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How does the brain work? That is, simply phrased, the fundamental question 
of Neuroscience. But although huge advances were made in the recent two 
centuries our understanding of the human brain is still not adequate to answer 
this apparently simple question. Apart from its enormous complexity, the human 
brain is not easy to investigate while in function. Therefore, historically first 
insights in human brain function were derived from patients who lost certain 
abilities due to brain injury. These anatomical findings about macroscopic areas, 
which were found to be necessary for the performance of specific behavior, 
were accompanied by animal studies on microscopic neuronal level, revealing 
electrophysiological processes being involved in the performance of these 
functions.

In the beginning of the 20th century, with the development of electro-
encephalography (EEG) by H. Berger, it was possible for the first time to observe 
activity of the human brain non-invasively in real time. However, in contrast to its 
high temporal resolution in the order of a few milliseconds, the spatial resolution 
of EEG is poor, obscuring the spatial location of sources of observed temporal 
pattern. Towards the end of the same century the development of functional 
magnetic resonance imaging (fMRI) enabled the non-invasive observation of 
brain activity with high spatial resolution, but the temporal resolution of fMRI is 
in the order of seconds only.  

As a consequence, in the last two decades combined EEG and fMRI was introduced 
as a promising combination of these tools to non-invasively measure brain 
functions with high temporally and spatially resolution. Still, both modalities are 
not direct measures of neuronal activity and reflect different aspects of neuronal 
processing. This makes the interpretation of the results of the combined analysis 
difficult, as long as the relation of the two modalities is unknown. 

The measured electromagnetic potential is most likely caused by coherent 
postsynaptic potential fluctuations of a neuronal population (Hämäläinen et al. 
1993), whereas the blood oxygenation level dependent (BOLD) contrast (Ogawa 
et al. 1990) – measured with fMRI – reflects the changes in blood flow and blood 
(de)oxygenation levels. In the four studies of this thesis I used combined EEG-
fMRI to address the question how the measured data of these two modalities 
are related to each other in the human brain in vivo. 

In Chapter 1 - EEG and - (f)MRI of this introduction I will give a brief overview 
of the two modalities, namely EEG and (f)MRI as well as their characteristics, 
which are relevant for this thesis. In the Chapter 1 - Combined EEG - fMRI I will 
describe the problems regarding the concurrent recording of both modalities, 
potential solutions to these problems, as well as the analysis methods used in 
this thesis. In Chapter 1 - Outline of the thesis I will give a brief outline of the 
presented work in this thesis.
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This introduction is intended to provide an overview of the relevant methods 
and modalities used in the presented work. Since combined EEG-fMRI is a 
complex topic and a lot of methods were used in the presented work, it would 
beyond the scope of this introduction to explain each aspect in detail. A deeper 
overview of neuroscience is given by (Kandel et al. 2000), for combined EEG-
fMRI I recommend (Ullsperger and Debener 2010). Both books were used 
for general aspects throughout this thesis. As my scientific background was 
elementary particle physics when I started working in neuroscience, I will start 
the introduction from that perspective and spend a few more words on the 
fundamental principles that enable the measurement of fMRI data.
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EEG
In the 19th century scientists discovered in animal studies that neuronal cells 
show measurable electrical characteristics when active. The first noninvasive 
recording of electrical potentials from a human brain was performed in 1929 by 
Hans Berger, who developed the recording equipment and gave the technique its 
name - electroencephalography (EEG). At this time Berger already reported the 
now called Berger effect, which describes changes in the posterior EEG, when a 
healthy subject opens its eyes or starts to perform a mental task in contrast to a 
relaxed eyes closed state. Since then, the fundamental principle of EEG remained 
essentially the same, but certain technical aspects have been improved.

When recording EEG, the potential fluctuations on skin level, which are reflecting 
neuronal activity, are in the microvolt range. Therefore the measurement is 
performed using special EEG electrodes on the subject’s skin and a sensitive 
differential amplifier to record the potential differences between each electrode 
and one selected reference electrode. When looking at free running EEG the 
recorded potential fluctuations appear to be random, however, there are 
certain characteristics, which are common to specific states of alertness or occur 
during task performance. EEG is therefore successfully used for sleep staging, 
diagnosis of epileptically seizures and it is one of the most frequently used tools 
in neuroscience. In the context of the presented work there are three relevant 
characteristics of the electrophysiological signal, the frequency bands, the event 
related potentials (ERP) and the visual evoked potentials (VEP).

Frequency bands

The EEG signal of the human brain shows pattern dependent on alertness, which 
are expressed by different dominating frequency components. Also when a 
subject performs a certain task, specific frequency ranges can become dominant 
and show a clear task dependency. Historically these observations led to a 
division of the EEG signal into five distinct frequency bands, namely delta (δ) 
theta (θ) alpha (α) beta (β) and gamma (γ), which are supposed to play distinct 
functional roles in neuronal processing. Dependent on the research topic the 
definition of these frequency bands differ sometimes. In the work presented 
here the following definition of the frequency bands was used: delta: (2-4) Hz, 
theta: (4-8) Hz, alpha: (8-12) Hz, beta: (12-30) Hz and gamma: > 30Hz. Chapter 2 
and 3 present two studies, which investigated whether the EEG frequency bands 
show correlated frequency power fluctuations with those of fMRI resting state 
networks. 
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ERPs and VEPs

When a subject performs a controlled task, like a button press or to perceive a 
visual stimulus, one can observe a related pattern in the EEG. In case of a task 
that is performed, this signature is called event related potential (ERP), in case of 
a visual stimulus it is called visual evoked potential (VEP). In order to make these 
patterns visible, one can perform the same task or visual paradigm multiple 
times and subsequently average the EEG of the trials, time locked to the event. 
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(f)MRI
Functional magnetic resonance imaging (fMRI) using the BOLD effect was first 
demonstrated in 1992 by several groups, i.e. Ogawa et al. (1992), Kwong et al. 
(1992) and Bandettini et al (1992). Since then it has revolutionized neuroscience, 
giving its capability to non-invasively locate task related activity in the human 
brain on the mm scale. 

Simply phrased, MRI as the basis of (f)MRI uses the inherent magnetic moment 
of atomic nuclei to generate 3D images. In more detail, atomic nuclei consist 
of protons and neutrons, which again consist of three quarks each. To our 
knowledge these quarks are elementary particles, which cannot be divided into 
sub particles. There are six different kinds of quarks, however, the most relevant 
quarks are the up and down quarks. Together with the electrons these two 
quarks are the fundamental building blocks of all matter in our universe. Quarks 
and electrons have an electric charge and an angular momentum. The latter is 
called spin and is the property relevant for MRI. Although the spin is an inherent 
property of the elemental particles one can think of it as if the elemental particle 
would spin around an axis, hence it’s name. Keeping this picture of a spinning 
particle in mind, one can further imagine that if such a spinning particle caries a 
charge, it generates a magnetic moment related to the spin, as moving charges 
generate magnetic fields. If a nucleon, namely a proton or neutron, consists of 
particles with a charge and spin, the nucleon itself carries a charge and spin, 
which are related to the properties of its components. 

The up quark (u) has the charge q = 2/3 and a spin I = 1/2, the down quark (d) 
has q = -1/3 and I = -1/2. The proton (P) consists of two u and one d quark and 
has a resulting spin of I = ½ and a charge of q = 1. The neutron (N) consists of one 
u and two d and therefore has I = -1/2 and no net charge (See Figure 1). Due to 
its frequent appearance in all kinds of molecules and tissues, hydrogen 1H, which 
simply consists of one proton with spin 1/2, is the most commonly used nucleus 
in MRI.

Spin is a vector quantity, which means it possesses a magnitude and a direction. 
Since the spin is a property of elementary particles, which are infinitesimally 
small, it follows that quantum mechanic laws apply, resulting in a quantization 
of its magnitude and direction. The magnitude of the angular momentum of a 
particle with the spin quantum number I is given by  and since the 
direction is also quantized, the projection of the spin vector on to an arbitrarily 
chosen z-axis is given by . Where  is the Planck 
constant, which is the proportionality constant between the energy of a photon 
and the frequency of its electromagnetic wave package divided by π. For the 
hydrogen nuclei with spin I = 1/2 this has the consequence that it has only two 
orientations along the z-axis; m = 1/2 and m = -1/2. 
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As already stated 
above, particles 
carrying a charge 
and spin possess a 
magnetic moment 
μ, which is related 
to their spin given 
by , where γ 
is the gyromagnetic 
ratio. Each nucleus 
has a unique γ, 
which is dependent 
on it’s weight and 
charge distribution. 
(Neutrons – although 
not having a net 
charge – do have a 
charge distribution, 
since they consist of 
charged particles and 
therefore they have 
a magnetic moment 
unequal to zero.) 

Hydrogen has a gyromagnetic ratio of γ = 42.58 MHz/T. Since 1H is a component 
of water and other common molecules, it is found in almost all organic materials, 
making it ideal for imaging of the human body. 

When exposed to an external magnetic field B0 the spins of the H atoms orient 
themself along or against B0 resulting in a net magnetization M0 along the external 
field resulting in two different energy levels (Zeeman splitting). According to 
the Boltzmann distribution, only very few more spins are aligned along B0, so 
that only a small net fraction of the H atoms contribute to the net macroscopic 
equilibrium magnetization M0.

Conventionally, the direction of the B0 field and therefore the initial orientation 
of M0 is chosen along the z-axis. The magnetization (M) can be flipped into 
the transverse x-y plane, by transmitting a RF pulse to the spin ensemble via a 
fluctuating magnetic field B1 at the so called Larmor frequency ω0 = γB0. The RF 
pulse that flips M to the x-y plane is called a 90 degree pulse. Once excited, M 
precesses in the x-y plane with ω0 and relaxes back over time to the equilibrium 
magnetization orientated along B0. One can think of this precession of M0 after 
the RF pulse under the influence of B0 as the precession of a spinning top in the 
gravity field of the earth, after deflection of its axis (see Figure 2).

Figure 1: The hydrogen nucleus consisting of up 
and down quarks.
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The precession of M in the x-y plane can be detected with a receiver coil, in 
which an oscillating voltage with frequency ω0 is induced, also called free 
induction decay (FID). The measured frequency is also dependent on the local 
magnetic field, induced by local field gradients at borders between regions of 
different magnetic susceptibility, but can also be manipulated on purpose by 
adding additional, very defined magnetic field gradients.

The local dependency of ω is used in imaging to encode the 3 dimensional space 
via frequency and phase by modulating the local magnetic field with gradient 
coils during excitation and read out. In detail, if one intends to scan a 3D volume, 
in a first step one can select a slice of the volume, by applying a magnetic gradient 
field along the z-axis when flipping M0 to the x-y plane with the RF pulse. Due to 
the gradient in z direction, ω differs along the z-axis and only the spins having 
the same frequency as the RF pulse get exited. Therefore, by choosing the RF 
pulse according to the gradient, one can excite one slice after each other. When 
one slice in the x-y-plane is exited, one can alter the frequency and phase inside 
the plane by applying gradients in the x and y  direction. This way one can scan 
the full 3-dimensional space.

After excitation, M starts to relax to its equilibrium state M0 in an exponential 
decay process, which has two distinct parameters T1 and T2. T1 is the time, in 
which 63% of the magnetization along the B0 field is restored. This is caused by 

Figure 2: A sche-
matic depiction 
of the net mag-
netization M be-
ing flipped by an 
angle Θ towards 
the x-y-plane 
in an external 
magnetic field B0 
(along z) using 
an RF pulse with 
amplitude B1. Af-
ter excitation M 
starts to precess 
around the z-axis 
with the Lamor 
frequency ω0.
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energy exchange of the spins with the lattice and is therefore termed spin-lattice 
relaxation. T2 is the time, when the magnetization in the x-y plain decayed by 
63%. This is caused by a loss of phase coherence within the spin ensemble. In 
contrast to T1 there is no energy exchange with the lattice. This so called spin-
spin relaxation causes a faster decay of the signal in the x-y plane compared 
to the recovery of M0 resulting in T1 > T2. Both relaxation times are dependent 
on the tissue characteristics, which is used in MRI to obtain contrast between 
different tissue types. In pure water T2 is almost as long as T1, around 2-3 seconds. 
In biological material T2 is considerably shorter than T1, some examples are for 
human brain tissue at 3 Tesla are (Wansapura et al. 1999): CSF: T1 = 1.9 seconds 
and T2 = 0.25 seconds; white matter: T1 = 0.8 seconds and T2 = 0.08 seconds; gray 
matter: T1 = 1.3 seconds and T2 = 0.11 seconds.

In functional MRI the contrast parameter T2
* has most impact which is defined 

by

 

where 1/(γΔB) is also known as T2’. T2
* gives the time where 63% of the actual 

FID signal is lost, due to dephasing of spins. Local (mesoscopic) differences of 
the magnetic field cause that spins have slightly different Larmor frequencies, 
which causes the dephasing over time. In contrast to the spin – spin relaxation 
of T2 the dephasing is reversible, as long as the local magnetic properties do not 
change over the time scale of the experiment. After dephasing for a certain time 
τ one can flip the magnetization within the x-y plane by 180 degrees with a 180 
RF pulse, which results in a spin echo after another time τ due to rephasing of 
the spins.

The local changes in T2
* due to deoxyhemoglobin level in the blood are used to 

measure the BOLD contrast. Deoxyhemoglobin is paramagnetic and therefore 
disturbs the local magnetic field, which in return affects T2

*. Thus, when the 
amount of deoxyhemoglobin alters due to changes in neurophysiology (oxygen 
extraction, blood volume and blood flow changes) triggered by neuronal 
activation, this can be measured very locally using the T2

* contrast.

Resting State Networks

Early studies, which intended to find the locations of task related activities using 
the BOLD contrast, contrasted the BOLD activity in intervals of task performance 
with the activity measured in intervals of rest. However, it became clear, that 
also in resting periods spatially distinct brain regions show coherent fluctuations 
(Biswal et al, 1995). This finding motivated deeper and specific investigation of 
what is now called the resting state (RS). 
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In a RS experiment, the 
subject is asked to lie relaxed 
in the scanner, not to think of 
anything specific and not to fall 
asleep. The subject can either 
be asked to close its eyes or to 
keep them open. In the RS work 
presented here, the subjects 
were asked to keep the eyes 
open due to the long scan time 
of 34 minutes. 

Since in RS there are no external 
stimuli, no stimulus timings 
or parameters can be used to 
inform the fMRI analysis, so 
in the early RS studies a seed 
based approach was used. 
For this approach a specific 
seed voxel within a known 
neuronal network (e.g. motor 
cortex) is chosen and the time 
courses of all other voxels are 
correlated with the time course 
of the seed voxel. Voxels, 
which coherently fluctuate 
with the seed voxel, show high 
correlation values. Plotting this 
correlation values as intensity 
at the voxel locations, results 

in a statistical map, which, if the seed voxel was chosen adequately, resembles 
a network. These maps, represent the so called resting state networks (RSNs). 
The drawback of the seed based approach is that the results of the analysis are 
dependent on the seed region. 

A more recent method to investigate these RSNs is based on Independent 
Component Analysis (ICA), which is an explorative method. The only parameter, 
which has to be chosen manually, is the amount of independent components. 
Using spatial ICA, Damoiseaux et al. (2006) found 10 distinct RSNs, which showed 
highly significant coherent fluctuation within resting subjects and can be found 
reliably across subjects. Smith et al. (2009) showed that these RSNs reassemble 
spatial networks, which had been reported to be active during task processing. 
An example of four RSNs is given in Figure 3.

Figure 3 depicts four example RSNs.
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ICA

Independent Component Analysis (ICA) is an iterative method to separate mixed 
sources. It is a common approach to solve the blind sources separation problem, 
which can be depicted by the cocktail party problem (Figure 4). On a cocktail 
party there are many people chatting and laughing at the same time, yet a 
person B is able to listen to a specific person A. Thereby person B separates the 
voice of person A as independent source from all the other sources (“noise”) in 
that room (temporal source separation).    

The capability of ICA to separate sources is dependent on the number of 
independently recorded signals. In blind source separation, one can only 
separate as many sources as recorded channels. In terms of the cocktail party 
problem that would be microphones or in the case of a person their two ears, 

Figure 4: A schematic depiction of the blind source separation problem 
using a cocktail/birthday party as example. Although many people are 
chatting and laughing at the same time person B is able to listen to per-
son A. Thereby person B separates the voice of person A as independent 
source from all the other sources (“noise”) in that room.
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hence humans are able to separate one source of interest from the background 
noise.

The fundamental assumptions behind ICA are that sources are statistically 
independent and that the spectrum of measured values of a single source is 
less Gaussian compared to the one of a superposed signal from two or more 
sources. In case the assumptions are fulfilled, ICA can be formulated as: separate 
the recorded data Y (MxN Matrix) into an eigenvalue matrix A (MxM) and a 
source matrix S (MxN) under the constraint that the sources are maximally non-
Gaussian. 

Y = AS.

One can only solve this problem for M < N so that it depends on the data in 
which dimension ICA is applicable (See Figure 5). 

In case of EEG data, which has relatively few spatial channels but many time 
points, temporal ICA is applicable to separate the recorded EEG into temporal 
independent sources. These temporal sources represent temporal coherent 
signals of brain activity. These signals do not necessarily arise from the same 
spatial location in the brain. If two distant brain regions are coherently active, 
the related electrophysiological signal can only be seen as one source, since the 
signals from these (spatially distinct) regions are not statistically independent.

In case of fMRI data, one has hundreds of thousands of spatial points (voxels) 

Figure 5: Shows the different approaches for Y = AS when using ICA either 
to separate temporal sources (EEG) or spatial sources (fMRI). The rows of 
the data matrix Y for temporal ICA represent the channels and its columns 
the time points. For spatially ICA the rows of Y consist of the concatenated 
voxels of the volumes and the columns are the time courses of each voxel. 
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but relatively few time points. Here ICA can be used to separate spatially 
independent sources. In fMRI these spatial sources can be interpreted as 
coherent fluctuating brain regions, which are maximally independently from 
each other. If one analyses resting state data with spatial ICA, the spatial maps 
were found to represent the so-called resting state networks RSNs.

In this thesis, temporal ICA was used in all chapters for EEG artifact correction 
to separate and remove eye blinks from the rest of the EEG data. In the first two 
chapters spatial ICA was used to analyze resting state fMRI data to obtain RSNs. 
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Combined EEG-fMRI
Combined EEG-fMRI was first developed to locate sources of epileptic spiking 
(Warach et al., 1996; Krakow et al., 1999; Seeck et al. 1998). Applied to 
fundamental neuroscience it promises the noninvasive examination of brain 
activities and the investigation of the neural underpinnings common to both 
modalities with high temporal and spatial resolution. However, the concurrent 
acquisition of EEG and fMRI is technically challenging and causes reduction in 
data quality due to artifacts in both modalities. While the artifacts in the fMRI 
data are negligible in most circumstances, the artifacts in the EEG data have to 
be corrected in order to use the data. 

