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1 General Introduction  
 

Chemometrics has now been used for some 40 years [1,2]. The combination of modern 

information-rich analytical techniques with efficient multivariate regression tools for 

quantitative and qualitative analysis makes that chemometric applications for prediction and 

classification of samples are nowadays widespread in analytical chemistry [2-4].  

 

The regression problem, i.e., how to model one or several dependent variables (responses) y 

or Y, by means of a set of predictor variables, X, is one of the most common data-analytical 

problems. Examples in chemistry include relating (i) concentrations of different components 

in chemical samples to their mixture spectra, (ii) chemical properties, reactivity or biological 

activity of a set of molecules to their chemical structure, and (iii) the origin or activity of 

samples to their chromatographic or spectral profiles [5]. 

Traditionally, the relationship between y or Y and X is modelled using linear regression (LR) 

or multiple linear regression (MLR) [6,7]. This works well if there are few fairly uncorrelated 

independent X-variables and more samples than X-variables. However, with modern 

analytical instruments, including spectrometers and  chromatographs, many X-variables are 

measured, which are usually correlated, and many are uninformative and noisy. Partial least 

squares (PLS) regression is a modern multivariate regression method, which is able to model 

the relationship between y or Y and a large number of noisy and correlated X-variables, for a 

data set with small numbers of samples [5,7,8]. 
 

In the last decades, highly sophisticated instrumental analysis techniques like Nuclear 

Magnetic Resonance (NMR) Spectroscopy, Fourier Transform Infrared (FT-IR) 

Spectroscopy, and hyphenated techniques such as Gas Chromatography-Mass Spectrometry 

(GC-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), and Capillary 

Electrophoresis-Mass Spectrometry (CE-MS) are introduced in routine analysis and generate 

huge data sets. Additionally, the trend to investigate very complex problems, for example in 

life sciences, makes that chemometricians are now faced with an enormous flood of data, a 

real data tsunami according to Buydens [9]. Chemometric tools are now increasingly applied 

in bio-informatics, especially in the strongly developing field of metabolomics [10-14] which 

increases the data flood. In metabolomics all metabolites of a biological system are identified 

and quantified [11]. Consequently, the analysis of these data will be more and more 

demanding. 
 

To master the data flood, new or improved chemometric methods should be developed. One 

strategy can be to upgrade the applied multivariate methods such as PLS. These methods can 

be improved by the development of new or modified methods (i) to select the most 

informative samples, and/or (ii) to reveal the informative signals in the data while removing 

noise and uninformative variables. This may not only reduce the signals in the data flood to be 

investigated, but also improve the extracted information.  
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1.1 Thesis project 

 

The goal for the research presented in this thesis is to contribute in coping with the data flood 

and to develop new or improved chemometric methods both for sample and variable 

selection.  

 

Sample selection is focussed on Quantitative Structure-Retention Relationships (QSRRs) in 

Reversed-Phase Liquid Chromatography (RPLC). The QSRR models were (multiple) linear 

regression models and the goal of the work was the selection of reduced calibration sets. 

QSRRs are mathematical relationships between a chromatographic retention parameter and 

variables (descriptors) related to the molecular structure of the analytes [15,16]. RPLC, 

combined with mass spectrometric detection, now plays a key role in the life sciences 

applications [17]. However, the wide variety of commercially available RPLC stationary 

phases makes the effective selection of an appropriate stationary phase for a particular 

separation a challenging task [18]. QSRRs are used to characterise RPLC stationary phases 

[19-21] and can help appropriately selecting a suitable starting point (i.e., the initially selected 

chromatographic system formed by the stationary and mobile phase) for further method 

development [22]. 

 

Variable selection in the presented work is focussed on PLS modelling because this technique  

now dominates the practice of multivariate modelling. Reasons are for the latter the quality of 

the obtained models and the ease of their implementation due to the availability of appropriate 

PLS software [4].  

The aim of this thesis work is to develop new or improved variable selection methods for PLS 

modelling, which can be applied both for continuous and non-continuous data, and which 

must be widely applicable in chemometrics and in new emerging fields, such as 

metabolomics. 

 

 

1.2 Outline of this thesis 

 

This thesis is divided into eight chapters, which besides this General Introduction (Chapter 1) 

is organised as follows. Chapters 2 and 3 form a first part of the presented research and deal 

with the sample selection to build QSRR models in HPLC, while Chapters 4 till 7 concern the 

variable selection prior to PLS modelling. 

 

In Chapter 2, an introduction is given on sample selection for Quantitative Structure-

Retention Relationships  in High-Performance Reversed-Phase Liquid Chromatography.  

 

In Chapter 3, a study is presented about a strategy for the construction of reduced calibration 

sets to be used for the development of Quantitative Structure-Retention Relationships in 

High-Performance Reversed-Phase Liquid Chromatography. The application of the proposed 

strategy provides small calibration sets suitable for future QSRR model building to describe 

and predict retentions on new RPLC systems. 

 

In Chapter 4, an introduction is given in variable selection for PLS. The characteristics of the 

most widely used methods and their advantages and drawbacks are described. These methods 

are compared in order to select the most promising variable-selection method as a starting 

point for the development of new or improved methods that may help mastering the data 



3 

 

tsunami in chemometrics and bioinformatics. A strategy for the development of these methods 

is formulated. 

 

In Chapter 5, a study is presented about the development of three new stepwise variable 

selection methods for PLS modelling with one response (PLS1). The Final Complexity 

Adapted Models method, denoted as FCAM, is proposed as preferred. The results of this 

study form the basis for the studies presented in Chapters 6 and 7. 

 

In Chapter 6, the utility and effectiveness of different predictor-variable properties in 

variable selection are investigated and compared, when using the FCAM method from the 

study in Chapter 5, and the best properties are identified. 

 

In Chapter 7, the development and testing is presented of a new variable-selection method 

for multiple-response partial-least-squares (PLS2) modelling, using an adapted FCAM 

method, FCAM-PLS2.  

 

Finally, in Chapter 8, the findings of the research in this thesis project are summarized with 

reference to the research objectives, along with conclusions and recommendations for future 

research. 
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2 Introduction to sample selection in High Performance Liquid 

Chromatography 
 

2.1 Introduction 

 

Efficient sampling methods can help reducing the number of experiments and therefore also 

reducing the amount of generated data, especially when they are applied for a widely used 

analysis technique such as High Performance Liquid Chromatography (HPLC). HPLC is 

probably one of the most powerful separation techniques in analytical chemistry and 

biochemistry. Using HPLC, mixtures of compounds can be separated and individual 

components identified and quantified [1]. At present, approximately 90% of all HPLC 

separations are carried out by Reversed-Phase Liquid Chromatography (RPLC) because of its 

broad application range. Except for the high molecular weight range, nearly all substances can 

be separated by RPLC [2]. Additionally, liquid chromatography, coupled with a mass 

spectrometer detector (LC-MS), is in the field of quantitative bioanalysis the preferred 

technique for quantitating small molecules, because of its specificity, sensitivity, and speed 

[3,4]. Because of its wide use and the huge sets of data generated, HPLC now contributes to 

the data tsunami. Chemometric tools are needed to extract  information from these ever-

increasing amount of data [5,6]. 

 

Solving two kinds of problems in HPLC can help reducing the number of experiments. First, 

the efficient selection of an appropriate stationary phase, and second,  the a priori prediction 

of the retention of analytes for a specific chromatographic system, i.e. the combination of the 

mobile and stationary phase. Efficient and cost effective sample selection for HPLC can 

reduce the number of experiments. In this introduction is described how this is realised in this 

thesis project. 

 

 

2.2 Characterization of stationary phases 

  

In RPLC, the selection of a suitable stationary phase is an important starting condition prior to 

the development of a robust separation method. However, the wide variety of commercially 

available RPLC stationary phases [2]  makes the effective selection of an appropriate column 

for a particular separation a challenging task.  

 

Columns can be selected using chromatographic characterization methods [2]. These methods 

can be subdivided into two groups: 

- Empirically based characterization methods [2] or test set methods [7]. The 

chromatographic information is obtained using sets of rather arbitrarily selected test 

compounds, which are supposed to reflect a specific column property, e.g. silanol activity 

or hydrophobicity, see Refs. [2,7-11]. 

- Model-based characterization methods. The chromatographic information is obtained using 

mathematical models describing the relationship between chromatographic parameters and 

structure related properties of test compounds, i.e. molecular descriptors, see Refs. [12-17].  

 

The empirically based  methods use a relatively low number of test compounds representing 

the column properties. For example in Ref. [7] eight methods, using 1 to 8 test analytes, and 
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in Ref. [9] five methods, using 1 to 9 test analytes, are described and investigated. These 

chromatographic tests often produce conflicting results [9]. Until now none of these has been 

widely accepted [7,10]. Therefore an urgent need exists to select RPLC columns based on 

more objective criteria.  
 

A promising approach of model-based chromatographic retention prediction is the use of 

Quantitative Structure-Retention Relationships (QSRRs). QSRRs are mathematically derived 

relationships between chromatographic parameters and descriptors related to the molecular 

structure of the analytes. In QSRRs these descriptors are used to model the molecular 

interaction of the analytes with a given chromatographic system, formed by the combination 

of a mobile and stationary phase. QSRRs are used to characterise RPLC systems, and to 

describe and predict retentions of analytes on these RPLC systems, see Refs. [12-23]. 

Therefore, they can help selecting an appropriate chromatographic system for a particular 

RPLC separation. 

 

Contrary to the test set methods, a substantial number of test analytes are used to obtain 

proper QSRR models. For example in Ref. [15] 25 test analytes are used, in Ref. [21] 87 

analytes, and in Ref. [23] 67 analytes. This makes the application of QSRRs laborious and 

time consuming. The use of QSRRs will be more attractive if QSRRs could be built with a 

small number of test analytes, comparable to or only slightly higher than those for the test set 

methods. This requires the development of a new methodology for the construction of small 

calibration sets for QSRRs. 

 

 

2.3 Retention models in high performance liquid chromatography 

 

Properties of chemical compounds depend on their structure and on the physicochemical 

environment. In QSRRs the relation between a retention-related property y in a specific 

chromatographic system and structure-related variables (descriptors) x1, x2, …, xm is described 

by a model, generally a multiple linear regression model [13]. The general QSRR model has 

the form: 

mm xxy   110          (1) 

The model parameter β0 is a constant, while β1, β2, …, βm are coefficients which describe the 

dependence of the chromatographic property y on the independent variables x1, x2, …, xm, 

respectively. The set of βi coefficients [β0, β1, β2, …, βm] is characteristic for the 

chromatographic system and for the calibration set of molecules used to build the model.  

 

The estimated set of coefficients will be denoted as [b0, b1, b2, …, bm]. Different analyte 

properties are reflected by different values of the analyte-dependent variables xi and the 

chromatographic property y on a specific chromatographic system. The differences between 

chromatographic systems will be reflected by differences in the set of coefficients. Therefore, 

QSRRs can be used to characterise chromatographic columns by the set of estimated 

regression coefficients [b0, b1, b2, …, bm]. This can help appropriately selecting a suitable 

chromatographic system for further method development [24]. 

 

Meaningful and statistical significant QSRR models are also used to predict the retention of 

new analytes under the same chromatographic conditions, from the estimated regression 

coefficients and the molecular properties included in the model, without additional 

experiments [12]. This can also help selecting an appropriate chromatographic system for a 

particular RPLC separation. Additionally, this may reduce the number of laboratory 
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experiments and hence also the amount of generated data. It requires that the descriptor 

variables xi are known for the analytes. Descriptor values of analytes can be determined 

experimentally, found in the literature or calculated [16,25]. 

 

The classical QSRR models contain small numbers (1-5) of descriptors [12-17] for which 

linear regression (LR) or multiple linear regression (MLR) is used for model building [12]. 

With the introduction of theoretical molecular descriptors, generated by calculation chemistry, 

much larger sets of descriptors were introduced in QSRR modelling. As an example, the 

Dragon software  (http://www.talete.mi.it/) allows the computation of more than 4000 

molecular descriptors, see [26]. Then, either MLR, or more advanced modelling techniques 

such as partial least squares regression, both combined with feature selection, are needed [12]. 

 

For the development of QSRRs, the retentions of a representative set of analytes, called the 

calibration set, are measured on a specific column under well-defined chromatographic 

conditions, and the regression coefficients estimated. The analytes must be selected such that 

both the retention and the descriptors span a range relevant for the intended use of the QSRR. 

The regression coefficients in the classical QSRR models are estimated by MLR [27,28]. For 

MLR the correlations between the descriptors should be as low as possible [29], and the 

number of analytes should be larger than the number of coefficients. Traditionally, as a rule of 

thumb, a minimum of 4 to 6 analytes per descriptor are applied to account for the 

uncertainties in the calculation of the descriptors and the experimental error in determining 

the retention [13,19,29]. Examples of calibration sets which meet these requirements can be 

found in Refs. [15,19,20,30-33].  

 

One of the goals of this thesis project is to propose a strategy for the construction of reliable 

reduced calibration sets for classical QSRRs, with a smaller number than 4 to 6 analytes per 

descriptor. This will reduce the number of experiments and therefore can help reducing the 

workload. Additionally it will make QSRR methods more attractive and useful in laboratory 

practice.  

 

 

2.4 Strategy for sample selection for the development of QSRR models 

 

The number of experiments can be reduced if the selection of calibration samples is based on 

the descriptor set only. Then, the calibration samples (analytes) can be selected without 

experiments. Thereafter, the retentions have only to be measured for the selected samples. 

This makes sample selection cost efficient. Preferably the calibration samples are selected 

with a uniform distribution [34].  

The Kennard-Stone algorithm (KS) [35] is a well-known selection method which is suitable 

for the selection of a representative uniformly distributed subset from a larger pool of samples 

along the independent x-variables space [36,37].  

 

Using the information given above, a strategy for the development of a new sample selection 

method for the construction of small reliable calibration sets for classical Quantitative 

Structure–Retention Relationships in High-Performance Reversed-Phase Liquid 

Chromatography, containing 1-5 descriptors, for which LR or MLR is used for model 

building, is presented in the first part of this thesis project in chapter 3. Later, after this thesis 

project, this strategy will also be applied for QSRRs, containing many more descriptors 

generated by calculation chemistry, for which PLS models are built, after the application of 

one of the variable reduction methods presented in the second part of this thesis project. 

http://www.talete.mi.it/
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3 Strategy for reduced calibration sets to develop quantitative 

structure–retention relationships in high-performance liquid 

chromatography
1
 

 

 

3.1 Abstract 

 

In high-performance liquid chromatography, quantitative structure–retention relationships 

(QSRRs) are applied to model the relation between chromatographic retention and quantities 

derived from molecular structure of analytes. Classically a substantial number of test analytes 

is used to build QSRR models. This makes their application laborious and time consuming. In 

this work a strategy is presented to build QSRR models based on selected reduced calibration 

sets. The analytes in the reduced calibration sets are selected from larger sets of analytes by 

applying the algorithm of Kennard and Stone on the molecular descriptors used in the QSRR 

concerned. The strategy was applied on three QSRR models of different complexity, relating 

log kw or log k with either: (i) log P, the n-octanol–water partition coefficient, (ii) calculated 

quantum chemical indices (QCI), or (iii) descriptors from the linear solvation energy 

relationship (LSER). Models were developed and validated for 76 reversed-phase high-

performance liquid chromatography systems.  

 

From the results we can conclude that it is possible to develop log P models suitable for the 

future prediction of retentions with as few as seven analytes. For the QCI and LSER models 

we derived the rule that three selected analytes per descriptor are sufficient. Both the 

dependent variable space, formed by the retention values, and the independent variable space, 

formed by the descriptors, are covered well by the reduced calibration sets. Finally guidelines 

to construct small calibration sets are formulated.  

 

 

Keywords: Liquid chromatography; Quantitative structure–retention relationships; Samples 

selection; Reduced calibration sets; Retention modelling; Retention prediction 
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3.2 Introduction 

 

 

In high-performance liquid chromatography, the selection of a suitable stationary phase is an 

important starting condition prior to the development of a robust separation method. This is 

particularly true for reversed-phase liquid chromatography (RPLC), a technique applied in 80-

90% of all HPLC separations [1]. Presently an estimated number of more than 600 different 

RPLC columns are available on the market and this number is still increasing [2]. This wide 

variety of commercially available RPLC stationary phases makes the selection of a suitable 

column for a particular separation a challenging task. The selection of a stationary phase is 

often based on the results of a number of chromatographic tests [2-4] or on the empirical 

knowledge of the analyst [5]. However, the majority of the chromatographic tests, has an 

empirical basis and often produce conflicting results [6]. Therefore an urgent need exists to 

select RPLC columns based on more objective criteria.  

In addition to that chromatographic retention prediction methodologies can be valuable 

starting points for RPLC method development [7]. A promising approach is the use of 

quantitative structure-retention relationships (QSRRs) [7,8]. QSRRs are statistically derived 

relationships between chromatographic parameters and descriptors related to the molecular 

structure of the analytes. In QSRRs these descriptors are used to model the molecular 

interaction of the analytes with a given stationary phase and eluent [9].  

 

In chromatography, QSRRs have been applied to: (i) gain a better understanding of the 

molecular mechanism of the chromatographic separation process; (ii) identify the most 

informative structure-related properties of analytes; (iii) characterise stationary phases, and 

(iv) predict retention for new analytes [8]. Abraham et al. [10] and Kaliszan et al. [11] have 

used different types and numbers of molecular descriptors in different models to model the 

retention of a representative set of test analytes on a specific chromatographic system: (i) the 

logarithm of the n-octanol–water partition coefficient, (ii) three calculated quantum chemical 

indices, and (iii) a set of five solvation parameters (see further). With these models, the 

retention of new solutes under the same chromatographic conditions is predicted [7]. 

However many other models can be found in the literature. Recently, reviews on QSRR 

applications in column liquid chromatography were written by Put and Vander Heyden [7], 

Kaliszan [12] and Héberger [13].  

 

Until now a substantial number of test analytes has been used to obtain proper QSRR models 

[11,14-18]. This makes the application of QSRRs laborious, time consuming and therefore 

less attractive from a practical point of view.  

 

In [14,15] QSRR models with the above mentioned three descriptor sets were developed with 

a reduced set of 18 test analytes, selected from a starting set of 58. In [17] QSRR models with 

solvation parameters were developed with a reduced set of 22 structurally diverse analytes, 

chosen from a starting set of 87 analytes, described in [16]. In [19] five reduced sets of five or 

seven analytes were selected from a set of 67 analytes described in [18] to allow quantitative 

prediction of retention and selectivity.  

 

The goal of this work is to propose a strategy for the development of reliable reduced 

calibration sets for QSSR models, based on molecular structure properties. This to make 

QSRR methods more attractive and useful in laboratory practice. 
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3.3 Theory 

 

3.3.1 QSRR models 

 

Properties of chemical compounds depend on their structure and on the physicochemical 

environment. In QSRRs the relation between a retention related property y in a specific 

chromatographic system and structure-related variables (descriptors) x1, x2, …, xm is described 

by a model, generally a multiple linear regression model [8]. The general QSRR model has 

the form: 

 

mm xxy   110          (1) 

 

The model parameter β0 is a constant, while β1, β2, …, βm are coefficients which describe the 

dependence of the chromatographic property y on the independent variables x1, x2, …, xm, 

respectively. The set of βi coefficients [β0, β1, β2, …, βm] is characteristic for the 

chromatographic system, i.e. the combination of the mobile and stationary phase, and for the 

calibration set of molecules used to build the model. The estimated set of coefficients will be 

denoted as [b0, b1, b2, …, bm].  

Different analyte properties are reflected by different values of the analyte-dependent 

variables xi and the chromatographic property y on a specific chromatographic system. The 

differences between chromatographic systems will be reflected by differences in the set of 

coefficients. 

 

QSRRs can therefore be used to characterise chromatographic columns by the set of estimated 

regression coefficients [b0, b1, b2, …, bm]. QSRRs can also be used to predict the retention of a 

new analyte on a specific chromatographic system if the set of regression coefficients is 

known for that system. This requires that the descriptor variables xi are known for the analyte. 

Descriptor values of test analytes can be found in the literature or are calculated [12]. 

 

In this study, log kw or log k is used as the chromatographic property y. Log kw is the 

logarithm of the retention factor k of the analyte extrapolated to a virtual mobile phase of pure 

water or pure buffer. It is the intercept of the (linear) relationship between the isocratic log k 

values and the corresponding organic modifier fraction in the eluent [20]. It is known that 

apart from the analyte, log kw also depends on both the nature of the organic modifier [21,22] 

and on the kind of relationship (linear or polynomial) used for extrapolation [22]. Therefore, 

log kw cannot be considered as a pure solute property. 

 

In comparative studies of retention properties of RPLC stationary phases three main types of 

QSRR, containing different descriptors, have been investigated. They are discussed below.  

