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Abstract

It is known that strongly nilpotent matrices over a division ring are lin-

early triangularizable. We describe the structure of such matrices in terms

of the strong nilpotency index. We apply our results on quasi-translation

x+H such that JH has strong nilpotency index two.
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1 Introduction

The Jacobian conjecture asserts that a polynomial map F over a field of charac-
teristic zero has a polynomial inverse G in case detJF is a unit of the base field.
In [BCW] and [Ya], it is show that the Jacobian Conjecture holds if it holds for
all polynomial maps x + H of such that JH is nilpotent. This result is refined
in [E, §6.2], where it is shown that for any polynomial map F of degree d in
dimension n, the Jacobian conjecture holds if it holds for all polynomial maps
x+ H of degree d in dimension (d− 1)n such that JH is nilpotent, which sub-
sequently holds if the Jacobian conjecture holds for all polynomial maps x+ H
of degree d in dimension (d− 1)n + 1 such that H is homogeneous of degree d.

So it is natural to look at nilpotent Jacobian matrices. For quadratic maps,
it is already known that the Jacobian conjecture holds, but since we have (d−
1)n = n in that case, we see that reduction to the case that F = x + H
with JH nilpotent does not cost extra dimensions. But one may even assume
that additionally, H is homogeneous. That is why more than twenty years
ago, Gary Meisters and Czes law Olech looked at nilpotent Jacobian matrices
of quadratic homogeneous H in low dimensions in [MO], and it appeared that
in dimensions n ≤ 4, the Jacobian matrix of H was so-called strongly nilpotent,
but not necessarily in higher dimensions.
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Somewhat later, but still more than fifteen years ago, polynomial maps x+H
over a field of characteristic zero such that JH is strongly nilpotent were clas-
sified as so-called linearly triangularizable polynomial maps, in both [EH] and
[Y1]. Since linear triangularizable maps are invertible, the Jacobian conjecture
holds for polynomial maps x + H over a field of characteristic zero such that
JH is strongly nilpotent. But there are no results about the index of strong
nilpotency: just as with the nilpotency index for nilpotent matrices, on can de-
fine the strong nilpotency index for strongly nilpotent matrices as the minimum
number of factors such that its product is zero.

Actually, there are two equivalent definitions for strongly nilpotent matrices
over a field of characteristic zero, but both definitions no longer correspond
when the base ring becomes arbitrary. Sometimes, the definitions only deal
with matrices which are Jacobians, but such a restriction is unnecessary, see
also equation (2.10) in the beginning of the proof of corollary 2.2 below. It is
neither necessary to assume that the base ring is commutative or even a field.
Although the definitions do not require that the base ring is unital, all results
in this article are about rings R with unity.

The first of both definition is given in [MO]. Write f |x=g for substituting x
by g in f .

Definition 1.1 (Meisters and Olech in [MO]). Let R[x] be the polynomial ring
over a ring R (not necessarily commutative) in n indeterminates x1, x2, . . . , xn.
A square matrix M with entries in R[x] is called strongly nilpotent if for some
r ∈ N, we have

M |x=v1 ·M |x=v2 · · · · ·M |x=vr = 0 (1.1)

for all vi ∈ Rn.

Actually, r is equal to the dimension of the matrix M in the original definition,
but I consider that a consequence of restricting to fields of characteristic zero,
or just to reduced commutative rings, see the later proposition 3.2.

Definition 1.2 (Van den Essen and Hubbers in [EH]). Let R[x] be the poly-
nomial ring over a ring R (not necessarily commutative) in n indeterminates
x1, x2, . . . , xn, which commute with each other and with elements of R. A
square matrix M with entries in R[x] is called strongly nilpotent if for some
r ∈ N, we have

M |x=y(1) ·M |x=y(2) · · · · ·M |x=y(r) = 0 (1.2)

where the y(i) are other tuples of n indeterminates, which commute with each
other and with elements of R.

Again, r is equal to the dimension of the matrix M in the original definition,
which is given in [EH]. Over infinite integral domains, both definitions are the
same. We call the minimum possible r ∈ N such that (1.1) or (1.2) respectively
holds the strong nilpotency index of M .