These MR related artifacts in the EEG data are caused by induction of currents 
into the EEG system when recording concurrently in the MR environment (see 
Figure 6). The most prominent artifact is caused by the fast switching magnetic 
field gradients, which are used in the (f)MRI sequence. To enable a correction 
of these artifacts, the EEG recording system has to cover the whole artifact 
within its dynamic range, without saturation. At the same time the amplitude 
resolution has to be high enough to record human EEG signals. While normal 
EEG has peak amplitudes around 50 μV, the induced gradient artifacts easily 
reach peak voltages around 10 mV. 

The equipment used in the here presented studies has a 16bit DA converter 
(BrainAmp MR plus, BrainVision, Gilching, Germany), thus it can differentiate 
between 2^16 = 65.536 steps to cover the dynamic range. Given the fact that the 
artifacts are +/- 10 mV one has to record the EEG signal at 0.5 μV to cover the 
artifacts without saturation (range +/- 16.384 mV @ 0.5 μV resolution). This is a 
reduction in the EEG data quality compared to a standard recording outside the 
MR, since the commonly used resolution to record EEG is 0.1 μV. 

Fortunately, the gradient artifacts are periodic, highly precise and repetitive. 
Therefore they can be removed by using an average subtraction approach (Allen 
et. al. 2000). The idea behind this approach is that the EEG signal is superposed on 
the gradient artifacts and does not have a similar time locked repetitive character 
like the gradient artifacts. If one averages the recorded EEG data at the onset 
of the gradient artifacts over all artifacts, one obtains a clear artifact template 
without superposed EEG, since the latter averages to zero. This artifact template 
can now be subtracted from each artifact in the recorded data, resulting in a 
gradient artifact free EEG signal. This correction has to be performed separately 
for each channel since the appearance of the gradient artifacts is dependent on 
the position of each electrode and its cable within the MR scanner. 

This spatial dependency is also the most relevant error source in the gradient 
artifact correction. If the subject moves during acquisition, the recorded shape of 
the gradient artifact changes. This causes errors in the generation of the average 
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template artifact as well as in the subtraction of this template artifact from the 
actual data. To account for subject movement, one can use a sliding window 
of gradient artifacts to average and then subtract the template only from the 
artifact in the center of that window. A commonly used minimum number of 
artifacts to average over is 50, this ensures that the EEG on top of the artifacts 
is averaged out. 

A requirement to enable average gradient template subtraction is to ensure that 
the TR of the MRI sequence is a multiple of the sample width of the EEG recording. 
Else the recorded gradient artifact jitters, making a correction impossible. 
Furthermore, to optimize the performance of average artifact correction it is 

Figur 6: EEG data at the beginning of a combined EEG-fMRI recording 
with MR related artifacts. On the left side, three prominent pulse artifacts 
caused by cardiac related movement are visible. Clearly, one can see the 
differences in the artifacts for each channel. On the right side one can 
see the gradient artifacts after MRI acquisition has started. At the bottom 
line one can see the recorded trigger, showing that the synchronization 
between EEG amplifier and MR gradient amplifier is working (Sync ON), 
the beginning of the first and second MR volume (F 1) and the beginning 
of the presented paradigm (S 55).
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highly recommended to synchronize the EEG amplifier clock with the MR clock. 
In combination with a well chosen TR this ensures that each recorded gradient 
artifact has the exact same amount of samples and that the steep slopes of the 
artifacts are always recorded at the same position within one sample. Recording 
of volume triggers at the beginning of each MRI volume enables an automatic 
artifact correction, without further preprocessing. It also allows correction when 
using a continuous fMRI sequence without breaks between volumes, where 
artifact-free EEG could be recorded to detect the gradient onset. 

The second prominent MR related artifact in the EEG data is predominantly caused 
by cardiac related movement. Throughout the cardiac cycle the skin of the head 
slightly moves causing the electrodes and cables to move within the stationary 
B0 field, inducing artifacts into the EEG system (Yan et al. 2010; Mullinger et al. 
2013). The amplitude of these artifacts is dependent on the field strength of the 
MR scanner, at 3T this can be between 40 and 100 μV. In contrast to the gradient 
artifacts the cardiac related artifacts are not periodic making a complete removal 
almost impossible. However, sliding window average template subtraction, the 
same approach as the described for the gradient artifact correction, shows good 
results (Vanderperren et al. 2010). More complex algorithms, e.g. using ICA, do 
not perform significantly better and have the tradeoff that they might affect the 
data in an unpredictable manner. Therefore in the work presented in this thesis 
all combined EEG-fMRI recordings were corrected using sliding window average 
subtraction for both MR related artifacts.

When analyzing combined EEG-fMRI one has to account for the different origins 
of the two signals. Each modality only sees part of the neuronal activity and with 
combined EEG-fMRI only the part common to both modalities can be accessed 
(See Figure 7). A common approach to relate the two modalities is to use EEG 
features to inform a general linear model (GLM) to predict variance in the fMRI 
data. For example the power of different EEG frequency bands (Goldman et al. 
2002; Laufs et al. 2003a; Laufs et al. 2003b; Moosmann et al. 2003; Feige et al. 
2005; Laufs et al. 2006; Goncalves et al. 2006; Scheeringa et al. 2008) or features 
of evoked potentials (Benar et al. 2007; Eichele et al. 2005; Geukes et al. 2013; 
De Vos et al. 2013). A good overview of combined EEG-fMRI is given by Huster 
et al. (2012). Since the main interest of this thesis is the direct relation between 
the two modalities and the investigation of the common observed neuronal 
variance, integrative approaches were used. 

To investigate the relation between the electrophysiological signal and the BOLD 
response in RSNs (Chapters 2 and 3), we used a power to power correlation 
approach. Power to power correlation in combined EEG-fMRI in RS is motivated 
by the assumption that activity of specific brain networks, represented by the 
RSNs, is reflected in certain frequency bands in the electrophysiological signal 
(Mantini et al. 2007). We therefore investigated, whether the power of certain 
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frequency bands in the EEG covariate with the average power of a specific 
resting state network. In Chapter 4 we used this approach to examine the EEG 
frequency power co-variation with BOLD activation of an occipital source. For a 
detailed description of this method see the methods part of Chapter 2. 

To further investigate the relation between the two modalities we developed a 
framework to separate the EEG signal according to fMRI derived sources. The 
Prior-based Realistic Integrative Source Model (PRISM) toolbox enables this 
separation using a realistic head and source model. It provides tools for model 
based analysis with a focus on combined EEG-fMRI. Based on Matlab and Linux/
UNIX bash scripts, it includes, or is derived from several established frameworks 
for both modalities (FreeSurfer, FSL, EEGLAB, NFT), combines them for the need 
of combined EEG-fMRI analysis and incorporates a newly developed head and 
source model.
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Figure 7 depicts the visibility of neuronal activity by EEG and fMRI in a 
Venn diagram. 
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Head model and Source model

In contrast to EEG, which measures the electrical component of the neuronally 
generated electromagnetic field, magneto-encephalography (MEG) records the 
magnetic component. Compared to fMRI, both measurement techniques have a 
low spatial resolution. However, when comparing the spatial resolution of MEG 
and EEG, MEG has a higher spatial resolution due to the relatively undistorted 
propagation of the magnetic component through tissue. There are several 
approaches to use spatial filters for the signal in order to determine the location 
of a source of interest and disentangle the mixed nature of the signal, which 
is a superposition of the whole brain activity (Brookings et al. 2009; Ou et al. 
2010; Huster et al. 2012). For MEG a well-established approach is to use a head 
and source model in order to simulate the signal propagation from the neuronal 
sources to the sensors. Subsequently, this so called forward model is inverted, 
to locate the source of a specific signal and to derive the according source signal 
based on the actual measured data. 

In contrast to the magnetic component of the electromagnetic field, the 
propagation of the electrical component, as measured by EEG, is highly dependent 
on the material through which it propagates. Furthermore, when the electrical 
field travels through two subsequent materials with different permittivity, it is 
reflected and diffracted at the border between them. Compared to MEG this 
makes the construction of a forward model for EEG far more complex. In case of 
the electrophysiological signal of the human brain, the signal has to propagate 
through part of the brain, the cerebrospinal fluid (CSF), the skull and outer skin. 
Thereby the electrical field component is reflected and diffracted at each tissue 
boundary. 

In order to calculate the forward solution one needs a source and a head 
model. In the simplest approach, the source model consists of a single dipole, 
representing a neuronal population, and a sphere, representing a one layer head 
model. For MEG, this is already a good approximation, but for EEG the head and 
source models have to be more precise to achieve reasonable reconstruction 
results. 

In Chapter 3 of this thesis we present a framework that includes a new source 
model and a realistic four layer head model, which uses anatomical information 
of individual T1 MRI images to construct a detailed anatomically correct and 
subject specific forward model. The head model (Acar and Makeig (2010)) uses 
the boundary element method to calculate the forward solution. The surfaces 
of the brain, skull and skin are obtained from the individual T1 scan and used to 
construct surface meshes. The electromagnetic properties can now be calculated 
for each triangle of the meshes. Therefore the model is able to calculate the 
propagation of the electromagnetic field trough the complex anatomical 
structure of the human head with high accuracy.
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Our newly developed source model is also based on subject specific anatomical 
cortical meshes. It uses the fact that the pyramidal neurons, most probably the 
source of the measured electrophysiological signal, are oriented orthogonal to 
the gray matter surface within the cortex. Our source model reconstructs the 
complete 3D cortex and places dipoles within the cortex with an orientation 
orthogonal to the gray matter surface. Furthermore it uses statistical activation 
maps from fMRI to determine which dipoles are active and weights them using 
their respective z-value within the distributed source. 

BeamFormer

Linear constrained minimum variance (LCMV) BeamFormer is a spatial filter 
that enables to focus on a signal from a specific location. It is a widely applied 
method, which for example is used in sonar systems or directional signal transmit 
and receive arrays. It was brought to neuroscience by Van Veen et al. (1997) to 
locate the origin and to reconstruct the source signal of prominent features in 
the electrophysiological data. BeamFormer is based on the assumption, that two 
distinct macroscopic sources are uncorrelated. Applied to the forward solution 
of a head and source model, LMCV BeamFormer minimizes the variance for 
each dipole separately, under the constraint that the predicted variance by the 
forward model is preserved. 

Due to the described low distortion of the magnetic component of the 
electrophysiological signal, which makes simple forward models applicable, this 
method was mostly used to analyze MEG data. Recently, Murzin et al. (2011) 
showed with simulated EEG data that using a realistic head and source model, 
it is possible to reconstruct the signal of neuronal sources from EEG data using 
LCMV BeamFormer. In Chapter 4 and 5 we successfully used LCMV BeamFormer 
to solve the inverse problem for combined EEG – fMRI data incorporated in the 
PRISM toolbox.
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Outline of the thesis
In Chapter 2 and Chapter 3, I will present results from two studies investigating 
the relation of the electrophysiological signal and BOLD fluctuations in resting 
healthy subjects using power-to-power correlations. In Chapter 2 I investigated, 
whether fMRI RSNs show common variance with certain EEG frequency bands. 
In Chapter 3 I addressed these questions using different analysis approaches and 
also examined the temporal aspect of the relation between the two modalities 
in eyes open resting state. 

In Chapter 4 I will introduce a newly developed source model and supporting 
framework that enables to separate EEG data according to fMRI derived sources. 
When developing the source model, I combined the ideas of anatomically and 
functionally constrained distributed source models. Additionally, I extended this 
combined ideas by using the results of the statistical analysis of the functional 
data to further inform the source model, so that it would be fully determined by 
measured data. I then applied the new method in an experiment with ultra short 
visual stimuli to investigate the spatial and temporal aspects of visual perception. 
Further on, I will refer to this head and source model as PRISM toolbox.

In Chapter 5 I applied the PRISM toolbox and two less constrained model based 
approaches in a visual guided motor response task. One aspect was to investigate 
the effect of the different constrained methods on the results for the source VEPs 
and ERPs locations related to the task. Furthermore, I addressed the question, 
which aspects of the two modalities reflect common observed neuronal activity.

At the end of the thesis in Chapter 6 I will discuss the results of the preceding 
four chapters and give an outlook of future development in combined EEG-fMRI.
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Abstract
With combined EEG-fMRI a powerful combination of methods was developed in 
the last decade that seems promising for answering fundamental neuroscientific 
questions by measuring functional processes of the human brain simultaneously 
with two complementary modalities. Recently, Resting State Networks (RSNs), 
representing brain regions of coherent BOLD fluctuations, raised major interest 
in the neuroscience community. Since RSNs are reliably found across subjects 
and reflect task related networks, changes in their characteristics might give 
insight to neuronal changes or damage, promising a broad range of scientific and 
clinical applications. The question of how RSNs are linked to electrophysiological 
signal characteristics becomes relevant in this context. In this combined EEG-
fMRI study we investigated the relationship of RSNs and their correlated 
electrophysiological signals (Electrophysiological Correlation Patterns - ECPs) 
using a long (34 minutes) resting state scan per subject. This allowed us to study 
ECPs on group as well as on single subject level, and to examine the temporal 
stability of ECPs within each subject. We found that the correlation patterns 
obtained on group level show a large inter-subject variability. During the long 
scan the ECPs within a subject show temporal fluctuations, which we interpret 
as a result of the complex temporal dynamic of the RSNs.
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Introduction 
During the last decade, the combination of electroencephalography and 
functional magnetic resonance imaging (EEG-fMRI) in humans became a 
prevalent tool in neuroscience and related research fields. Using methods based 
on triggered average subtraction of MR related cardiac and gradient artifacts 
in the EEG, as first formulated by Allen et al. (1998) and Allen and Josephs 
(2000), the electrophysiological signal could be filtered sufficiently to enable 
the examination of neuroscience questions, making combined EEG-fMRI a 
potentially powerful tool for noninvasive investigation of human brain function.  
And indeed, studies examining global EEG characteristics and corresponding 
BOLD signals reported significant correlations between the EEG theta, alpha or 
beta band power and BOLD signal fluctuation in specific brain regions (Goldman 
et al. 2002; Laufs et al. 2003a; Laufs et al. 2003b; Moosmann et al. 2003; Feige 
et al. 2005; Laufs et al. 2006; Goncalves et al. 2006; Scheeringa et al. 2008). 
These studies used EEG derived regressors for different frequency bands to 
correlate with the fMRI time course. Their findings however are rather mixed 
and inconclusive, due to the resulting inconsistent BOLD maps. This led to the 
assumption that several frequency bands might be involved in distinct functional 
networks (Laufs et al. 2006; Mantini et al. 2007). 

Around the same time, BOLD resting state networks (RSNs), which represent 
coherently fluctuating brain regions observed in the resting human brain, 
became a topic of major interest (Biswal et al. 1995; Lowe et al. 2000; Cordes et 
al. 2001; Greicius et al. 2003; Fox et al. 2005; Damoiseaux et al. 2006; De Luca 
et al. 2006; Smith et al. 2009). Using Independent Component Analysis (ICA), 
Damoiseaux et al. (2006) showed that these RSNs are consistent across subjects. 
Recently, it was demonstrated by Smith et al. (2009), that ten of these RSNs reflect 
various known task related networks (TRNs) obtained from a large database of 
functional studies. However, the question of the direct relation between both 
modalities in the resting brain is currently intensely investigated (Mantini et al. 
2007; Goncalves et al. 2008; Britz et al. 2010; Laufs 2010; Schölvinck et al. 2010). 
Mantini et al. (2007) investigated the correlation of various EEG frequency bands 
with these RSNs using EEG-fMRI and found evidence for specific group level EEG 
band power correlation profiles for six RSNs. However, studies relating the alpha 
rhythm on subject level to coherently fluctuating BOLD signals during resting 
state (RS) (Goncalves et al. 2006; Goncalves et al. 2008) observed considerable 
inter-subject variability in the correlation between both modalities. Given the 
low inter-subject variability in the BOLD characteristics, they concluded that the 
observed inter-subject variability arises from the individual variation in the EEG. 

In this combined EEG-fMRI study we investigated the relation of the 
electrophysiological signal to ICA derived RSNs which resemble TRNs (Smith et 
al. 2009). The link between RSNs as found by ICA and the electrophysiological 
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signal was obtained by correlating EEG frequency power of four common, low 
frequency bands (δ: (2-4)Hz, θ: (4-7)Hz, α: (8-12)Hz, β: (12-30)Hz) to a specific 
RSN, resulting in electrophysiological correlation patterns (ECPs). Using a long, 34 
minutes resting state scan per subject we hypothesized that we could investigate 
the ECPs not only on group, but also on a single subject level, and, furthermore, 
would be able to assess the temporal stability of these ECPs within a subject.
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Data and Methods
Data acquisition
(f)MRI
For this study, 16 healthy subjects, 12 female and 4 male with a mean age of 22 
(range 19 - 41) were scanned. The experiment was approved by the local ethical 
committee. For each subject, 34 minutes of resting state data were acquired 
using a 3T Magnetom TIM Trio system (Siemens Healthcare, Erlangen, Germany) 
with the product 32 channel head coil and a multi echo EPI sequence (Poser et 
al. 2006) (acquisition parameters: 1030 Vol., TR = 2000 ms, five echoes: TE = 6.9, 
16.2, 25, 35 and 44 ms, flip angle 80°, 39 slices, 3.5 mm isotropic resolution, 
GRAPPA factor 3, 6/8 partial Fourier). A T1 structural scan was obtained to 
register the functional data to Montreal neurological institute (MNI) space 
using an MPRAGE protocol (acquisition parameters: voxel size 1.0x1.0x1.0 mm3, 
matrix size 256x256, 192 slices, TR = 2300 ms, TE = 3.03 ms, TI = 1100 ms, flip 
angle = 8°).

EEG
EEG data were recorded simultaneously with a 32 channel cap (ANT WaveGuard 
MRI), using a BrainAmp MR plus amplifier and BrainVision Recorder (sample 
frequency = 5000 Hz, resolution = 0.5 µV, operating range = ± 16.384 mV, 
hardware high pass filter 0.1 Hz and low pass filter at 250 Hz) (BrainVision, 
Gilching, Germany). The last 4 subjects were recorded with a 64 channel cap 
(BrainVision). To stay comparable with the previous experiments in this study 
only the same 30 channels (10-20 system) were used in the analysis. The MR 
gradient clock and the EEG amplifier clock were synchronized for optimal 
gradient artifact correction.

The subjects were asked to relax, keep their eyes open, stay awake and not think 
of anything specific. The room was darkened during the scan and an infrared eye 
tracker was used to control that the subject would not fall asleep. All subjects 
managed to stay awake for the complete duration of the experiment.