The first QSRR model relates log kw to the logarithm of the calculated n-octanol–water 

partition coefficient, log P [11,23]: 

 

Pkw loglog 10            (2) 

 

Log P accounts for the hydrophobic properties of the analyte. Applications of this QSRR type 

can be found in Refs. [11,14,15,23-25]. 
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The second QSRR model relates log kw of an analyte to three calculated quantum chemical 

indices (QCI): (i) electron excess charge of the most negatively charged atom, δmin; (ii) square 

of total dipole moment, μ²; (iii) water-accessible molecular surface area, AWAS [11,23]: 

 

WASw Ak 3

2

2min10log          (3) 

 

δmin accounts for the ability of the analyte to participate in polar interactions; μ accounts for 

the dipole–dipole and dipole-induced dipole attractive interactions of the analyte; AWAS 

accounts for the strength of London-type interactions of the analyte [24]. Applications of this 

QSRR type can be found in Refs. [11,14,15,23-26]. 

 

The third QSRR model is formed by the linear solvation energy relationship (LSER). LSERs 

relate log kw of an analyte to five solvation parameters. The LSER model is given by [27-30]: 

 

VBASEkw  log        (4) 

 

Each of the descriptors E, S, A, B and V accounts for a specific molecular interaction. E is the 

excess molar refraction, S is the dipolarity/polarizability, A the overall hydrogen bond acidity, 

B the overall hydrogen bond basicity and V the McGowan volume. LSER models are very 

general. They provide an understanding of the importance of various chemical interactions in 

a chromatographic system. LSER values for a large number of analytes are available [27]. 

Reviews concerning this model can be found in [29,30]. Applications of this QSRR type can 

be found in Refs. [11,14,15,23,25,27]. 

The three models are indicated further as log P, QCI and LSER models, respectively. 

 

3.3.2 Calibration set 

 

To apply QSRRs for retention prediction, the retention factors of a representative set of test 

analytes, called the calibration set, are measured on a specific column under well-defined 

chromatographic conditions, and log kw is predicted . The analytes must be selected such that 

both the chromatographic property and the descriptors span a range relevant for the intended 

use of the QSRR. The coefficients in equations (2-4) are estimated by multiple linear 

regression (MLR).  

For MLR the correlations between the descriptors should be as low as possible [30], and the 

number of analytes should be larger than the number of coefficients. Traditionally, as a rule of 

thumb, a minimum of 4 to 6 analytes per descriptor are applied to account for the 

uncertainties in the calculation of the descriptors and the experimental error in determining 

log kw [8,14,30]. Examples of calibration sets which meet these requirements can be found in 

Refs. [11,14,15,23-26].  

 

 

3.4 Strategy for selection of test analytes for a reduced calibration set 

 

In this study a reduction of the number of test analytes for QSRR modelling, below a 

minimum of 4 to 6 analytes per descriptor, is investigated. A selection of test analytes from a 

larger set is made based on auto scaled descriptor values, applied in the QSRR, using the 

algorithm of Kennard and Stone [31].  
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The Kennard and Stone algorithm is a sequential method that makes a selection covering the 

variable space uniformly. Preferably the procedure starts with an analyte closest to the mean 

of the variable space to prevent that the analytes that are initially selected are all situated at 

the boundaries of the variable space. This is the case for a reduced data set where only few 

analytes are selected. As second analyte, that has the largest distance to the first one is 

selected. The third analyte then is the one furthest from the already selected, and so on.  

 

 

3.5 Quality criteria for the resulting QSRR models 

 

3.5.1 Calibration error 

 

A carefully designed selection procedure should result in a reduced calibration set that is a 

representative subset of the full calibration set. The residual variance of the QSRR model 

developed with the reduced calibration set, sred
2
, should not be significantly larger than the 

residual variance of the equivalent QSRR model developed with the full calibration set, sfull
2
.  

The residual variances sfull
2
 and sred

2
 are calculated with equations (5) and (6), respectively, 
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where yi and ŷi are the experimental and predicted properties, respectively, of the i
th

 analyte in 

the calibration set, nfull and nred are the number of analytes in the full and the reduced 

calibration sets, respectively, and p is the number of estimated parameters in the model. 

 

For models based on the reduced calibration sets, for which holds sred
2
  sfull

2
, the reduced 

calibration sets have a modelling power which is equal to or better than that of the full 

calibration set. For reduced models, for which holds sred
2
 > sfull

2
, it is tested whether this 

difference is significant by means of a one-tailed F-test [32], 

 

2

2

1

full

red

s

s
F    

22

fullred ss    pnpncrit fullred
FF  ,,2/1,1       (7) 

 

where  is the level of significance and F(1-/2,nred-p,nfull-p) is the F value at a confidence level of 

1-/2 and nred-p degrees of freedom of the numerator and nfull-p degrees of freedom of the 

denominator. 

 

The residual variance of the reduced calibration set, sred
2
, is not significantly larger than that  

of the full calibration set, sfull
2
, if the calculated F1-value is smaller than a one-tailed critical F-

value, F1,crit at a confidence level of 1-/2. 

 

Thus, for the QSRR-model, developed with a reduced calibration set, for which sred
2

 > sfull
2
 and  
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it follows that  

 
2

,1

2

fullcritred sFs            (8) 

 

The term F1,crit·sfull
2
 determines a critical upper limit for the variance of the residuals of the 

reduced calibration set. This critical upper limit is called the critical calibration variance 

s1,crit
2
. 

 
2

,1

2

,1 fullcritcrit sFs            (9) 

 

The residual variance sred
2
 of the QSRR model developed with the reduced calibration set is, 

at a given significance level , not significantly larger than the residual variance sfull
2
 of the 

QSRR model which is developed with the full calibration set, if sred
2
  sfull

2
 or if  

 

022

,1

2

1  redcrit sss           (10) 

 

 

3.5.2 Prediction error 

 

The resulting models are validated with a test set formed by the analytes, belonging to the full 

calibration set, but not selected for the reduced set.  

 

For a test set the variance of the residuals of the predicted chromatographic property, stest
2
,
 
is 

calculated with 
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         (11) 

 

ntest is the number of analytes in the test set; ntest=nfull-nred. 

 

The QSRR model, developed with the reduced calibration set, is valid if stest
2
 is not 

significantly larger than the variance of the residuals of the chromatographic property  

calculated from the full calibration set, sfull
2
. This is again tested by a one-tailed F-test: 

 

2

2

2

full

test

s

s
F    

22

fulltest ss    pnncrit fulltest
FF  ,,2/1,2        (12) 

 

This F-test is only applied if stest
2

> sfull
2
. In fact it is evaluated whether the prediction error of 

the QSRR model, developed with the reduced calibration set, is not worse than the calibration 

error of the model developed with the full calibration set. 

 

Analogously to (8)-(10), equations (13)-(15) can be derived. 
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2

,2

2

fullcrittest sFs            (13) 

 
2

,2

2

,2 fullcritcrit sFs            (14) 

 

s2,crit
2
 is called the critical validation variance. The term F2,crit·sfull

2
 again determines a critical 

upper limit, now for the variance of the residuals of the test set.  

 

The QSRR model, developed with the reduced calibration set, is valid if  stest
2
   sfull

2
 or if  

 

022

,2

2

2  testcrit sss           (15) 

 

In model validation it is usual to validate models by comparing calibration error (sred
2
) with 

the prediction error (stest
2
) with 

 

2

2

3

red
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s

s
F    22

redtest ss    pnncrit redtest
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We are however interested in how well the test set is predicted by our proposed models as 

compared to the models based on the full calibration set. Therefore we use the stricter 

condition of equation (12).  

 

 

3.6 Data and methodology 

 

3.6.1 Datasets 

 

Five data sets, called Kaliszan, Wilson, Al-Haj I, Al-Haj II and Tan, were used to test the 

strategy.  

Kaliszan-data set [11]: The chromatographic data concern log kw values of 25 structurally 

diverse test analytes on 12 C18 and 6 C8 columns in combination with one to four mobile 

phases: methanol-water, acetonitrile-water, methanol-buffer and acetonitrile-buffer, resulting 

in 42 chromatographic systems. Phosphate buffers were used with a concentration of 20 mM 

and pH of 3.0. The 25 test analytes were selected by Abraham et al. [33]. Table 3-1shows the 

columns and the numbering of the 42 systems. Table 3-2 shows the analytes and the values of 

the descriptors for the log P, LSER and QCI models. Analytes with missing values for either 

log kw or a descriptor are not entered into the calibration or test sets.  

Wilson-data set [18]: The data concern log k values of 45 neutral test analytes on 10 columns 

with the mobile phase acetonitrile-water 50% (v/v), forming 10 chromatographic systems. 

The values of the descriptors for the log P and LSER models were calculated with ADME 

Boxes [34] and are shown in Table 3-3. 

Al-Haj I-data set [14]: The data set contains log kw values of 58 test analytes on 3 columns 

using the mobile phases methanol-water, acetonitrile-water or acetonitrile-phosphate buffer 

(0.1 M, pH 7.0), forming 5 chromatographic systems. Descriptor values of 48 analytes are 

given for the log P model, of all analytes for the QCI model and of 40 analytes for the LSER 

model. In the QCI set values are given for the total dipole moment μ instead of μ² used in 

equation (3). 
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Table 3-1  Chromatographic columns, manufacturers, dimensions, abbreviations, and numbering of the chromatographic systems (1-42) for the Kaliszan data set. 

Extracted from Reference [11]. 

 

Stationary phases Mobile phases 

C18 columns  Manufacturer Dimensions 
L x i.d. (mm x mm) 

Abbreviations 
 

MeOH- 
water 

ACN- 
water 

MeOH-
buffer 

ACN 
-buffer 

Zorbax RX-C18 Hewlett-Packard, Newport, DE, USA 150 x 4.6 RX 1 2 3 4 

HypersilODS  Shandon HPLC, Runcom, UK 125 x 4.6 Hyper 5 6 7 8 

Polygosil-60-5-C18 Macherey-Nagel, Diiren, Germany  125 x 4.6 Poly 9 10 11 12 

Alltima C18 5U Alltech, Deerfield, IL, USA  150 x 4.6 All 13 14 15 16 

TSKgel OD-2PW TosoHaas, Stuttgart, Germany 150 x 4.6 TPW 17 18 19 20 

Eclipse  X DB-CI8 Hewlett-Packard, Newport, DE, USA 150 x 4.6 XC18 21 22 23 24 

Hypersil HyPURlTY C18 Shandon HPLC, Runcom, UK 150 x 4.6 HyPUR 25    

Kromasil KRl00-5C18 Eka Nobel, Bohus, Sweden 150 x 4.6 Krom 26    

Nucleosil 100-5 CI8 HD Macherey-Nagel, Düren, Germany 150 x 4 NuC18 27    

Purospher RP-18 e Merck, Darmstadt, Germany 125 x 4 Puro 28    

Symmetry C18 Waters, Milford, MA, USA 150 x 4.6 Sym18 29    

TSKgel ODS-80TS TosoHaas, Stuttgart, Germany 150 x 4.6 TTS 30    

        

C8 columns        

LiChrospher RP-Select B Merck, Darmstadt, Germany 125 x 4 SelB 31 32 33 34 

Aluspher RP-Select B Merck, Darmstadt, Germany  125 x 4 Alu 35 36 37 38 

Nova-Pak C8 Waters, Milford, MA, USA 150 x 3.9 Nova 39    

Nucleosil 100-5 C8 Macherey-Nagel, Düren, Germany 150 x 4 NuC8 40    

SymmetryShield RP8 Waters, Milford, MA, USA 150 x 4.6 Sym8 41    

Eclipse XDB-C8 Hewlett-Packard, Newport, DE, USA 150 x 4.6 XC8 42    

 



19 

 

Al-Haj II-data set [15]: The data set consists of log kw values of 27 solutes on 7 columns, each 

with the mobile phases methanol-water and acetonitrile-water, forming 14 chromatographic 

systems. Descriptor values of 23 analytes are given for the log P model, of all analytes for the 

QCI model and of 25 analytes for the LSER model. In the QCI set values are given for the 

total dipole moment μ. The analytes in data set Al-Haj II form a subset of those in data set Al-

Haj I, but the tested chromatographic systems are different. 

Tan-data set [16]: The data concern log k values of 87 solutes on 5 columns with the mobile 

phase acetonitrile-water 50% (v/v), forming 5 chromatographic systems. For all analytes the 

values of the S, A, B and V descriptors are given. They are used in an adapted LSER model 

without E.  

 

Together, these data sets contain retention values of 76 chromatographic systems, while 208 

models (log P, QCI, LSER and adapted LSER) were built with the available data. 

 

3.6.2 Software 

 

All calculations are made with in-house made programs developed in Matlab (V. 5.3) (The 

Math Works, Natick, MA, USA) [35]. The Kennard and Stone algorithm from the ChemoAC 

Standard Functions Toolbox for MATLAB [36] is used for the selection of analytes. Log P 

and LSER descriptors for the analytes in the Wilson data set are calculated with ADME Boxes 

[34].  

 

 

3.7 Results and Discussion 

 

3.7.1 Determination of the minimal number of analytes for reduced calibration sets 

 

The three QSRR models from equations (2), (3) and (4) require three descriptor sets. In this 

study we will try to reduce substantially the size of the calibration sets. The selection of a 

reduced set of analytes from a full calibration set is performed with the Kennard and Stone 

algorithm applied on the sets of descriptors. The descriptors for these reduced calibration sets 

are then used to develop the relevant QSRR models. 

 

For each chromatographic system tested with a given data set, the QSRR models are 

developed with the full calibration set and sfull
2
 is calculated. Thereafter, for each system, a 

series of models is developed with reduced calibration sets. The analytes for the reduced 

calibration sets are selected from the full set in the sequence as proposed by the Kennard and 

Stone procedure after auto scaling the variables. Each series of QSRR models with reduced 

calibration sets starts with the minimal number of analytes needed for MLR, being the number 

of coefficients in the model plus one. For instance, to develop the log P model (equation (2)), 

the 3 first analytes, selected by Kennard and Stone from their log P values, are used. 

Analogously, for the QCI model (equation (3)), modelling starts with the 5 first selected 

analytes, and for the LSER model (equation (4)) with the 7 first selected analytes. 
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Table 3-2 Structural descriptors of the test analytes that were employed in the QSRR equations for the 

Kaliszan data set [11]. For the meaning of the descriptors see text. 

 

No. Analyte 
 

Log P 
LSER descriptors QCI  descriptors 

E S A B V δmin μ
2
 AWAS 

1 n-Hexylbenzene 5.52 0.591 0.50 0.00 0.15 1.562 -0.2104 0.03880 415.40 

2 1,3,5-Triisopropylbenzene - 0.627 0.40 0.00 0.22 1.985 -0.2057 0.00624 478.27 

3 1,4-Dinitrobenzene 1.47 1.130 1.63 0.00 0.41 1.065 -0.3418 0.00012 312.07 

4 3-Trifluoromethylphenol 2.95 0.425 0.87 0.72 0.09 0.969 -0.2454 4.39321 302.54 

5 3,5-Dichlorophenol 3.62 1.020 1.10 0.83 0.00 1.020 -0.2434 1.98246 306.77 

6 4-Cyanophenol 1.60 0.940 1.63 0.79 0.29 0.930 -0.2440 10.9693 290.61 

7 4-Iodophenol 2.91 1.380 1.22 0.68 0.20 1.033 -0.3021 2.51856 301.47 

8 Methylphenylether 2.11 0.708 0.75 0.00 0.29 0.916 -0.2116 1.56000 288.13 

9 Benzamide 0.64 0.990 1.50 0.49 0.67 0.973 -0.4334 12.8450 293.30 

10 Benzene 2.13 0.610 0.52 0.00 0.14 0.716 -0.1301 0.00000 244.95 

11 Chlorobenzene 2.89 0.718 0.65 0.00 0.07 0.839 -0.1295 1.70824 269.49 

12 Cyclohexanone 0.81 0.403 0.86 0.00 0.56 0.861 -0.2944 8.83278 269.31 

13 Dibenzothiophene 4.38 1.959 1.31 0.00 0.18 1.379 -0.2709 0.27457 364.54 

14 Phenol 1.47 0.805 0.89 0.60 0.30 0.775 -0.2526 1.52028 256.72 

15 Hexachlorobutadiene 4.78 1.019 0.85 0.00 0.00 1.321 -0.0750 0.06708 352.14 

16 Indazole 1.77 1.180 1.25 0.54 0.34 0.905 -0.2034 2.39011 285.46 

17 Caffeine -0.07 1.500 1.60 0.00 1.35 1.363 -0.3620 13.3298 367.02 

18 4-Nitrobenzoic acid 1.89 0.990 1.07 0.62 0.54 1.106 -0.3495 11.7786 321.77 

19 N-Methyl-2-pyrrolidinone -0.54 0.491 1.50 0.00 0.95 0.820 -0.3532 12.9168 270.53 

20 Naphthalene 3.30 1.340 0.92 0.00 0.20 1.085 -0.1277 0.00000 313.25 

21 4-Chlorophenol 2.39 0.915 1.08 0.67 0.20 0.898 -0.2482 2.18448 280.38 

22 Toluene 2.73 0.601 0.52 0.00 0.14 0.716 -0.1792 0.06916 274.50 

23 Benzonitrile 1.56 0.742 1.11 0.00 0.33 0.871 -0.1349 11.1222 277.91 

24 Benzoic acid 1.87 0.730 0.90 0.59 0.40 0.932 -0.3651 5.85156 288.00 

25 1,3-Diisopropylbenzene - 0.605 0.46 0.00 0.20 1.562 -0.2055 0.08820 399.79 

 

All QSRR models developed with the reduced sets are validated with a test set consisting of 

the remaining analytes of the full calibration set, measured in the considered chromatographic 

system. For all QSRR-models the quality criteria as described in section 3.5 are calculated. 

For each combination of selected analytes in the reduced sets, nred, and the corresponding 

number of analytes in the test set, ntest, a combined test for the calibration and validation is 

performed to evaluate whether the calibration and validation criteria hold at the one-sided 

confidence level of 97.5%. 

Starting from the minimal number of analytes in the reduced sets, the selection was ended if 

the combined test for calibration and validation passes for all systems, three consecutive 

times, in order to avoid a pass by chance. For each set of descriptors, the minimal number of 

required analytes in the reduced calibration set was then the number at which the combined 

test passed for the first time. 