In section 2, we consider definition 1.2 because it does not correspond to
definition 1.1 when R is a finite field. This is because different polynomials
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can be the same as a function, whence substituting all possible elements of R
in the indeterminates will not distinguish both polynomials. For instance, the
polynomials x1 and xq

1 over Fq are the same as functions, so they act equal on
substituting an element of Fq for x1. Over infinite integral domains, different
polynomials are always different function as well. So definitions 1.2 and 1.1 are
equivalent when R is an infinite integral domain.

In [Y1], definition 1.1 has been generalized to functions to R in general,
not just multivariate polyniomials, which we will discuss in section 3. Just like
the main results in [EH] and [Y1] are similar, while the respective definitions
1.2 and the generalization of 1.1 are different, the refinements of these results
by way of the strong nilpotency index, which are theorem 2.1 and theorem 3.1
respectively, are similar as well.

In the last section, we apply the results of section 2 on quasi-translations
of strong nilpotency index two. For more information about quasi-translations,
we refer to the last section and its references.

2 Strongly nilpotent matrices in the sense of

[EH]

In [EH], the authors prove that strongly nilpotent Jacobians in the sense of
1.2 are linearly triangularizable, but there is no need to restrict to Jacobians.
Instead, one can look at any matrix of polynomials over a division ring D. Notice
that for finite fields, different polynomials might represent the same function.
Therefore, the generalization to polynomial matrices is not a special case of the
generalization of definition 1.1 in [Y1] that will follow in the next section.

Theorem 2.1. Let n ≥ 0 and x = x1, x2, . . . , xn be variables which commute
with each other and with elements of a division ring D. Assume that M ∈
Matm(D[x]), where m ≥ 1.

Then M has strong nilpotency index r (in the sense of definition [EH]), if
and only if there exists a T ∈ GLm(D) such that T−1MT is of the form

















0s1 ∅
A1 0s2

A2
. . .

. . . 0sr−1

∗ Ar−1 0sr

















(2.1)

where 0si is the square zero matrix of size si ≥ 1 and Ai has independent
columns over D for each i. In particular, the strong nilpotency index of M does
not exceed m in case M is strongly nilpotent.

Proof. Write y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
n ) for each i.
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⇒ Assume that M has nilpotency index r. Then

M |x=y(r) ·M |x=y(r−1) · · · · ·M |x=y(2) ·M |x=y(1) = 0 (2.2)

but

M |x=y(r−1) · · · · ·M |x=y(2) ·M |x=y(1) 6= 0 (2.3)

Thus for some term in y(r−1), . . . , y(2), y(1), the coefficient matrix C ∈
Matn(D) on the left hand side of (2.3) does not vanish, and we obtain
from (2.2) that M |x=y(r) · C = 0. Hence also M · C = 0 and the columns
of M are dependent over D. Thus if we choose T ∈ GLn(D) and sr ∈ N

maximal, such that the last sr columns of M ·T are zero, then sr ≥ 1 and
the first m− sr columns of M · T are independent over D.

Now replace M by T−1MT . Then the first m− sr columns of M become
independent over D and the last sr columns of M become zero. Further-
more, by the maximality of sr, we have that the first m− sr rows of the
left hand side of (2.3) become zero, since otherwise we can find another
linear dependence between the columns of both M |x=y(r) and M , namely
by taking for C the coefficient matrix of the left hand side of (2.3) with
respect to a term in y(r−1), y(r−2), . . . , y(2), y(1), such that the first m− sr
rows of C are not zero everywhere. Hence the left hand side of (2.3) is of
the form

(

0m−sr ∅
Ã 0sr

)

(2.4)

where 0m−sr is the square zero matrix of size m− sr and Ã 6= 0 because
of (2.3).