12 of the 16 datasets were used for analysis. Four data sets were excluded due 
to: incomplete recording of the EEG due to technical problems; saturation of the 
EEG channels caused by large gradient artifacts; residual gradient artifacts after 
correction caused by syncing problems between MR scanner and EEG amplifier; 
and abnormal brain anatomy, respectively. 

This combined EEG-fMRI study was part of a larger RS study, including 77 
subjects, for which an additional diffusion weighted scan was recorded (1 hour) 
and a behavioral questionnaire was filled in during a break after the RS scan.
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Preprocessing
(f)MRI
RS-fMRI preprocessing was performed using functions from the SPM5 software 
package (Welcome Department of Imaging Neuroscience, University College 
London, UK). The used multi-echo sequence acquired one volume for each of the 
five echoes at every time point. To allow the use of standard fMRI preprocessing 
tools, these five echoes were combined using the procedure described in (Poser 
et al. 2006). In short, the first 30 time points were used to calculate the temporal 
signal-to-noise ratio for every voxel needed to obtain the echo specific weighting 
factors for the echo combination. SPM5 motion correction was applied to the 
first echoes and the calculated corrections were applied to every subsequent 
echo of the same volume. It can safely be assumed that the subjects do not 
move between echoes, because of the short duration of the multi-echo train of 
about 50 ms. The first six volumes were discarded to allow the system to reach 
a steady state. The functional data from every subject were spatially smoothed 
with a 5mm Gaussian kernel and transformed to MNI space using FSL’s Feat (FSL 
4.1, www.fmrib.ox.ac.uk/fsl/).

EEG
MR related artifacts in the EEG signal were removed using Analyzer 2 (BrainVision). 
Trigger based average subtraction (Allen and Josephs 2000) was used to correct 
for gradient artifacts and subsequently the data were downsampled to 500Hz. A 
Butterworth zero phase filter, 48 dB/oct with a low cutoff at 0.8 Hz, to remove slow 
fluctuations from respiration, and a high cutoff of 50Hz was applied. Additionally 
a notch filter at 50Hz was applied to remove residual mains frequency noise.

Cardiac related MR artifacts were removed using the Adaptive Average 
Subtraction (AAS) method. This was done in three steps: First, markers were 
obtained by the algorithm implemented in Analyzer2 that detects MR related 
cardiac artifacts, using a channel with cardiac artifacts that remained quite 
constant in amplitude and were well visible. Next, all markers were checked 
manually by visual inspection and, finally, the AAS algorithm was applied. ICA 
was used to remove eye blinks. The EEG data were re-referenced to common 
average.

Analysis
(f)MRI
The normalized fMRI data were concatenated temporally and group ICA was 
performed using FSL’s Melodic 3.1 to obtain 30 group independent components 
(ICs). The number of components was chosen for optimal noise separation and 
integrity of the RSNs. A higher number could cause the RSNs to split up into 
sub networks (Smith et al. 2009; Kiviniemi et al. 2009). These 30 group IC maps 
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Figure 1 shows all 11 group fMRI RSNs as maximum intensity projection 
on the central slices and their group ECPs, representing the average Z sco-
res (12 subjects) for the four EEG frequency bands. Only clusters larger 
than 15 voxels were plotted. The large standard errors indicate the large 
variability of the subject-specific ECPs.
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were used in a dual regression approach (Filippini et al. 2009) to obtain subject 
specific IC maps. These maps were thresholded (Z >= 6) and used as masks to 
obtain an average BOLD time course of the IC on subject level. We find all RSNs 
reported by Smith et al. (2009) and, furthermore, ten components that show 
also characteristics of RSNs regarding their functional maps and their frequency 
spectra. The remaining nine components contain white matter, movement 
artefacts, or breathing related artefacts, a.s.o. For further analysis we selected 
eleven RSNs (see Figure 1), which resemble those described by Smith et al. 
(2009) depicting TRNs. The sensorimotor component RSN 6 reported by Smith 
et al. (2009) split up into two components, termed RSN 6a and RSN 6b.

EEG
Corresponding to the TR used in the fMRI acquisition the EEG signal was split 
into 2 second segments based on the MR volume trigger. A Fourier transform 
was applied to each channel in the segment and the frequency power spectrum 
of all channels
was averaged. The power spectra were split into four frequency bands: δ: 2-4 
Hz, θ: 4-7 Hz, α: 8-12 Hz, β: 12-30 Hz and the power spectrum within each band 
was integrated, resulting in one power time course for each EEG band. The four 
power time courses were convolved with the standard SPM5 hemodynamic 
response function (HRF) and correlated with the BOLD time course of each 
RSN using partial correlation to account for common variance (De Munck et 
al. 2009), resulting in a subject specific correlation value per frequency band. 
Z-values were calculated on basis of these correlation values, using the mean 
of all correlation values as global mean. Group level results were obtained by 
averaging Z-values over subjects per frequency band and the variation was 
calculated as the standard error of the mean.

To estimate the influence of variations of the HRF on the ECPs we varied the 
temporal shifts of the BOLD HRF by a large, but physiologically plausible amount 
(Aguirre et al. 1998), and shifted the signals by two seconds in both directions 
relative to each other before correlating.

To assess the temporal behavior of the ECPs within a single subject the dataset 
was split into five equal parts (> 6 minutes) and the same procedure as described 
above was performed on each of the parts.

Correlation analysis was performed and figures were made using MATLAB 
(R2010b, The MathWorks, Natick, Massachusetts, U.S.A.)
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Results
A list of the eleven RSNs, which correspond to those found by Smith et al. (2009) 
and which we used in the correlation analysis, is given in Table 1. Figure 1 shows 
these group RSNs as maximum intensity projection on the central slices, together 
with their group ECPs, representing the average Z scores of the 12 subjects. The 
group ECPs of the 11 RSNs are not significant and show a large standard error of 
the mean, indicating a large variability of subject specific ECPs. The three visual 
components (RSN 1 – RSN 3) however show a relatively high negative correlation 
with the alpha band.

RSN 1 Medial visual component
RSN 2 Occipital pole component
RSN 3 Lateral visual component
RSN 4 Default Mode Network (DMN)
RSN 5 Cerebellum (here combined with a lateralized anterior component)
RSN 6a Sensory motor component
RSN 6b Lower sensory motor component
RSN 7 Auditory system
RSN 8 Executive control - medial frontal network
RSN 9 Frontoparietal lateralized network (left)
RSN 10 Frontoparietal lateralized network (right)

Table 1 lists the RSNs found using ICA and their classification according to Smith 
et al. (2009)

Figures 2 and 3 show two selected RSNs (RSN 1 – medial visual component and 
RSN 6a – sensorimotor component) and their ECPs for all 12 subjects, which 
clearly shows the subject specific characteristics of the individual ECPs. At Z 
>2.58 (corresponding to a p-value < 0.05 corrected for multiple comparisons) 
four of the twelve subjects showed significant correlation with at least one 
RSN. Subject 1 shows significant negative alpha correlation with RSN 3 and 
RSN 4. Subject 4 exhibits significant correlations in 10 of the 11 RSNs, which 
consistently show negative alpha and beta correlations as well as positive delta 
correlations. Subject 5 shows significant negative alpha correlation in RSN 11. 
Subject 8 shows negative alpha correlation as well as positive delta correlation 
in four RSNs. See Table 2 for a detailed list of all significant correlations. Three 
of these four subjects show negative alpha correlation with visual RSNs (see also 
Supplementary Figures. 1 and 2).
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Figure 2 depicts RSN 1 (medial visual component) after dual regression 
on single subject level as maximum intensity projection on the central 
slices and the subject specific ECPs for all 12 subjects, showing the high 
inter-subject variability of the ECPs but also significant negative alpha cor-
relation in subject 4 and subject 8. For visualization purposes a cluster th-
reshold of 100 voxels and a minimum intensity threshold of 25% was used.
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Figure 3 depicts RSN6a (sensorimotor component) after dual regression 
on single subject level as maximum intensity projection on the central 
slices and the subject specific ECPs for all 12 subjects, showing the high 
inter-subject variability of the ECPs. Subject 4 shows significant positive 
delta correlation and negative alpha and beta correlation. For visualiza-
tion purposes a cluster threshold of 100 voxels and a minimum intensity 
threshold of 25% was used.
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Delta 

RSN1 RSN2 RSN3 RSN4 RSN6a RSN6b RSN7 RSN8 RSN9 RSN10

Subject 4 2.81 3.15 2.69 2.63

Subject 8 3.69

Alpha 

RSN1 RSN2 RSN3 RSN4 RSN6a RSN6b RSN7 RSN8 RSN9 RSN10

Subject 1 -3.04 -3.01

Subject 4 -4.21 -4.22 -3.85 -3.42 -3.47 -3.38 -3.68 -3.98 -3.58 -3.83

subject 5 -3.04

subject 8 -3.33 -2.93 -3.23

Beta 

RSN1 RSN2 RSN3 RSN4 RSN6a RSN6b RSN7 RSN8 RSN9 RSN10

Subject 4 -2.75 -2.77 -2.98 -3.84 -2.83 -3.86

Table 2 lists all significant ECPs (Z scores) sorted by frequency band, subjects and 
RSNs

The sensorimotor component reported by Smith et al. was split in to two sub 
components RSN 6a (Figure 3) and RSN 6b (Supplementary Figure 3). Subject 4 
shows very similar ECPs for both RSNs with significant correlation in the delta, 
alpha and beta band. The ECPs of subject 8 however differ a lot between RSN 
6a and 6b, showing significant correlation with the delta band in RSN 6b and no 
significant correlation in RSN 6a. 

To assess the influence of the variation of the HRF on the ECPs by subject specific 
differences we varied the temporal shifts of the BOLD HRF, i.e. shifting the time 
courses two seconds relative to each other before correlating. This slightly 
changed the correlation values at the group level. However the shapes of the 
ECPs were quite stable. On subject level the changes of the specific ECPs due 
to shifting were larger and in a few non significant instances even led to a sign 
switch (negative correlation instead of positive in a frequency band). A reduction 
in inter-subject variability of the specific ECPs across the different shifts was not 
observed. Furthermore, the same four subjects showed significant correlation 
across all shifts, with only small changes of the ECPs.

Due to the long resting state acquisition, we were able to also investigate the 
temporal variation of ECPs by splitting the datasets into five parts where each is 
still of sufficient length. Figures 4 and 5 show the five ECPs for every part of the 
datasets of two exemplary RSNs – again RSN 1 and 6a – for all subjects. There is a 
certain resemblance of the ECPs within a subject, however, also a clear temporal 
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variation. Furthermore, one can see significant changes in the ECPs. For example, 
subject 4 seems to have a state shift in the middle of the acquisition. Compared 
to the ECPs of the complete session most of the subjects show higher correlation 
values at these shorter intervals.
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Figure 4 shows the ECPs of RSN 1 (medial visual component) for all five 
parts of the split datasets for all 12 subjects. The ECPs show higher Z sco-
res at these shorter time intervals and the patterns change over time.
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Figure 5 shows the ECPs of RSN 6a (sensorimotor component) for all five 
parts of the split datasets for all 12 subjects. The ECPs show higher Z sco-
res at these shorter time intervals and the patterns change over time.



48 49

Chapter 2

2 2

Discussion
Our findings show that BOLD RSNs found with ICA and dual regression are 
very similar in all subjects, but the corresponding ECPs show large variations 
between subjects leading to a non-significant correlation on group level. On 
subject level we found significant correlation in four of the twelve subjects with 
consistent negative alpha correlation with the three visual RSNs, which is in good 
agreement with the common finding in previous studies (Goldman et al. 2002; 
Moosmann et al. 2003; Laufs et al. 2006; Goncalves et al. 2006). Apart from 
this, these studies used EEG derived regressors, which led to large variation of 
the BOLD maps. In contrast to these studies we employed a well established 
explorative and automated approach to derive stable BOLD RSNs across subjects 
whose time course was correlated with the EEG. Thus, the observed inter-subject 
variability very likely results from the EEG, which would explain the mixed results 
found in the former studies.

Our findings are consistent with the finding of Goncalves et al. (2008) where 
a large inter-subject variability of the correlation between EEG and fMRI was 
reported for the alpha frequency band. Furthermore, they interpreted the results 
such that this variability arises from the EEG, since the BOLD activation clusters 
were stable over subjects, which is consistent with our observations. Their and 
our findings are, however, in contrast to a study by Mantini et al. (2007) who 
reported significant EEG correlation patterns for six BOLD RSNs on group level 
with a relatively low inter-subject variation. This could be due to differences 
in the experimental setup (length of the resting state scan, eyes open vs. eyes 
closed), but also due to differences in the analysis. Mantini et al. (2007) used 
single subject ICA in combination with a clustering algorithm to obtain group 
maps. 

In our attempt to pin down possible sources of this inter-subject variability we 
performed several analysis steps. At first we investigated the influence on the 
ECPs by subject specific differences of the HRF, which links electrophysiological 
activity and BOLD (Friston et al. 1998a; Friston et al. 1998b; Logothetis et al. 
2001; Stephan et al. 2007). To probe the influence of HRF variations we varied 
the temporal shifts of the HRF, which slightly changed the correlation values 
on group level, however the shapes of the ECPs were quite stable. A larger 
influence was observed on single subject level. Obviously, the inter-individual 
variation in HRFs influences the ECPs and is a very important topic to address in 
terms to understand in detail the relation between both modalities (Schippers 
et al. 2011; Schölvinck et al. 2010; Stephan et al. 2007), but from our results 
it seems that inter-subject differences in the HRF are not the main reason for 
the observed inter-subject variability in the ECPs. To investigate the influence 
of electrode selection on the variability of ECPs we selected electrodes that are 
spatially close to the related RSNs (frontal and occipital). Clearly, this did not 



Correlation patterns of resting state networks

48 49

2 2

improve the specificity of the ECPs compared to averaging over all channels, as 
the ECPs showed high similarities between an anterior and posterior selection of 
electrodes due to volume conduction. A simple manual selection of electrodes 
did not improve the specificity of the ECPs and did not lead to a reduced inter-
subject variability.

Finally we examined the temporal stability of the ECPs within individual subjects 
by splitting the individual datasets into five equal segments. The ECPs for the 
different RSNs were calculated for each segment, showing large fluctuations over 
the entire scan. On the other hand, the observed temporal changes of the ECPs do 
not seem to be arbitrary. In essence, some individual characteristics are kept and 
exhibit mostly smooth temporal changes. However, it is clear that intra-individual 
temporal changes of the ECPs lead to a higher inter-individual variability. Most 
probably these temporal changes of the ECPs can be explained by the temporal 
dynamics of the RSNs as observed in some studies (e.g. Damoiseaux et al. 2006). 
Thus, correlating the power timelines of the different EEG frequency bands with 
one specific RSN time course will lead to low and unstable correlation values 
because they consist of the superposition of the electrophysiological signals 
coming from all RSNs, which cannot be disentangled by a global EEG power time 
course. This might also explain why more significant correlation could be found 
in shorter intervals. An alternative explanation for our observations would be 
that the different RSNs do not have a specific ECP, but that different states of 
one RSN lead to different ECPs. Our observation of the temporally changing ECPs 
is in good agreement with findings by Schölvinck et al. (2010), who reported 
changes of correlation patterns over time in a combined EEG-fMRI resting state 
experiment with macaque monkeys. They found alertness related fluctuations 
of the correlation between both modalities in the gamma frequency range 
in two of the three participating monkeys whereby a lower correlation was 
reported during eyes open RS. This might be one possible explanation for the 
low correlations found in our eyes-open resting state study. They also report a 
huge variability between the animals in the correlation between EEG and BOLD 
for the lower frequency range. An overview of combined EEG-fMRI, including 
animal studies, can be found in the review of Leopold & Maier (2011). 

In future studies, to more specifically investigate the relation between RSNs 
and EEG, one would need a direct handle to link specific EEG components to 
the different RSNs. To use temporal ICA for the analysis of resting state EEG 
equivalent to those studies using a task design (e.g. Eichele et al. 2008) is 
not possible since clear characteristic temporal patterns are missing. A more 
promising solution might be the separation of EEG on the basis of the fMRI RSNs 
which are stable across subjects. We are of the opinion that by using a realistic 
head model (Acar and Makeig 2010; Bojak et al. 2011; Hallez et al. 2007) one 
could in principle directly model the link between fMRI RSNs and their related 
EEG for more specific investigation of the relation between both modalities in a 
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resting state.

In summary, we found reproducible RSNs across subjects and significant 
correlations with EEG in four of the twelve subjects, three of them showed 
negative alpha correlation with visual RSNs which is in good agreement with 
previous findings. However, we also observed large inter-subject variability in 
the ECPs. Besides a clear inter-individual difference in EEG patterns, it seems 
that the found temporal variability of the ECPs within a subject explains a large 
part of the observed inter-subject variability in the ECPs, i.e. the correlation 
between EEG frequency power and BOLD RSNs. In addition, the unstable ECPs 
over time between both modalities might be inherent to eyes open RS. It seems 
that there is only a minor contribution from the variation of the individual HRF 
to the inter-subject variability of the ECPs.
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Suppl. Fig. 1 depicts RSN 2 in the same way as Fig. 2 (RSN 1). RSN 2 is one 
of the three occipital components which shows significant negative alpha 
correlation in three subjects.
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Suppl. Fig. 2 depicts RSN 3 in the same way as Fig. 2 (RSN 1). RSN 3 is one 
of the three occipital components which shows significant negative alpha 
correlation in two subjects.



Correlation patterns of resting state networks

52 53

2 2

Suppl. Fig. 3 depicts RSN 6b in the same way as Fig. 3 (RSN 6a). RSN 6b is 
the second sensorimotor component, which shows sitive alpha and beta 
as well as positive delta correlation in subject 4.
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Abstract
The neuronal underpinnings of blood oxygen level dependent (BOLD) 
functional magnetic resonance imaging (fMRI) resting state networks (RSNs) 
are still unclear. To investigate the underlying mechanisms, specifically the 
relation to the electrophysiological signal, we used simultaneous recordings 
of electroencephalography (EEG) and fMRI during eyes open resting state (RS). 
Earlier studies using the EEG signal as independent variable show inconclusive 
results possibly due to variability in the temporal correlations between RSNs 
and power in the low EEG frequency band, as recently reported (Goncalves et 
al. 2006 and 2008, Meyer et al. (2013)). In this study we use three different 
methods, including one that uses RSN timelines as independent variable, to 
explore the temporal relationship of RSNs and EEG frequency power in eyes 
open RS in detail. The results of these three distinct analysis approaches support 
the hypothesis that the correlation between low EEG frequency power and BOLD 
RSNs is instable over time, at least in eyes open RS.
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Introduction
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging 
(fMRI) resting state networks (RSNs) have increasingly generated interest in the 
neuroscientific community, but the neuronal underpinnings remain unclear so 
far. Early studies, which examine correlations between the EEG theta, alpha or 
beta band power and BOLD signal fluctuations using EEG derived regressors 
(Goldman et al. 2002; Laufs et al. 2003a; Laufs et al. 2003b; Moosmann et al. 2003; 
Feige et al. 2005; Laufs et al. 2006; Goncalves et al. 2006; Scheeringa et al. 2008), 
report rather mixed and inconclusive BOLD correlation maps. The discovery and 
further analysis of RSNs (Biswal et al. 1995; Lowe et al. 2000; Cordes et al. 2001; 
Greicius et al. 2003; Fox et al. 2005; Damoiseaux et al. 2006; De Luca et al. 2006; 
Smith et al. 2009), together with the above mentioned early combined EEG - 
fMRI studies gave rise to the assumption that several frequency bands might be 
involved in distinct functional networks (Laufs et al. 2006; Mantini et al. 2007). 
The replication of this finding on subject level would fundamentally improve our 
understanding of the link with electrophysiology.