 

As an example, for one chromatographic system of the Kaliszan data set in Fig. 3-1A (top 

window), the calibration variances sred
2
 of the log P models, the corresponding critical 

calibration variances s1,crit
2
 and sfull

2
 are depicted against the number of analytes in the reduced 

calibration set. In the bottom window of Fig. 3-1A the validation variances stest
2
, the 

corresponding critical validation variances s2,crit
2
 and sfull

2
 are shown against the number of 

analytes in the test set. Similar graphs for the QCI and LSER models are given in Fig. 3-1B 

and C. For each model on a chromatographic system the residual variance of the full 

calibration set, sfull
2
, is constant. If sred

2
  sfull

2
, sred

2
 lies below the horizontal line of sfull

2
, and 

s1,crit
2
 is not calculated. Analogously, when stest

2
  sfull

2
, s2,crit

2
 is not calculated.  
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Table 3-3 Neutral test analytes of the Wilson data set taken from [18]. Structural descriptors were 

calculated with ADME boxes (see text). For the meaning of the descriptors see text. 

 
nr component Log P E S A B V 

1 Benzene 2.124 0.63 0.57 0.00 0.13 0.716 

2 Toluene 2.598 0.64 0.57 0.00 0.15 0.857 

3 Ethylbenzene 3.284 0.58 0.64 0.00 0.12 0.998 

4 p-Xylene 3.077 0.66 0.57 0.00 0.18 0.998 

5 Propylbenzene 3.579 0.64 0.56 0.00 0.18 1.139 

6 Butylbenzene 4.117 0.64 0.56 0.00 0.18 1.280 

7 Naphthalene 3.376 1.38 0.92 0.00 0.19 1.085 

8 p-Chlorotoluene 3.142 0.78 0.67 0.01 0.12 0.980 

9 Dichlorobenzene 3.246 0.91 0.77 0.00 0.07 0.961 

10 Benzotrichloride 4.198 0.88 0.90 0.00 0.10 1.225 

11 Bromobenzene 2.909 0.95 0.76 0.00 0.09 0.891 

12 1-Nitropropane 1.239 0.22 0.72 0.00 0.25 0.706 

13 Nitrobenzene 2.040 0.87 1.08 0.00 0.23 0.891 

14 p-Nitrololuene 2.513 0.88 1.08 0.00 0.25 1.032 

15 p-Nitrobenzyl chloride 2.933 1.01 1.26 0.03 0.24 1.154 

16 N-Benzylformamide 0.679 0.91 1.56 0.26 0.66 1.114 

17 Anisole 1.911 0.62 0.79 0.00 0.33 0.916 

18 Benzyl alcohol 1.083 0.80 0.84 0.39 0.61 0.916 

19 3-Phenyl propanol 2.191 0.80 0.84 0.37 0.58 1.198 

20 5-Phenyl pentanol 3.275 0.79 0.86 0.37 0.58 1.480 

21 Phenol 1.014 0.78 0.90 0.50 0.39 0.775 

22 p-Chlorophenol 1.531 0.94 1.01 0.67 0.38 0.898 

23 2,3-Dihydroxynaphthalene 1.868 1.65 1.40 0.77 0.59 1.203 

24 1,3-Dihydroxynaphthalene 1.574 1.71 1.42 1.00 0.66 1.203 

25 Eugenol 2.860 0.91 0.97 0.27 0.53 1.354 

26 Danthron 2.220 2.19 2.18 0.49 0.82 1.646 

27 n-Propyl formate 0.815 0.12 0.73 0.00 0.42 0.747 

28 Melhyl benzoate 2.030 0.71 0.94 0.00 0.45 1.073 

29 Benzonitrile 1.748 0.81 1.09 0.00 0.27 0.871 

30 Coumarin 1.432 1.13 1.30 0.03 0.56 1.062 

31 Acetophenone 1.671 0.70 1.03 0.00 0.46 1.014 

32 Benzophenone 3.379 1.35 1.38 0.00 0.40 1.481 

33 cis-Chalcone 3.731 1.52 1.70 0.00 0.58 1.720 

34 trans-Chalcone  3.731 1.52 1.70 0.00 0.58 1.720 

35 cis-4-Nitrochalcone 3.580 1.79 2.27 0.00 0.68 1.894 

36 trans-4-Nitrochalcone 3.580 1.79 2.27 0.00 0.68 1.894 

37 cis-4-Methoxychalcone 3.609 1.58 1.80 0.00 0.79 1.919 

38 trans-4-Methoxychalcone 3.609 1.58 1.80 0.00 0.79 1.919 

39 Prednisone 0.729 2.19 3.25 0.41 1.97 2.712 

40 Hydrocortisone 1.651 2.04 2.92 0.73 1.90 2.798 

41 Mephenytoin 1.380 1.38 1.59 0.16 1.11 1.684 

42 0xazepam  2.177 2.40 1.83 0.60 1.43 1.992 

43 Flunitrazepam 2.938 2.14 2.15 0.00 1.15 2.143 

44 5,5-Diphenylhydantoin  1.831 1.94 2.04 0.44 1.14 1.869 

45 N,N-Dimethyl acetamide -0.664 0.26 1.01 0.00 0.83 0.788 
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In  Fig. 3-1A, the combined test for calibration and validation is passed for all analyte 

numbers 3-18 in the reduced calibration sets and this is passed for the first time for 3 analytes. 

Therefore, for the log P model, for the chromatographic system concerned, the minimal 

number of analytes in the reduced calibration set is considered to be three. 

In Fig. 3-1B, the combined test is passed for all analyte numbers 5-18 and this for the first 

time for 5 analytes. Therefore, for the QCI model, for the system concerned, the minimal 

number of analytes in the reduced calibration set is considered to be five. 

Fig. 3-1C shows that for 7-8 analytes in the calibration sets and in the corresponding test sets, 

stest
2 

>
 
s2,crit

2
 holds. The combined test passed for 9-18 analytes. For the LSER model, for the 

system concerned, the minimal number of analytes in the reduced calibration set is 9.  

The minimal number of analytes for the reduced calibration sets for the three models, are 

determined similarly on all chromatographic systems of the five data sets.   

 

In Fig. 3-2, for the Kaliszan data set, the numbers of chromatographic systems for which the 

combined calibration and validation test passed for a given model are shown against the 

number of the reduced-calibration set analytes.  

For the log P model, a calibration set with 3 analytes allows passing the test for all systems. 

On all systems for the QCI and LSER models, calibration sets with 6 and 13 analytes, 

respectively, pass the combined calibration and validation test.  

 

Therefore, for the Kaliszan data set, log P models developed with reduced calibration sets 

with 3 properly selected analytes are suitable for QSRR modelling and prediction. This is also 

true for QCI models with 6 and LSER models with 13 analytes.  

 

The minimal numbers of analytes in reduced calibration sets are also determined for the 

Wilson, Al-Haj I, Al-Haj II and Tan data sets according to the above procedure, see Table 3-4. 

  

For each model the maximal number of analytes in the reduced calibration set, max(nred), is 

determined, and was found to be 7 for the log P models, 8 for the QCI models, 15 for the 

LSER models, and 9 for the adapted LSER model with 4 descriptors (for the Tan data set).  

 

The analytes in the reduced calibration sets are selected by the Kennard and Stone procedure, 

starting from the center. Except for the center point the remaining analytes of the reduced sets 

will be located at the extremes of the variable space formed by the descriptors. Using 

uncorrelated descriptors, which one expects in good QSRR models, the number of analytes to 

describe the experimental domain will be equal to two times the number of descriptors. 

Therefore, this number of analytes plus one, the center point analyte, could be considered the 

minimal number of analytes to build proper QSRR models. From the case studies (Table 3-4) 

a somewhat higher number of analytes seems to be required, in practice 7, 8 and 15 versus 3, 

7 and 11 respectively. 

 

In Table 3-4, at the one-sided confidence level of 97.5%, useful QSRR models are developed 

by using three times the number of descriptors, m, in the model as the number of analytes in 

the reduced calibration set for the QCI-, LSER- and adapted LSER-models.  

The finding that 3 analytes per descriptor, selected as described above, are sufficient to 

develop useful QSRR models, allows smaller calibration sets than applying the traditional rule 

of thumb suggesting 4 to 6 analytes per descriptor. 

For the log P models, 7 analytes are required in the worst case. Thus even for a simple model 

with one descriptor a minimum of analytes seems to be required. Here, it will depend on the 

correlation between retention and log P, and on the linearity of this combination. 
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(A) 

 
(B) 

 
(C) 

  
  

Fig. 3-1  Calibration and validation variances as a function of the numbers of analytes used for model 

building and for testing, respectively, for chromatographic system 1 of the Kaliszan data set; (A) for the 

log P models, (B) for the QCI models, (C) for the LSER models; Top window: O s1,crit
2
, critical calibration 

variance (one-sided, 97.5%),  sred
2
, variance of the residuals of the reduced calibration sets, – sfull

2
, 

variance of the residuals of the full calibration set, and  minimal number of analytes required; Bottom 

window:  s2,crit
2
, critical validation variance (one-sided, 97.5%), x stest

2
, variance of the residuals of the test 

sets, and – sfull
2
, variance of the residuals of the full calibration set. 
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Fig. 3-2 Results for the Kaliszan data set; Number of chromatographic systems (out of 42) for which the 

combined calibration and validation test at a one-sided confidence level of 97.5% passed for a given 

number of calibration set analytes; () for the log P models, () for the QCI models, () for the LSER 

models 

 

Table 3-4 The numbers of analytes in the reduced calibration sets for the different models (at one-sided 

confidence level of 97.5%) 

No Data set 
No of 

systems 

Log P QCI LSER adapted LSER 

nfull nred nfull nred nfull nred nfull nred 

1 Kaliszan 42 23 3 25 6 25 13   

2 Wilson 10 45 6   45 15   

3 Al-Haj I 5 48 4 58 8
* 

40 12   

4 Al-Haj II 14 23 7  27 6 25 11   

5 Tan 5       87 9 

max(nred)  7   8  15  9 

number of descriptors m  1  3  5  4 

3*m  3  9  15  12 
*
 after the deletion of one outlying chromatographic system 

 

In Table 3-5 and Table 3-6 the correlation matrices are given for the full and reduced 

calibration sets between the QCI and LSER descriptors respectively of the Kaliszan data set. 

It is seen that (i) correlations between descriptors are low, and (ii) similarity between both 

correlation matrices is high. 
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Table 3-5 Correlation matrix of the QCI descriptors for the Kaliszan data set, (a) full calibration set, (b) 

reduced calibration set with 6 analytes 

(a)  
 δmin μ

2
 AWAS 

  δmin 1 -0.56 0.03 

μ
2
 -0.56 1 -0.25 

AWAS 0.03 -0.25 1 

(b) 
 δmin μ

2
 AWAS 

  δmin 1 -0.63 0.04 

μ
2
 -0.63 1 -0.42 

AWAS 0.04 -0.42 1 

Selected analytes in selection order: 3-Trifluoromethylphenol;  

1,3,5-Triisopropylbenzene; Benzamide; Hexachlorobutadiene;  

Benzonitrile; Benzene 

 

Table 3-6 Correlation matrix of the LSER descriptors for the Kaliszan data set, (a) full calibration set, (b) 

reduced calibration set with 13 analytes 

(a) 
 E S A B V 

E 1 0.54 0.09 0.13 0.19 

S 0.54 1 0.34 0.57 -0.23 

A 0.09 0.34 1 -0.19 -0.29 

B 0.13 0.57 -0.19 1 -0.02 

V 0.19 -0.23 -0.29 -0.02 1 

(b) 
 E S A B V 

E 1 0.46 -0.20 0.17 0.32 

S 0.46 1 0.09 0.59 -0.25 

A -0.20 0.09 1 -0.30 -0.35 

B 0.17 0.59 -0.30 1 -0.01 

V 0.32 -0.25 -0.35 -0.01 1 

Selected analytes in selection order: Benzonitrile; Caffeine; 1,3,5-Triisopropylbenzene;  

Dibenzothiophene; 3,5-Dichlorophenol; N-Methyl-2-pyrrolidinone; Benzamide;  

Hexachlorobutadiene; 1,4-Dinitrobenzene; 3-Trifluoromethylphenol;  

Toluene; 4-Cyanophenol; Phenol 

 

 

3.7.2 Covering of  variable spaces by reduced calibration sets 

 

In Fig. 3-3 the experimental and predicted log kw values of the analytes for one 

chromatographic system of the Kaliszan data set are depicted for the log P, QCI and LSER 

models based on reduced calibration sets with 7 analytes for the log P model and three 

analytes per descriptor for the QCI and LSER models. Coefficients of multiple determination 

were estimated by linear regression. Fig. 3-3 shows that the retentions of the analytes in the 

reduced calibration sets are distributed over the entire range of log kw values. This observation 

was seen for all other combinations of models and systems in the five data sets. This indicates 

that the extremes of the descriptor space (which were selected by the Kennard and Stone 

algorithm) also include the analytes with the extreme log kw values. 

 



26 

 

 

 

 

 
 

Fig. 3-3 Kaliszan data set; Estimated log kw vs. experimental log kw for chromatographic system 1, (A) 

for the log P model, (B) for the QCI model, (C) for the LSER model, () analytes of reduced calibration 

set, () test analytes  
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Fig. 3-4 shows that the log P values of the 7 selected analytes in the five data sets are well 

distributed over the entire range. In Fig. 3-5, for the Kaliszan data set, the values of the auto 

scaled QCI descriptors are shown of all analytes in the full calibration set and of the nine 

selected analytes in the reduced set. The latter are well distributed over the whole range of 

descriptor values. This observation is seen for all QCI sets in the five data sets. 

In Fig. 3-6, for the Kaliszan data set, a similar graph is given for the LSER descriptors. The 

values of the fifteen selected analytes are again well distributed over the whole range of 

descriptor values, an observation valid for all LSER sets in the five data sets. 

 

Both the dependent and independent variable spaces are thus covered well by the reduced 

calibration sets. The retention values of the analytes in the reduced calibration sets are 

distributed over the entire log kw range and the descriptor values in the log P-, QCI- and 

LSER-models are distributed over the descriptor ranges. 

 

Fig. 3-4 Log P values of all analytes ( | ) and of the 7 selected analytes () in the different data sets  
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Log P
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Fig. 3-5 Kaliszan data set; Values of the auto scaled QCI descriptors of all analytes ( | ) and 9 selected 

analytes () 

 

Fig. 3-6 Kaliszan data set; Values of the LSER descriptors of all analytes ( | ) and 15 selected analytes ()  
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3.7.3 Guidelines to construct small calibration sets 

 

In QSRR-studies, for instance using another data set or another equation, the experimental 

work can be reduced substantially by using small calibration sets. Time is saved when these 

small calibration sets are constructed before any experiment is carried out. The results in this 

study allow defining some guidelines to construct small calibration sets. 
 

1. Determine the descriptors to be included in the model. 

2. Select a large set of candidate analytes which are considered representative in relation 

to the application involved.  

3. Calculate the descriptors of the analytes. 

4. Select analytes by the method of Kennard and Stone, until the number of analytes is 

equal to 3m. 

5. Carry out the experiments with the small calibration set. 

6. Check whether the range of retention values is sufficiently large for the application at 

hand and develop the QSRR model. 

 

 

3.8 Conclusions 

 

The aim of this work was to develop a strategy for the construction of reliable reduced 

calibration sets for QSSR models, based on molecular structure properties.  

 

It has been demonstrated, using 76 reversed-phase high-performance liquid chromatography 

systems, that it is possible to develop useful QSRR models based on selected reduced 

calibration sets. The analytes in the reduced calibration sets were selected based on their 

distribution in the molecular-descriptor space. Selection was carried out by the algorithm of 

Kennard and Stone on the auto scaled descriptors. The calibration and prediction errors of the 

reduced calibration sets are not significantly larger than the calibration errors of the 

corresponding full calibration sets. Both the dependent variable space, formed by the retention 

values log kw or log k, and the independent variable space, formed by the in the model 

considered descriptor values, are covered well by the reduced calibration sets.  

 

The results show that application of the proposed strategy provides log P models with seven, 

and QCI and LSER models with three selected analytes per descriptor, which are suitable for 

the future prediction of retentions. Substantial reductions of calibration sets for log P, QCI 

and LSER models can thus be realised. Guidelines to construct small calibration sets are 

formulated.  

 

 

The use of these reduced calibration sets will reduce the experimental workload for the 

development of solid QSRR models substantially. This may encourage the use of QSRRs in 

laboratory practice. 
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4 Introduction to variable selection 
 

 

Efficient variable selection methods can help reducing the data flood in chemometrics, 

especially when they are applied on widely used multivariate regression techniques in 

analytical chemistry. These techniques are used for the extraction of relevant chemical 

information about analytes, products or processes [1-3]. With multivariate regression models 

chemical quantities can frequently be estimated with reasonable accuracy and with minimal 

data treatment [3]. Partial least squares (PLS) regression is a commonly used multivariate 

technique. PLS models the relationship between the variables in a data matrix X and a 

response matrix Y by defining a set of latent variables which maximizes the explained 

covariance [1,2,4]. PLS is considered able to deal with a large number of noisy and correlated 

variables, and with small numbers of samples. It is a versatile technique, used for both 

qualitative and quantitative analysis, in many different application fields, such as food 

chemistry, pharmaceutical analysis, agriculture, environment, and industrial and clinical 

chemistry [5].  

 

PLS regression has foremost been used for quantitative tasks in multivariate calibration [1,2], 

but has also been applied for qualitative classification tasks in the form of partial least squares 

discrimination analysis (PLS-DA) [6,7]. The PLS-DA method is especially useful for high-

dimensional data, where classical discrimination methods such as linear discriminant analysis 

(LDA) have numerical difficulties because of singularity issues [8]. PLS-DA is one of the 

most widely used classification methods, not only in chemometrics but also in bioinformatics 

[8,9].  

 

Modern analytical techniques produce huge amounts of data. However, most of it is noisy or 

uninformative data. With variable selection, noisy and uninformative variables can be 

eliminated, and subsets containing informative variables retained. Using only informative 

subsets of variables, simple, robust and interpretable PLS models can be obtained, both in 

chemometrics and bioinformatics [10-18].  

 

In bioinformatics, especially in metabolomics, variable selection is used for biomarker 

discovery [9,19-23]. Biomarkers are measurable biological characteristics which can be used 

as indicators of a biological state or condition [22]. For biomarker discovery, it is important to 

find the simplest combination of metabolites that can produce a suitably effective predictive 

result [22]. Hence there is a need for highly selective variable selection methods. Existing 

methods should be modified or new methods developed to meet this challenge. Additionally, 

variable selection will also help to master the data tsunami in chemometrics and 

bioinformatics [24].  

 

In this introduction, an overview is given of variable selection methods for PLS1 and PLS2, 

both for quantitative and qualitative tasks, because PLS now dominates multivariate 

modelling in chemometrics [25]. Also, an overview is given of variable selection for 

Quantitative Structure-Activity Relationships (QSAR) modelling and the related Quantitative 

Structure-Retention Relationships (QSRRs) for Reversed-Phase Liquid Chromatography 

(RPLC). The PLS modelling, including data pre-processing and validation, and the scope of 

the variable selection process are also described. The characteristics of the most widely used 

types of variable selection methods and their advantages and drawbacks are highlighted. 
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Methods which are mostly applied for multiple linear regression (MLR), such as variable 

selection in a stepwise mode [26] and successive projections algorithms (SPA) [27], or 

methods in which variables are selected independently of PLS modelling are not included.  

 

Finally conclusions are formulated for the development of new variable selection methods in 

this PhD project. 

 

 

4.1 PLS model 

 

A PLS model for multiple responses (PLS2) is developed from a calibration set of N objects 

or observations with M responses or dependent variables in the Y matrix and K independent 

predictor variables in the X matrix. The Y(N × M) matrix consist of M column vectors of 

dependent response variables denoted by ym (m=1, …, M). The X(N × K) matrix consist of K 

column vectors of independent predictor variables denoted by xk (k=1, …, K). The objective 

of PLS is to select the optimal number A (A≤K) of latent variables or PLS2 factors, which are 

linear combinations of the original variables xk. The PLS2 model is given by Eqs. (1) and (2). 

 

A

T ETPX            (1)  

A

T FTQY             (2) 

 

where T(N × A) is a score matrix, P(K × A) a matrix with the x-loading vectors pa (a=1, 2, …, 

A) as columns, Q(M × A) a matrix with the y-loading vectors qa (a=1, 2, …, A) as columns, 

EA(N × K)  and FA(N × M) the residual matrices for X and Y, respectively, after the extraction 

of A factors. The optimal number of PLS factors, A, can be determined using cross-validation 

(CV).  

 

The matrix B(K × M), with PLS2 regression coefficients bkm, can be estimated after 

calibration, with, 

 

  QWPWB
1

 T           (3) 

 

where W(K × A) is the X weight matrix [2].  

 

The responses of the samples in the test set can be predicted with, 

 

BXY TestTest 
ˆ            (4) 

 

where TestŶ (NTest × M) is the predicted response matrix of the test set samples, XTest (NTest × K) 

is the data matrix of the test set, and NTest is the number of test-set samples. 

 

For a PLS model with one response (PLS1), similar equations can be used with M=1. Further 

details on PLS can be obtained in Refs. [1,2,4].  
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4.2 PLS modelling 

 

PLS model building encompasses the following steps: (i) data pre-processing, (ii) modelling, 

and (iii) validation. Each step in this process has an effect on the following steps. These steps 

are described below. 

 

4.2.1 Data pre-processing  

 

There are many experimental and instrumental effects causing additional variations and non-

linearities in the data which are not related to the composition of the samples. Examples of 

these effects are, sample collection, sample preparation and instrumental artefacts [28,29]. 

PLS has a high modelling power and these additional variations and non-linearities can be 

modelled in conjunction with the target information, at the expense of higher model 

complexities. Proper data pre-processing can eliminate these unwanted variations beforehand 

and concentrate the relevant information in the first PLS factors, which results in more 

parsimonious models [28].  
 

The results of PLS modelling depend on the pre-processing of the data [12]. The influence of 

more informative X-variables can be increased by appropriate pre-processing [1]. Important 

pre-processing techniques are centering, scaling, normalisation, standard normal variate 

transformation, multiplicative scatter correction, Savitzky-Golay smoothing, differentiation, 

and orthogonal signal correction. However, pre-processing affects the data analysis depending 

on the analytical technique used and there is no single recipe that can be used for all data [29]. 

The pre-processed data set is used as the basis for variable selection [12]. 

 

Variables are centered by subtracting their averages. Centering removes the offset from the 

data. It may (i) reduce the rank of the model, (ii) increase the fit to the data, or (iii) avoid 

numerical problems. Centering will not remove scale differences between variables [30]. 

 

Scaling is used to adjust scale differences or to accommodate for heteroscedasticity. It 

changes the weights of the variables [30]. Variables which ranges are different more than one 

magnitude of 10 are often logarithmically scaled. This make their distributions fairly 

symmetrical. If the relative importance of variables is unknown [1], or when variables have 

different scales [3], variables are first centred by subtracting their averages, followed by 

division by their standard deviations. This so-called auto-scaling gives each variable the same 

prior importance in the analysis [1].   