Let M̃ be the leading principal minor matrix of size m− sr of M . Since
the last sr columns of M , and hence also of M |x=y(i) for all i ≥ 2, are
zero, we have that the product

M̃ |x=y(r−1) · M̃ |x=y(r−2) · · · · · M̃ |x=y(2) · M̃ |x=y(1) (2.5)

is equal to the leading principal minor matrix of size m − sr of the left
hand side of (2.3), which is the submatrix 0m−sr of (2.4). The product

M̃ |x=y(r−2) · · · · · M̃ |x=y(2) · M̃ |x=y(1) (2.6)

is nonzero, because the last sr columns of M |x=y(r−1) are zero and hence

(2.6) is a factor of Ã.

So by induction on m, there exists a T̃ ∈ GLm−sr (D) such that T̃−1M̃T̃
is of the form

















0s1 ∅
A1 0s2

A2
. . .

. . . 0sr−2

∗ Ar−2 0sr−1
















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where Ai has independent columns over D for each i. Since the first m−sr
columns of M are independent over D and the last sr columns of M are
zero, the desired result follows.

⇐ Assume that a T ∈ GLm(D) as in theorem 2.1 exists. Then one can prove
by induction on j that for all j ≤ r, the first s1 + s2 + · · · + sj rows of
(T−1MT )|x=y(j) · (T−1MT )|x=y(j−1) · · · · · (T−1MT )|x=y(1) are zero. Hence
the strong nilpotency index of M does not exceed r. Furthermore, the
first s1 + s2 + · · ·+ sj rows of (T−1MT )|x=y(j−1) · · · · · (T−1MT )|x=y(1) are
of the form

(

∅
Aj−1|x=y(j−1) · · · · ·A1|x=y(1)

)

Since the columns of Ai are independent over D for each i, we obtain by
looking at coefficient matrices in a similar manner as in ⇒ and by induc-
tion on j, that Aj−1|x=y(j−1) ·· · ··A1|x=y(1) 6= 0 for all j ≤ r. Consequently,
r is the strong nilpotency index of M .

Application to Jacobian matrices

In addition to the result we get by taking for M a Jacobian matrix in theorem
2.1, we have the following.

Corollary 2.2. Assume H ∈ K[x]n = K[x1, x2, . . . , xn]n, where K is any field.

Write y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
n ) for all i.

Then for each nonzero r ∈ N, the following statements are equivalent.

(1) (JH)|x=y(r) ·(JH)|x=y(r−1) ·· · ··(JH)|x=y(1) = 0, i.e. the strong nilpotency
index of JH (in the sense of definition 1.2) does not exceed r.

(2) There exists a T ∈ GLn(K) such that the Jacobian of T−1H(Tx) is of the
form











0s1 ∅
0s2

. . .

∗ 0sr′











(2.7)

where 0si is the square zero matrix of size si ≥ 1 for each i and r′ =
min{r, n}.

(3) For all j with 1 ≤ j ≤ r, we have that the Jacobian with respect to y(1) of

(JH)|x=y(r) · (JH)|x=y(r−1) · · · · · (JH)|x=y(j+1) ·

t(j)H

(

y(j) + t(j−1)H
(

· · ·
(

y(2) + t(1)H(y(1))
)

· · ·
)

)

(2.8)

vanishes. (Thus (2.8) is constant with respect to y(1) when charK = 0.)
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(4) There exists a j with 1 ≤ j ≤ r, such that the Jacobian with respect to
y(1) of

(JH)|x=y(r) · (JH)|x=y(r−1) · · · · · (JH)|x=y(j+1) ·

H

(

y(j) + H
(

· · ·
(

y(2) + H(y(1))
)

· · ·
)

)

(2.9)

vanishes. (Thus (2.9) is constant with respect to y(1) when charK = 0.)

Proof. Since (3) ⇒ (4) is trivial, the following remains to be proved.

(1) ⇒ (2) Assume (1). From theorem 2.1, it follows that there exists a T ∈
GLn(K) such that T−1 · JH · T is of the form (2.7) for some r′ ≤ r and
hence also for r′ = min{r, n}. By the chain rule, we obtain

J
(

T−1H(Tx)
)

= T−1 · (JH)|x=Tx · T = (T−1 · JH · T )|x=Tx (2.10)

which gives (2).