Simultaneous recordings of EEG and fMRI during resting state (RS), enables 
the investigation of the electrophysiological correlates of BOLD RSNs. Using 
simultaneous recordings, Mantini et al. (2007) reported a specific EEG frequency 
band power signature for RSNs on group level in eyes closed RS. However, further 
studies show large inter-subject variations of distinct brain areas correlated with 
EEG alpha band power (Goncalves et al. 2006, 2008) in RS. In a recent study 
by Meyer et al. (2013) electrophysiological correlation patterns (ECPs) between 
RSN BOLD time courses and EEG frequency band power showed large inter-
subject and within subject variability. While RSNs by themselves exhibit a high 
reproducibility of their spatial characteristics across subjects, these studies point 
to less stable temporal correlations between RSNs seen in BOLD fMRI and EEG 
frequency band power.

Based on this evidence we hypothesize that the relationship between EEG 
frequency band power and RSN BOLD time courses is not stable over time. In 
order to assess this temporal variance in the correlation of the EEG signal and 
RSNs within a subject in this study, a dataset with a long resting state of 34 
minutes was split up into 15 segments and each was analyzed using the following 
three analysis approaches: 

(1) Global frequency power correlation (GFPC) (Meyer et al. 2013) resulting in 
ECPs an approach that is similar to the one used by Mantini et al. (2007) who 
found stable correlation patterns on group level. 

(2) An extended version of this method, including an anatomically informed 
analysis (Dale et al. 2000; Ou et al. 2010; Janssen et al. 2012) to separate the 
EEG based on RSN Z-maps within a subject, to obtain source frequency power 
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correlation (SFPC), which should reduce the effect of volume conduction in the 
EEG. 

(3) A channel wise frequency power fit (CFPF) with minimal assumptions, using 
the BOLD RSN time courses as the independent variable, which further reduces 
methodological bias. 

We then calculated the temporal variance over the 15 segments for each of the 
three methods to estimate the temporal stability of the correlation between the 
two modalities. 
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Materials and Methods
Data acquisition and pre-processing: 

In this study we performed a new analysis of the data sets acquired in (Meyer et 
al. 2013). We briefly summarize the acquisition protocol and the pre-processing 
steps (for details see Meyer et al. 2013): 34 minutes of eyes open resting 
state were recorded from 12 healthy subjects, using combined EEG–fMRI; 
with approval of the local ethical committee. MR data were acquired on a 3T 
Magnetom TIM Trio system (Siemens Healthcare, Erlangen, Germany) using the 
product 32 channel head coil. Functional data were recorded using a multi echo 
EPI sequence (Poser et al. 2006) (1030 Vol., TR = 2000 ms, 3.5 mm isotropic 
voxel size). A T1-weighted structural scan (MPRAGE) at 1mm isotropic voxel size 
was also obtained (with EEG cap), to register the functional data to Montreal 
neurological institute (MNI) space. Five of the subjects (subjects 1, 2, 4, 10 and 
11) were invited back to acquire a second T1-weighted structural scan without 
the EEG cap to enable the head model based analysis.

Simultaneous EEG data were recorded with a 32 channel cap (ANT WaveGuard 
MRI), using a BrainAmp MR plus amplifier (250 Hz low-pass analogue hardware 
filter, 10 s time constant, 5 kHz sampling rate, 0.5 µV resolution, reference 
electrode: FCz) and BrainVision Recorder (BrainVision, Gilching, Germany). Two 
of the subjects were recorded with a 64 channel cap (BrainVision) using two 
BrainAmp MR plus amplifier; the same 30 channels (10–20 system) were used 
for all subjects in the analysis. The subjects were asked to relax, keep their eyes 
open, stay awake and not think of anything specific. The room was darkened 
during the scan and an infrared eye tracker was used to confirm that the subject 
did not fall asleep. All subjects managed to stay awake for the complete duration 
of the experiment.

fMRI pre-processing was performed using functions from the SPM5 software 
package (Welcome Department of Imaging Neuroscience, University College 
London, UK). The five echoes acquired at every time point were combined after 
SPM5 motion correction (Poser et al. 2006). 

EEG pre-processing: MR related artifacts in the EEG signal were removed using 
Analyzer 2 (BrainVision). Trigger based average subtraction (Allen et al. 2000), 
as implemented in Analyzer 2, was applied to correct for gradient artifacts. The 
data were filtered using a Butterworth zero phase filter, 48 dB/oct, with a low 
cutoff at 0.8 Hz, to remove slow fluctuations from respiration, and a high cutoff 
of 50 Hz was applied. Additionally, a notch filter at 50Hz was used to remove 
residual mains frequency noise. Cardiac related MR artifacts were removed using 
the adaptive average subtraction (AAS) method of Analyzer 2 in semiautomatic 
mode (Allen et al. 1998). Further, eye blink related artifacts were removed using 
ICA and the EEG data were re-referenced to a common average. 
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Figure 1: Overview of the three analysis methods used in this study. The 
highlighted regions and arrows labeled accordingly.
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Analysis

As motivated in the introduction, three distinct methods (see Figure 1) were 
used to infer whether the relationship between EEG frequency band power 
and RSN BOLD time courses is temporally instable. For all these methods, the 
preprocessed fMRI data were spatially smoothed by 5 mm and transformed to 
MNI space using FSL’s Feat (FMRIB’s Software Library (FSL), version 4.1; www.
fmrib.ox.ac.uk/fsl; Smith et al. 2004; Woolrich et al. 2009; Jenkinson et al. 2012). 
Group independent component analysis (ICA, as implemented in the FSL tool 
Melodic version 3.1) was performed on the fMRI data to obtain 30 ICs and 12 
task related RSNs were selected according to Smith et al. (2009), see Figure 2 for 
a depiction of the RSNs. A dual regression approach was used to derive subject 
specific RSN maps and time courses (Filippini et al. 2009). The further analysis is 
described for each method separately below.

Global frequency power correlation (GFPC) 

The datasets were split into 15 sections of equal length, each still longer 
than 2 minutes. For every section the EEG signal was split into 2 s segments 
corresponding to the TR used in the MR-acquisition. Within each section, for 
every segment, the mean frequency power over all channels for four frequency 
bands, i.e. delta: (2-4) Hz, theta: (4-8) Hz, alpha: (8-12) Hz and beta: (12-30) 
Hz, was calculated, using a fast Fourier transformation (FFT), resulting in one 
time series for each frequency band. Motion related artifacts in the frequency 

Figure 2: Depicts the RSNs on group level as maximum intensity projec-
tion on the central slices and their classification according to Smith et al. 
(2009).
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power time courses were corrected. The frequency power time series were 
convolved with the standard SPM5 hemodynamic response function (HRF) and 
correlated with the RSN time courses taking into account common variance 
(partial correlation) between frequency bands. The correlation values were 
Z-transformed, using the mean over all correlation values across subjects as 
global mean, which resulted in time series of 15 Z-scores for every frequency 
band (See Figure 3). The temporal variance for each RSN and frequency band 
over the 15 time points was calculated and averaged over subjects (see Table 1). 
To estimate the temporal stability of ECPs within and across subjects, for each 
RSN and frequency band the Z-scores of the 15 sections were ranked from high 
to low, and averaged over subjects to visualize inter-subject variance. 

Source frequency power correlation (SFPC)

In order to get an indication for the effect of volume conduction and obtain 
more specific correlation patterns, in five subjects an in-house developed fMRI 
informed source model was applied. In combination with a four layer realistic 
head model it enables to separate the EEG according to the fMRI–RSNs. This new 
method was tested in a separate study that employs a simple visual stimulation 
and is further referred to as Integrative Head Model (IHM). It merges FSL analysis, 
Freesurfer mesh generation (Freesurfer image analysis suite; http://surfer.
nmr.mgh.harvard.edu/) and a NFT based head model (Neuroelectromagnetic 
Forward Head Modeling Toolbox (NFT), VER 2.0; http://sccn.ucsd.edu/nft/; Acar 
and Makeig 2010), to combine fMRI and EEG in an integrative way (see Figure 1). 
Tissue surface meshes (TSMs) from the individual T1 images are derived using 
Freesurfer and NFT. The scalp, inner and outer skull as well as brain TSMs are used 
in the Boundary Element Method (BEM) based forward model as implemented 
in NFT (Brain/scalp conductivity = 0.33 S/m, Skull conductivity = 0.0132 S/m, CSF 
conductivity = 1.79 S/m). The source space is constructed by seeding the cortical 
sheet with dipoles, the location and orientation of which is derived from the pial 
and white matter TSMs. Sources are defined by selecting dipoles according to 
fMRI RSNs, mapped to the cortical sheet. A source is defined as the weighted 
vector sum of its active dipoles, where the weights are equal to the Z values of 
the fMRI activation map at dipole location, and normalized subsequently so that 
the sum of all weights within one source equals one. These fMRI derived sources 
are fed into the forward model (in NFT) to calculate the specific lead field matrix 
(LFM) using an electrode template, which was manually transformed to each 
subjects head. This specific LFM has a low dimensionality given by the number of 
sources times number of channel. It is inverted using a Moore – Penrose pseudo 
inverse and the inverted LFM is used to transform the EEG data to source specific 
time courses. This results in an EEG time course for each RSN. Furthermore, the 
same analysis steps as described in GFPC were applied to the transformed EEG 
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signal. For each of the 15 sections and each frequency band the fMRI derived 
source frequency power time courses were convolved with the standard SPM5 
HRF, correlated with their associated RSN time course and the correlation values 
were Z-transformed. The variance over the 15 sections was calculated and the 
Z-scores of the sections were ranked from high to low, to obtain an estimate of 
the temporal stability. 

Channel wise frequency power fit (CFPF) 

After pre-processing, each channel of the EEG data was band pass filtered in four 
frequency bands (delta: (2-4) Hz, theta: (4-8) Hz, alpha: (8-12) Hz and beta: (12-
30) Hz) using an FFT-filter (EEGlab). Power time courses were obtained from the 
filtered data by applying a Hilbert transform and taking the squared magnitude 
of the resulting signal. To correct for movement, time points where the power 
estimate exceeded a threshold (seven times the mean of the time course) were 
set to the average of the time points immediately before and after. Power time 
courses were segmented in to 2 second segments, according to the TR used in 
the fMRI acquisition; subsequently each segment was averaged over time and 
the resulting frequency power time course for each channel were convolved 
with an HRF (SPM 5). Finally the HRF convolved frequency power time course 
and the RSN time courses were normalized to have zero mean and a standard 
deviation of one. Time courses of all ICs (including noise related components) 
were fitted to each frequency power time course in a separate GLM for every 
channel. This resulted in an estimate of signal contribution for each RSN to each 
electrode and EEG frequency band. Plotting these contribution estimates on 
a scalp plot, here termed Independent Component Expression Pattern (ICEP), 
gives a visual representation of the electrophysiological expression of the RSN 
for each frequency band. Applying this approach to each of the fifteen sections 
resulted in fifteen subsequent ICEPs representing their evolution over time. 

In order to obtain a comparable estimate for this method, which gives a spatial 
distribution as opposed to a point estimate of the other two methods, the 
temporal stability of the ICEPs was assessed by calculating the spatial correlation 
between subsequent sections within one subject, RSN and EEG frequency 
band. For each of those, the correlation values were Z-transformed using 
bootstrap statistics and the Z-scores were averaged to obtain the mean over all 
combinations of sections. For the bootstrapped z-transformation a distribution 
was generated by repeatedly (n=10000) selecting 15 ICEPs at random from the 
entire set of ICEPs for that subject applying the same spatial correlation analysis. 
For each RSN and frequency band the Z-scores of the 15 sections were ranked 
from high to low, and for group analysis averaged over subjects. Additionally the 
variance over the 15 sections as well as the average variance over subjects for 
each RSN and frequency band was calculated.
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Results
As reported in Meyer et al. (2013) we found reproducible fMRI RSNs across 
subjects (see Figure 2 for a depiction of the RSNs). In this study we observed 
very large inter-subject and intra-subject variability in the EEG frequency power 
correlations across all applied analysis methods. Figure 3 depicts the output of 
the different methods for one network (RSN3) of subject 1. It is clearly visible 

Figure 3: Exemplary representation of data for the three methods used, 
depicting the results for RSN3 (lateral visual component) of subject 1. On 
the upper left hand side the subject specific map of RSN3 is plotted as 
maximum intensity projection on the central slices. The two graphs in 
the middle show the ECP time courses for each frequency band for GSPC 
and SFPC, illustrating the temporal variance. In the rank graph below the 
two methods are plotted above each other, depicting the almost same 
variance of SFPC (solid line) compared to GFPC (dot-dashed line); for both 
methods alpha shows more negative correlation with BOLD in this visual 
component. On the upper right hand side the temporal sequence of ICEPs 
as calculated by CFPF for the four frequency bands is shown. Below the 
results of the spatial correlation of the subsequent ICEPs are depicted, 
showing no stable temporal signature.
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that GFPC and SFPC are not stable in time regarding their EEG frequency power 
correlation with the RSN time courses for all frequency bands. Figure 4 shows 
the results of the group analysis for GFPC and Figure 5 the results for the five 
subjects analyzed with SFPC. In both figures the group rank plots for four 
different RSNs show a large temporal variance within a subject – as reflected 
in the variance of the ranked Z scores - in the depicted RSNs for all frequency 
bands. The error bars, indicating the standard deviation across subjects, show 
the considerable inter-subject variability. The error bars in Figure 5 are larger 
compared to those in Figure 4 which cannot be explained by the smaller number 
of analyzed subjects as controlled by performing GFPC on the same five subjects 
as for SFPC. Also note that, using SFPC the overall observed Z scores are lower 
compared to GFPC. Strikingly, one can see in the ranking plots that for the visual 
components (see RSN2 and RSN3 in Figure 4 and 5) alpha power shows a more 
negative correlation with the BOLD signal whereas delta power shows a more 
positive correlation. This is also the case for the third visual component (not 
shown). 

Figure 4: Exemplary group results of RSN2 (Occipital visual component), 
RSN3 (Lateral visual component), RSN4 (DMN) and RSN6 (Sensory mo-
tor component) for GFPC as rank graph showing large temporal varian-
ce within a subject. The error bars (standard deviation across subjects) 
show the considerable inter-subject variability. Clearly alpha power shows 
a more negative correlation with the BOLD signal whereas delta power 
shows a more positive correlation for the visual components. Note that 
the connecting lines are only for visualization purposes. 
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On the right hand side of Figure 3 the temporal sequence of ICEPs as calculated 
by CFPF for the four frequency bands as well as the results of the spatial 
correlation of the subsequent ICEPs is depicted. Clearly there is no temporally 
stable signature in the scalp maps for different sections of the dataset. This can 
be also observed in the group rank plot in Figure 6. The data shown in Figure 3 
as well as the rank plots in Figures 4, 5 and 6 are typical examples for all analyzed 
subjects, all RSNs, and the four frequency bands examined, respectively. Table 1 
summarizes the results containing the group mean temporal variance across the 
15 sections, for each RSN and frequency band for GFPC and CFPF, respectively, as 
well as for the same five subjects analyzed with SFPC and GFPC.

Figure 5: Exemplary results of RSN2 (Occipital visual component), RSN3 
(Lateral visual component), RSN4 (DMN) and RSN6 (Sensory motor com-
ponent) for the five analyzed subjects using SFPC comparable to Figure 4. 
The error bars (standard deviation across subjects) show the considerable 
inter-subject variability, which is higher compared to GFPC; note that the 
Z scores are smaller compared to GFPC. Despite these differences, also 
when using SFPC, alpha power shows a more negative correlation with 
the BOLD signal whereas delta power shows a more positive correlation 
for the visual components. The connecting lines are only for visualization 
purposes.
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GFPC mean variance across all subjects
Freq band RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN6b RSN7 RSN8 RSN9 RSN10 RSN11 Average

delta 1.029 1.080 0.985 1.036 0.857 1.081 1.050 0.805 1.031 0.882 1.091 0.936 0.989

theta 0.953 0.913 0.906 0.988 0.871 0.973 0.983 0.825 1.031 0.791 0.877 0.828 0.912

alpha 1.186 1.124 1.171 1.121 0.980 1.063 1.148 1.248 1.031 0.995 1.116 1.172 1.113

beta 1.193 1.219 0.981 0.961 0.855 1.060 1.124 0.994 1.031 0.943 1.102 1.136 1.050

Average 1.090 1.084 1.011 1.026 0.891 1.044 1.076 0.968 1.031 0.903 1.046 1.018

CFPF mean variance across all subjects
Freq band RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN6b RSN7 RSN8 RSN9 RSN10 RSN11 Average

delta 0.620 0.501 0.695 0.566 0.667 0.658 0.590 0.731 0.685 0.650 0.635 0.669 0.639

theta 0.690 0.751 0.737 0.799 0.660 0.643 0.749 0.717 0.685 0.809 0.693 0.666 0.717

alpha 0.897 0.876 0.833 0.819 0.780 0.702 0.702 0.864 0.685 0.698 0.756 0.677 0.774

beta 0.798 0.842 0.856 0.759 0.767 0.763 0.808 0.827 0.685 0.743 0.839 0.755 0.787

Average 0.751 0.742 0.780 0.736 0.719 0.691 0.712 0.785 0.685 0.725 0.731 0.692

SFPC variance for 5 subjects
Freq band RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN6b RSN7 RSN8 RSN9 RSN10 RSN11 Average

delta 1.285 1.352 1.022 1.334 0.931 1.307 0.839 0.956 1.353 1.038 1.211 0.861 1.124

theta 0.919 1.158 1.278 0.995 0.861 1.090 1.037 0.937 1.353 0.837 0.929 0.800 1.016

alpha 0.764 0.844 0.812 1.012 0.717 0.946 0.891 0.980 1.353 0.757 0.913 0.873 0.905

beta 0.948 1.197 1.069 0.855 0.927 1.075 0.901 1.021 1.353 0.816 1.185 0.799 1.012

Mean variance 5 subjects 1.014

GFPC variance for 5 subjects
Freq band RSN1 RSN2 RSN3 RSN4 RSN5 RSN6 RSN6b RSN7 RSN8 RSN9 RSN10 RSN11 Average

delta 1.152 1.124 1.219 1.189 0.972 1.342 1.513 0.849 1.161 0.917 1.242 0.959 1.137

theta 0.812 0.944 0.923 1.121 0.923 1.190 1.135 0.867 1.161 0.734 0.949 0.860 0.968

alpha 1.448 1.315 1.325 1.253 0.885 1.323 1.503 1.317 1.161 0.990 1.336 1.109 1.247

beta 1.209 1.168 1.091 1.137 0.843 1.071 1.049 1.109 1.161 1.064 1.483 1.149 1.128

Mean variance 5 subjects 1.120

Table 1: Group mean temporal variance values (variance across the 15 sections) 
for GFPC and CFPF, as well as the mean temporal variance values of the five 
subjects analyzed with SFPC for SFPC and GFPC, for each RSN and frequency 
band. The variance values of GFPC and SFPC are comparable since both show 
the temporal variance of ECPs which represents the direct correlation between 
frequency power and RSNs. For CFPF the variance values represent the variance 
of the subsequent spatial correlation of the ICEPs, which is an indirect measure 
and not directly comparable to the other methods. However the overall huge 
temporal variance across all methods depicts the temporal instable relation 
between both modalities. 
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Discussion
The three methods used in this study were chosen to examine the temporal 
variability of ECPs from different perspectives with the aim to minimize 
methodological bias. GFPC is a very conservative approach with fairly little 
assumptions, taking the global EEG frequency power as independent parameter. 
However, due to the mixed nature of EEG signal, volume conduction cannot be 
excluded, which might cause several sources contributing to a certain correlation 
and might explain temporally unstable ECPs. SFPC addresses this shortcoming by 
separating the EEG signal according to the fMRI-RSNs to correlate with, but this 
also did not result in temporally stable ECPs. 