 

Normalisation is applied if size effects of samples, such as those of concentration, should be 

removed. Chromatographic or spectral profiles of samples can be normalised by division of 

each value by the sum [31] or norm [32] of the profile.  

 

The standard normal variate (SNV) transformation  reduces multiplicative effects of 

scattering, particle size and multi-colinearity changes over spectra. In SNV each spectrum is 

first centred and then scaled by its standard deviation [33,34]. 

 

Multiplicative scatter correction (MSC) eliminates the effect of light scattering of particles of 

different sizes and shapes in solutions. It corrects for both multiplicative and additive scatter 

effects [34]. MSC improves the linearity of the X-y relation. A linear regression is performed 

between a sample spectrum xi and a reference spectrum xref, most frequently the mean 
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spectrum: xi=b0+b1xref . Thereafter, the sample spectrum is corrected by subtraction of  the 

intercept b0 and division by the slope b1: xi,MSC= (xi-b0)/b1, [2,33-35]. 

 

The noise in each sample profile point consists of random changes in the amplitude of the 

signal. Smoothing reduces the signal-to-noise ratio of these profiles. The best-known 

algorithm used for smoothing is that of Savitzky and Golay (SG) [36]. In SG smoothing, the 

noise fluctuations in the data are reduced by the application of a 2m+1 (m=1, 2, …) wide 

moving window. A polynomial of a chosen degree n (n < 2m+1) is fitted to equally spaced 

data in the window by least squares regression analysis, and the central point of the window is 

interchanged with the corresponding fitted value of the polynomial. Thereafter, the window is 

moved one point, a new polynomial calculated, and a new fitted value interchanged with the 

new central point, etc.. The least squares regression procedure is accelerated by the use of pre-

calculated arrays of convoluting integers and array norms for each order n of the polynomial 

(n=2, 3, …) and each window size (2m+1=5, 6, …). The convolution arrays with the 

corresponding norms are also called SG filters. The method is introduced by Savitzky and 

Golay in [36]. Corrections are published in [37,38]. Equations for the calculation of SG filters 

are given in [38]. 

 

Differentiation is widely applied to eliminate background or baseline effects and to enhance 

differences between profiles [34,39]. The first derivative removes constant baseline or 

background effects and the second derivative eliminates linear baseline shifts [34]. The 

Savitzky-Golay procedure is the recommended method for the calculation of derivatives [39]. 

It combines smoothing and differentiation into one single step. Signals can be differentiated 

by SG filters and derivatives of smoothed signals are obtained. The central point of the 

moving window is interchanged with the corresponding derivative of a chosen degree of the 

fitted least squares polynomial [36]. 
 

In  Orthogonal signal correction (OSC), information is removed that is orthogonal to the 

response y [33,40-43]. 

 

4.2.2 Modelling and validation 

 

In PLS modelling, an optimal model is developed, based on a representative set of calibration 

samples and using a suitable PLS algorithm. The main purpose is to estimate predictor 

parameters from the PLS model in such a way that predictions of the response y with 

measured X values of future unknown samples have as low prediction errors as possible. The 

optimal PLS model complexity must be determined, and predictor parameters must be 

estimated. Finally, the obtained model must be validated [44]. These steps make the 

development of an operational PLS model a complicated process. 

 

Representative samples can be selected using accurate and reproducible sampling procedures. 

They must also be representative for future unknown samples of the same kind in relation to 

the problem at hand. See for more details Ref. [45]. 

 

Two PLS algorithms are widely used: the Nonlinear Iterative Partial Least Squares (NIPALS) 

algorithm with orthogonal scores, and SIMPLS. The NIPALS algorithm is introduced by 

Wold et al. in [46], see also [1,2,4]. It can be considered as the standard PLS algorithm 

[47,48]. SIMPLS is introduced by de Jong in [48]. Faber and Ferré showed that NIPALS is 

the most stable and SIMPLS the fastest algorithm [47]. 
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The PLS model is developed with two independent sets of samples, a calibration or training 

set and a test set. The model is built with the calibration samples in the training set. The 

model must be validated before it is used for prediction of response values y of new samples. 

Therefore, during model building, the predictive ability of the PLS model is assessed by 

internal validation with the training set. Finally, the PLS model is assessed by external 

validation with a test set. The samples in the test set are independent from the samples in the 

training set. Mostly, the training and test sets are obtained by partitioning the original data set, 

for instance using the Kennard-Stone [49] or the Duplex [50] algorithm, or by random 

selection [44]. 

 

First, during model building, the optimal model complexity AOpt must be established. A 

compromise must be found between under-fitting and over-fitting. In under-fitting, the model 

complexity is too low (A<AOpt), leaving a part of the structure in the data unexplained. In 

over-fitting, the model complexity is too high (A>AOpt), including a part of the measurement 

noise in the model. Both under- and over-fitting may result in poor future model performance. 

With numerous and correlated X-variables there is a substantial risk for over-fitting, i.e., 

getting a well-fitting model with little or no predictive power. Cross-validation (CV) is a 

practical and reliable way to test this predictive ability in the training set. It has become the 

standard in PLS modelling [1].  

 

Cross-validation is a resampling method for internal validation with the calibration set. This 

set is split into M subsets, often five to ten. Repeatedly, sub-models are developed with the 

reduced calibration set with one of the subsets left out, until each subset has been kept out 

once. This produces M sub-models. With each sub-model, predictions of the responses of the 

samples in the left out subset are estimated, and differences between the experimental and 

predicted responses calculated. When all sub-sets (m=1,2, …, M) have been left out in cross-

validation, the root mean squared errors of cross-validation (RMSECV) is determined. Cross-

validation is repeatedly conducted with increasing model complexities A ( A= 1, 2, …), and a 

graph of RMSECV against the model complexities is made. The complexity corresponding to 

the minimum in this graph is considered as the optimal model complexity AOpt [1,51].  
 

Although the minimum RMSECV is a reasonable choice, it is based on a finite number of 

samples, and therefore, it is subject to error. Thus, using the number of factors corresponding 

to the minimum can lead to some over-fitting. Therefore, one can choose for a less complex 

and probably more robust model than that corresponding to the absolute minimum [3,52,53]. 

Using a model with less parameters, may result in less propagation of errors from the data into 

the parameter estimates, and so over-fitting will be minimized [54]. In case of a steady 

decrease in RMSECV, without a minimum, the complexity is chosen for which the decrease 

in predictive ability is below a given threshold [55,56].  
 

The commonly applied leave-one-out cross validation has a strong tendency to over-fitting 

[1,57]. A segmented cross-validation procedure with more than one sample in the left-out 

segment (n-fold or leave-more-out cross-validation) is therefore preferred. 
 

In PLS modelling for classification, the optimal model complexity should not be determined 

by CV with respect to RMSECV, because this is most often not optimal for classification 

purposes [58]. In this case, the optimal model complexity can be determined based on the 

percentage of correctly classified samples that have been left out [59,60].  
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4.3 ‘Large K - small N’ problem 

 

Modern analytical methods produce a large number of variables K, while the number of 

samples N  is often limited [61]. However, often most of the variables are uninformative 

because they are noisy, originate from the analytical background or from factors that are 

irrelevant to the problem at hand [10,62]. Additionally, when the number of variables is much 

larger than the number of samples (K>>N) it is possible that variables by chance correlate to 

the dependent property and over-fitting occurs. Predictions will be worsened by 

uninformative variables. Therefore, they should be removed. The ‘large K - small N’ problem 

can be solved by a search for a small set of informative variables to model the dependent 

property [63]. 

 

Both theoretical [61,63-66] and experimental evidence [3,11,67-71] exist that elimination of 

uninformative variables from the original data set improves the performance of PLS models. 

By elimination of uninformative variables, the risk of over-fitting is reduced and better 

predictions may be obtained. This may result in simpler models, which can help in the 

interpretation of the multivariate models. Elimination of uninformative variables can also be 

important for cost reduction in process control by reducing the number of sensors in filter-

based instruments for industrial on-line or at-line purposes [3,10,12]. Finally, variable 

reduction can also be relevant  for computational reasons [12]. It is now widely accepted that 

a well-performed variable selection can improve PLS models [13]. 

 

In practice, it is impossible to investigate all models based on all possible combinations of 

variables. For K variables, 2
K
-1 models should be evaluated. For example, for 50 variables, 

1.13∙10
15

 combinations and models are possible. If it took 1 second per model, this would take 

3.57∙10
7
  years. Even the investigation of all models based on a specific number of variables 

may be impossible. For instance for the selection of a subset of J from K variables, K!/{J!(K-

J)!} models should be investigated [72]. For example, if one wants to build a model based on 

a selection of 10 out of 50 variables, 50!/{10!∙(50-10)!}=1.03∙10
10

 possible combinations 

should be investigated, and this would take 326 years.  

 

In multivariate data analysis in analytical chemistry, the number of variables is often much 

larger. Spectroscopic data may contain several hundreds to some ten thousands of variables 

[73-75]. Hence, mostly, it is impossible to test all combinations of variables. In variable 

selection methods the number of combinations is restricted by an appropriate algorithm. 

Usually a small subset is obtained from the original variables. 

 

 

4.4 Classification of variable selection methods 

 

Variable selection methods can be classified based on the use of individual variables or 

intervals, on the initial selection and on the kind of algorithm used for the selection. All 

variable selection methods start with an initial selection of variables followed by a further 

optimisation of the selection by an appropriate algorithm. The variable selection method can 

be based on selecting either individual variables or intervals of variables. For methods using 

individual variables, the selection can start with variables selected either randomly or based 

on given variable properties, such as PLS regression coefficients (see section 4.6). 

The methods based on predictive properties can further be optimised either by deleting 

variables below a specified threshold, or after ranking on a given property, followed by an 
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iterative process consisting of variable elimination, remodelling and re-ranking of variables 

[16,76]. In penalised predictive property based methods, simultaneously a PLS model is built 

and variables are selected using a constraint for the regression coefficients [8,77].  

 

In the selection methods starting with randomly selected variables, the selection is further 

optimised either iteratively in Iterative PLS [78], or by a genetic algorithm for PLS in GA-

PLS [79-81].  

 

Iterative PLS (IPLS) starts with a small number of randomly selected variables. Thereafter, 

iteratively,  new variables are added to or already selected variables removed from the 

selection if that improves the model [78]. Iterative PLS can also be applied with intervals. In 

genetic algorithms, a start population is created consisting of a set of vectors each with 

randomly selected variables. The following optimisation of the variable selection is conducted 

by an algorithm that mimics the natural selection in biologic evolution.  

 

In the methods based on intervals, spectra are subdivided into intervals of equal width and 

separate PLS models developed for each interval. Variable selection is optimised either by 

adjusting the interval width or combining intervals, the latter occasionally also combined with 

adjusting  interval widths. 

 

Table 4-1 provides an overview of the classification of variable selection methods, including 

the most important methods within the different classes and their references. The most widely 

used techniques are shown in bold italics.  

 

Table 4-1 Classification of variable selection methods, with the most important methods and their 

references 

Selection 
type 

Initial selection Type of further 
optimisation  
of the selection 

Examples of (types of) 
methods 

References 

Individual 
variables 

Predictive property 
based 

Non-iterative 
optimisation  

Threshold PPRV-
methods 

[3,16,69,87,88,90,93] 

Iterative 
optimisation  
 

Iterative PPRV-methods  
UVE 
MCUVE 
CARS 

[3,11,16,76,88,97] 
[3,14,90,103-109]  
[43,71,82,99,103,110,111] 
[82,98-100] 

Penalised  [8,87,112,113] 

Random Iterative 
optimisation  

Iterative PLS  
GA-PLS 

[78,89,164] 
[16,68,79,80,81,114-117] 

Intervals of 
variables 

Individual intervals Adjusting interval 
width 

iPLS [125,127-130] 

Combining 
intervals and/or 
adjusting interval 
width 

Iterative PLS 
SiPLS  
FiPLS  
BiPLS 
GA-iPLS  
MWPLS  
MCSMWPLS, CSMWPLS,  
SCMWPLS 

[89,164] 
[125,127,128] 
[129,130] 
[126,127,129,130] 
[126,130] 
[131-136] 
 
[132,134,137] 

Most widely used types of methods shown in italics (see text); Abbreviations see text. 

 

The characteristics of the most widely used types of methods, as well their advantages and 

drawbacks are described below. These types include (i) methods based on predictor-variable 

properties using a threshold, e.g. Threshold PPRV methods, (ii) iterative methods based on 

predictor-variable properties, e.g. Iterative PPRV methods, (iii) Uninformative Variable 

Elimination (UVE) methods, (iv) Penalised methods, (v)  Genetic Algorithms for PLS (GA-

PLS), and (vi) Interval PLS (iPLS). They are shown in Table 4-1 in bold italics. 
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At the end of this introducing chapter, these most widely used types of methods are compared 

for their advantages and drawbacks. The comparison is made to select the most promising 

type of variable selection method as a starting point for the development of new or improved 

methods to help mastering the data tsunami in chemometrics and bioinformatics. 

 

 

4.5 Scope of variable selection  
 

According to Andersen and Bro [12], variable selection should be considered as variable 

elimination where the clearly irrelevant variables are removed and the remaining variables 

containing potentially useful information are kept for further data analysis. Variable-selection 

methods are developed to find a good set of variables rather than the optimal set. 

 

Essentially, a variable-selection procedure consists of two parts. First, a variable selection part 

in which variables are selected based on their influence on the model. This requires the choice 

of a search algorithm and an influence measure for the variables. Secondly, a model 

evaluation part to evaluate the performance of the PLS models built with the selected 

variables [12,68,82].   

 

Mostly, a reasonable and statistically valid model can be made using all variables. The model 

validity is tested by appropriate cross- and test-set validation [12]. A reasonable and valid 

model gives a satisfying description of the relation between independent and dependent 

variables and has acceptable predictive properties. This model is not perfect, so it can be 

improved. Therefore, it is a good reference point for models built after variable selection. It is 

also reasonable to assume that model parameters, such as PLS regression coefficients or their 

significance, can be applied to find a reduced set with informative variables giving finally the 

best model. It must be stressed that the application of pre-processing techniques may affect 

the result of a variable-reduction method [3,12]. 

 

The initial model is improved during the variable-selection procedure, either in a forward or 

backward mode. During variable selection, properties of the models built with the remaining 

sets, such as predictive ability, will change. Therefore, these properties will often be evaluated 

in an iterative process.  

 

Selection of the most correlated variables with the response y may not always result in the 

best performing models because variables that correct for interferents may be eliminated. 

Combinations of variables, which have low individual correlation coefficients with the 

response, may be better correlated when combined [82]. Variables that individually are rather 

useless, may provide well-performing models in combination with others [10]. 

 

In spectral data analysis, analytical chemists are not interested in the most correlated 

variables, but in combinations of variables found in chemically meaningful absorption bands 

or combinations of bands [82]. Additionally, information from a set of variables, combined in 

a multivariate model, makes it possible to determine the concentration of an analyte in the 

presence of interferents, provided that the signals of the interferents are not completely 

identical to that of the analyte [58,83].  
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4.5.1 Forward and backward modes 

 

During the variable-selection procedure the model is improved, either in a forward or 

backward mode. The forward mode or forward selection starts building a model with the 

variable that results in the best prediction. Then, the variable is added  which gives the best 

prediction in combination with the first. Thereafter, variables that give the best and improved 

predictions in combination with the already selected are added one by one. The forward mode 

may disregard combined effects of variables because it selects the variables sequentially [12]. 

The backward mode or backward elimination starts with the full original variable set, 

followed by eliminating one by one the variables that contribute least to the prediction. The 

backward mode is reasonably fast and has the advantage that it takes combined effects of 

variables into account [12]. In each mode, the variable-selection process is repeated until a 

stopping criterion, such as an optimal predictivity, is met. 

 

4.5.2 Model evaluation 

 

The predictive ability of a PLS model is assessed by internal and external validation. The 

model is built with the samples in the training set. During variable selection, PLS models are 

assessed by internal validation in the training set, using cross validation. The model developed 

with the finally selected variable set is assessed by external validation with a test set. The 

samples in the test set are independent from the samples in the training set. Mostly, the 

training and test sets are obtained by partitioning the original data set, for instance using the 

Kennard-Stone [49] or Duplex [50] algorithms, or by random selection [44]. The prediction 

error is evaluated either on the objects in the training set, on those in the left-out segments of 

cross validation, or those on the objects in the test set, as the root mean squared errors of 

calibration (RMSEC), cross validation (RMSECV) or prediction (RMSEP), respectively, or as 

the squared values of the correlation coefficient between estimated and experimental 

properties, for cross-validation and test objects, 2

CVR and 2

TestR , respectively. 

 

4.5.3 Chemical relevance of variable selection 

 

The goal of variable reduction is to obtain models with small sets of variables showing  

improved or similar predictability. Variable selection can provide useful insight in which 

variables are informative and which are not. Therefore, variable reduction may help in the 

chemical interpretation of the PLS model. As an example, in near infrared (NIR) 

spectroscopy, organic molecules have specific absorption bands. Therefore, NIR spectra of 

samples, containing organic molecules, are influenced by these absorptions. In fact, the 

functional group effect is by far the most dominant of all effects in NIR [10]. It may be 

expected that informative variables are located in these absorption bands.  
 

 

4.6 Predictor-variable property based methods 

 

For PLS1, with one response variable y, many methods are  based on so-called predictor-

variable properties. Mostly, the properties are related to model parameters or model 

performance. They can indicate the influence of the variables on the PLS1 model.  The higher 

the magnitude of the predictor-variable property, the more important the variable. 
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The predictor-variable properties can be divided into four groups.  

1. Model dependent parameters:  

 magnitude of PLS regression coefficients [11,16,69,71,76,84-87].  

 significance of PLS regression coefficients assessed by the student t value, calculated 

from the ratio of the PLS regression coefficient and its standard deviation, and 

estimated by a resampling technique [3,16,71,87-90].  

2. Combined model dependent parameters:  

 variable importance in the projection (VIP) score of a variable [11,76,86,87,91,92].  

 norm of the loading weights [86].  

3. Parameters related to the predictive ability of the model,  

 selectivity ratio (SR) [19,20].  

4. Model independent parameters,  

 correlation coefficient between predictor variables and the dependent variable 

[3,11,93]. 

 

As an example, predictor-variable properties are calculated for a full-spectrum PLS model, of 

a data set consisting of near infrared spectra of corn samples, with as response their moisture 

content, provided by Eigenvector Research (http://www.eigenvector.com/, accessed on March 

21, 2014). All properties are calculated for centred data, with the exclusion of the correlation 

coefficient. In Fig. 4-1, the above-mentioned six predictor-variable properties are shown, as 

well as the water absorption bands, for the full-spectrum PLS model of this data set. In the 

NIR region, water has strong absorption bands between 1400 and 1450 nm and between 1900 

and 1940 nm [94]. In the graphs of the predictor-variable properties related to the PLS model 

(Fig. 4-1A-E), positive peaks are seen inside both water bands. The peaks in the second water 

band (from 1900 to 1940 nm) are always higher than those in the first water band (from 1400 

to 1450 nm). In Ref. [95] is described that the NIR absorbance in the second water band is 

often used for the quantitative analysis of water contents in dry food samples, such as corn. 

These positive property peaks in the water bands indicate that important variables result in 

high values of predictor-variable properties. Therefore, predictor-variable properties, which 

are related to the PLS model parameters or model performance, can be applied to select 

informative variables and/or to eliminate uninformative.  

In Fig. 4-1F, correlation coefficients between the original x-variables or absorbances at a 

wavelength and the original moisture contents are given. These correlation coefficients are 

independent of the PLS model. All correlation coefficients are high and a minor peak is 

observed in the second water band. The correlation coefficient between predictor variables 

and the dependent variable is often used as predictor-variable property [3,11,93].  

 

The methods based on predictor-variable properties start with building a model, mostly the 

PLS model developed for the original data set, for which one of the above-mentioned 

properties is calculated. Variables then are ranked in descending order of the considered 

property. This ranking reflects their importance for the PLS model. We call this Predictive-

Property-Ranked Variables based methods, denoted as PPRV methods. These PPRV methods 

can be split into two sub-categories: non-iterative PPRV methods using a threshold and 

iterative PPRV methods. The characteristics of these methods are described below. 

 

http://www.eigenvector.com/
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Fig. 4-1 Predictor-variable properties for data set corn, response moisture; (A) PLS regression coefficient; 

(B) Significance of PLS regression coefficients; (C) Variable importance in the projection; (D) Norm 

loading weights; (E) Selectivity ratio; (F) Correlation coefficient; the yellow columns represent the water 

absorption bands  

 

 

4.6.1 Non-iterative PPRV methods 

 

In the non-iterative PPRV methods using a threshold, variables with property values below a 

pre-defined threshold are considered uninformative and removed. Thereafter, for the reduced 

variable set, the final PLS model is calculated. These methods are fast and easy to compute 

[15]. However, a common disadvantage is that they neglect both the interactions of variables 

with the response and the interactions among variables [18]. 

