3.1 and 3.2, the last and the second question respectively have an affirmative
answer when the degree is at most three.
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