To test for possible methodological bias of GFPC and SFPC as source for the 
observed variance, we analyzed the data sets using a third approach. CFPF 
uses the RSN timelines as independent parameters and only uses the HRF to 
model the relation between the two modalities. Also this approach did not 
result in temporally stable correlation patterns. While the human HRF itself 
shows quite complex spatial dependencies (de Munck et al. 2007 and 2009), 
in our correlation analysis it mainly causes a constant time shift and temporal 
smoothing, therefore it cannot be the reason for temporally instable correlation. 
Together with the findings of GFPC and SFPC, this leads to the suggestion that 
the analyzed low dimensional RSNs do not have a temporally stable relationship 
with EEG frequency band power fluctuations. However, the observed negative 
correlation of alpha power with the BOLD time courses for the visual components 
reaches statistical significance within three subjects for GFPC in agreement with 
previous literature (Goldman et al. 2002, Laufs et al. 2003a and 2006, Goncalves 

et al. 2006 and 2008, Meyer et al. 
2013), but does not reach statistical 
significance for either method on 
the group level. 

One possible explanation for our 
observation of temporally instable 
ECPs might be given by Smith et al. 
(2012), who applied temporal ICA 
on high dimensional (200 spatial 
IC components) fMRI-RSNs and 
reported vast temporal dynamics 

Figure 6: Exemplary group results 
of RSN2 (Occipital visual compo-
nent) and RSN4 (DMN) for CFPF 
as rank graph showing no stable 
temporal signature.
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within the lower dimensional (20 – 30 spatial IC components) RSNs. As such, 
there still might be a direct relation between RSNs and EEG frequency band 
power, but on a smaller spatial scale. However, one would expect a certain 
temporal stability in the results of SFPC and CFPF even if just a subcomponent of 
the low dimensional RSN expresses itself in a given EEG frequency band, which 
was not observed in our study. 

An alternative explanation of our results would be, that during resting state, 
frequency-specific power in the lower frequency bands of the EEG is not linked 
to changes in neuronal activity, reflected in changed oxygen consumption as 
measured by BOLD fMRI. This would also be supported by recent animal studies 
e.g. Schölvinck et al. (2010), that show no stable correlation for the lower 
frequency bands in EEG with BOLD fMRI particularly in eyes open RS. 

The observation that using SFPC reduced the overall observed Z scores compared 
to GFPC gives rise to the assumption that the studied RSN characteristics are not 
related. However, one has to consider the potential limitation of the head model 
as used in our study; (a) the spatial resolution of the head model is limited by 
the relatively low number of electrodes and (b) its reduced spatial specificity in 
the context of spatially extended sources like RSNs, as we assume a concurrent 
temporal behavior within the whole source.

We therefore conclude that the correlation between lower frequency band 
power in EEG and BOLD RSNs time courses is at least temporally instable or even 
absent in eyes open RS. 
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Abstract
Combined electroencephalography (EEG) - functional magnetic resonance 
imaging (fMRI) is promising for noninvasive investigations of brain function, 
however, the relationship between the two modalities is not fully understood 
which limits its applicability in brain research and medicine. In general, this 
connection can be probed by treating one modality as an independent variable 
to inform the analysis of the other. Approaches using EEG as independent 
variable reported rather mixed localization of BOLD activation while, in contrast, 
BOLD fMRI results show spatially stable patterns across subjects when using task 
regressors, or in resting state analysis. In this study we propose a novel approach 
where fMRI BOLD maps are used to spatially filter the EEG data in order to 
derive their respective source time courses. The core of this method is a newly 
developed distributed source model, which integrates individual anatomical 
information with spatial and statistical information of the fMRI analysis. This 
source model is combined with an individual realistic head model that forms 
our Prior-based Realistic Integrative Source Model (PRISM) toolbox. In a study 
employing short visual stimuli we found four distinct fMRI activation clusters 
related to perceiving ultra short visual stimuli and derived their individual source 
timelines from the EEG data using our new method. We found strong evidence 
that a major part of the inter-subject variance of the visual evoked potentials 
(VEPs) can be explained by anatomical differences between the subjects. 
Comparing our approach to a channel based analysis we can show that the 
PRISM toolbox significantly improves the correlation between both modalities.
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Introduction
In the last decade technical advances enabled to concurrently measure 
electroencephalography (EEG) and functional magnetic resonance imaging 
(fMRI). Several approaches were developed to take advantage of the combined 
recording of both modalities, more precisely, the high temporal resolution of EEG 
and the high spatial resolution provided by fMRI. A good overview of the existing 
methods is given by Laufs et al. (2008) or Huster et al. (2012). First studies, 
examining the brain at rest, used temporal EEG features as independent variable 
to inform the fMRI analysis, reporting functional networks in the concurrent 
measured fMRI data (Goldman et al. 2002; Laufs et al. 2003a; Laufs et al. 2003b; 
Moosmann et al. 2003; Feige et al. 2005; Laufs et al. 2006; Goncalves et al. 
2006; Scheeringa et al. 2008). However, their findings were rather inconsistent 
regarding the spatial location and extent of the fMRI maps found. Further 
investigations of the electrophysiological correlates of fMRI clusters in a resting 
state (RS) condition (Gonzalves et al. (2006, 2008) and Meyer et al. (2013a)) 
observed large inter-subject variability and concluded that these variances 
mainly arise from individual differences in the EEG as fMRI clusters were spatially 
stable. Furthermore, one of our previous studies (Meyer et al. 2013b) suggested 
that there might be no stable link between distributed networks and certain EEG 
frequency pattern in eyes open RS as reported by an earlier study (Mantini et al. 
2007). Nevertheless, most of these studies consistently reported a correlation 
between the occipital lobe and alpha power, suggesting a more stable relation 
between both modalities in this brain region for RS. 

Also when using a task design the properties of the connection between the 
two modalities is not clear. Using a semantic priming paradigm, Geukes et al. 
(2013) reported a strong N400 effect in the EEG, but no related BOLD changes. 
Also De Vos et al. (2013) found no correlation between the two modalities in 
a face-processing paradigm. Together these studies demonstrated the poorly 
understood and rather complex relation of the two modalities. In this context 
we developed a new source model and a supporting framework to separate the 
EEG signal using statistical fMRI maps. Furthermore, anatomical information 
is used in the framework to construct a subject specific, realistic source and 
head model. Using this approach one can filter the EEG data in a way that only 
variance originating from the same brain region as found in the fMRI maps is 
reflected in the derived EEG source signals. To reconstruct EEG source signals 
the inverse problem is solved using a linear constrained minimum variance 
(LCMV) BeamFormer approach (Van Veen et al. 1997), which proved successful 
on simulated data using a realistic head- and an anatomical constrained source 
model (Murzin et al. (2011)). Our proposed approach additionally uses spatial 
and statistical information from the analysis of the concurrently acquired fMRI 
data to determine the solution of the EEG inverse problem.
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To validate this new model an already analyzed combined EEG-fMRI dataset 
(Scheeringa et al. 2011) with an ultra short visual paradigm was used. Four 
different, spatial distinct fMRI sources, involved in visual perception, were found 
using a group level GLM and their electrophysiological time courses were derived 
using the PRISM toolbox. 

Figure 1: A schematic overview of the data acquisition, pre-processing 
and analysis steps performed in this study. The PRISM toolbox includes 
the analysis part. The method to solve the inverse problem can be chosen. 
In this study LCMV BeamFormer was used to derive the source timelines.
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Methods
Data acquisition

In this study combined EEG –fMRI data of nine healthy subjects recorded in 
a former study by Scheeringa et al. (2011) were analyzed. Written informed 
consent was obtained from all participants. The study was approved by the local 
ethics committee.

Experimental Paradigm

The subjects were asked to fixate on a white central fixation cross (width: 0.75◦) 
and to report when the color of the fixation cross turned green. This color change 
(300 ms duration) occurred eight times per session at pseudorandom intervals 
and was only used to ensure cooperation and alertness. Unrelated to the task, a 
checkerboard wedge (Figure 1, top row) was presented in the lower left part of 
the subject’s visual field (angle of wedge: 32.7◦, visual angle width: 10.4◦, starting 
3.8◦ outside the center of fixation; stimulus duration: 17 ms). The subject was 
asked to ignore peripheral stimuli.

 (f)MRI Acquisition

All Subjects were scanned using a 3 Tesla whole-body MRI scanner (Magnetom 
TIM Trio; Siemens Healthcare, Erlangen, Germany). Functional images were 
acquired using a custom built eight-channel array coil (Stark Contrast, Erlangen, 
Germany) covering the occipital cortex. Twenty-one slices positioned parallel 
to the calcarine sulcus were recorded using a BOLD gradient echo Echo Planar 
Imaging (EPI) sequence (repetition time (TR): 1400 ms, echo time (TE): 30 ms, 
60◦ flip angle, 3.0 mm slice thickness, 0.5 mm gap, voxel size: 3.5 × 3.5 × 3.5 mm3, 
using a pre-scan normalized bias field correction filter).

Additionally, two anatomical scans with full-brain coverage were acquired. The 
first scan was performed with the same eight-channel occipital array coil used 
for the functional data and a 3D Magnetization Prepared Rapid Gradient Echo 
sequence (MPRAGE, TR: 2300 ms, TE: 3.5 ms, 10◦ flip angle, 192 slices per slab, 
voxel size: 1.0 × 1.0 × 1.0 mm3, with bias field correction filter). The second scan 
was performed using an eight-channel phased array head coil (3D MPRAGE, TR: 
2300 ms, TE: 3.0 ms, 8◦ flip angle, 192 slices, voxel size: 0.8 × 0.8 × 0.8 mm3, with 
bias field correction filter). The anatomical image from the occipital array coil 
was acquired to aid co-registration of the functional data, by virtue of having a 
similar sensitivity profile.



The PRISM Toolbox

76 77

4 4

EEG Acquisition

EEG data were acquired from 62 scalp positions, following the international 10-
10 system, using an MRI-compatible 64-channel cap (Easycap, Brain Products, 
Gilching, Germany). Signals were recorded with Brain Vision Recorder and two 
MRI-compatible EEG amplifiers (Brain Amp, Brain Products, 250 Hz low-pass 
analogue hardware filter, 10 s time constant, 5 kHz sampling rate, reference 
electrode: FCz). Volume triggers were recorded for later gradient artifact 
removal; the clocks of the EEG amplifiers and MR scanner were synchronized to 
increase accuracy.

Pre-processing

fMRI Pre-processing

Functional images were realigned as well as motion and slice timing corrected 
using statistical parametric mapping software (SPM8, http://www.fil.ion.ucl.
ac.uk/spm/software). Further pre-processing consisted of: spatial smoothing 
(Gaussian kernel of FWHM 5 mm), grand-mean intensity normalization of the 
entire 4D dataset by a single multiplicative factor and high pass temporal filtering 
(Gaussian-weighted least-squares straight line fitting, with σ = 50.0 s) using FEAT 
(FMRI Expert Analysis Tool, Version 5.98, part of FMRIB’s Software Library (FSL), 
www.fmrib.ox.ac.uk/fsl). The mean functional image was co-registered to the 
occipital coil anatomical scan, which was in turn co-registered to the full-head 
anatomical image. Co-registration was performed using FLIRT Version 5.5 (FSL).

EEG Pre-processing

MR related gradient and cardio-ballistic (CB) artifacts were removed using Brain 
Vision Analyzer 2 (Brain Products, Gilching, Germany). A trigger based sliding 
average subtraction method (61 intervals) was used for the gradient artifact 
correction; the CB artifact correction was applied in semi-automatic mode. 
Data were down-sampled to 500 Hz and band-pass filtered (0.5-50 Hz, 48 dB/
octave, zero-phase shift Butterworth). Eye movement and blinking artifacts 
were removed using ICA (extended, biased Infomax, as implemented in Analyzer 
2). Trials were defined around markers corresponding to stimulus onset (0.2 
s baseline, 1 s duration) and averaged per subject, to obtain visual evoked 
potentials (VEPs), for use in later analysis.
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The Prior-based Realistic Integrative Source Model (PRISM) toolbox

The complete analysis pipeline is visualized in Figure 1, depicting the model 
as used in this study. In short, our model uses functional activation maps from 
fMRI (see Statistical BOLD Analysis) and tissue surface meshes (TSMs) from T1-
weighted anatomical images. The scalp, inner and outer skull as well as brain 
TSMs were used in a Boundary Element Method (BEM) based forward model (see 
Generation of Head Models). The source space was constructed by seeding the 
cortical sheet with dipoles, the location and orientation of which were derived 
from the pial and white matter TSMs. Sources were defined by selecting dipoles 
according to fMRI activation maps, mapped to the cortical sheet (see Source 
Space Generation and Analysis). These fMRI derived sources were fed into the 
forward model and the resulting lead field matrix (LFM) was used to calculate 
source specific scalp potentials. A linear constrained minimum variance (LCMV) 
BeamFormer approach (Van Veen et al. 1997) was used to invert the LFM and 
transform EEG data to source specific time courses.

Statistical BOLD Analysis

For this study, fMRI data were analyzed with a mixed effect group general linear 
model (GLM) as well as a subject specific GLM using FEAT (FSL). This provided 
both group level and subject specific task related activation maps, which were 
used in the source model. Regressors for the GLMs were constructed by placing 
stick functions at stimulus onset and convolving them with the default FSL 
hemodynamic response function (HRF, phase: 0 s, half-width: 3 s, mean lag: 0 
s). Group GLM activation clusters in MNI space (cluster threshold: Z > 10; cluster 
significance threshold p = 0.01, corrected) were transformed to individual subject 
space, ensuring that subject specific sources were comparable across subjects. 
The unthresholded Z-maps of the individual GLMs were used to derive individual 
weightings for every dipole inside a source (see Source Space Generation and 
Analysis).

Generation of Head Models

The anatomical scan of each subject was used in the generation of a subject 
specific, realistic, four-layer (scalp, skull, cerebrospinal fluid (CSF) and brain) 
head model to solve the forward problem. Brain extraction was performed using 
the Brain extraction Tool (BET, FSL, version 2.1) in an iterative mode. Apart from 
this the forward model was generated using the Neuroelectromagnetic Forward 
Head Modeling Toolbox (NFT, VER 2.0, http://sccn.ucsd.edu/nft/, Acar and 
Makeig 2010) with the parameters shown in Table 1.
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Source Space Generation and Analysis

In our model, sources s consist of nd dipoles d, which are located in the gray 
matter and oriented along the cortex normal. The Freesurfer image analysis 
suite (http://surfer.nmr.mgh.harvard.edu/) was used to obtain 3D brain surfaces 
from the individual high resolution T1 image. The source space was constructed 
by placing dipoles on the nodes of the cortical sheet, which was obtained 
from the pial and white matter TSMs provided by Freesurfer, yielding a source 
space resolution of about 1 mm. Each dipole was oriented along the cortical 
surface normal as derived from pial and white matter TSMs. The group GLM 
activation clusters, transformed to the subject specific source space, were used 
to determine the extent of a source within one
 

Mesh generation Boundary Element Method (BEM)
meshes: 7000 nodes isolated problem approach (IPA)
4-layer model Brain/scalp conductivity = 0.33 S/m
edge length to mesh distance ratio = 2 Skull conductivity = 0.0132 S/m

CSF conductivity = 1.79 S/m

subject. The subject specific GLM activation maps, transformed to source space, 
were used to obtain the individual dipole weights wi. Each weight equals the 
normalized Z-score of the activation map closest to the dipole location. Z-scores 
were normalized in a way that the sum of all nd weights within one source equals 
one. A single (EEG) source sk of a subject consists of the weighted vector sum 
of all dipoles within one activation cluster derived as described above. The Ns 
different sources sk, according to the number of activation clusters, are described 
by Equation 1:

    

Eq. 1

The potential distribution Psk = Cj
sk, j = 1, 2, …, Nc, of a modeled source sk can be 

obtained using the LFM matrix elements li,j of the active dipoles di multiplied by 
their respective weights wi: 

  Eq. 2

Table 1: Used parameter for the Neuroelectromagnetic Forward Head 
Modeling Toolbox
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Here, Nc stands for the number of channels c. The potential distributions of fMRI-
derived sources can therefore be calculated independent of the recorded EEG.

Linear constrained minimum variance (LCMV) BeamFormer

To obtain temporal source information, a BeamFormer approach was used to 
invert the LFM L giving the transfer matrix M:

  Eq. 3

This enables to obtain temporal information of the dipoles according to:

     Eq. 4

Here Nd stands for the number of all dipoles d within one subject’s source space. 
Therefore, one can calculate the dipole time curses tdi from the recorded EEG 
channels cj according to:

     Eq. 5

Where mi,j is a matrix element of the transfer matrix M. According to Equation 1 
and 5, the individual source time course tsk can be calculated from the measured 
EEG using Equation 6:

   Eq. 6

To obtain grand average source time courses on group level, the individual 
source time courses were normalized to their baseline variance and averaged. 