 

The selection is highly affected by the chosen threshold and choosing a good threshold level 

may be a challenge [15]. The threshold is either determined arbitrarily [93], or through 

statistical assessment of the significance of the properties using  bootstrap [91], jack knife 

[16,88,90,96] or Monte Carlo re-sampling methods [71,82]. The performance depend on the 

applied property [16,88]. These methods have been widely applied in analytical chemistry 

[16,20,87,88,90,93]. They are also the most widely used methods for biomarker discovery in 

metabolomics [22]. 

 

4.6.2 Iterative PPRV methods 

 

In iterative PPRV methods, iteratively, the variable with the smallest value is eliminated and a 

new PLS model calculated. In the stepwise removal of variables, the predictive abilities of the 

PLS models are assessed, mostly by the RMSECV. The set of variables, resulting in the 

optimal model, is then selected [3,11].  

 

These iterative PPRV methods are time consuming [15]. They are effective because their 

selective and predictive abilities are good, especially when using the PLS regression 

coefficients. They are robust, and avoid over-fitting and chance correlations. They are useful 

for different types of data sets. Their performance depend on the applied property [11]. 
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Contrary to the methods using thresholds, they account both for interactions of variables with 

the response and for interactions among variables [18]. Methods based on predictor-variable  

properties have been widely applied in analytical chemistry [3,11,16,76,88,97]. They are also 

often used for biomarker selection [22]. 

 

Other iterative PPRV-methods are Uninformative Variable Elimination for PLS (UVE-PLS), 

including Monte-Carlo UVE (MCUVE), Covariance Procedures (CovProc) [11,65], 

Competitive Adaptive Reweighted Sampling (CARS) [82,98-100] and Covariance Selection 

(CovSel) [101]. They all use some predictor-variable property, but the algorithms for variable 

selection are different from that described above. UVE-PLS is a widely used method in 

chemometrics. The characteristics of UVE-PLS are described in section 4.7. 

 

 

4.7 Uninformative Variable Elimination 

 

Uninformative Variable Elimination for PLS (UVE-PLS) is based on the significance (or 

fitness) of PLS regression coefficients as predictor-variable property. UVE-PLS is introduced 

in Ref. [90]. It determines the fitness of each predictor variable k in the X matrix against those 

of L artificial random variables added to the data set. These added random variables have very 

small absolute values, of the order of about 10
-10

, so that their influence on the regression 

coefficients of the predictors is negligible. For the optimal complexity A, the K+L mean PLS 

regression coefficients b̄k and their standard deviations s(bk) are calculated from vectors of 

regression coefficients, obtained by a resampling method, such as jack-knifing. The fitness ck 

of each variable k is determined by the ratio of the mean regression coefficient and its 

standard deviation: ck=b̄k/s(bk). A suitable cut-off value |ck|cut-off is calculated from the L 

artificial variables, taking the maximum of their absolute ck values. Predictor variables with 

|ck| below the cut-off value are classified as uninformative and eliminated. A new PLS model 

is built with the reduced set and cross-validated. The algorithm is repeated for complexities A-

1, A-2, … until the predictive ability is not improved anymore. 

 

An advantage of UVE-PLS is that it is user independent and therefore does not present any 

configuration problems [89]. A drawback is that in a replicated UVE-PLS, the number of 

eliminated variables is variable because of the variability in the added artificial random noise. 

Additionally, the number of retained variables by UVE-PLS is rather large [10,102]. It is 

better not to use UVE-PLS in Quantitative Structure–Activity Relationship (QSAR) 

modelling, because bad models are obtained [17]. In QSAR the X matrix does not contain 

uninformative noise variables, which are to be removed. However, the method has been 

widely applied in analytical chemistry [3,14,43,90,103-109].  
 

Modifications of the UVE method are obtained by the use of other resampling techniques than 

jack-knifing.  In Monte-Carlo UVE (MCUVE), a large number (typically 100) of subsets of 

training samples are selected randomly from the training set, and PLS sub-models generated. 

The fitness ck of each variable is calculated from the corresponding regression coefficients of 

the sub-models. No random noise variables are added to the original data matrix. The method 

is introduced in [71]. Applications are described in [43,71,82,99,103,110,111].  
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4.8 Penalised methods 

 

Penalised (or sparse) methods are based on PLS regression coefficients as predictor-variable 

property. They simultaneously build a regression model and perform wavelength selection by 

setting regression coefficients of uninformative variables to zero.  

They are increasingly applied in chemometrics [77]. An early example of a penalised method 

is the Least Absolute Shrinkage and Selection Operator (LASSO) method. The method is 

introduced in [112]. In the LASSO method the sum of squared errors for least squares 

regression is minimized with the constraint that the sum of the absolute value of the 

regression coefficients, i.e. the L1 norm, should be below a predefined threshold. Because of 

this constraint, also called the L1 penalty, coefficients will be made zero. This can be regarded 

as a variable selection technique. The value of the threshold determines the degree of variable 

selection. A low threshold will make many coefficients zero and a lower number of variables 

will be retained [8,12,77,112]. Applications can be found in [8,87,113]. In [87] was found that 

the performance of LASSO was worse than that of a method using a threshold for VIP values. 

In [77] is stated that the LASSO does not perform as well as classical multivariate calibration 

methods in combination with other variable selection approaches. 

 

Other penalised methods include Ridge Regression, Elastic Net, Sparse PLS, and Sparse 

Partial Least-Squares Discriminant Analysis (see section 4.12), Support Vector Regression, 

see Ref. [8,77]. Sparseness, with estimated parameter vectors containing many zero’s, can 

lead to an improved prediction or classification performance compared to non-penalised 

methods. However, it depends on the data structure and on the sample size whether penalised 

methods give better results [8]. Penalised methods are still not as fast and efficient as classical 

multivariate methods [77]. 

 

 

4.9 Genetic algorithms 

 

Genetic algorithms (GAs) are methods based on the principles of natural selection in biologic 

evolution. Species adapt over a high number of generations, because the fittest survive and 

spread their genetic material to following generations [79]. There are many variants of GAs. 

However, all have four fundamental steps in common:  

1. creation of the original population 

2. evaluation of the models 

3. reproduction 

4. mutations 

These steps are discussed below. In different GAs, these steps are carried out in various ways. 

 

1. Creation of the original population 

A start population is created consisting of a number of vectors with randomly generated zeros 

and ones. The size of each vector is equal to the number of variables. The vector is called a 

chromosome. Each zero or one is a gene. A one indicates that the corresponding variable 

should be included in the model. The included variables form a subset of the original 

variables. For each chromosome, a PLS model is developed, called an individual. The number 

of chromosomes in the start population is the population size. It is mostly chosen in the range 

between 20 and 500 and remains constant during the calculations.  
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2. Evaluation of the models 

The predictive ability of each individual is evaluated by the RMSECV, called the fitness of 

the individual.  
 

3. Reproduction 

A new generation of chromosomes is created in two sub steps. First, chromosomes from the 

former generation are copied with a probability related to its fitness. The best chromosomes 

have a higher probability to be copied than the worst. Secondly, the copied chromosomes are 

randomly paired and the pairs undergo a crossover. In a crossover, offspring is formed by 

interchanging randomly selected parts of the genes in pairs of chromosomes. Crossover is 

conducted with a high probability, so that almost all pairs undergo this operation. 

 

4. Mutation 

In this step some randomly selected genes are changed from a 1 to a 0 or vice versa with a 

very low probability, typically about 1%.  
 

The steps 2 to 4 are repeated until a stop criterion is met, such as a predefined number of 

iterations, the attainment of a predefined response value, or after some percentage of 

the individuals in the population are using identical variable subsets. 
 

More details about GAs can be found in [79-81]. Genetic algorithms for PLS (GA-PLS) have 

successfully been used for variable selection in analytical chemistry [16,68,79-81,114-117] 

and in bioinformatics [18]. They explore the space of all possible subsets fairly well in a 

rather long time [10]. However, GAs do have significant drawbacks. First, they tend to be 

slow. Secondly, they require a considerable level of expertise because numerous adjustable 

factors have to be set for the algorithm [10]. Thirdly, there is a large variability of solutions 

[16]. Fourthly, preferably, the number of variables should be kept below 200, to avoid a 

decrease in the performance of the algorithm [117,126].  For data sets with more than 200 

variables the number of variables should be reduced before the application of a GA [80,126]. 
 
 

4.10 Interval PLS 

 

Variable selection methods can be based on either individual variables or on intervals of 

variables. They make use of simple metrics and are readily available in commercial software 

[91]. Individual variable selection methods are widely used, both for continuous data in 

spectroscopy [10,11,15,80,82,84,90,91,118,119], and for non-continuous data, like those for 

Quantitative Structure-Activity Relationships (QSARs) [70,120-122], biomarker 

identification in GC-MS and LC-MS [59,123], and gene selection [119]. 

 

However, regarding the use of individual variable selection methods for spectral data, it is 

argued that the results are more difficult to interpret since the selected wavelengths are often 

distributed across the complete spectra instead of within a few confined intervals [91,124]. 

Therefore, it is recommended to select intervals of consecutive variables, instead of individual 

spectral variables [124]. In spectral data, adjacent variables may be highly correlated. With 

interval methods, the most informative wavelength bands are identified, which makes model 

interpretation easier [91].  

 

Interval PLS (iPLS), introduced by Nørgaard et al. [125], is one of the more commonly used 

interval methods. In iPLS, the spectra are subdivided into intervals of equal width. Separate 

PLS models are developed for each interval, usually with a different number of PLS factors. 
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The prediction performance of these interval models and the full-spectrum model are 

compared, mostly based on the  RMSECV, to determine the interval with the best predictive 

ability [10,125]. iPLS  provides an overall picture of the data set and primarily locates the 

most relevant spectral regions. However, it does not take into account possible synergism 

between different spectral regions [126]. Applications can be found in [127,128]. 

 

The probability is very low to find the optimal set of variables with the best predictive ability 

in iPLS by the selection of only one  interval. Therefore several extensions of iPLS are 

developed to further optimize variable selection by intervals.  

 

In Synergy interval PLS (SiPLS) [125] the combination of intervals with the best predictive 

ability is searched for. First iPLS is conducted, and thereafter PLS models are developed for 

all possible combinations of two, three or four intervals. The combination of intervals with the 

lowest RMSECV is selected [10,125]. The computation time can be very long depending on 

the number of intervals and the selected number of intervals to combine [127]. Applications 

can be found in [127,128]. 

 

In Forward interval PLS (FiPLS), first iPLS is conducted, and the interval with the lowest 

RMSECV selected. Thereafter, forward selection is performed with intervals. Finally, the 

combination of intervals with the minimal RMSECV is selected [10,129,130]. 
 

In Backward interval PLS (BiPLS), first the data set is split into a given number of intervals, 

similar to iPLS, and PLS models are calculated with each interval left out in a sequence. The 

left out interval, resulting in the highest RMSECV for the included intervals, is deleted. 

Thereafter, backward selection is performed with intervals. Finally, the combination of 

included intervals with the minimal RMSECV is selected [10,126,127,129]. BiPLS can also 

pre-select variables which can be used as an input for GA-PLS [126]. 

 

In GA-iPLS a genetic algorithm is applied using intervals of variables instead of pure 

variables [10,130]. 
 
 

In Moving Window PLS (MWPLS) an H variables wide spectral window is constructed 

forming a N × H sub matrix of the calibration set. The spectral window is moved through the 

entire spectrum. For each window position, PLS models with varying complexities are 

developed for the corresponding sub matrices and the sums of squared residues (SSR’s) or the 

RMSECV´s calculated. The SSR’s or RMSECV´s are plotted as a function of the window 

position and the spectral regions with a minimal SSR [131-134] or RMSECV [135] over all 

windows are determined. MWPLS is introduced in Ref. [131]. Applications are found in 

[131-136]. 
 

In Changeable Size Moving Window Partial Least Squares (CSMWPLS), an optimized sub-

region is searched in a selected informative region. In [132] a Modified Changeable Size 

Moving Window Partial Least Squares (MCSMWPLS) is proposed. In Searching 

Combination Moving Window Partial Least Squares (SCMWPLS), an optimized combination 

of informative regions based on CSMWPLS is searched. CSMWPLS and SCMWPLS are 

introduced in [137]. Applications can be found in [132,134,137]. 
 

In [14] is concluded that the effectivity of interval PLS methods for variable selection in near-

infrared spectroscopy is low. In [127] is concluded that UVE performs better than iPLS, 

SiPLS and BiPLS. 
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4.11 Variable selection for PLS2 

 

Variable selection for PLS models for multiple responses (PLS2) is complicated by the fact 

that each variable may have a different influence on the different responses. This can, at least 

partly, explain why for PLS1 numerous procedures for variable selection have been 

developed, see the reviews in [3,10,12,14-17] and the references therein, while only a few 

address those for PLS2 [101,138-140].  

 

Like for PLS1, variable selection for PLS2 is often based on PLS model parameters. In [139] 

variables with the minimum PLS2 regression coefficient in the corresponding rows of the 

PLS2 regression coefficient matrix B are stepwise eliminated. In [138], variables with a 

cumulative absolute PLS2 regression coefficient in the corresponding rows of the B matrix 

are selected when above a threshold, which is set to the mean of these cumulative values for 

all variables. In [140] variable selection is based on the magnitude of absolute weights in the 

PLS2 weight vectors. In [101] variables are stepwise selected based on their global covariance 

with all responses, which are independent of the PLS2 model. 

 

 

4.12 Variable selection for classification 

 

Partial Least Squares Discriminant Analysis (PLS-DA) is the application of PLS for 

classification problems in which the response vector y codifies the class of each sample [141].  

In the two-class case, usually the values of the dependent variable y are given 1 for one class 

and 0 or -1 for the other. In the case of more than two classes, for each class, dummy response 

variables are created, and a PLS2 algorithm applied [142]. The class label of an unknown 

sample is determined on the basis of the y value predicted by the PLS model. Ideally, the 

predicted y should be close to the coded class values. In practice, it is a real number and 

different approaches can be used to convert the predicted y into a class label [141].  

PLS-DA is especially useful for high-dimensional data, where classical discrimination 

Methods, such as linear discriminant analysis (LDA) have numerical difficulties because of 

singularity issues [8]. Therefore, PLS-DA is not only used in chemometrics 

[8,100,140,141,143] but also in bioinformatics [7,19,20,98,111,140,142,144,145]. PLS-DA is 

one of the most frequently applied methods for classification problems in metabolomics 

[146]. 

 

Classification by PLS-DA can be improved by variable selection. Variable selection using 

predictor-variable properties, based on PLS regression coefficients is used in [21,139,143-

145], on VIP in [100,111], on the selectivity ratio in [19,20,141], and on the largest absolute 

values of PLS weights in [140]. UVE is used in [98,111], CARS in [98], and genetic 

algorithms in [139,147,148]. 

 
 

4.13 Variable selection for QSAR and QSRR modelling 

 

Quantitative Structure-Activity Relationships (QSAR) are mathematical models for a series of 

chemical compounds relating structural, physical, and/or chemical properties (descriptors) to 

one of their biological activities. A statistically validated QSAR model is capable of 

predicting the biological activity of a new compound within the same series, as an alternative 

to time-consuming and labour-intensive processes of chemical synthesis and biological 

evaluation.  
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QSAR models can help in the design of new compounds. Therefore, they have become useful 

tools in the pharmaceutical industry [17].  

 

Similar to QSARs, QSRRs are statistically derived relationships between chromatographic 

parameters and descriptors related to the molecular structure of the analytes. In QSRRs these 

descriptors are used to model the molecular interaction of analytes with a given stationary 

phase and eluent of a chromatographic system. Using a validated QSRR model, the retention 

of new analytes can be predicted for the chromatographic system considered, see Refs. [149-

153]. 

 

Generally, QSAR and QSRR models with a large number of variables or descriptors are not 

desirable for the following reasons. First, only a few descriptors have an important influence 

on a biological activity or chromatographic property, respectively. Second, the interpretation 

of a model containing a large number of descriptors is difficult. Thus to build simple QSAR 

or QSRR models, a variable selection technique is needed [17,149,154]. 

 

Variable selection for QSAR is based on PLS regression coefficients in [11,155], on VIP in 

[156], on GA-PLS in [157-159], and on the correlation between predictor-variables and the 

response in [160]. In [159] the Replacement Method (RM) and Forward Stepwise Regression 

Method [26] are used. In the RM a chosen variable is replaced by another one to minimize the 

total standard deviation [159].  

In [161] an evolutionary Museum algorithm has been used. This algorithm starts from a 

random model containing any combination of variables of the data set. In the next steps one or 

a very few variables are added to or eliminated from this model. Any model with increased 

fitness defined by a certain criterion, e.g. the standard deviation s or the Fischer significance 

value F of the regression equation, is taken as a new breeding organism which is further 

mutated by variable additions or eliminations. 

 

In the review of Goodarzi et al. [17] about variable selection for QSAR, is concluded that 

often models are obtained with a quality similar to that with all variables. Only the RM 

systematically selected few variables. GAs and Backward Elimination PLS selected much 

larger numbers of variables than RM. CARS, CovSel, UVE and predictive property based 

methods using VIP generally led to bad QSAR models and should therefore not be used in 

QSAR modelling. 

 

For QSRR, often classical models are used with small numbers (1-5) of descriptors [149-151], 

for which multiple linear regression is used for model building [149]. PLS is used for later 

introduced descriptor sets containing large numbers of theoretical molecular descriptors 

generated by calculation chemistry. For these sets, variable selection is needed.  

Variable selection for QSRRs is conducted with UVE-PLS in [105,108,162], and with GA-

PLS in [162,163]. 
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4.14 Summary 

 

The development of new variable selection methods may help to reveal the informative 

signals in the huge data sets generated by modern sophisticated instrumental analysis 

methods. It can help the chemometricians to master the data tsunami. 

 

One of the goals of this research is to develop new or improved variable selection methods for 

PLS modelling, with a high specificity and which must be widely applicable both in 

chemometrics and in new emerging fields such as metabolomics. Therefore, they must be 

suited both for continuous and non-continuous data. Additionally, they must be applicable for 

either PLS1 or PLS2. 

 

In this introduction, an overview of variable reduction methods for PLS is given. The 

characteristics of six widely applied types of methods are described. Their advantages and 

drawbacks are summarized in Table 4-2.  

 
Table 4-2 Comparison of widely applied types of variable selection methods for PLS 

 
Method Advantages Drawbacks 

Threshold PPRV 
methods 

fast; easy to compute  ignore interactions of variables with the 
response and interactions between 
variables; selection is highly affected by the 
chosen threshold;  
performance depend on the applied property  

Iterative PPRV methods good selective and predictive ability; robust; 
avoid over-fitting and chance correlations; 
account for interactions of variables with the 
response and for interactions between 
variables; useful for different types of data 
sets 

time consuming; performance depend on the 
applied property  

UVE-PLS user independent; no configuration problems large variability of solutions; 
large number of retained variables  

Penalised methods simultaneously build a regression model and 
perform wavelength selection 

not as fast and efficient as traditional 
multivariate methods 

GA-PLS explores the variable space fairly well tend to be slow; require a considerable level 
of expertise; large variability of solutions; 
number of variables < 200 

Interval PLS methods only suited for continuous data in 
spectroscopy; most informative wavelength 
bands in spectral data are identified; 

not suited for non-continuous data; low 
effectivity 

 

Interval methods are not suited for our purposes because they are only applicable for 

continuous data and not for non-continuous data. GA-PLS is not suited, because these 

algorithms work only well with less than 200 variables. Therefore, for large data sets, a pre-

selection of variables will be needed for GA-PLS. UVE-PLS is not suited because of its low 

selectivity. Often large numbers of variables will be retained. Additionally, both GA-PLS and 

UVE-PLS have a large variability of solutions, which make them also not suited for 

biomarker discovery because it requires the selection of simple and stable combinations of 

metabolites [22]. Penalised methods are not suited because they are still not as fast and 

efficient as traditional multivariate methods. 

 

The threshold-PPRV methods have the disadvantage that they ignore both the interactions of 

variables with the response and interactions among variables. That is not the case in iterative 

PPRV methods. Given the advantages for iterative PPRV methods mentioned in Table 4-2, 

this type of methods seem most promising as starting point for the development of new or 

improved variable selection methods.  
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4.15 Variable selection in this thesis 

 

Using the information in the preceding sections, the following requirements for the 

development of new variable selection methods for PLS are defined.  

1. The new methods must have the characteristics of iterative PPRV methods. 

2. They must work in the backward mode because of the advantage that it accounts for 

combined effects of variables. 

3. The new methods must first be developed based on one predictor-variable property 

and tested for PLS1, and the best selected. 