(2) ⇒ (1) Assume (2). From (2.10), it follows that T−1 ·JH ·T is of the form
(2.7) as well. Subsequently, (1) can be proved in a similar manner as ⇐

of theorem 2.1.

(1) ⇒ (3) Assume (1). By taking the Jacobian with respect to y(1) of (2.8) and
dividing by t(j)t(j−1) · · · t(1), we obtain (JH)|x=y(r)+···

·(JH)|x=y(r−1)+···
·

· · · · (JH)|x=y(1)+···
. This product is zero because it is a homomorphic

image of the left hand side of the equality in (1), and (3) follows.

(4) ⇒ (1) Assume (4). By taking the Jacobian with respect to y(1) of (2.9), we
obtain (JH)|x=y(r)+···

·(JH)|x=y(r−1)+···
·· · ··(JH)|x=y(1)+···

, which is zero
on assumption. Furthermore, the left hand side of (1) is a homomorphic
image of it, and (1) follows.

Since all differentiated factors are commuted to the right in the chain rule, this
rule does not apply in a noncommutative context. Therefore, (3) and (4) of
corollary 2.2 cannot be generalized to division rings. We will use corollary 2.2
in the last section.

Comparing regular and strong nilpotency index

Before constructing some maps H with strongly nilpotent Jacobians, such that
the nilpotency index of the Jacobian is less than the strong nilpotency index,
we formulate a proposition.

Proposition 2.3. Let D be a division ring and suppose that M ∈ Matm(D[x]) =
Matm(D[x1, x2, . . . , xn]) is strongly nilpotent with index r (in the sense of defini-
tion 1.2), such that r exceeds the regular nilpotency index. Then 3 ≤ r ≤ m− 1.

6



Proof. If the regular nilpotency index equal one, then M = 0 and we have r = 1
as well, which contradicts the assumptions. So r ≥ 3. Following the proof of
⇐ of theorem 2.1, we see that M r−1 = 0 gives Ar−1 · Ar−2 · · · ·A1 = 0 for
nonzero matrices Ai, which consist of only one entry when r = m. This is a
contradiction, so r ≤ m− 1.

Using (2) of corollary 2.2, one can construct a map H in dimension n = 4, such
that JH has strong nilpotency index r = 3 (in the sense of definition 1.2) and
regular nilpotency index two. Take for instance the (cubic) map

H = (0, x2
1, x

3
1, 3x2x

2
1 − 2x3x1)

in dimension four, or the (cubic) homogeneous map

H = (0, 0, x3
1, x

2
1x2, x1x

2
2, x3x

2
2 − 2x4x1x2 + x5x

2
1)

in dimension six. By proposition 2.3, we see that there is no other combination
of strong nilpotency index r and matrix dimension m, such that n ≤ 4 and r
exceeds the regular nilpotency index.

The dimension n = 6 of the second homogeneous map H is minimal as well,
at least if the base ring K is a field, but only for r = 3. The minimality of n for
r = 3 can be seen as follows. If a homogeneous map H of degree d in dimension
n ≤ 5 with similar properties would exists, then by JH · JH = 0, we have
rkJH ≤ ⌊n/2⌋ ≤ ⌊5/2⌋ = 2. Hence rkA2 = rkA1 = 1. By homogeneity of H ,
the relations between the rows of A1 decompose into linear relations, see e.g.
the proof of [Ch, Lm. 3]. Consequently, the image of A1 is determined by linear
contraints and hence generated by vectors v over K.

Since rkA1 = 1, the image of A1 is generated by exactly one vector v over
K. For this vector v, we have C · v = 0 for all coefficient matrices C of A2 in
case A2 ·v = 0. Following the proof of ⇐ of theorem 2.1, we see that (JH)2 = 0
gives A2 ·A1 = 0, so A2 ·v = 0. Hence C ·v = 0 and C ·A1 = 0 for all coefficient
matrices C of A2. Following the proof of ⇐ of theorem 2.1 again, we get a
contradiction with r = 3.