Correlation analysis

In order to compare our new method to common analysis approaches that 
use global signal or channel selection, as well as to further verify the source 
transformation, a correlation analysis between EEG frequency band power and 
the BOLD time courses was performed. Therefore, for each BOLD activation 
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cluster the full EEG signal was transformed to source space as described above, 
resulting in four source time lines corresponding to the four BOLD activation 
clusters. These time lines were split in 1.4 s segments, according to the TR used 
in the fMRI acquisition, and a fast Fourier transformation (FFT) was applied to 
each segment. The frequency bins were averaged according to the five frequency 
bands (delta: (2-4) Hz, theta: (4-8) Hz, alpha: (8-12) Hz and beta: (12-30) Hz, 
gamma: (30-60) Hz), resulting in five frequency band power time courses for 
each source. 

The same frequency analysis was performed for three different EEG channel 
selections, namely; averaged across all channels (global frequency power - GFP); 
averaged over a frontal channel selection (frontal frequency power - FFP) and 
an occipital channel selection (occipital frequency power - OFP); see Table 2 for 
selected channels. All EEG frequency band power time courses were convolved 
with a standard hemodynamic response function (HRF) (SPM8, http://www.

fil.ion.ucl.ac.uk/spm/software) 
and correlated with the four 
BOLD time courses using partial 
correlation to account for 
common variance between the 
frequency bands. The correlation 
values were linearized using a 
fisher Z transformation, mean 
and standard deviation across 
subjects were calculated and 
a paired, two-tailed T-test was 
performed to assess significant 
differences between our 
proposed source analysis and 
the three channel selections 
for each cluster and frequency 
band.

Frontal Chan. Sel. Occipital Chan. Sel.
Fp1 P3
Fp2 P4
F3 O1
F4 O2
F7 P7
F8 P8
Fz Pz
F1 Oz
F2 P1
AF3 P2
AF4 PO3
F5 PO4
F6 P5
AF7 P6
AF8 PO7
Fpz PO8
Afz Poz

Table 2: List of channels, which were 
selected for the frontal and occipital 
channel selection in the correlation 
analysis. 
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Results
Four significant activation clusters were found in the fMRI group analysis. 
These clusters were used to calculate the fMRI-derived EEG sources and obtain 
corresponding EEG time lines and scalp potentials. Figure 2 depicts the scalp 
potential distribution of the modeled V1 source on the individual skull for all 
nine subjects.There are clear between-subject differences of the fMRI predicted 
potential distributions of the individual sources, although these sources were 
obtained from the same group GLM cluster. In some subjects (No. 4, 5, 6, and 
7) the potential distributions predict a poor visibility of the V1 source on scalp 
level, as indicated by their lower dynamic range. This is reflected in the poor 
signal to noise in the reconstructed VEPs of V1, as shown in Figure 3. Figure 
3 depicts the VEPs of the four separated sources for every subject, the blue 
bar indicates statistical significant peaks (p < 0.01 corrected). Figure 4 depicts 

Figure 2 depicts the potential distribution of the V1 source for each 
analyzed subject. As one can see, the dynamic range of the potential 
distributions of subjects 4 – 7 are relatively low compared to the other 
subjects, indicating a poor visibility of the source on scalp level.
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the group result of the VEP for the four different sources. Again the blue lines 
indicate the significance threshold (p < 0.01 corrected). On group level there is 
a very clear differentiation in terms of temporal characteristics of the different 
source timelines. 

Figure 3 shows the individual average time courses of the four sources 
for all analyzed subjects in arbitrary units. The blue bands indicate 
significance level and every peak exceeding the bands is significant (p < 
0.01). If one compares the time line of the V1 source of each subject with 
its potential distribution shown in Figure 2 one can see that subjects 
with a lower contrast in the potential distribution also show fewer and 
less significant peaks in the source time courses. 

Figure 4 shows the 
grand average of the 
four different source 
time courses in ar-
bitrary units. The blue 
bars indicate signifi-
cance with p < 0.01. 
There is a clear diffe-
rentiation of the four 
source timelines re-
garding their temporal 
characteristics.
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T-test Results for V1: 
Source vs. Global: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,003 1,000 0,004 1,000 0,000 0,000 0,703 1,000 0,001

Source vs. Frontal: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,004 1,000 0,018 1,000 0,000 0,000 0,981 1,000 0,000

Source vs. Occipital: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,003 1,000 0,005 1,000 0,000 0,000 0,465 1,000 0,007
 

T-test Results for V1lh: 
Source vs. Global: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,003 1,000 0,002 1,000 0,000 0,000 0,920 0,000 0,198

Source vs. Frontal: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,003 1,000 0,005 1,000 0,000 0,000 0,363 0,000 0,173

Source vs. Occipital: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,004 1,000 0,002 1,000 0,000 0,000 0,751 1,000 0,015
 

T-test Results for V3: 
Source vs. Global: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,012 1,000 0,032 1,000 0,000 0,000 0,622 1,000 0,016

Source vs. Frontal: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,044 1,000 0,035 1,000 0,000 0,000 0,295 1,000 0,015

Source vs. Occipital: 
Delta   Theta   Alpha   Beta   Gamma  
h  p  h  p  h  p  h  p  h  p

1,000 0,005 1,000 0,034 1,000 0,000 0,000 0,433 1,000 0,010
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T-test Results for V5: 
Source vs. Global: 
Delta   Theta   Alpha   Beta   Gamma  

h  p  h  p  h  p  h  p  h  p

1,000 0,006 1,000 0,009 1,000 0,000 1,000 0,012 0,000 0,123

Source vs. Frontal: 
Delta   Theta   Alpha   Beta   Gamma  

h  p  h  p  h  p  h  p  h  p

1,000 0,009 1,000 0,017 1,000 0,000 1,000 0,005 1,000 0,033

Source vs. Occipital: 
Delta   Theta   Alpha   Beta   Gamma  

h  p  h  p  h  p  h  p  h  p

1,000 0,003 1,000 0,007 1,000 0,000 1,000 0,014 1,000 0,027

The V1 source shows a first peak between 118 ms and 138 ms, followed by one 
in V1lh source (the ipsilateral V1) between 126 ms and 172 ms. The V5 source 
has a small early peak between 128 ms and 136 ms as well, which is followed 
by a large early peak of V3 (between 142 ms and 188 ms). Subsequently, there 
is a second large peak in V1, lasting from 158 ms till 232 ms after stimuli onset, 
followed by another peak in V3, and one in V5. The contralateral V1 peaks again 
at 368 ms, while V3 still shows a significant peak. 

Figure 5 summarizes the results of the correlation analysis, depicting the mean 
Fisher Z-transformed correlation values of all subjects for each method, cluster, 
and frequency band, respectively. The error bars indicate the standard deviation 
across subjects. Clearly, the source timelines show much higher correlation with 
BOLD compared to any of the three channel selections. This is confirmed by the 
T-test results summarized in Table 3.

Table 3 shows the results of the paired two tailed t-tests between the 
Electrophysiological Correlation Patterns (ECPs) of the different channel 
selections and the source model for all five examined frequency bands.
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Figure 5 shows the mean frequency band power correlation values 
(Fisher Z transformed) for the PRISM toolbox and the three channel 
selections for all four sources. The error bars indicate the SD across 
subjects. The PRISM toolbox has significant higher correlation values in 
most cases (see also Table 3). The high correlation values for the delta 
band power of the PRISM toolbox indicate correlation with the main 
effect (the VEPs).
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Discussion
Our results strongly support the notion that the EEG signal visible at scalp level 
is dependent on the anatomical shape of the source. Comparing the predicted 
individual potential distributions (Figure 2) and the reconstructed source time 
courses (Figure 3), one can see that the subjects with a predicted high dynamic 
range in the potential distribution of the V1 source (subjects 1, 2, 3, 8 and 9) also 
show the most significant peaks in the V1 source timeline. The four subjects with 
the lower dynamic range in the potential distribution miss the weak early peak in 
the V1 source timeline. Considering that the individual sources were transformed 
from common activation maps in MNI space, therefore, representing the same 
active region in each subject, we believe that a considerable part of the inter-
subject variance of VEPs can be explained by individual anatomical differences; 
namely, different gyral structures at source location and therefore, different 
orientation and distribution of the dipoles causing constructive or destructive 
interference of the electrical field of the extended source.

Based on our results on group level, we can perform a model based estimation 
over the dynamics of the visual processing of an ultra short stimulus. Grounded 
on the observed group source time courses we predict the following temporal 
dynamics of the visual response: V1, V1lh and V5 -> V3 -> V1 -> V5 -> continuing 
V3 activation -> V1, V1lh and V5. 

The results of the correlation analysis when using the PRISM toolbox performed 
significantly better than channel based correlation. Its prediction of only positive 
correlation values and high delta frequency band power correlation, apart from 
the expected correlation with the alpha frequency band power, hints towards a 
correlation with the main effect. Since the EEG was spatially filtered to contain 
variance origin from the occipital fMRI derived sources, the highest variance 
probably arises from the VEPs, which have large alpha and delta components in 
their frequency spectra. We interpret this as evidence for the capability of the 
method to filter the EEG according to the task related fMRI results.

The PRISM framework was built in a modular way, so that the method to 
invert the LFM as well as to derive fMRI maps can be chosen according to the 
scientific question of interest. In this study we used a BeamFormer approach for 
the EEG inverse problem to account for hidden sources not visible in the fMRI 
modality, which is appropriate for the small fMRI sources and the clear temporal 
pattern provided by the VEPs. When investigating the correlation between the 
two modalities in eyes open resting state (RS), Meyer et al. (2013b) we used 
a Penrose inverse algorithm to invert the LFM, accounting for the whole brain 
coverage of the ICA derived fMRI – resting state networks, which were used to 
construct the EEG sources, and the lack of clear temporal patterns in the EEG 
within a resting paradigm.
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Our proposed method determines source location, extent and even within-
source weight distribution, based on statistical results of the fMRI analysis 
determining the solution space by measured parameters. In this study, we used 
a BeamFormer approach (Van Veen et al. 1997) for the EEG inverse problem to 
account for hidden EEG sources not seen in the fMRI, which focuses on variance 
originating from the same brain region for both modalities. 

However, the performance of the model is limited by the measurement accuracy 
in all modalities. This holds for the general poor signal to noise ratio, when EEG 
and fMRI are recorded concurrently, as well as for inaccuracy in the T1 based 
surface reconstruction, which highly affects the performance of the forward 
model and the LCMV BeamFormer approach. Apart from that an inherent 
limitation of this method is that it assumes that the extent of the source and 
its internal weight distribution is stationary over the time of the experiment. In 
future studies it would thus be promising to combine the proposed approach 
with ultra-fast fMRI sequences (Boyacioğlu et al. 2013a; Boyacioğlu and Barth 
2013b) and temporal ICA (Smith et al. 2012) to further model the dynamics 
inside one source. Potentially, an increase in magnetic field strength to obtain 
higher signal to noise, a better spatial resolution, as well as increased special 
specificity for fMRI could be beneficial.

Conclusions

We developed a new fMRI informed, distributed source model and a supporting 
framework, which enables the direct investigation of the relation between EEG 
and fMRI. Using this new method, we could show that the individual anatomical 
location and orientations of the dipoles within the distributed sources explain a 
considerable part of the individual differences seen in the VEPs of the different 
subjects. Furthermore, we could demonstrate the capability of the proposed 
method to separate the VEP in to meaningful spatial and temporal sources, 
revealing the dynamics of the visual perception of an ultra-short stimulus. When 
comparing the performance of the PRISM toolbox to a channel based analysis 
we found a significant improvement in the correlation between both modalities.  
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Abstract
In the last decade combined electroencephalography (EEG) - functional 
magnetic resonance imaging (fMRI) was established as a new method to 
investigate brain function using two different modalities. Still, their relationship 
is not fully understood, making the interpretation of the combined analysis 
for both modalities difficult. Our recently developed toolbox (Chapter 4) was 
designed to examine this relationship by integrating functional, anatomical and 
electrophysiological data within one framework, which showed promising initial 
results. In this study, we used a simple visual guided motor response paradigm 
with well-known features in both modalities to compare our proposed analysis 
approach, using fMRI informed distributed EEG sources, with two more common 
methods. These assume single dipole sources and either use an anatomically and 
functionally or an anatomically only constrained source space. We demonstrate 
the effect of anatomical and functional constraints in comparison with a fMRI 
informed distributed source model. Using our framework we found strong 
support for the close relation of the P1-N2 components seen in the EEG and the 
BOLD activity in the primary visual cortex.
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Introduction
After solving the technical issues related with the concurrent recording of EEG 
and fMRI (Allen et al. 1998, Allen and Josephs 2000) many studies made use of 
this new and promising approach to investigate brain functions (eg.: Goldman 
et al. 2002; Laufs et al. 2003a; Laufs et al. 2003b; Moosmann et al. 2003; Feige 
et al. 2005; Laufs et al. 2006; Goncalves et al. 2006; Scheeringa et al. 2008). 
Using EEG features to inform fMRI analysis they found extended networks 
throughout the brain. However, their findings were inconclusive, regarding the 
spatially location and extent of these networks. Further studies (Gonzalves et 
al. 2006, Gonzalves et al. 2008, Meyer et al. 2013a, Meyer et al. 2013b) found 
evidence that the relation of the two modalities is more complex as might be 
suggested by the early studies. Recently, Geukes et al. (2013), when examining 
the strong N400 effect of a semantic priming paradigm in the EEG, could not 
find related BOLD modulation in the concurrent recorded fMRI data. Further, 
De Vos et al. (2013) could not find any correlation between the two modalities 
in a face-processing paradigm, although they found task related variance in 
each modality. By integrating functional, anatomical and electrophysiological 
data within one framework our recently developed PRISM toolbox (Meyer et 
al. Chapter 4) was designed to separate the EEG according to distributed, fMRI-
derived sources. Being able to filter the EEG according to the observed BOLD 
activation areas allows to examine their direct relationship, excluding co-varying 
EEG sources, not seen with fMRI. In this study we used a simple visual guided 
hand response task, which activates distinct regions in the cortex at different 
timings. By analyzing the data with the PRISM toolbox and two less constrained 
methods we could examine the effect of anatomical and functional constraints 
on the location and temporal pattern of the EEG signal. At the same time we 
could test the performance in reconstructing the source signal of our new 
approach in comparison with the other two methods. Using these three distinct 
methods to examine the visual cue of our paradigm, we found strong support 
for a close relation of the P1-N2 components in EEG with the BOLD activity in the 
primary visual cortex.
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Methods
For this study, 13 healthy subjects, six female and seven male, with a mean age 
of 22 (range 18 – 27), right handed and with normal vision were scanned, while 
performing a visual guided motor response task. The experiment was approved 
by the local ethical committee and written informed consent was obtained from 
all participants. Due to artifacts in at least one of the three recorded modalities, 
four subjects had to be excluded from further analysis.

(f)MRI Acquisition

Functional and anatomical data were obtained on a 3T Magnetom TIM Trio 
system (Siemens Health-Care, Erlangen, Germany) with the product 32 channel 
head coil. A multi echo Echo Planar Imaging (EPI) sequence (Poser et al. 2006) 
was used to obtain functional data (acquisition parameters: TR = 2250 ms, five 
echoes: TE = 8, 19, 29, 39 and 49 ms, flip angle 90°, 32 slices, 3.5 mm isotropic 
resolution (3.5 x 3.5 pixel resolution, 3 mm slice thickness with 0.5 mm inter-
slice gap; parallel acceleration factor 3; 6/8 partial Fourier). The T1 weighted 
structural scan was acquired using a MPRAGE protocol without acceleration, 
guaranteeing maximal image quality needed for the realistic head model 
(acquisition parameters: voxel size 1.0 x 1.0 x 1.0 mm3, matrix size 256 x 256, 
192 slices, TR = 2300 ms, TE = 3 ms, T1 = 1100 ms, flip angle = 8°, TA = 9 min 50 s).

EEG Acquisition

EEG data were obtained from 62 scalp positions, according to the international 
10-10 system, using a MRI-compatible 64-channel cap (Easycap, Brain Products, 
Gilching, Germany). Signals were recorded with two MRI-compatible EEG 
amplifiers (BrainAmp, Brain Products, 250 Hz low-pass analogue hardware 
filter, 10 s time constant, 5 kHz sampling rate, reference electrode: FCz) using 
Brain Vision Recorder. The clocks of the EEG amplifiers and MR scanner were 
synchronized and MR-Volume triggers were acquired for subsequent gradient 
artifact correction.

Visual guided motor response

In this study a visual guided motor response paradigm (VGMR), as shown at 
the top of Figure 1, was chosen to evoke spatial and temporal distinct brain 
activity. The paradigm consisted of mini blocks (MBs), in which the subject had 
to perform a task, alternated by breaks, were the subject had to do nothing 
specific. This design accounted for a good contrast in the BOLD signal as well as 
a good signal to noise ratio (SNR) in the EEG data.
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Figure 1 gives a schematic overview of the presented study. The top part 
shows the used task design of the visual guided motor response paradigm. 
The bottom part shows the analysis workflow of the three used methods. 
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All subjects had to perform 20 x 30 sec MBs, 10 MBs in random order for each 
hand, with a 20 sec break between every block. In the beginning of each MB 
a picture of a left or right hand indicated with which hand the subject had to 
respond to a series of visual stimuli (VS). These VSs consisted of a full visual field 
flickering checkerboard and were presented with a randomly jittered break of 2 
to 4 sec between each. 

(f)MRI Preprocessing

The acquired data were converted to nifti format using SPM8. The functional 
data were realigned and the echoes were combined as described in detail in 
Poser et al. (2006) using functions from SPM8. Subsequently the data were 
concatenated to a 4D file using fslmerge (FMRIB’s Software Library (FSL), www.
fmrib.ox.ac.uk/fsl). 

EEG Preprocessing

MR related gradient and cardiac artifacts in the EEG data were removed using 
Analyzer 2 (Brain Products, Gilching, Germany). The data were down-sampled to 
500 Hz and filtered (Butterworth Zero Phase Filters: Low Cutoff: 0.8 Hz, 48 dB/
oct, High Cutoff: 60 Hz, 48 dB/oct; Notch Filter: 50 Hz), eye blinks were corrected 
using ICA as implemented in Analyzer 2, a band pass filter (Butterworth Zero 
Phase Filters - Low Cutoff: 3 Hz, 24 dB/oct, High Cutoff: 25 Hz, 48 dB/oct) was 
applied and the data were exported to Matlab (Version 7.14.0.739, Natick, 
Massachusetts: The MathWorks Inc., 2012) for further analysis. In Matlab the 
data were re-referenced to common average, each trial was pre-stimulus-
baseline (PSB) corrected and a trial rejection was performed (±135 μV) to cope 
for movement artifacts using functions from EEGLAB (Version 9.0.4.4b, http://
sccn.ucsd.edu/eeglab/).