4. For the best new method for PLS1, the selective and predictive performance of 

different kinds of predictor-variable properties must be investigated, and the best 

property selected. 

5. The best method for PLS1 will be adapted to PLS2.  

6. The new methods will be developed and tested with spectral and simulated data, 

because for these data no alignment procedures have to be applied. 

 

Following this strategy, the results of the research done in this PhD project for the 

development of new variable selection methods for PLS is presented in the following 

chapters. 

 

In chapter 5, a study is presented about the development of three new stepwise variable 

selection methods for PLS modelling with one response (PLS1), with a possibility to decrease  

the PLS model complexity during the variable reduction process. These methods are based on 

variables ranked on the absolute values of the PLS1 regression coefficients as predictor-

variable property. The selective and predictive performances of these methods are compared 

with two existing methods as reference. The results of this study form the basis for the studies 

presented in chapters 6 and 7. 

 

In chapter 6, the utility and effectiveness of six individual and nine combined predictor-

variable properties are investigated and compared, when using the FCAM method resulting 

from the study in chapter 5. The selective and predictive performances of the models resulting 

from the use of these properties are statistically compared using the one-tailed Wilcoxon 

signed rank test.  

 

In chapter 7, a study is presented about the development of a new variable selection method 

for multiple-response partial-least-squares (PLS2) modelling, using an adapted FCAM 

method for PLS2, FCAM-PLS2. The utility and effectiveness of four new predictor-variable 

properties, derived from the multiple response PLS2 regression coefficients, are investigated.  
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5 Improved Variable Reduction in partial least squares 

modelling based on  Predictive-Property-Ranked Variables 

and adaptation of partial least squares complexity
2
 

 

 
5.1 Abstract 

 

The calibration performance of partial least squares for one response variable (PLS1) can be 

improved by elimination of uninformative variables. Many methods are based on so-called 

predictive variable properties, which are functions of various PLS-model parameters, 

and which may change during the variable-reduction process. In these methods variable 

reduction is made on the variables ranked in descending order for a given variable property. 

The methods start with full spectrum modelling. Iteratively, until a specified number of 

remaining variables is reached, the variable with the smallest property value is eliminated; a 

new PLS model is calculated, followed by a renewed ranking of the variables. The Stepwise 

Variable Reduction methods using Predictive-Property-Ranked Variables are denoted as 

SVR-PPRV. In the existing SVR-PPRV methods the PLS model complexity is kept constant 

during the variable-reduction process. In this study, three new SVR-PPRV methods are 

proposed, in which a possibility for decreasing the PLS model complexity during the variable-

reduction process is built in.  

Therefore we denote our methods as PPRVR-CAM methods (Predictive-Property-Ranked 

Variable Reduction with Complexity Adapted Models). The selective and predictive abilities 

of the new methods are investigated and tested, using the absolute PLS regression coefficients 

as predictive property. They were compared with two modifications of existing SVR-PPRV 

methods (with constant PLS model complexity) and with two reference methods: 

uninformative variable elimination followed by either a genetic algorithm for PLS (UVE-GA-

PLS) or an interval PLS (UVE-iPLS). The performance of the methods is investigated in 

conjunction with two data sets from near-infrared sources (NIR) and one simulated set. The 

selective and predictive performances of the variable reduction methods are compared 

statistically using the Wilcoxon signed rank test. 

 

The three newly developed PPRVR-CAM methods were able to retain significantly smaller 

numbers of informative variables than the existing SVR-PPRV, UVE-GA-PLS and UVE-

iPLS methods without loss of prediction ability. Contrary to UVE-GA-PLS and UVE-iPLS, 

there is no variability in the number of retained variables in each PRV(R) method. Renewed 

variable ranking, after deletion of a variable, followed by remodelling, combined with the 

possibility to decrease the PLS model complexity, is beneficial. A preferred PPRVR-CAM 

method is proposed. 

 

Keywords: Variable reduction, PLS1, PPRVR-CAM, UVE-GA-PLS, UVE-iPLS, Wilcoxon 

signed rank test 
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5.2 Introduction 

 

Multivariate regression techniques are widely used in analytical chemistry for the extraction 

of chemical information about analytes [1,2,3]. Using multivariate regression models 

chemical quantities can frequently be estimated with reasonable accuracy and with minimum 

data treatment [3]. Partial least squares (PLS) regression is a commonly used multivariate 

technique, which is considered able to deal with a large number of noisy and correlated 

variables, and with small numbers of samples. It is a versatile method, used for both 

qualitative and quantitative analysis, in many different application fields, such as food 

chemistry, pharmaceutical analysis, agriculture, environment, and industrial and clinical 

chemistry [4].  

 

Both theoretical [5-9] and experimental evidence [3,10-15] exist that elimination of noisy and 

uninformative variables from the original data set can improve the performance of PLS 

calibration. In addition, elimination of uninformative variables can be important for cost 

reduction in process control by reducing the number of sensors, and can help in the 

interpretation of multivariate models [0]. 

 

Several methods have been developed for the selection of informative subsets of variables, 

such as uninformative variable elimination (UVE) [15-20], genetic algorithms (GA) 

[12,21,22], interval PLS (iPLS) [23,24], methods based on predictive-variable properties 

[3,10,13,15,16,25-38], tabu search [11], simulated annealing [39], mutual information 

(together with support vector machines) [40] and Monte Carlo variable selection [15,41].  

 

For PLS1, with one response variable y, many methods are  based on so-called predictive-

variable properties, which are functions of various PLS1-model parameters, such as weights, 

loadings, PLS regression coefficients, or combinations of these parameters. Common 

examples of predictive-variable properties used are: (i) magnitude of PLS regression 

coefficients [10,13,15,25-29], (ii) magnitude of PLS regression coefficients multiplied [3,30] 

or divided [13] by the standard deviation of the predictor variable, (iii) correlation coefficients 

between predictor variables and the dependent variable [3,10,31], (iv) variable importance in 

the projection (VIP) score of a variable [10,26,29,32-34], (v) reliability, uncertainty or 

significance of PLS regression coefficients assessed by the student t value, calculated from 

the ratio of the PLS regression coefficient and its standard deviation, estimated by jack 

knifing [3,15,16,35,36], (vi) selectivity ratio (SR) [37,38]. The ranking of the variables on the 

predictive properties reflects their importance for the PLS model. The higher the magnitude of 

the property, the more important the variable. 

 

The methods based on predictive-variable properties can be grouped into two categories, 

either using a threshold or a ranking of the property values. In the first category, after the 

development of a PLS model with the original data set, variables with property values below a 

defined threshold are considered uninformative and removed. The final PLS model is 

calculated after the removal of uninformative variables. The threshold is either determined 

arbitrarily [31], or through statistical assessment of the significance of the properties using  

bootstrap [34], jack knife [16,20,25,35] or Monte Carlo re-sampling methods [15,42].  

 

In the second category a PLS model is built with the original data set and the variables are 

ranked in descending order of the considered property. Iteratively, the variable with the 

smallest value is eliminated and a new PLS model calculated. We call this Stepwise Variable 
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Reduction methods using Predictive-Property-Ranked Variables, denoted as SVR-PPRV 

methods. 

In the stepwise removal of variables, the predictive abilities of the PLS models are assessed 

by the root mean squared error of cross validation (RMSECV) or the squared correlation 

coefficient for prediction Q
2
. The set of variables, resulting in the optimal model, is then 

selected [10,25,26,30,31]. The goal is thus to obtain small sets of variables with improved or 

similar predictability, for a test set estimated as the root mean squared error of prediction 

(RMSEP), as the original data set.  

 

The predictive property values of the variables may change during the variable reduction 

process, because they are functions of the parameters of the PLS algorithm which also can 

change in this process. In the stepwise variable reduction process the data matrix is changing 

continuously and the optimal number of PLS1 factors, i.e. the best PLS1 model complexity, 

can change as well. If the same PLS model complexity is used during the variable reduction 

procedure, RMSECV values may become overoptimistic [43], since it is possible that the best 

model complexity decreases due to the elimination of uninformative variables [16]. Therefore, 

SVR-PPRV methods should account for these changing variable property values and best PLS 

model complexity. Three steps thus need to be considered. First, after the removal of a 

variable, a new PLS model has to be calculated generating new PLS parameters and hence 

also new property values. Secondly, after remodelling, variables have to be re-ranked. 

Thirdly, a decrease in PLS model complexity must be considered. 

 

In the existing SVR-PPRV methods [10,25,26,30,31] the PLS model complexity is fixed 

during the variable reduction process, and only the first or the second of the above steps is 

performed. In this study three new SVR-PPRV methods are proposed with a possibility to 

decrease the PLS1 complexity, and with the three steps integrated. They are different in the 

way the model complexity is decreased. They are called Predictive-Property-Ranked Variable 

Reduction with Complexity Adapted Models methods, denoted as PPRVR-CAM methods. 

 

In this study, the performances, i.e. the selective and predictive abilities of the new PPRVR-

CAM methods are investigated and compared with two related SVR-PPRV methods and two 

non-stepwise reference variable reduction methods, by built PLS1 models. The absolute value 

of the PLS regression coefficients is used as predictive-variable property  because of the good 

performance reported for this property [10,25,26]. In a following study the effectiveness of 

other predictive properties will be investigated in combination with the preferred PPRVR-

CAM method resulting from this study. 

 

The two existing SVR-PPRV methods have a constant PLS complexity during variable 

reduction. They are modifications of methods described by Gauchi and Chagnon [25] and by 

Teófilo et al. [10]. The reference methods are hybrid methods: uninformative variable 

elimination (UVE) followed by either a genetic algorithm for PLS (GA-PLS) or an interval 

PLS,  denoted as UVE-GA-PLS and UVE-iPLS, respectively. In the UVE step uninformative 

variables are eliminated to reduce computing time in the following GA or iPLS step, and to 

improve the performance of the GA-step [12,25].  

 

The utility and effectiveness of the methods are investigated in conjunction with near-infrared 

(NIR) spectra and simulated data. NIR spectroscopy is chosen as application field because 

PLS is extensively used in analysis of these spectra [44,45]. Two NIR data sets and one 

simulated set were investigated. The latter is used to test the general applicability of the 

methods.  
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The data sets contain a total of 16 responses (see Table 5-1-Table 5-3). With this high number 

of responses, more reliable results were obtained for the statistical tests, carried out for the 

performance comparison of the variable reduction methods. 

 

 

5.3 Theory 

 

5.3.1 PLS1 regression coefficients 

 

The variable reduction is based on the PLS1 regression coefficients bk, which are elements of 

the regression vector b(K × 1), calculated with, 

 

  qWPWb
1

 T           (1) 

 

where W(K × A) is the X weight matrix, P(K × A) is a x-loading matrix and q(1 × A) is the y-

loading vector [2]. The PLS1 regression coefficients bk are dependent from each other unless 

A equals K [1]. K is the number of predictor variables in the X(N × K) matrix, A is the number 

of  PLS1 factors and N is the number of objects. Further details of PLS1 can be obtained in 

Refs. [1,2,46]. Influential variables have large positive or negative regression coefficients. 

The absolute value of the PLS1 regression coefficient of variable k, denoted as REGk, is used 

in this study as a variable property for variable reduction.  

 

kk bREG             (2) 

 

5.3.2 Stepwise Variable Reduction methods using Predictive-Property-Ranked 

Variables 

 

Two SVR-PPRV and three PPRVR-CAM methods, are investigated. The methods start 

building a PLS1 model from the original data set, followed by ranking the variables in 

descending order of magnitude of the considered property REGk. The selective and predictive 

abilities of the methods are compared. Until a specified number of remaining variables is 

reached, iteratively, the variable with the smallest REGk is eliminated and a new PLS1 model 

calculated.  

Three new PPRVR-CAM methods, in which it is accounted for the fact that the properties 

may change during the variable reduction process, are introduced. Properties such as weights, 

loadings and PLS regression coefficients are functions of the parameters of the PLS 

algorithm, which are dependent on each other because they are calculated in a sequence of 

programming steps [2]. During the stepwise variable reduction process, the composition of 

the data matrix is changing continuously and parameters of the PLS algorithm can change 

simultaneously. As a result, variable properties can also change. Therefore, after each variable 

removal, a new PLS1 model is developed, generating new PLS parameters and hence also 

new property values. After remodelling, variables are reranked. During variable reduction, 

uninformative variables are eliminated. Therefore,  the best PLS model complexity A may 

decrease. In the PPRVR-CAM methods a possibility for decreasing the model complexity is 

built in.  

 



61 

 

In summary, the PPRVR-CAM methods have the following characteristics: (i) remodelling 

after removal of a variable, (ii) renewed ranking of variables and (iii) best PLS1 model 

complexity evolution during the variable reduction process. The PPRVR-CAM methods have 

the first two characteristics in common but are different in decreasing model complexity.  

 

 

Fig. 5-1 PLS model complexity vs number of remaining variables for the five PPRV(R) methods, (A) SVR-

1 and 2, (B) RCAM, (C) FCAM, (D) ICAM 

 

The SVR-PPRV methods are modifications of existing methods [10,25]. They have a related 

methodology, but keep a constant PLS complexity during variable reduction, while of the first 

two characteristics one or both are considered. 

 

For the five PPRV(R) methods, the differences in PLS model complexity during variable 

reduction are described below. As an example, model complexity changes are shown in Fig. 

5-1 for a data set with 100 variables and a full spectrum PLS model complexity of 12.  

 

The first SVR-PPRV method, denoted as SVR-1,  is a modification of that described by 

Gauchi and Chagnon [25]. The RMSECV is used as criterion to select the best variable set, see 

section 5.3.4. Variable reduction is conducted at constant model complexity A, determined for 

the full spectrum, until A remaining variables (Fig. 5-1A).  

 

The second SVR-PPRV method, denoted as SVR-2,  is a modification of that recently 

described by Teófilo et al. [10]. Contrary to [10] variable reduction is conducted at constant 

model complexity A. Variable reduction stops at A remaining variables (Fig. 5-1A). In the 

SVR--2 method, variables are ranked only once (difference with SVR-1), at the start of the 

variable reduction process, based on the full spectrum PLS model result. 
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The first PPRVR-CAM method is an extended version of SVR-1. The variable reduction 

procedure starts with model complexity A, and is repeated with stepwise descending 

complexities A-1, A-2, …, 1 (Fig. 5-1B). At each model complexity, variable reduction stops 

when the number of remaining variables equals the model complexity. This method is called 

Predictive-Property-Ranked Variable Reduction with Repetitive Complexity Adapted Models, 

denoted as PPRVR-RCAM and abbreviated to RCAM.  

 

A limitation of SVR-1 is that the minimal number of remaining variables equals the 

complexity A of the full spectrum PLS model. The second PPRVR-CAM method consist of a 

first variable reduction part, identical to SVR-1, with constant PLS model complexity A until 

the selection of A variables, and a second part with stepwise decreasing PLS model 

complexity A-1, A-2, …,1 after each variable removal. Variable reduction stops at one 

retained variable (Fig. 5-1C). This method is called Predictive-Property-Ranked Variable 

Reduction with Final Complexity Adapted Models, denoted as PPRVR-FCAM and 

abbreviated to FCAM.  

   

In the third PPRVR-CAM method the procedure starts with model complexity A, while the 

possibility of decreasing the PLS model complexity is built in from the beginning. Two 

RMSECV values are calculated after each removal of a variable, one for the model 

complexity A, RMSECVA, and one for a complexity A-1, RMSECVA-1. The model complexity 

A
 
is decreased by one if  RMSECVA-1< RMSECVA  holds twice in a row (Fig. 5-1D). Because 

the minimal value for A-1=1, the complexity A is not decreased below 2. Variable reduction 

stops at two retained variables. This method is called Predictive-Property-Ranked Variable 

Reduction with Integral Complexity Adapted Models, denoted as PPRVR-ICAM and 

abbreviated to ICAM.  

 

5.3.3 Model validation 

 

The predictive ability of the models is assessed by internal validation in the training set, using 

segmented (n-fold) cross validation, resulting in the root mean squared error of cross 

validation (RMSECV), 

 

 



calN

i

ii

cal

yy
N

RMSECV
1

2
ˆ

1
        (3) 

 

where yi and ŷi are the experimental and predicted properties, respectively, of the i
th

 

calibration sample when situated in a left out segment, Ncal is the number of calibration 

samples in the training set.  

 

The predictive ability of the models is also assessed by external validation with a test set, 

resulting in the root mean squared error of prediction (RMSEP), 

 

 



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ˆ
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        (4) 

 

where yi and ŷi are the experimental and predicted properties, respectively, of the i
th

 sample in 

the test set, Ntest is the number of samples in the test set. After variable reduction, using the 
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reduced variable set, the best PLS model complexity is redetermined by segmented cross 

validation (SCV), which is then used for the external validation. 

 
2

CalR , 2

TestR : Squared values of the correlation coefficient R between estimated and 

experimental properties are calculated with the reduced variable sets, for calibration ( 2

CalR ) in 

the training set, and prediction ( 2

TestR ) with a test set, using the model complexity determined 

for internal and external validation, respectively. 

 

The best complexity of a PLS model is determined by SCV. In order to avoid overfitting an 

adjusted Wold’s R criterion, Radj, is applied [47,48]. Initially, the minimum in the RMSECV 

vs model complexity curve is determined. Thereafter, going from the minimum to a lower 

number of PLS factors, the following equation is determined: 

 

A

A
adj

RMSECV

RMSECV
R 1           (5) 

 

where RMSECVA+1 and RMSECVA are the error values of PLS models with A+1 and A factors, 

respectively. When Radj <0.98 then the A factor model is considered as the best complexity 

[49]. 

 

5.3.4 Selection criterion for the preferred variable set 

 

In the five PPRV(R) methods, RMSECV values are plotted as a function of the number of 

remaining variables. The model with the global minimal value, RMSECVMin, corresponds to 

the variable set with optimal predictive capability. However, a smaller variable set with 

RMSECV not significantly higher than that corresponding to RMSECVMin is preferred. Its 

maximal value, RMSECVCrit is defined as the RMSECV not significantly larger than 

RMSECVMin, by means of a one-tailed F-test [50],  

 

 
2

,,

2

MinNNCrit RMSECVFRMSECV
calcal        (6) 

 

with  calcal NNF ,,  at the significance level =0.05 and Ncal degrees of freedom of both the 

numerator and denominator, being the number of calibration samples in the training set.  

 

Small variable sets with improved or at least equivalent predictability compared to the 

original data set can only be obtained if RMSECVCrit is smaller than or equal to the RMSECV 

of the full spectrum model, RMSECVFS. Therefore, if RMSECVCrit > RMSECVFS, then 

RMSECVCrit is set to RMSECVFS.  

 

Thus, the smallest variable set with KBest variables and a RMSECVBest smaller than or equal to 

RMSECVCrit is considered the best set for a given PPRV(R) method. A low number of 

variables can be beneficial with regard to (i) a better understanding of the model, and (ii) 

selection of a viable set of sensors in process control. 
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5.4 Reference methods 

 

In stepwise backwards variable selection methods it is possible that variables are excluded 

which could be important when added to the finally selected set [51]. Therefore, two 

reference methods are chosen based on completely different selection mechanisms, i.e. the 

hybrid methods UVE-GA-PLS and UVE-iPLS. In a first step, the search range is reduced by 

the elimination of uninformative variables from the original data set by UVE-PLS. In the 

following step, further variable reduction is carried out by either a genetic algorithm or 

interval PLS, resulting in a number of remaining variables comparable to that of the PPRV(R) 

methods.  

UVE-GA-PLS is a fully non-stepwise method. In UVE-iPLS, variables are selected stepwise 

in the iPLS part, but the selection is conducted in the forward mode, i.e. in a direction 

opposite to that of the PPRV(R) methods. However, the selected number of variables in both 

hybrid methods will vary because of the variability in the UVE-step, and for UVE-GA-PLS, 

also in the GA step. 

 

Uninformative variable elimination for PLS (UVE-PLS) [16] determines the fitness of each 

predictor variable k in the X matrix against those of L artificial random variables added to the 

data set. These added random variables have very small absolute values, of the order of about 

10
-10

, so that their influence on the regression coefficients of the predictors is negligible. The 

K+L mean PLS regression coefficients b̄k and their standard deviations s(bk) are calculated 

from i vectors of regression coefficients, obtained by leave-one-out jack-knifing (i=1, …, 

NCal). The fitness ck of each variable k is determined by the ratio of the mean regression 

coefficient and its standard deviation: ck=b̄k/s(bk). A suitable cut-off value |ck|cut-off is 

calculated from the L artificial variables, taking the maximum of their absolute ck values. 

Predictor variables with |ck| below the cut-off value are classified as uninformative and 

eliminated. In UVE-PLS, the number of eliminated variables is variable because of the 

variability in the added artificial random variables.  