There is however a homogeneous map in dimension n = 5, from which the
Jacobian M is strongly nilpotent with index r = 4 and regular nilpotency index
three, namely

H = (0, xd
1, x

d−1
1 x2, x

d−2
1 x2

2, 2x
d−2
1 x2x3 − xd−1

1 x4)

By proposition 2.3 and the study of the case r = 2 above, we see that there is
no other combination of strong nilpotency index r and dimension n, such that
M is a homogeneous Jacobian of a polynomial map over a field, n ≤ 5 and r
exceeds the regular nilpotency index.

Noncommutative polynomials

Notice that in theorem 2.1, one may also assume that the indeterminates of x
are noncommutative, provided the indeterminates of y(j) are noncommutative
for each j as well.
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In [Y2], the author Jie-Tai Yu proves that a homogeneous nilpotent matrix
M of polynomials over a field K is linearly triangularizable if there exist a
(homogeneous) nilpotent matrix of noncommutative polynomials (free algebra)
which corresponds to M . This result can be generalized as follows.

Theorem 2.4. Let M be a matrix of size m × m of polynomials in noncom-
mutative indeterminates x = (xi | i ∈ I) of (weighted) degree d over a division
ring D.

Then M has nilpotency index r, if and only if M has strong nilpotency index
r (in the sense of definition 1.2), if and only if there exist a T ∈ GLm(D) such
that T−1MT is of the form of (2.1) in theorem 2.1.

In the definition of strong nilpotency (in definition 1.2), for each i, j, k, l,

it does not matter whether y
(j)
i y

(l)
k and y

(l)
k y

(j)
i are equalized (by commutativity

assumptions) or not in case j 6= l. It is only necessary that y
(j)
i y

(j)
k and y

(j)
k y

(j)
i

are not equalized (by commutativity assumptions). So y
(j)
i y

(j)
k and y

(j)
k y

(j)
i are

equal, if and only if i = k.

Proof. For simplicity in writing, we assume that all entries of M are homoge-
neous of degree d instead of weighted homogeneous of degree d.

Suppose that y(j) = (y
(j)
i | i ∈ I) are partially noncommutative polynomial

indeterminates satisfying the above noncommutativity properties. The non-
commutative terms of degree rd in x correspond to (partially) noncommutative
products of r terms of degree d in y(r), y(r−1), . . . , y(1), in that order, by

xi1xi2 · · ·xird 7→ y
(r)
i1

y
(r)
i2

· · · y
(r)
id

·

y
(r−1)
id+1

y
(r−1)
id+2

· · · y
(r−1)
i2d

·

...

y
(1)
i(r−1)d+1

y
(1)
i(r−1)d+2

· · · y
(1)
ird

and each entry of M r = 0 corresponds to the same entry of M |x=y(r) ·M |x=y(r−1) ·
· · · ·M |x=y(1) in that manner, whence the latter matrix product vanishes as well
as the former.

The rest of the proof is similar to that of theorem 2.1.

Taking the Jacobian of H = (0, x1x2 − x3, x
2
1x2 − x1x3), we get

M =





0 0 0
x2 x1 −1

2x1x2 x2
1 −x1





even if we see the components of H as noncommutative polynomials. Since the
trace of M ·Mx=y equals

0 + (x1y1 − y2) − (x2 + x1y1) = −y2 − x2 6= 0

we see that M is not strongly nilpotent. But M3 = 0 holds, regardsless of
whether we see the entries as commutative or noncommutative polynomials
over C. Hence the above theorem does not hold when M is not homogeneous.

8



3 Strongly nilpotent matrices in the sense of
[MO]

In [Y1], the notion of strong nilpotency is generalized as follows. Instead of
looking at Jacobians with polynomial entries, the author Jie-Tai Yu looks at ar-
bitrary matrices of functions of a set S to a division ring D. Not all polynomials
can be described as the functions they represent, e.g. taking the first variable
over a finite field does not describe x1 because the polynomial xq

1 corresponds
to the identity as well over a finite field with q elements. But over an infinite
field, different polynomials correspond to different functions.