Analysis

Functional Data

In order to account for the high temporal correlation of the VS and the 
subsequent button response (BR) in the BOLD signal, two separate general 
linear models (GLMs) were performed to analyze the fMRI data. This resulted 
in three spatial distinct functional maps for the VS and the left and right hand 
responses (LHR and RHR), respectively. To obtain the VS related functional 
maps, a box function convolved with the standard FSL hemodynamic response 
function (HRF) was used as regressor in a GLM. Since in all MBs the same VS was 
presented, the whole dataset could be used in this GLM analysis, contrasting the 
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BOLD activation during the task performance with the baseline activity in the 20 
sec brakes between each MB. This analysis was performed using FSL 5.0.5 with 
FEAT 6.0 (FMRIB’s Software Library (FSL), www.fmrib.ox.ac.uk/fsl).

In order to obtain functional maps for the RHR and the LHR a second GLM was 
performed using standard FSL HRF convolved stick functions at the response 
timings as regressors. Two separate regressors for RHR and LHR were constructed 
and the contrast maps between the two different responses were calculated, 
resulting in clear contralateral activation patterns within the motor cortex. This 
analysis was performed using FSL 4.1.9 with FEAT 5.98.

In both GLMs movement parameters were used as cofound regressors. 
Subsequent to each GLM a mixed effect group GLM was performed, resulting 
in three spatially distinct functional group maps for the RHR, the LHR and the 
VS, respectively. These maps were transformed back to individual subject space 
and the resulting subject specific activation maps were used as masks within the 
source model. 

The individual statistical maps from the first level analysis were used as basis to 
calculate the weights for each dipole within one source.

EEG analysis

After preprocessing, the selected trials were PSB corrected, normalized to unit 
variance in the PSB, and averaged to obtain the individual ERPs and VEP for each 
subject and every electrode (see Figure 2 for a representative VEP distribution). 
The ERPs and VEPs of all subjects were transformed to source-space using three 
different methods and the resulting subject specific source ERPs and source VEPs 
were again normalized to unit variance in the PSB and averaged to calculate the 
group average. 

Head model and Source model

Based on the individual T1 data and functional maps, for each subject an 
individual realistic head and source model was generated, using the Prior-based 
Realistic Integrative Source Model (PRISM) toolbox, which is explained in detail 
in Chapter 4. 

In short, the PRISM toolbox merges FSL analysis, Freesurfer mesh generation 
(Freesurfer image analysis suite2), and a Neuroelectromagnetic Forward Head 
Modeling Toolbox (NFT) based head model (VER 2.03; Acar and Makeig, 2010) 
to combine anatomical MR and fMRI data to predict EEG scalp potentials of fMRI 
derived sources. The generated lead field matrix (LFM) enables to transform 
the corresponding EEG data to the modeled source space. In this study a 
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linear constrained minimum variance (LCMV) BeamFormer (BF) approach was 
used to solve the inverse problem. The BF filter was calculated on basis of all 
concatenated 2500 ms trials, consisting of 700 ms pre-stimulus free EEG, 300 
ms PSB, the VS and the corresponding response (1500 ms from stimulus onset). 
Each trial was baseline corrected and normalized to unit variance in the PSB.

The different methods 

In order to compare the performance of the PRISM toolbox to common 
approaches and to further address the question to which extent the measured 
scalp EEG and the functional data represent the same underlying neuronal 

Figure 2 shows the channel-wise averaged VEP for a representative 
subject. As one can see also channels above the motor cortex show 
covariance in the VEP, what might partly explain the observed late timings 
of the components of the source VEPs.
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activity, the data were analyzed using two additional, less constrained methods.

Common to all three approaches is the anatomical head model provided by 
the NFT toolbox, an anatomical constrained source space based on FreeSurfer 
meshes and the usage of a LCMV BF approach to invert the LFM. 

Anatomically constrained LCMV BeamFormer (ACB)

For this method only the position and orientation of the dipoles were derived 
from the anatomical data, which already reduces the degrees of freedom of the 
inverse problem, compared to an isotropic source space. The individual ERPs 
and VEPs, further referred to as events, as well as the PSB were transformed to 
source space using the LCMV BF derived filter. This resulted in a time course for 
each event and dipole. For every dipole the power of the contrast between an 
event and the related PSB was calculated and the dipole with the highest signal 
power was selected as the source dipole for the specific event. This resulted in 
ACB derived source events for each subject. 

Functionally constrained LCMV BeamFormer (FCB)

FCB consists of the same approach as ACB, with the additional restriction that 
the source space is constrained to active dipoles. These active dipoles are 
derived from the fMRI GLM maps transformed to source space. Same as for ACB 
the individual events were transformed to source space and the dipole with 
the highest signal power within the fMRI derived source was selected as source 
dipole, resulting in FCB derived source events for each subject.
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Results
Figure 3a shows the source VEPs on group level of the three methods used, 
normalized to their PSB standard deviation (SD). The blue lines indicate 3 SD, 
which we chose as threshold for significant peaks. The PRISM source VEP shows 
a clear positive peak, followed by a negative peak, which can be identified 
as P1-N2 components. Remarkably, its shape is similar to the V1 component 
of the ultra short stimuli reported in Chapter 4. FCB also features the P1-N2 
components and further an early N1 component, however, it also shows an 
oscillatory component and has the lowest signal to noise of the three methods. 
ACB has one dominating positive peak, which is the most significant peak of all 

Figure 3: a) Shows the source VEPs in units of pre-stimulus baseline 
standard deviation for the three methods. Clearly ACB has the highest peak 
and therefore the best SNR. b) Depicts the same source VEPs normalized 
to one, for a better comparison of peak timings. In both parts of the figure 
the different performance of the three constraints becomes obvious.
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three methods, however the overall shape of the predicted source VEP shares 
almost no similarities with the other two methods. 

Figure 3b depicts the same three VEPs on group level normalized to one, for 
a better comparison of the timing estimates provided by the three methods. 
Clearly, the derived time information differs significantly. The PRISM analysis 
shows the main positive peak at 176 ms, followed by the main negative peak 
at 256 ms and a further positive peak at 302 ms. In this graph the oscillatory 
character of the FCB derived source VEP is very prominent. Its main positive 
peak at 152 ms is surrounded by two negative peaks at 138 ms and 206 ms, 
respectively, followed by a positive peak at 288 ms. ACB shows a broad early 
negative peak, which peaks at 96 ms, a high positive peak at 208 ms, followed 

Figure 4: shows the locations of the predicted sources for the VEP for the 
three methods in a representative subject. The source locations of ACB 
across all subjects were outside the fMRI derived source location, which is 
used for the functional constrain in FCP and the distributed source model 
within the PRISM toolbox.
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by a broad negative period from 268 ms till 366 ms. A list of all significant peaks 
is given in Table 1.

The analysis of the hand response ERP using the same three methods did not 
show significant source ERPs.

Figure 4 depicts the location of the fMRI-derived source for the VEP, as well 
as the predicted source locations of ACB and FCB for a representative subject. 
Remarkably, in all subjects the predicted source for ACB does not lie within the 
BOLD activated region. 

 Peak 1 Peak 2 Peak 3 Peak 4 Peak 5
ACB 96 152 208 268 366 ms
 -10,39 7,67 42,34 -8,58 -9,51 SD
FCB 108 138 166 206 288 ms
 3,07 -7,82 8,7 -7,74 5,13 SD
PRISM 128 176 256 302 360 ms
 4,07 9,87 -15,17 5,7 -3,43 SD

Table 1 shows the latencies and amplitudes in units of PSB SD of the first five 
peaks of the source VEPs for the three methods.
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Discussion
The results of this study clearly show the variation in the resulting EEG source 
characteristics of the three methods used, both regarding temporal information 
as well as the predicted source location. By comparing the results of the PRISM 
toolbox with previous studies investigating VEPs (Di Russo et al. 2002, Fuglo 
et al. 2012, Novitskiy et al. 2011, Warbrick et al. 2014) we conclude that our 
proposed approach shows reasonable results regarding the shape of a VEP 
from the primary visual cortex. Note, that the data here presented are spatially 
filtered source space data. However, our source VEP shows delayed timing 
compared to the reported P1-N2 latencies, especially compared to channel data 
(Oz, O1 and O2), which has probably two reasons. On the one hand, this might 
be a consequence of the spatial extent of the modeled source, which includes 
weighted data from all 64 channels. On the other hand, this temporal shift might 
partly be caused by an erroneous performance of the BF algorithm due to a 
mixing of sources, as discussed below. The reasons why N1 component is not 
prominent and why the P1-N2 components are dominating might be due to the 
spatial restriction of the modeled source to the primary visual cortex. Fuglo et 
al. (2012) reported these components to perform best as predictors for BOLD 
variance in the primary visual cortex. (Fuglo et al. 2012, Novitskiy et al. 2010, 
Warbrick et al. 2014) used VEP derived regressors to inform fMRI analysis and 
although their reported regions are incongruent, they all found a strong relation 
between the P1-N2 components and the BOLD response in visual perception. 
The spatially incongruent results can be explained by the diverse experimental 
design (Wabrick et al. 2014) what might also partly explain the differences to our 
results. Remarkably, while our approach, i.e. using fMRI as predicting parameter 
to inform EEG analysis, is opposite to the ones used in the studies above, it shows 
comparable results. We therefore conclude that our results strongly support the 
assumption, that the P1-N2 components are highly related to the occipital BOLD 
activity in visual perception.

Regarding the overall performance of the PRISM toolbox, the similarity of the 
PRISM source VEP of this study with the V1 component reported in our previous 
work (Chapter 4) indicates reproducibility of the findings using the proposed 
integrative source model. The difference in shape at later timings of the two 
source VEPs are probably a consequence of the difference in length and visual 
field coverage of the presented stimuli.

The source VEP predicted by FCB also shows the P1-N2 components, further 
supporting the connection of these components with BOLD. Compared to the 
PRISM toolbox they are at slightly earlier latencies. However, the FCB VEP has 
a clear oscillating component and the lowest signal to noise ratio of all three 
methods. A possible explanation would be the selection of one dipole with the 
highest amplitude within the fMRI predicted source, emphasizing the most 
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prominent local features. A speculative explanation of the oscillatory behavior of 
FCB could be, that its alpha components (FFT peaks at 9 Hz and 11 Hz) represent 
the highly localized surround suppression alpha within the primary visual 
cortex reported by Harvey et al. (2013). This highly local alpha effect might be 
triggered at the border of the presented stimuli. Since distant regions would be 
uncorrelated, it would vanish when summing across all active dipoles, which is 
done in the extended source model of the PRISM toolbox.

Considering the observed discrepancies in the source location of ACB with the 
fMRI derived source location, its predicted source VEP probably does not reflect 
the common neuronal activity of the two modalities. The spatial displacement 
could be explained by the general behavior of LCMV BF, which has the tendency 
to predict strong deep sources due to sensor noise (Hillebrand and Barnes 2005). 
On the other hand, it might be caused by activity in the frontal region, not seen 
in the fMRI (Geukes et al. (2013); De Vos et al. (2013)). 

The fact, that all three methods failed to reconstruct a significant source ERP for 
the button responses can be a hint that the LCMV BF approach, which was used 
in all three methods, is not optimal for these spatially symmetric sources (Van 
Veen et al. 1997, Hillebrand and Barnes 2005, Belardinelli et al. 2012). In detail, 
one necessary assumption for the BF approach is the temporal independence of 
the sources. Furthermore, the performance of the algorithm is highly dependent 
on the signal to noise ratio of the EEG data. It turned out, that both assumptions 
were not met by the left and right hand response ERPs. The input for the BF 
algorithm consisted of the LFM provided by the used head and source model, 
as well as the covariance matrix of the EEG channels. In this study a common 
approach was chosen were all trials and the free running EEG were concatenated 
and used to calculate the covariance matrix. However, the ERP distribution on 
electrode level for the RHR and LHR ERPs were highly symmetric and both events 
occurred equally often, violating the assumption of independence in the time 
collapsed covariance matrix. 

Also SNR of the response ERPs was low due to (i) the lower number of trials 
compared to the VEP, (ii) the fact that late components of the preceding VEP 
might affect the response ERP dependent on the response timing and (iii) event 
related subject movement during the button press.

Apart from this, the distribution of activation across EEG channels of the 
response ERPs has similarities to the one of the VS VEP (See Figure 2). This might 
cause the BF algorithm to emphasize the VEP, while erroneously mixing it with 
the response related sources. As mentioned above, this could partly explain the 
observed late peak timings. For future studies a possible approach to account 
for this problem would be to calculate independent filters for all three events 
using selected channels, as suggested by Herdman et al. (2003) for an auditory 
stimulus.
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In conclusion, this study demonstrates the relevance of our fMRI informed, 
distributed source model for the investigation of the relation between BOLD and 
the electrophysiological signal. Using fMRI and anatomical data to derive fMRI 
related EEG source signals, we found strong evidence that the P1-N2 components 
are highly related to the BOLD activity in the primary visual cortex. This is in good 
agreement with previous studies, using EEG as predicting parameter.





Chapter 6
Discussion
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In Chapter 2 and 3 I presented the results of our investigation of the relation 
between EEG frequency band power and BOLD fluctuation in eyes open resting 
state, on group and subject level. I found that the promising idea of specific 
frequency power correlation patterns for RSNs as reported in a group study by 
Mantini et al. (2007) could not be reproduced on subject level. Furthermore, I 
found that the relation between the two measured modalities is changing over 
time, making it more complex than the previous suggested static dependency.

In Chapter 2 I recorded more than 30 min of eyes open RS data for each subject, 
in order to gain enough power to find the reported correlation patterns on 
subject level. To ensure that the individual RSN are comparable across subjects 
we used a dual regression approach (Filippini et al. 2009). However, even when 
selecting channels according to the fMRI predicted location of activation (e.g. 
an occipital channel selection for occipital RSNs) or varying the HRF used in 
the analysis, I could not find reliable correlation patterns across subjects. This 
supports the findings of Goncalves et al. (2008) who reported large inter-subject 
variability of the correlation between EEG and fMRI for the alpha frequency band. 
Furthermore, when splitting the individual datasets into five subsets it became 
obvious that the observed electrophysiological correlation patterns (ECPs) on 
subject level are not stable over time. This is in good agreement with findings 
by Schölvinck et al. (2010), who reported changes of correlation patterns over 
time in a combined EEG-fMRI resting state experiment with macaque monkeys. 
In my opinion this temporal instability is part of the observed inter-individual 
differences in the ECPs. 

The only significant correlation between the two modalities, which I found in 
more than one subject, was a negative alpha power correlation with occipital 
RSNs. This negative alpha correlation, which was also reported in earlier studies 
(e.g.: Goldman et al. 2002; Laufs et al. 2003; Goncalves et al. 2006) on group 
level, was only significant in three of the twelve subjects over the 34 min RS. 
When splitting the datasets into five subsets, I found, that even in the three 
subjects, showing the negative alpha correlation, this correlation was not stable 
over time. 

The results of Chapter 2 and particular the observed variance of the ECPs across 
and even within the subjects gave rise to three assumptions, which motivated 
the next two studies: 

1. Simple channel selection might be an insufficient method to observe 
existing temporal stable correlation between the two modalities, since 
EEG data are a superposition of the whole actual brain activity (volume 
conduction). Independent of RS or task condition, one needs to separate 
EEG sources. This could be performed according to the (spatial) fMRI 
maps in order to better compare both modalities.
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2. Anatomical properties of the electrophysiological sources might be a 
reason of individual different visibility of a specific EEG source. E.g. due to 
constructive or destructive interference of the electrophysiological signal 
from the simultaneously active neurons along the cortex, dependent on 
the convolution and curvature of the active area. This consideration is 
important if one wants to draw conclusions from the combined data, 
since in contrast to EEG, fMRI has minimal to no anatomical constraints 
in observing BOLD fluctuations in the cortex.

3. Regarding the temporal aspects of ECPs in RS there might by a more 
complex temporal pattern, reflected in short term reoccurring ECPs. 

In the study presented in Chapter 3 three distinct methods were used to analyze 
the RS data of Chapter 2 to increase the probability of finding frequency band 
power correlation with RSNs and to reduce methodical bias in the results.

In this study I split the data in to 15 subsets and used three distinct methods 
to try to find correlation between the two modalities. I used the same power 
to power correlation approach as in Chapter 2, to check whether there are 
reoccurring correlation patterns. I filtered the EEG according to the RSNs in order 
to make the correlation more specific and to exclude volume conduction, using 
the PRISM toolbox (Chapter 4). Finally, I used an explorative approach in which 
I correlated each RSN timeline with each EEG channel, minimizing methodical 
bias. With neither method I could find temporal stable ECPs in the eyes open 
RS data, which led to the conclusion that with the techniques used, there are 
no measurable temporal stable ECPs in eyes open RS, which is supported by 
another study that investigate the dynamic characteristics of RSNs (Chang et al. 
2013).

In principle one could argue that RS is an uncontrolled paradigm, making 
individual comparisons undefined, as one has little control over the individual 
subject’s behavior or thoughts. In the context that the commonly observable 
activity for both modalities is hardly known, the use of a RS paradigm to address 
questions of the relation between EEG and fMRI becomes a more problematic 
issue as there is no external marker to connect both modalities. However, if 
there is a functional connection between EEG and fMRI such, that certain EEG 
frequencies are more prominent within certain RSNs, one should be able to 
observe correlation also in this uncontrolled condition. More precisely, the RSN 
time course would be the predictive variable.

The idea that – in order to gain insights in the relation between the 
electrophysiological and functional signal – it could be beneficial to filter the EEG 
according to fMRI sources and to include anatomical information in the analysis 
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motivated the development of the PRISM toolbox. This framework, which was 
already used as one of the three methods in Chapter 3, is introduced in detail in 
Chapter 4. 

The lack of control in a RS paradigm motivated the use of a simple and well-known 
task to test the performance of the PRISM toolbox and to further investigate the 
relation of the two modalities. The study presented in Chapter 4 used ultra short 
visual stimuli, which only covered a small part of the visual cortex (Scheeringa 
et al. 2011). The GLM analysis of the fMRI data revealed four spatial distinct 
brain regions, involved in the perception of this stimulus. Using the PRISM 
toolbox, I was able to calculate the individual electrical potential distributions 
of these four brain regions based on (f)MRI data. I could demonstrate that 
for the most prominent V1 source, the contrast of the predicted potential 
distribution indicates the visibility of this source. When reconstructed, the 
source time courses of subjects that show a low contrast in the (f)MRI derived 
potential distribution also have a lower SNR compared to subjects showing a 
high contrast. This supports the idea that the anatomical structure of a neuronal 
source explains individual differences in the recorded EEG signal of this source.