 

Genetic algorithms (GAs) are variable selection methods based on the principles of natural 

selection in biologic evolution. Species adapt over a high number of generations, because the 

fittest survive and spread their genetic material to following generations [52]. GAs have  

successfully been used for variable selection  [12,21,52-55]. Details about the method can be 

found in [21,52]. 

According to Leardi et al. [56] the performance of GAs improves when the number of 

variables is kept below 200. In Ref. [12] it was concluded that better results with GA in 

wavelength selection for NIR can be obtained by using a subset of relevant spectral points 

instead of the full spectrum. One of the disadvantages of GAs is the large variability of 

solutions [25]. 

 

In interval PLS, a subset of variables is selected by a sequential search for the best variables. 

Spectra are split into small equidistant intervals which can be either a single variable or a 

window of adjacent variables. iPLS can operate in the forward or backward mode by 

successively including or excluding intervals, respectively. Details about the method, are 

described in [23].  
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Table 5-1 Results of variable reduction methods for the Diesel data set  

Model Response Method characteristics Full 
spectrum 

UVE-GA-
PLS 

UVE-iPLS 
 

Method 
SVR-1 

Method 
SVR-2 

Method 
RCAM 

Method 
FCAM 

Method 
ICAM 

1 Viscosity PLS complexity selecting best set  11     7  15 11 11 7 11 5 

  Number of variables, KBest     401    24  17 13 34 7 13 7 

  RMSECVBest  0.121  0.107  0.104 0.105 0.119 0.118 0.105 0.116 

  PLS complexity best set  11     7  15 7 9 5 7 4 

  RMSEP  0.102  0.104  0.099 0.099 0.116 0.131 0.099 0.124 

  R
2
Test 0.934 0.931 0.938 0.938 0.914 0.891 0.938 0.905 

2 BP50 PLS complexity selecting best set  11      5  15 11 11 10 11 6 

  Number of variables, KBest     401     30  20 11 108 10 11 10 

  RMSECVBest  3.47   3.08  3.15 3.06 3.47 3.31 3.06 3.46 

  PLS complexity best set  11      5  15 7 9 5 7 5 

  RMSEP  3.60   3.62  3.11 3.49 3.50 3.92 3.49 3.96 

  R
2
Test 0.956 0.955 0.968 0.959 0.958 0.948 0.959 0.946 

3 CN PLS complexity selecting best set  5 4 5 5 5 4 4 4 

  Number of variables, KBest     401 22 11 5 10 4 4 4 

  RMSECVBest  1.99 1.89 1.88 1.91 1.99 1.99 1.91 1.92 

  PLS complexity best set  5 4 5 4 6 4 4 4 

  RMSEP  2.11 2.07 2.05 2.08 2.16 2.15 2.08 2.08 

  R
2
Test 0.654 0.661 0.664 0.660 0.630 0.638 0.661 0.657 

4 D4052 PLS complexity selecting best set  15        6        15  15 15 15 15 8 

  Number of variables, KBest     401       28        24  17 67 17 17 16 

  RMSECVBest  1.05∙10
-3
 1.06∙10

-3
 9.43∙10

-4
 9.54∙10

-4
 9.37∙10

-4
 9.54∙10

-4
 9.54∙10

-4
 1.05∙10

-3
 

  PLS complexity best set  15        6        15  10 15 10 10 6 

  RMSEP  9.20∙10
-4
 1.09∙10

-3
 1.04∙10

-3
 1.07∙10

-3
 9.13∙10

-4
 1.07∙10

-3
 1.07∙10

-3
 1.09∙10

-3
 

  R
2
Test 0.991 0.988 0.989 0.989 0.992 0.989 0.989 0.988 

5 Freeze PLS complexity selecting best set  9     9  10 9 9 8 7 5 

  Number of variables, KBest     401    16  12 9 25 8 7 11 

  RMSECVBest  2.57  2.30  2.26 2.35 2.54 2.45 2.43 2.53 

  PLS complexity best set  9     9  10 6 12 5 7 7 

  RMSEP  2.49   2.93 2.72 2.76 2.92 2.68 2.69 2.56 

  R
2
Test 0.624 0.482 0.564 0.545 0.483 0.571 0.570 0.609 

6 Total PLS complexity selecting best set  14 9 15 14 14 11 14 6 

  Number of variables, KBest     401 29 22 15 25 11 15 20 

  RMSECVBest  0.600 0.526 0.503 0.583 0.593 0.577 0.583 0.594 

  PLS complexity best set  14 9 15 9 11 8 9 14 

  RMSEP  0.592 0.605 0.710 0.617 0.703 0.692 0.617 0.620 

  R
2
Test 0.991 0.990 0.986 0.990 0.986 0.987 0.990 0.990 
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5.5 Data and methodology 

 

5.5.1 Diesel data set 

 

The first data set was composed of 252 diesel samples with first derivative spectral NIR data 

at 401 wavelengths. The spectral data were provided without wavelengths. The data set was 

downloaded from the Eigenvector Research homepage (http://www.eigenvector.com). It was 

split as provided with 20 high leverage and 116 low leverage samples in the training set and 

116 low leverage samples in the test set. The physical properties viscosity (Visc), boiling 

point (BP50), cetane number (CN), density (D4052), freezing temperature (Freeze) and total 

aromatics (Total) are used as responses. These 6 responses were each modelled as a function 

of the NIR data (Table 5-1). To determine the PLS model complexity, the RMSECV values 

were obtained from 10-fold cross validation. 

 

5.5.2 Corn data set 

 

The second data set consists of NIR spectra of 80 corn samples with a wavelength range of  

1100–2498 nm at 2 nm intervals, resulting in 700 predictor variables. This data set is part of a 

data set labelled corn, provided by Eigenvector Research. The spectra used in this study were 

obtained from the spectrometer denoted as “m5”. The moisture, oil, protein and starch 

contents of the samples are used as response variables (Table 5-2). The data set is split into a 

training set of 60 and a test set of 20 samples using the duplex method [57]. Eight fold cross 

validation is conducted during model building. 

 

5.5.3 Simulated data set 

 

The third data set is simulated. It represents the spectra or chromatograms of mixtures 

containing one to four compounds, indicated by A, B, C and D. Six sample types of mixtures, 

A, AB, AD, ABC, ABD and ABCD, are created (Table 5-3). The pure spectral/ 

chromatographic profiles of the analytes were formed by Gaussian peaks, measured within the 

first 100 variables of the global profile (Fig. 5-2). The concentrations of the analytes were 

randomly generated between 0 and 1. To study the selective abilities of the variable reduction 

methods, the response vector y was formed by the concentrations of compound A. 

 

Each X-y combination consists of one of 120 samples of simulated spectra with 200 predictor 

variables. The first 100 variables are informative, with x values used for the calculation of the 

analyte profiles in the mixtures. The last 100 variables are uninformative, consisting of 

random numbers from 0 to 1 (Fig. 5-2). Additionally, noise is added to the simulated 200-

variables spectra, consisting of random numbers in the range between 0 and 0.005, i.e. small 

compared to the pure spectral profiles. Each subset is split into a training set of 100 and a test 

set of 20 samples using the duplex method and 10-fold cross validation is conducted.  
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Table 5-2 Results of variable reduction methods for the Corn data set 

Model Response Method characteristics Full 
Spectrum 

UVE-GA-
PLS 

 

UVE-iPLS 
 

Method 
SVR-1 

Method 
SVR-2 

Method 
RCAM 

Method 
FCAM 

Method 
ICAM 

7 Moisture PLS complexity selecting best set  15       7       11  15 15 4 2 2 

  Number of variables, KBest     700      10       11  15 21 4 2 2 

  RMSECVBest  1.12∙10
-2
 2.83∙10

-4
 2.51∙10

-4
  3.24∙10

-4
 3.70∙10

-4
 3.03∙10

-4
 3.04∙10

-4
 3.04∙10

-4
 

  PLS complexity best set  15       7       11  15 15 4 2 2 

  RMSEP  1.19∙10
-2
 3.20∙10

-4
 3.27∙10

-4
 3.54∙10

-4
 4.16∙10

-4
 3.41∙10

-4
 3.00∙10

-4
 3.00∙10

-4
 

  R
2
Test 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8 Oil PLS complexity selecting best set  11    10     3  11 11 10 11 7 

  Number of variables, KBest     700    25     5  18 40 17 18 11 

  RMSECVBest  0.061  0.028  0.081  0.022 0.058 0.023 0.022 0.047 

  PLS complexity best set  11    10     3  10 8 11 10 7 

  RMSEP  0.060  0.052  0.110  0.021 0.066 0.020 0.021 0.069 

  R
2
Test 0.869 0.895 0.637 0.983 0.837 0.984 0.983 0.842 

9 Protein PLS complexity selecting best set  14     9  14 14 14 12 14 7 

  Number of variables, KBest     700    21  20 28 104 20 28 19 

  RMSECVBest  0.103  0.118  0.055 0.043 0.049 0.048 0.043 0.078 

  PLS complexity best set  14     9  14 12 13 10 12 10 

  RMSEP  0.090  0.114  0.070 0.072 0.040 0.063 0.072 0.069 

  R
2
Test 0.968 0.950 0.983 0.982 0.994 0.988 0.982 0.982 

10 Starch PLS complexity selecting best set  15 7 15 15 15 15 15 11 

  Number of variables, KBest     700 26 19 26 68 26 26 35 

  RMSECVBest  0.222 0.247 0.202 0.085 0.129 0.085 0.085 0.083 

  PLS complexity best set  15 7 15 10 10 10 10 11 

  RMSEP  0.170 0.319 0.465 0.125 0.139 0.125 0.125 0.130 

  R
2
Test 0.962 0.865 0.719 0.979 0.974 0.979 0.979 0.977 
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Fig. 5-2 Spectral/Chromatographic profiles used for simulated data  

 

5.5.4 Software 

 

All calculations are made with in-house programs developed in Matlab (V. 6.5) (The Math 

Works, Natick, MA, USA) [58]. The Uninformative Variable Elimination procedures and the 

duplex algorithm are from ChemoAC Standard Functions Toolbox for MATLAB [59]. 

Variable selection using genetic algorithm and interval PLS is conducted with the PLS-

Toolbox V5.2 [60]. Statistical tests are conducted with the Statistics Toolbox of Matlab. 

 

 

5.6 Results and discussion 

 

First, for the 16 models (Table 5-1 - Table 5-3), the optimal factor number of the PLS1 

models was determined by cross validation as described in section 5.3.3, and RMSECV and 

RMSEP are calculated for the full spectrum models. Variable reduction is then applied on all 

X-y sets by the five PPRV(R) methods, with variables ranked on the magnitude of absolute 

PLS regression coefficients REGk, and by the two hybrid methods, UVE-GA-PLS and UVE-

iPLS. 

For all methods, one PLS1 model is selected for each response. The variables and responses 

are pre-processed by mean centring.  
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Table 5-3 Results of variable reduction methods for the Simulated data set   

Model Mixtures Method characteristics Full 
spectrum 

UVE-GA-
PLS 

 

UVE-iPLS 
 

Method 
SVR-1 

Method 
SVR-2 

Method 
RCAM 

Method 
FCAM 

Method 
ICAM 

11 A PLS complexity selecting best set  11 3 3 11 11 3 3 3 

  Number of variables, KBest     200 8 10 11 11 3 3 3 

  RMSECVBest  0.075 1.06∙10
-3
 1.02∙10

-3
 1.04∙10

-3
 1.08∙10

-3
 1.07∙10

-3
 1.07∙10

-3
 1.07∙10

-3
 

  PLS complexity best set  11 3 3 5 5 1 1 1 

  RMSEP  0.069 1.16∙10
-3
 1.22∙10

-3
 1.30∙10

-3
 1.28∙10

-3
 1.12∙10

-3
 1.12∙10

-3
 1.12∙10

-3
 

  R
2
Test 0.957 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

12 A,B PLS complexity selecting best set  14 4 4 14 14 4 4 4 

  Number of variables, KBest     200 12 13 14 14 4 4 4 

  RMSECVBest  0.065 9.50∙10
-4
 9.83∙10

-4
 1.00∙10

-3
 1.48∙10

-3
 1.04∙10

-3
 1.03∙10

-3
 1.03∙10

-3
 

  PLS complexity best set  14 4 4 3 8 2 2 2 

  RMSEP  0.052 1.38∙10
-3
 1.41∙10

-3
 1.27∙10

-3
 1.38∙10

-3
 1.35∙10

-3
 1.33∙10

-3
 1.33∙10

-3
 

  R
2
Test 0.964 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 A,D PLS complexity selecting best set  12 2 4 12 12 7 7 2 

  Number of variables, KBest     200 35 30 12 12 7 7 9 

  RMSECVBest  0.088 9.75∙10
-4
 9.39∙10

-4
 1.09∙10

-3
 1.47∙10

-3
 1.20∙10

-3
 1.20∙10

-3
 1.34∙10

-3
 

  PLS complexity best set  12 2 4 12 5 2 2 2 

  RMSEP  0.081 1.23∙10
-3
 1.58∙10

-3
 1.67∙10

-3
 1.17∙10

-3
 1.59∙10

-3
 1.59∙10

-3
 1.23∙10

-3
 

  R
2
Test 0.932 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

14 A,B,C PLS complexity selecting best set  13 4 3 13 13 5 5 3 

  Number of variables, KBest     200 17 16 13 37 5 5 5 

  RMSECVBest  0.076 1.08∙10
-3
 1.09∙10

-3
 1.16∙10

-3
 1.50∙10

-3
 1.13∙10

-3
 1.13∙10

-3
 1.15∙10

-3
 

  PLS complexity best set  13 4 3 3 12 3 3 3 

  RMSEP  0.042 1.42∙10
-3
 1.22∙10

-3
 1.14∙10

-3
 1.31∙10

-3
 1.21∙10

-3
 1.21∙10

-3
 1.24∙10

-3
 

  R
2
Test 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

15 A,B,D PLS complexity selecting best set  16 3 4 16 16 6 11 3 

  Number of variables, KBest     200 30 36 16 18 8 11 12 

  RMSECVBest  0.090 9.12∙10
-4
 9.12∙10

-4
 9.82∙10

-4
 1.22∙10

-3
 1.08∙10

-3
 1.10∙10

-3
 1.15∙10

-3
 

  PLS complexity best set  16 3 4 5 6 3 3 3 

  RMSEP  0.050 1.55∙10
-3
 1.55∙10

-3
 1.84∙10

-3
 1.51∙10

-3
 1.98∙10

-3
 1.67∙10

-3
 1.62∙10

-3
 

  R
2
Test 0.974 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 A,B,C,D PLS complexity selecting best set  15 4 4 15 15 7 11 4 

  Number of variables, KBest     200 38 40 15 15 11 11 15 

  RMSECVBest  0.102 1.27∙10
-3
 1.20∙10

-3
 1.37∙10

-3
 1.80∙10

-3
 1.46∙10

-3
 1.47∙10

-3
 1.52∙10

-3
 

  PLS complexity best set  15 4 4 4 7 4 4 4 

  RMSEP  0.085 1.40∙10
-3
 1.67∙10

-3
 1.82∙10

-3
 1.70∙10

-3
 1.64∙10

-3
 1.84∙10

-3
 1.21∙10

-3
 

  R
2
Test 0.935 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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5.6.1 Application of UVE-GA-PLS and UVE-iPLS 

 

The number of variables eliminated by UVE is variable. To get reliable results, for each X-y 

set, the UVE method was repeated five times, starting with the full spectrum. Further variable 

selection by both GA and iPLS was applied on the resulting reduced variable sets, after mean 

centring. Default parameter settings for GA and iPLS are used [49]. 

 

Because GAs show a large variability in variable selection, five times repeated GA runs are 

conducted on each UVE reduced variable set. The GA run with the lowest RMSECV was 

selected as best. As the results of iPLS are constant, forward iPLS is applied only once after 

UVE. For the variables selected by GA and iPLS, the complexity of the PLS model was 

determined by SCV (see 5.3.3). The results of the sets with the median number of retained 

variables are shown in Table 5-1-Table 5-3. 

 

5.6.2 Application of the PPRV(R) methods on the Diesel data set and response viscosity  

 

The PPRV(R) methods consist of four steps, for which the first and last are common. First, 

the data set is split into a training and a test set. The X matrix contains all variables. The 

optimal number of PLS factors A is determined by SCV. In the fourth step, using the reduced  

variable set, the PLS model is externally validated (RMSEP) using a test set, after a renewed 

determination of the optimal number of PLS factors A by SCV. Further details on the other 

steps are given below. In Fig. 5-3 flow charts are given for the new PPRVR-CAM methods. 

As representative example of variable reduction by the five PPRV(R) methods, the results for 

the Diesel data set with response viscosity are discussed below. The PLS complexity selecting 

the best set, the number of remaining variables in the best set KBest, RMSECV of the best set 

RMSECVBest, the number of PLS factors after renewed determination of the optimal number 

of factors for the best set, RMSEP and the squared correlation coefficient for prediction with 

the test, 2

TestR , are shown in Table 5-1.  

 

5.6.2.1 Application of SVR-1 

 

This method has a constant PLS model complexity A during variable reduction.  

In step 2 a proper PLS model is developed and the RMSECV determined by SCV. REGk is 

calculated for all variables and ranked. The variable with the lowest REGk is deleted. Step 2 is 

repeated at constant PLS model complexity A until the number of remaining variables is equal 

to A (Fig. 5-1A). In the third step, RMSECVBest is determined as described in section 5.3.4 and 

the corresponding subset of variables selected.  

In the example, the optimal number of PLS factors is 11 in the full spectrum model for 

viscosity (Table 5-1). In the SVR-1 method, variable reduction is thus conducted with model 

complexity A=11. Variable reduction stops at 11 variables. Fig. 5-4A shows the RMSECV 

curve as a function of the number of remaining variables. The best variable set has 

RMSECVBest= 0.105 and contains 13 variables. Using this remaining variable set, the best 

model complexity becomes 7 and for the test set, RMSEP=0.099 and the squared correlation 

coefficient 938.02 TestR .  
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Fig. 5-3A Flow chart of the RCAM method 
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Fig. 5-3B Flow chart of the FCAM method 
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Fig. 5-3C Flow chart of the ICAM method   
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5.6.2.2 Application of SVR-2 

 

SVR-2 has a constant PLS complexity A, but different from SVR-1, variables are ranked only 

once. In step 2 REGk is calculated for all variables, based on the full spectrum model, and 

ranked. The variable with the lowest REGk is deleted. A PLS model is developed and the 

corresponding RMSECV determined. Step 2 is repeated, but without renewed ranking, until 

the number of remaining variables equals the complexity A of the PLS model (Fig. 5-1A). 

In the third step, RMSECVBest is determined and the corresponding subset of variables 

selected.  

In the example, variable reduction is conducted with constant model complexity A=11 until 

11 remaining variables. Variables are ranked once on the absolute regression coefficients 

REGk of the full spectrum PLS model. Fig. 5-4B shows the RMSECV curve as a function of 

the number of remaining variables. RMSECVBest=0.119, located at 34 remaining variables. 

Using this remaining variable set, the model complexity is 9 and for the test set 

RMSEP=0.116 and 914.02 TestR .  

 

5.6.2.3 Application of RCAM 

 

RCAM is an extended version of SVR-1. In Fig. 5-3A a flow chart is given for the method. 

In step 2, variable reduction is repeated with stepwise descending complexities A, A-1, …, 1. 

At each model complexity, variable reduction stops when the number of remaining variables 

equals the model complexity (Fig. 5-1B). In the third step, the determination of the critical 

RMSECV is different from the procedure described in section 5.3.4. The minimum RMSECV 

is the global minimum of all RMSECV curves (Fig. 5-4C). This results in RMSECVCrit (see 

equation 6). The smallest variable set with RMSECV<RMSECVCrit is then selected. This 

smallest set can be selected either at the considered complexity curve with RMSECVMin or on 

a curve of lower complexity. This allows selecting a smaller variable set when 

RMSECV<RMSECVCrit is fulfilled.  

In the example, variable reduction starts with complexity A=11 and is repeated with 

complexities A=10, 9, …, 1, until the number of remaining variables is 10, 9, …, 1. 

The resulting RMSECV curves are shown in Fig. 5-4C. The global minimum of the 

RMSECV curves, RMSECVMin=0.103, is located on the curve for A=8 at 12 remaining 

variables and RMSECVCrit=0.119 (calculated with equation (6)). The best variable set on the 

same curve has RMSECV= 0.118 and contains 8 variables. On the less complex curve A=7 a 

smaller set of variables with RMSECV< 0.119 i.e. with RMSECVBest=0.118 is found for a set 

with only 7 variables which is thus preferred. Using this remaining variable set, the best 

model complexity becomes 5 and for the test set RMSEP=0.131 and 891.02 TestR . 