For such matrices of functions, Yu proves that they are linearly triangular-
izable over D when M is so called generalized strongly nilpotent, which means
that for some r ∈ N,

M |v1 ·M |v2 · · · · ·M |vr = 0 (3.1)

for all vi ∈ S, where f |g means substituting g in the entries of f . Again, we call
the minimum r such that (3.1) holds the strong nilpotency index of M . We can
generalize Yu’s result in a similar manner as in theorem 2.1.

Theorem 3.1. Let m ≥ 1 and M ∈ Matm(DS) be a matrix of functions from
a set S to a division ring D.

Then M has strong nilpotency index r (in the sense of definition 1.1, but
with functions that do not need to be polynomials), if and only if there exists a
T ∈ GLm(D) such that T−1MT is of the form

















0s1 ∅
A1 0s2

A2
. . .

. . . 0sr−1

∗ Ar−1 0sr

















where 0si is the square zero matrix of size si ≥ 1 and Ai has independent
columns over D for each i. In particular, the strong nilpotency index of M does
not exceed m in case M is strongly nilpotent.

Proof. Since the proof is essentially similar to that of theorem 2.1, we only
describe a part of the implication ⇒.

Assume that M has strong nilpotency index r. Then

M |vr ·M |vr−1 · · · · ·M |v2 ·M |v1 = 0 (3.2)

for all v1, v2, . . . , vr−1, vr ∈ S, but

M |vr−1 · · · · ·M |v2 ·M |v1 6= 0 (3.3)

for certain v1, v2, . . . , vr−1 ∈ S. Thus for these v1, v2, . . . , vr−1 ∈ S, the left
hand side of (3.3) becomes a nonzero matrix C ∈ Matm(D), and we obtain
from (3.2) that M |vr · C = 0 for all vr ∈ S.
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Notice that the strong nilpotency index does not exceed the dimension m of
the matrix in both theorem 2.1 and theorem 3.1. We will prove below that
this property still holds when the base division ring D is replaced by a reduced
commutative ring R, see also [E, Exercise 7.4.2]. If R is a ring with unity which
is not reduced, then there exists an ǫ ∈ R such that ǫ2 = 0, and for the matrix
M defined by

M :=

















ǫ 0 · · · 0 0
12 ∅ 0

13
...

. . . 0
∅ 1m 0

















(where the powers of 1 are only taken to indicate that the size is m) we have
that Mk is obtained from M by shifting all rows k − 1 places to below, where
zero rows are shifted in above for each row that is shifted out below. Hence Mm

is zero except for the lower left corner entry which equals ǫ, and the both the
regular and the strong nilpotency index of M equal m + 1.

Proposition 3.2. Let M be a square matrix of size m of functions from a set
S to a reduced commutative ring R with unity. If there exists an r ∈ N such
that M |vrM |vr−1 · · ·M |v1 = 0 for all vi ∈ S, then M |vmM |vm−1 · · ·M |v1 = 0 for
all vi ∈ S.

Proof. Suppose that there exists an r ∈ N such that M |vrM |vr−1 · · ·M |v1 = 0
for all vi ∈ S. Since the intersection of all prime ideals of R is zero, it suffices to
show that for every prime ideal p of R, all entries of M |vmM |vm−1 · · ·M |v1 are
contained in p for all vi ∈ S. For that purpose, we look at residue classes of p
and hence replace R by R/p, which is an integral domain. Let K be the field of
fractions of R/p. By theorem 3.1, M is linearly triangularizable over K, which
gives the desired result.

For reduced noncommutative rings, proposition 3.2 can also be reduced to the
domain case, but domains can not always be embedded in division rings. There-
fore, we cannot prove the following.

Conjecture 3.3. Let M be a square matrix of size m of functions from a set
S to a reduced noncommutative ring R. If there exists an r ∈ N such that
M |vrM |vr−1 · · ·M |v1 = 0 for all vi ∈ S, then M |vmM |vm−1 · · ·M |v1 = 0 for all
vi ∈ S.