In order to reconstruct the source time courses I used a LCMV BeamFormer 
algorithm to account for variance in the EEG data (Van Veen et al. 1997; Murzin 
et al. (2011)), which might origin from sources that could not be found in the 
fMRI analysis. This resulted in four distinct source time courses, providing the 
temporal information of the four fMRI sources involved in visual perception. 

I could further demonstrate by comparing the frequency power correlation of 
the derived sources with channel data that my approach yields significantly 
higher correlations between the two modalities. 

Building upon the gained insights in combined EEG-fMRI of the first three studies, 
the study presented in Chapter 5 had three main motivations. First, to examine 
the temporal characteristics of the visual guided motor response paradigm, 
second, to investigate the effect of methods that use different constraints on 
the reconstructed source signals and third, to further test the performance of 
the PRISM toolbox using a more complex paradigm. A visually guided motor 
response paradigm was used to provide a spatially distinct activation in the 
primary visual cortex and in either the left or right motor cortex.

As explained in detail in the discussion section of Chapter 5, due to the nature 
of the used LCMV BeamFormer algorithm, the spatially symmetric potential 
distribution of the left and right motor cortex sources and the relatively low 
SNR, the reconstruction of the motor response source signal was not significant 
in all three methods used. This prohibited the investigation of the temporal 
characteristics of the motor response in this visually guided motor response 
paradigm. Nevertheless, I could demonstrate that different constraints in the 
source model significantly effect the predicted source location and source signal 
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by using the well reconstructed source signal of the visual stimuli. Common to 
all methods was the four layer, realistic head model (Acar and Makeig 2010), the 
anatomically constrained source space, and the usage of LCMV BeamFormer for 
the inverse problem. For Anatomically constrained LCMV BeamFormer (ACB), 
the dipole that showed the maximal amplitude in the contrast of stimuli vs. 
baseline was chosen as source location and its time course as source signal. In 
none of the nine analyzed subjects the predicted dipole location was within the 
fMRI source. For functional constrained LCMV BeamFormer (FCB) the source 
space was constrained to the dipoles within the fMRI derived source region. 
As in in ACB the dipole with the maximal amplitude in the contrast stimuli vs. 
baseline was chosen, this time within the functional constrained source space. 

By comparing the results of the three methods, which are all based on the same 
data, it becomes obvious that they differ significantly in the predicted latencies 
and amplitude of the source VEP. The fact that ACB showed the highest signal to 
noise ratio, but predicted a source location far from the fMRI derived activation 
area, can be interpreted as a consequence of the general behavior of LCMV 
BF, which has the tendency to predict strong deep sources due to sensor noise 
(Hillebrand and Barnes 2005). Alternatively, it might indicate an EEG source that 
is not visible in the fMRI data, which would add to recent findings by Geukes et 
al. (2013) and De Vos et al. (2013).

Strikingly, the derived source VEP of the PRISM toolbox as well as the source 
VEP derived with FCB showed prominent P1-N2 components. Using these 
components in a regression analysis of fMRI data performed best to find 
activation of the primary visual cortex in visual perception (Fuglo et al. (2012)). 
I therefore conclude, that by using an (f)MRI based approach my study provides 
further evidence that the P1-N2 components are highly related to the BOLD 
activity in the primary visual cortex (Fuglo et al. 2012, Novitskiy et al. 2010, 
Warbrick et al. 2014).

The results of the studies in this thesis show that the understanding of the 
fundamental relationship between fMRI and EEG is supported by studies 
making use of the combined recording. The tools for combined analysis, which 
are available, are still in development and in an important next step reliable 
standards for combined EEG-fMRI have to be developed. This includes well 
defined task designs, detailed reconstruction of already found effects, and a 
coherent definition of common observable neuronal activity in both modalities. 
Aside from medical use for epileptic seizure location and sleep staging, 
combined EEG-fMRI can provide meaningful insights to fundamental research 
of the neuronal underpinnings of the electrophysiological signal with the BOLD 
contrast. However, if sufficient to answer a certain research question separate 
recordings of both modalities are preferable due to the significant effort involved 
to combine the two modalities and the tradeoff in data quality. 
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The PRISM toolbox can be used to combine separately recorded EEG and fMRI 
data, if that is sufficient to answer the research question. A further extension of 
the toolbox would be to use the distributed source model and the implemented 
realistic head model for fMRI informed MEG analysis.

The most important next steps, however, is probably the improvement of the 
signal to noise in both modalities in combined EEG-fMRI and the development 
of refined tools for reasonable combined analysis. This also includes the 
development of new EEG systems, capable of recording with high dynamic range 
and high detail, as well as going to higher field strength in the fMRI acquisition. 
Potentially one would like to combine EEG with recently developed (ultra-)fast 
fMRI sequences (Boyacioğlu et al. 2013a; Boyacioğlu and Barth 2013b) and layer 
specific BOLD analysis (Koopmans et al. 2010 and 2011). Together this might give 
new and more specific insights in the relation of both modalities.
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In de humane neurowetenschappen is het vandaag de dag gangbaar om het 
functioneren van het brein te onderzoeken met niet-invasieve methoden 
die worden gebruikt tijdens rust of tijdens het uitvoeren van een taak. Toch 
zijn de mogelijkheden van de bestaande methoden om hersenactiviteit te 
meten tamelijk beperkt en is ook het basismechanisme van hoe neuronale 
activiteit wordt weerspiegeld in de gemeten data niet volledig begrepen. In 
dit proefschrift heb ik de relatie onderzocht tussen gelijktijdig gemeten data 
van twee verschillende meettechnieken van neuronale activiteit: elektro-
encefalografie (EEG) en functionele magnetische resonantie imaging (fMRI). EEG 
meet het elektrisch veld buiten de schedel. waarbij wordt aangenomen dat het 
EEG signaal gesynchroniseerde veranderingen weergeeft van de postsynaptische 
potentiaal van neuronale populaties. Deze signaalbron wordt gemeten met een 
hoge temporele, maar lage ruimtelijke resolutie. fMRI meet lokale verschillen 
in neuronaal zuurstofverbruik en de daaraan gerelateerde veranderingen 
in bloedstroom en bloedvolume. Deze meting vindt plaats op een schaal van 
enkele millimeters, maar heeft hierbij wel een matige temporele resolutie. Het 
combineren van metingen met zowel EEG als fMRI biedt de mogelijkheid om 
nieuwe informatie te verkrijgen over neuronale processen met zowel een hoge 
ruimtelijke als temporele resolutie. Toch gaat in de praktijk het combineren 
van deze twee metingen gepaard met eigen moeilijkheden, aangezien beide 
methoden met elkaar interfereren. Hierdoor is het noodzakelijk om uitgebreid 
voor artefacten te corrigeren. Daarnaast meten de twee modaliteiten 
verschillende aspecten met betrekking tot neuronale activiteit, zoals zojuist 
beschreven. Dit roept vragen op over hoe deze twee signalen zich tot elkaar 
verhouden. 

In de eerste twee studies beschreven in dit proefschrift is de relatie 
onderzocht tussen het vermogen van EEG frequentiebanden (in het Engels: 
EEG frequency band power) en het bloed zuurstof afhankelijk niveau (BOLD) 
in rusttoestandnetwerken (RSNs). Dit is onderzocht op groepsniveau, op 
individueel niveau en tussen proefpersonen. Hierbij werd een complexe en 
temporeel onstabiele verhouding duidelijk tussen de onderzochte aspecten van 
beide modaliteiten.

Het onderzoek beschreven in Hoofdstuk 2 is gericht op de relatie tussen het 
globale vermogen in EEG frequentiebanden en het tijdspatroon van BOLD 
RSNs in een rusttoestand (RS) waarbij de ogen geopend waren. Met een 
paradigma van 34 minuten werden consistent 11 RSNs gevonden in alle 12 
geanalyseerde proefpersonen. Bij vier van hen waren er significante correlaties 
tussen het vermogen in de EEG frequentiebanden en de RSN tijdspatronen. In 
overeenstemming met eerdere studies toonden drie van deze proefpersonen 
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significante correlaties tussen het vermogen in de alfa frequentieband en 
occipitale RSNs. Desondanks was er duidelijke variatie tussen proefpersonen in 
de correlatie tussen de vermogens van de vier laagste EEG frequentiebanden 
en de 11 RSNs. Het verder opdelen van de lange datasets om de temporele 
stabiliteit te onderzoeken binnen elke proefpersoon liet zien dat deze temporele 
correlatiepatronen onstabiel waren. 

In het tweede onderzoek (Hoofdstuk 3) is dezelfde data als in Hoofdstuk 2 
geanalyseerd met drie verschillende technieken om de temporale verhouding 
tussen RSNs en het vermogen in de EEG frequentieband in open ogen RS in 
meer detail te onderzoeken. Deze drie technieken waren gekozen om rekening 
te houden met mogelijke methodologische vertekeningen in de gecombineerde 
analyse van de twee modaliteiten. Zo gebruikt een van de technieken het RSN 
tijdspatroon als onafhankelijke variabele. De uitkomst van de drie verschillende 
manieren van analyseren ondersteunen onafhankelijk van elkaar de hypothese 
dat de correlatie tussen het vermogen in lage EEG frequentiebanden en BOLD 
RSNs temporeel onstabiel is in de open ogen RS. 

Het gebrek aan specifieke technieken om gecombineerde EEG-fMRI analyses 
te doen tijdens de eerste studie was de motivering om een “Prior-based 
Realistic Integrative Source Model” (PRISM) toolbox te ontwikkelen. Deze 
wordt beschreven in Hoofdstuk 4. De grondslag van deze toolbox is een nieuw 
ontwikkeld anatomisch en functioneel geïnformeerd model van gedistribueerde 
bronnen. In combinatie met een realistisch hoofdmodel van vier lagen en 
raakvlakken met bestaande toolboxen voor aparte EEG en (f)MRI analyses, zorgt 
PRISM voor de scheiding van het EEG signaal met betrekking tot de bronnen die 
zijn afgeleid uit de fMRI data. 

In hetzelfde hoofdstuk is de PRISM toolbox getest op een dataset met een 
kort paradigma van visuele stimuli. Door deze nieuwe methode te gebruiken 
werden de individuele tijdspatronen van de bronnen van vier verschillende fMRI 
activiteitsclusters afgeleid uit het EEG signaal. Deze clusters waren gerelateerd 
aan het waarnemen van ultrakorte visuele stimuli. Hierbij werd sterk bewijs 
gevonden dat een groot deel van de variatie tussen proefpersonen in de visuele 
evoked potentials (VEPs) kan worden verklaard door onderlinge anatomische 
verschillen. Daarnaast bleek dat in deze taakgerelateerde studie de PRISM 
toolbox de correlatie tussen de twee modaliteiten significant verbeterde ten 
opzichte van analyses die gebaseerd zijn op informatie van de EEG kanalen. 

Voor het in Hoofdstuk 5 gepresenteerde onderzoek werd een eenvoudig visueel 
gestuurd motorische reactie paradigma gebruikt waarvan de kenmerken in beide 
modaliteiten goed bekend zijn. Op deze data werd de PRISM toolbox vergeleken 
met twee gangbare, alternatieve methoden. Deze methoden veronderstellen dat 
EEG bronnen een enkele dipool zijn en gebruiken een anatomisch en functioneel, 
of alleen anatomisch, gedefinieerde ruimte waarin de bronnen zijn opgenomen. 
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De resultaten van de verschillende analyse methoden laten het effect zien van 
anatomische en functionele beperkingen, in vergelijking met ons eigen nieuwe 
anatomisch en functioneel geïnformeerde model van gedistribueerde bronnen. 
Door fMRI data te gebruiken als een voorspellende parameter om de aan fMRI 
gerelateerde EEG bronsignalen af te leiden, vonden we daarnaast sterk bewijs 
dat de P1-N2 componenten van de VEP sterk gerelateerd zijn aan de BOLD 
activiteit in de primaire visuele cortex. Dit is in overeenstemming met eerdere 
studies waarbij EEG als een voorspellende parameter werd gebruikt. 

Samenvattend hebben de beschreven studies in dit proefschrift (i) nieuwe 
inzichten verschaft in de verhouding tussen elektrofysiologische signalen en 
BOLD fluctuaties van gemeenschappelijke neuronale activiteit. Hierbij werd (ii) 
een complexe en temporeel onstabiele relatie aangetoond tussen het vermogen 
in de EEG frequentiebanden en BOLD RSN tijdspatronen in RS met geopende 
ogen. Daarnaast (iii) werd ondersteuning gevonden voor de hypothese dat de P1-
N2 componenten sterk gerelateerd zijn aan BOLD activiteit in de primaire visuele 
cortex. Verder is (iv) een nieuwe gecombineerde EEG-fMRI toolbox ontwikkeld 
en getest om het EEG signaal te scheiden volgens de bronnen uit de fMRI data. 
Dit maakt onderzoek mogelijk naar de verhouding tussen de twee modaliteiten 
waarbij ook rekening wordt gehouden met anatomische factoren. Met behulp 
van de PRISM toolbox werd (v) sterk bewijs gevonden dat anatomische 
verschillen tussen proefpersonen deels de onderlinge variatie in VEPs kunnen 
verklaren. Ook is (vi) aangetoond dat de PRISM toolbox de correlatie tussen de 
twee modaliteiten significant verbetert in vergelijking met methoden waarbij 
informatie van de EEG kanalen wordt gebruikt in de analyses. 
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Summary

Today, the noninvasive examination of brain functions at rest or while performing 
a task is a common source of information in human neuroscience. However, the 
capabilities of existing methods to observe neuronal activity are rather limited 
and the basic mechanisms of how neuronal activity is reflected in the recorded 
data are not fully understood. This thesis investigates the relation between 
simultaneously acquired data of two different measurement techniques of 
neuronal activity namely electroencephalography (EEG) and functional magnetic 
resonance imaging (fMRI). EEG measures the electrical field on scalp level, which 
is thought to reflects synchronized changes of the postsynaptic potential of 
neuronal populations, with high temporal resolution but low spatial accuracy 
of its sources. fMRI is capable of localizing differences in neuronal oxygen 
consumption and related blood flow and blood volume effects on the mm-scale, 
but suffes from a poor temporal resolution.

The combined measurement of EEG and fMRI therefore offers the potential to 
acquire information about neuronal processes with high spatial and temporal 
resolution. In practice, however, the combined recording has its own difficulties, 
since both methods interfere with each other, making an exhaustive artifact 
correction crucial. Further, as stated above, the two modalities observe different 
aspects related to neuronal activity, which raises questions with regard to the 
relation of the two signals.

In the first two studies of this thesis, the relation of EEG frequency band power 
with blood oxygen level dependent (BOLD) resting state networks (RSNs) is 
examined in detail on group level, on subject level and within subjects, revealing 
a complex and temporal unstable relation of the investigated aspects of the two 
modalities. 

The study presented in Chapter 2 focuses on the relation of global EEG frequency 
band power to BOLD RSNs time courses in eyes open resting state (RS). Using a 
34 minutes RS paradigm, 11 RSNs were found consistently across all 12 analyzed 
subjects. Furthermore, significant correlations between EEG frequency band 
power and RSN time courses in four subjects were found, three of them are 
showing significant correlation of the alpha band power with occipital RSNs, 
which is in good agreement with previous studies. However, also a vast inter-
subject variance in the power-to-power correlation of the four lower EEG 
frequency bands with the 11 RSNs was observed. Moreover, splitting up the 
long datasets to investigate the temporal stability within each subject revealed 
temporal unstable correlation patterns.

In the second study (Chapter 3) the same dataset as in Chapter 2 was reanalyzed 
with three different methods to explore the temporal relationship of RSNs and 
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EEG frequency power in eyes open RS in detail. The three different methods 
were chosen to account for possible methodological bias in the combined 
analysis of the two modalities, including one method that uses RSN timelines 
as independent variable. The results of all three distinct analysis approaches 
independently support the hypothesis that the correlation between low EEG 
frequency power and BOLD RSNs is unstable over time in eyes open RS.

The lack of specific combined EEG – fMRI analysis tools to separate the EEG signal 
according to fMRI sources during the first study, motivated the development 
of the Prior-based Realistic Integrative Source Model (PRISM) toolbox, which is 
presented in Chapter 4. The core of this toolbox is a new developed anatomically 
and functionally informed distributed source model. In combination with a 
realistic four layer head model and interfaces to several other existing toolboxes 
for separate EEG and (f)MRI analysis, it enables the separation of the EEG signal 
according to fMRI derived sources. 

In the same chapter the PRISM toolbox is tested on a dataset of a short visual 
stimuli paradigm. Using this new method, the individual source timelines of 
four distinct fMRI activation clusters, related to perceiving ultra short visual 
stimuli, were derived from the EEG data. Strong evidence was found that a 
major part of the inter-subject variance of the visually evoked potentials (VEPs) 
could be explained by anatomical differences between subjects. Further, when 
compared to channel based analysis the PRISM toolbox significantly improves 
the correlation between the two modalities in this task related study.

The study presented in Chapter 5 used a simple visually guided motor response 
paradigm with well-known features in both modalities to compare the PRISM 
toolbox with two common methods. These other methods assume single dipole 
sources and either use an anatomically and functionally or an anatomically only 
constrained source space. The results of the different analysis approaches reveal 
the effect of anatomical and functional constraints in comparison with our 
new anatomically and functionally informed distributed source model. Further, 
using fMRI data as a predictive parameter to derive fMRI related EEG source 
signals, strong evidence was found that the P1-N2 components of the VEP are 
highly related to the BOLD activity in the primary visual cortex. This is in good 
agreement with previous studies using EEG as predictive parameter.

In conclusion, the presented studies in this thesis gave (i) new insights in the 
relation between the electrophysiological signal and BOLD fluctuations of 
common neuronal activity, (ii) they reveal the complex and temporally unstable 
relation between EEG frequency band power and BOLD RSN timelines in eyes 
open RS, and (iii) they support the hypothesis that the P1-N2 components are 
highly related to the BOLD activity in the primary visual cortex. Furthermore, (iv) 
a new combined EEG – fMRI toolbox, to separate the EEG signal according to 
fMRI derived sources, was developed and tested, enabling specific investigations 
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of the relation between the two modalities, also accounting for anatomical 
factors. Using the PRISM toolbox (v) strong evidence was found that anatomical 
differences between subjects explain part of the inter-subject variance of VEPs. 
It was also demonstrated, that (vi) the PRISM toolbox significantly improved the 
correlation between the two modalities compared to channel based analysis.
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