4 Quasi-translations with strong nilpotency in-
dex two

A quasi-translation is a polynomial map x+H whose inverse is x−H . In 1876
in [GN], the authors proved that if x + H is a quasi-translation such that H is
homogeneous and rkJH ≤ 2, then x + g−1H is a quasi-translation such that
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J (g−1H) satisfies the second and hence any of the properties of corollary 2.2
with strong nilpotency index two, where g = gcd{H1, H2, . . . , Hn}. Actually,
the authors look at polynomial maps x + H such that JH · H = 0, but that
is the same as that x + H is a quasi-translation on account of [Bo, Prop. 1.1].
In [W], the author proved a similar result as above for non-homogeneous quasi-
translations in dimension three.

At the end of this section, we will show for two other types of quasi-
translations x + H that JH itself satisfies the properties of corollary 2.2 with
strong nilpotency index two. Quasi-translations are important in the study of
polynomials whose Hessian determinant vanishes, see [GN] or the beginning of
section 2 of [BoE].

Theorem 4.1 below shows that theorem 2.1 and corollary 2.2 can be used to
find equivalent properties for quasi-translations to have strong nilpotency index
two. It was the study of such quasi-translations which caused the author to
write this article.

Theorem 4.1. Assume x+H is a quasi-translation over a field K of character-
istic zero. Then the following statements are all equivalent to JH ·JH |x=y = 0.

(1) JH ·H(y) = 0.

(2) There exists a T ∈ GLn(K) and an s with 0 ≤ s < n such that for
Ĥ := T−1H(Tx), we have Ĥi = 0 for all i ≤ s and Ĥi ∈ K[x1, x2, . . . , xs]
for all i > s.

(3) H(x + tH(y)) = H.

(4) H(x + H(y)) = H.

Proof. By taking the Jacobian of (1) with respect to y, JH · JH |x=y = 0
follows. Conversely, if JH · JH |x=y = 0, then by integration with respect to y,
we have JH ·H(y) = JH ·H(0). By substituting y by x on both sides, we obtain
JH · H = JH · H(0), and both equalities combine to JH · H(y) = JH · H .
Hence the equivalence of (1) and JH · JH |x=y = 0 follows from JH ·H = 0,
which is (2) in the proof of [Bo, Prop. 1.1]. By subsituting x = y(2) and y = y(1),
and vice versa, we see that JH · JH |x=y = 0 is equivalent to (1) of corollary
2.2 with r = 2. So (1) is equivalent to (1) of corollary 2.2 with r = 2.

We shall show that (2) in turn is equivalent to (2) of corollary 2.2 with r = 2.
It is clear that (2) of corollary 2.2 with r = 2 follows from (2). Conversely,
assume (2) of corollary 2.2 with r = 2. If JH = 0, then we have (2) with s = 0,
so assume JH 6= 0. By (2) ⇒ (1) of corollary 2.2 and JH 6= 0, we obtain
that the strong nilpotency index of JH equals two. Hence we may assume that
Ĥ := T−1H(Tx) is of the form of (2.1) in theorem 2.1. By applying the fact
that (2) of corollary 2.2 with r = 2 implies (1) (of this theorem), but on Ĥ
instead of H , we see that J Ĥ ·Ĥ(y) = 0. Now the independence of the columns
of A1 subsequently gives Ĥ1 = Ĥ2 = · · · = Ĥs1 = 0, so we have (2) with s = s1
by definition of Ĥ.
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In order to show that (3) and (4) are equivalent to (1) and (2) as well, it
suffices to show that (3) of corollary 2.2 with r = 2 implies (3), that (3) implies
(4), and that (4) implies (4) of corollary 2.2 with r = 2. The latter follows by
subsituting x = y(2) and y = y(1), because the Jacobian matrix with respect to
y(1) of H(y(2)) is zero. That (3) implies (4) follows by subsituting t = 1. So it
remains to show that (3) of corollary 2.2 with r = 2 implies (3).

For that purpose, suppose we have (3) of corollary 2.2 with r = 2. By
taking j = 2, we get t(2)H

(

y(2) + t(1)H(y(1)
)

= H
(

y(2) + t(1)H(0)
)

, which gives
H(x + tH(y)) = H(x + tH(0)) after suitable substitutions. By substituting
y by x on both sides, we obtain H(x + tH(x)) = H(x + tH(0)), and both
equalities combine to H(x + tH(y)) = H(x + tH(x)). Hence (3) follows from
H(x + tH) = H , which is (1) in the proof of [Bo, Prop. 1.1].

(2) ⇒ (3) of the following theorem was proved by E. Formanek in [F, Th. 4] for
the case that H has no linear terms, but such a condition is unnecessary.

Theorem 4.2. Assume F = x+H is a Keller map in dimension n over a field
K of characteristic zero, such that rkJH = 1. Then F is invertible and for

(1) H has no linear terms,

(2) detJF = 1,

(3) JH · JH |x=y = 0,

we have (1) ⇒ (2) ⇒ (3).

Proof. By [F, Lm. 3], we have Hi ∈ K[p] for some p ∈ K[x], and by way of
Gaussian elimination on the coefficients of the Hi with respect to p, we see that
there exists a T ∈ GLn(K) and an s ≥ 0 such that for Ĥ = T−1H(Tx), we
have Ĥi ∈ K for all i ≤ s and 0 < deg Ĥs+1 < deg Ĥs+2 < · · · < deg Ĥn.
Furthermore, detJ (x+ Ĥ) ∈ K∗ and Ĥi ∈ K[p̂] for all i, where p̂ = p(Tx). We
shall show below that J (x+Ĥ) is a lower triangular matrix (but not necessarily
with ones on the diagonal). Consequently, x+ Ĥ is a composition of elementary
invertible polynomial maps and F is a tame invertible map, because detJ (x +
Ĥ) ∈ K∗.

Notice that detJ (x+ Ĥ)− 1 is the sum of the determinants of all principal
minor matrices of J Ĥ . Since rkJ Ĥ = 1, all minor determinants of size 2 × 2
or greater vanish. Hence trJ Ĥ = detJ (x+ Ĥ)− 1 ∈ K. Take i maximal, such
that ∂

∂xi
p̂ 6= 0. If i ≤ s, then we are in the situation of (2) of corollary 2.2 and

we have (3) and hence also (2), because JH is nilpotent and detJF − 1 is the
sum of the determinants of all principal minor matrices of JH .

Thus assume that i > s. Then ∂
∂xj

Ĥj = 0 for all j > i, deg ∂
∂xj

Ĥj <

deg Ĥj ≤ deg Ĥi − deg p̂ for all j < i, and deg Ĥi − deg p̂ ≤ deg ∂
∂xi

Ĥi be-

cause ∂
∂xi

Ĥi is divisible by a polynomial in p̂ of sufficiently large degree. Hence

deg ∂
∂xj

Ĥj < deg ∂
∂xi

Ĥi for all j 6= i and therefore deg ∂
∂xi

Ĥi = deg trJ Ĥ ≤ 0.

Consequently, ∂
∂xj

Ĥj = 0 for all j 6= i and Ĥi has degree one in p̂, which in
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turn has degree one in xi = xs+1 with leading coefficient in K as a polynomial
over K[x1, x2, . . . , xs]. This contradicts (1). By Ĥj ∈ K for all j ≤ s and

Ĥj ∈ K[x1, x2, . . . , xs, xs+1] for all j > s, we get detJ (x+ Ĥ) = 1+ ∂
∂xi

Ĥi 6= 1,
which contradicts (2) by way of (2.10).

Corollary 4.3. Assume x + H is a quasi-translation over a field K of char-
acteristic zero, such that 1 ∈ {degH, rkJH}. Then JH has strong nilpotency
index two, i.e. JH · JH |x=y = 0.

Proof. Suppose first that degH = 1. Since JH is a constant matrix, the strong
nilpotency index and the nilpotency index correspond. Furthermore, the part
of degree one of JH ·H equals (JH)2 · x, and (JH)2 = 0 follows.

Suppose next that rkJH = 1. By [Bo, Prop. 1.1], JH is nilpotent, so
detJF = 1. Hence the desired result follows from (2) ⇒ (3) of theorem 4.2.
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