 

 



75 

 

  

  

 
 

Fig. 5-4 RMSECV curves of  the PPRV(R) methods for the Diesel data set with response viscosity: (A) 

SVR-1, (B) SVR-2, (C) RCAM, (D) FCAM, (E)  ICAM; — RMSECV-curve;  ­·- PLS model complexity; 

(●) Minimum RMSECV; (■) RMSECV best set 
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5.6.2.4 Application of FCAM 

 

Method FCAM consist of a first part with constant PLS model complexity A until the 

selection of A variables, and a second part with stepwise decreasing PLS model complexity A-

1, A-2, …,1. In Fig. 5-3B a flow chart is given for the method. In step 2 a PLS model is 

developed with the best model complexity A,
 
and the corresponding RMSECV is determined 

by SCV. REGk is calculated for all variables and ranked. The variable with the lowest REGk is 

deleted. When the number of remaining variables is A, the model complexity is decreased by 

one. Step 2 is repeated until the number of remaining variables and the PLS model complexity 

are equal to 1 (Fig. 5-1C). In the third step, RMSECVBest is determined and the corresponding 

subset of variables selected. 

In the example, the FCAM method consists of a first part, identical to SVR-1, with constant 

model complexity A=11 between 401 and 11 remaining variables. In the final part, from 10 

till 1 variable, the model complexity decreases stepwise from 10 to 1 after each variable 

removal. The resulting curves of RMSECV and of the PLS model complexity A are shown in 

Fig. 5-4D. RMSECVBest=0.105, located at 13 remaining variables, identical to that of the SVR-

1 method. The second part of variable reduction does in this case not result in a lower number 

of remaining variables. Using this remaining variable set, the model complexity is 7 and for 

the test set RMSEP=0.099  and 938.02 TestR . 

 

5.6.2.5 Application of ICAM 

 

In ICAM, the possibility of decreasing the PLS model complexity is built in from the 

beginning. In  Fig. 5-3C a flow chart is given for the method. In step 2, two PLS models with 

complexities A and A-1 are developed and the corresponding RMSECV values are calculated 

after each removal of a variable, one for the model complexity A, RMSECVA, and one for a 

complexity A-1, RMSECVA-1. REGk is calculated for all variables, based on the PLS model 

with complexity A and ranked. The variable with the lowest REGk is deleted. The model 

complexity A
 
is decreased by one if  RMSECVA-1< RMSECVA  holds twice in a row (Fig. 

5-1D). Because the minimal value for A-1=1, the complexity A is not decreased below 2. Step 

2 is repeated until the number of remaining variables is 2 (Fig. 5-1D). In the third step, 

RMSECVBest is determined and the corresponding subset of variables selected. 

In the example, the ICAM procedure starts with A=11. The resulting curves of RMSECVA and 

RMSECVA-1 and of the PLS model complexity A are shown in Fig. 5-4E. RMSECVBest=0.116, 

located at 7 remaining variables, corresponding to A=5. Using this remaining variable set, the 

model complexity is 4 and for the test set RMSEP=0.124 and 905.02 TestR .  

 

In Fig. 5-5 the spectra of the Diesel data set are shown in the top window, and for the 

remaining variables for both methods, SVR-1 and FCAM, for the response viscosity, the 

absolute PLS regression coefficients REGk are given in the bottom window. The remaining 

variables have high absolute regression coefficients, as expected. Fig. 5-6 shows the 

experimental and predicted viscosities for the PLS model with complexity 7, developed with 

the variables selected by methods SVR-1 and FCAM, for both the training and test sets. The 

squared correlation coefficients for calibration with the training set and prediction with the 

test set are 938.0and950.0 22  TestCal RR  respectively.  

 

Analogously, all variable reduction methods were applied on all responses of the different 

data sets. The results are shown in Table 5-2 and Table 5-3.  
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Fig. 5-5 Diesel data set with response viscosity: (top) spectra; (bottom) REGk for the variables retained by 

methods SVR-1 and FCAM  

 

5.6.3 Comparison of the predictive and selective performances of the methods 

 

For all 16 X-y combinations, the predictive and selective performances of the variable 

reduction methods are compared with FCAM, because the latter often combines a low number 

of retained variables with a good predictive performance. Differences between pairs of 

methods are statistically tested, using the Wilcoxon signed rank test [50,61], for (i) RMSEP’s 

of PLS1 models developed after variable reduction, to compare the predictive ability, and for 

(ii) numbers of retained variables, to compare the selective ability of the methods. In Table 

5-4, two tailed p values of the test statistic are given for the pair wise comparison of method 

FCAM with the other methods. 
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Fig. 5-6 Estimation of viscosity after variable reduction with methods SVR-1 and FCAM  with the 

variable set corresponding to the best RMSECV for data set Diesel; () training set, () test set 

 

5.6.4 Comparison of predictive performances  

 

The majority of the resulting models for all methods are better than the full spectrum models 

though this is data set dependent. Usually three groups are observed. For the responses 7 

(Corn, moisture) and 11-16, of  the simulated data set, the new models based on reduced 

variable sets result in large prediction improvement relative to the full spectrum method. For a 

second group, responses 1-6, i.e. the Diesel data set, mostly a similar performance is 

observed. Some other responses, 8-10 of the Corn data set (oil, protein, starch), show a large 

variability in improvement or worsening of their prediction, depending on the applied method. 

 

Table 5-4 shows that the statistical tests, for differences in RMSEP’s, confirm that the 

predictive capabilities of all methods are similar to those of method FCAM. 

 

Table 5-4 Comparison of methods with FCAM by the Wilcoxon signed rank test 

 Two-tailed 
probabilities p for 
test on differences 
in RMSEP 

Two-tailed 
probabilities p for 
test on differences 
in numbers of 
selected variables 

UVE-GA-PLS 0.163 0.0002 

UVE-iPLS 0.762 0.0292 

SVR-1 0.098 0.0039 

SVR-2 0.088 0.0004 

RCAM 0.320 0.109 

ICAM 0.340 0.898 

Significant two-tailed p-values (p<0.05) are in bold 
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Table 5-5 Number of random variables (x=101-200) retained in Simulated data set 

Model Mixtures UVE-GA-
PLS 

 

UVE-
iPLS 

 

Method 
SVR-1 

Method 
SVR-2 

Method 
RCAM 

Method 
FCAM 

Method 
ICAM 

11 A 2 2 6 6 0 0 0 

12 A,B 2 2 1 9 0 0 0 

13 A,D 0 3 0 4 0 0 0 

14 A,B,C 1 0 0 28 0 0 0 

15 A,B,D 0 1 0 3 0 0 0 

16 A,B,C,D 0 0 0 3 0 0 0 

 

5.6.5 Comparison of selective performances  

 

Table 5-4 shows that the statistical tests for differences in the number of retained variables 

confirm that the simplicity of the final data sets of method FCAM are similar to those of 

methods RCAM and ICAM, but that the size of the final variable sets differ from those of the 

modified existing SVR methods (1 and 2) and of the reference methods UVE-GA-PLS and 

UVE-iPLS. Combined with the results in Table 5-1 - Table 5-3, it can be concluded that the 

CAM methods result in finding variable sets of a similar size, while the other methods retain 

more variables. 

 

In method SVR-2, contrary to the other PPRV(R) methods, variables are ranked only once, 

after development of a PLS model based on the full spectrum. Method SVR-2 provides larger 

remaining data sets than the other PPRV(R) methods. Therefore, it seems that renewed 

ranking of variables after remodelling is beneficial for the selection of small variable sets with 

low RMSECV values and good predictive capability. 

 

Both UVE and GAs show a large variability in variable selection [16,25]. Therefore, the 

number of variables selected by the hybrid methods UVE-GA-PLS and UVE-iPLS, is also 

variable. An advantage of the PPRV(R) methods is that there is no variability in the number 

of retained variables. 

 

The three newly proposed CAM methods combine good selective and predictive abilities. 

They outperform methods SVR-1 and 2, UVE-GA-PLS and UVE-iPLS regarding the number 

of selected variables, while the corresponding RMSEP’s are not significantly different. 

However, the methods RCAM and ICAM are computationally more intensive than FCAM. In 

RCAM the variable reduction procedure is repeated with stepwise descending complexities, 

and in ICAM two PLS models with complexities A and A-1 need to be calculated 

simultaneously. Of all seven methods, we consider method FCAM as the preferred variable 

reduction method, based on computational intensity, predictive and selective capabilities. 
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(A) 

 
(B) 

 

Fig. 5-7 Data set Corn, response moisture; (A) Spectra en selected wavelengths for all methods;  (B) PLS 

regression coefficients of wavelengths selected by the FCAM method; the yellow column represents the 

water absorption band (see text) 
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5.6.6 Quality of selected variable sets  

 

The ability of the methods to select predictors with a chemical meaning relevant to the 

response, is demonstrated for response 7 (Corn set, moisture) and response 11 (simulated set). 

This is not possible for the Diesel set because no wavelength information is provided. 

 

Dry food samples such as corn show a strong absorption band for water near 1900 to 1950 nm 

which is often used for the quantitative analysis of water contents [62].  Fig. 5-7A shows the 

spectra, the selected wavelengths for all methods and the water absorption band. Both 

methods FCAM and ICAM are very selective because only two wavelengths at 1908 and 

2108 nm are retained, with very good predictive properties (Table 5-2). Wavelength 1908 lies 

inside the water band and has a large positive regression coefficient, see Fig. 5-7B. 

Wavelength 2108, outside the water band, has a large negative regression coefficient and is 

probably due to an interferent. All other methods have these two key wavelengths in their 

selection, with large positive and negative regression coefficients. Other wavelengths are 

selected around 1908 and 2108 nm, with relatively low absolute regression coefficients.   

An increased spread in the selected variables is observed for the methods SVR-1, UVE-iPLS 

and UVE-GA-PLS. Like FCAM and ICAM, method RCAM is also very selective, because 

only 4 variables are retained with very good predictive properties (Table 5-2).  

 

In the simulated data set the selective abilities of the methods are investigated by using in all 

analyte mixtures as response vector the concentrations of analyte A, i.e. the substance with the 

narrowest Gaussian peak profile. Table 5-3 shows for the pure analyte A in model 11 that the 

three CAM methods are very selective, because sets with only 3 variables are selected with 

good predictivity, 000.12 TestR .   

 

Fig. 5-8 shows the simulated spectra and the selected wavelengths for all methods for 

response 11. The new CAM methods are very selective because only 3 informative variables 

(49, 50 and 51) are retained, below the top and the inflection points of the narrow Gaussian 

peak. All other methods are less selective because more variables are retained, both below the 

peak and inside the uninformative noise area of x=101-200. 

 

In addition to that, for the six simulated mixtures, the new CAM-methods do not select 

uninformative random variables from the range x=101-200, while between 1 and 28 of these 

random variables are retained by the other methods, see Table 5-5. 

 

It is concluded that the capability of the new CAM methods to select low numbers of 

informative variables is better than that of the other methods. It is also observed that, for the 

new CAM methods, important variables, with a chemical meaning relevant to the response, 

are not excluded in the stepwise backward variable selection procedures.  
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Fig. 5-8 Simulated set, model 11; Spectra and selected variables for all methods  

 

 

5.7 Conclusions 

 

The aim of this work was to investigate and test the predictive and selective abilities of three 

new stepwise variable reduction methods, using predictive-property-ranked variables. In the 

new CAM methods it is accounted for the fact that predictive-variable properties may change 

during the variable reduction process. A possibility for decreasing the PLS1 model 

complexity A is built in differently for each method. After variable reduction, A is determined 

again for the remaining sets. Therefore, a lot of flexibility is built in regarding the adaptation 

of model complexity A.   

 

It has been demonstrated that the newly developed CAM methods are able to retain smaller 

numbers of variables by adapting the PLS model complexity with improved or similar 

predictability as the original data set. They provide significantly lower numbers of retained 

informative variables than the modifications of the existing methods, SVR-1 and 2, and the 

reference methods, UVE-GA-PLS and UVE-iPLS. Important variables,  with a chemical 

meaning relevant to the response, are not excluded by the CAM methods in the stepwise 

backward variable reduction procedure.  

 

Renewed ranking of variables, after deletion of a variable, followed by remodelling, is 

beneficial. The prediction abilities of all methods are similar. Contrary to UVE-GA-PLS and 

UVE-iPLS, there is no variability in the number of retained variables of the PPRV(R) 

methods.   
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The three PPRVR-CAM methods combine good selective and predictive abilities. Because 

the RCAM and ICAM method are computationally more intensive, FCAM is our preferred 

variable reduction method. 

 

The results from this study indicate that variable reduction in PLS modelling can be improved 

by the application of the proposed new PPRVR-CAM methods.  
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6 Predictive-Property-Ranked Variable Reduction in Partial 

Least Squares Modelling with Final Complexity Adapted 

Models: Comparison of Properties for Ranking
3
 

 
 

6.1 Abstract 

 

The calibration performance of Partial Least Squares regression for one response (PLS1) can 

be improved by eliminating uninformative variables. Many variable-reduction methods are 

based on so-called predictor-variable properties or predictive properties, which are functions 

of various PLS-model parameters, and which may change during the steps of the variable-

reduction process. Recently, a new Predictive-Property-Ranked Variable Reduction method 

with Final Complexity Adapted Models, denoted as PPRVR-FCAM or simply FCAM, was 

introduced. It is a backward variable elimination method applied on the predictive-property-

ranked variables. The variable number is first reduced, with constant PLS1 model complexity 

A, until A variables remain, followed by a further decrease in PLS complexity, allowing the 

final selection of small numbers of variables.  

In this study for three data sets the utility and effectiveness of six individual and nine 

combined predictor-variable properties are investigated, when used in the FCAM method. The 

individual properties include the absolute value of the PLS1 regression coefficient (REG), the 

significance of the PLS1 regression coefficient (SIG), the norm of the loading weight vector 

(NLW), the variable importance in the projection (VIP), the selectivity ratio (SR), and the 

squared correlation coefficient of a predictor variable with the response y (COR). The 

selective and predictive performances of the models resulting from the use of these properties 

are statistically compared using the one-tailed Wilcoxon signed rank test. 

The results indicate that the models, resulting from variable reduction with the FCAM 

method, using individual or combined properties, have similar or better predictive abilities 

than the full spectrum models. After mean-centring of the data, REG and SIG, provide low 

numbers of informative variables, with a meaning relevant to the response, and lower than the 

other individual properties, while the predictive abilities are similar or better. SIG has the best 

selective ability of all individual and combined properties, while the predictive ability is 

similar. REG is faster than SIG. This means that variable reduction with the FCAM method is 

preferably conducted with properties REG or SIG. The selective ability of REG can be 

improved by combining it with NLW or VIP. 

 

Keywords: Variable reduction, PLS1, predictor-variable properties, PPRVR-FCAM 
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6.2 Introduction 

 

Partial Least Squares (PLS) is a commonly used multivariate regression technique, which is 

able to deal with a large number of noisy and correlated variables, and small numbers of 

samples [1-3]. However, both theoretical [4-8] and experimental evidence [3,9,10-16] exist 

that elimination of uninformative variables improves the performance of PLS calibration. 

 

For PLS1, with one response y, many variable-elimination methods are based on so-called 

predictor-variable properties or predictive properties, which are functions of various model 

parameters [9-11,17,18]. In these methods variable reduction is made on the variables ranked 

in descending order of a given property. This ranking reflects their importance for the PLS1 

model. The higher the magnitude of the property, the more important the variable.  

 

In the Stepwise Variable Reduction methods using Predictive-Property-Ranked Variables, 

denoted as SVR-PPRV methods [9], iteratively, the variable with the smallest property value 

is eliminated and a new PLS1 model calculated. The predictive abilities of the PLS1 models 

are assessed by the root mean squared error of cross validation (RMSECV). The set of 

variables, resulting in the optimal model, is then selected. The goal is to obtain small sets of 

variables with improved or similar predictability, as the original data set. A low number of 

variables can be beneficial with regard to a better understanding of the model and selection of 

a viable set of sensors in process control. 

 

Properties, such as weights, loadings and PLS regression coefficients, are functions of the 

parameters of the PLS1 algorithm, and are dependent on each other [1]. In the stepwise 

variable-reduction process the data matrix is changing continuously and therefore the 

parameters of the PLS algorithm can change. The optimal number of PLS factors, i.e. the best 

PLS model complexity, can change as well. If the same PLS model complexity is used during 

the variable reduction procedure, RMSECV values may become overoptimistic [19], since the 

best model complexity decreases due to the elimination of uninformative variables [20]. 

 

In a previous study [9] a new backward variable-reduction method was introduced, based on 

the variables ranked in descending order of a predictor-variable property. In this method, the 

fact that both the properties for the remaining variables and the best PLS1 model complexity 

may change during the variable-reduction process, is taken into account. The method was 

called Predictive-Property-Ranked Variable Reduction with Final Complexity Adapted 

Models, denoted as PPRVR-FCAM and abbreviated to FCAM. In the FCAM method, 

iteratively, the variable with the smallest property is eliminated, a new PLS model calculated, 

properties redetermined and variables reranked. In the final part of variable reduction, the 

model complexity is adapted to the number of remaining variables. The FCAM method 

combines good selective and predictive abilities because it is able to reduce to small numbers 

of variables with improved or similar predictability as the full spectrum model. 

 

Common examples of predictive properties used for variable reduction are: (i) magnitude of 

PLS1 regression coefficients [11,14,16,17,21-24], (ii) magnitude of PLS regression 

coefficients multiplied [3,25] or divided [14] by the standard deviation of the predictor 

variable, (iii) correlation coefficients between predictor variables and the response [3,11,26], 

(iv) variable importance in the projection (VIP) score of a variable [9,11,18,21,24,27,28], (v) 

reliability, uncertainty or significance of PLS1 regression coefficients assessed by the Student 

t value, calculated from the ratio of the PLS1 regression coefficient and its standard deviation, 

estimated by jack knifing [3,16,20,29,30], (vi) selectivity ratio (SR) [9,31,32]. In [9], the 
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absolute value of the PLS regression coefficients was used. To our knowledge these different 

properties have not yet been compared. 

 

In the actual study the utility and effectiveness of six individual and nine combined properties 

are investigated when used in the FCAM method on near-infrared (NIR) spectra and on 

simulated data. NIR spectroscopy is chosen as application field because PLS1 is extensively 

used in this domain [33,34]. Two NIR and one simulated data set were investigated. The latter 

is used to test the general applicability of the selected property. The data sets contain a total of 

16 responses (see Table 6-1-Table 6-6). With this high number of responses, more reliable 

results were obtained for the statistical tests, carried out for the comparison of the predictive 

and selective performance of the FCAM method when using different properties. 

 

 

6.3 Theory 

 

6.3.1 PLS model 

 

The aim of PLS is to model the relationship between a data matrix X and a response vector y 

by using a set of latent variables that maximize the explained covariance between them. The 

PLS1 model for one response is developed from a calibration set of N objects or observations 

with one response or dependent variable in the y vector and K predictor variables in the X 

matrix. The y(N × 1) vector consist of the N responses of the  observations denoted by yi (i=1, 

…, N). The X(N × K) matrix consist of K column vectors of independent predictor variables 

denoted by xk (k=1, …, K). The objective of PLS is to select the optimal number A (A≤K) of 

latent variables or PLS factors, which are linear combinations of the original variables xk. The 

PLS model is given by Eqs. (1) and (2). 

 

A

T ETPX            (1)  

A

T fTqy              (2) 

 

where T(N × A) is a score matrix, P(K × A) a matrix with the x-loading vectors pa (a=1, 2, …, 

A) as columns, q(1 × A) the y-loading vector, EA and fA the residual matrix for X and the 

residual y-vector, respectively, after the extraction of A factors. The optimal number of PLS 

factors, A, can be determined using cross-validation (CV). Further details on PLS can be 

obtained in Refs. [1,2,35]. The model-dependent predictor-variable properties are calculated 

from various parameters of the PLS model. 

 

 

6.3.2 Predictor-variable properties 

 

In this section six individual predictor-variable properties, that were used for variable 

reduction in PLS1 modelling, are discussed. All variable properties, except for the correlation 

coefficients between predictor variables and the response, are dependent on the A factor PLS1 

model. It is assumed that influential variables have high property values.   
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6.3.2.1 PLS regression coefficient (REG) 

 

The variable reduction may be based on the PLS1 regression coefficients bk, which are 

elements of the regression vector b(K × 1), calculated with, 

 

  qWPWb
1

 T           (3) 

 

where W(K × A) is the X weight matrix, P(K × A) the X--loading matrix and q(1 × A) the y-

loading vector [1]. The PLS1 regression coefficients bk are interdependent unless A equals K 

[2]. Influential variables have large positive or negative regression coefficients. The absolute 

value of the PLS1 regression coefficient of variable k, denoted as REGk, is used in this study 

as one of the predictor-variable properties for variable reduction.  

 

kk bREG             (4) 

 

6.3.2.2 Significance of PLS regression coefficient (SIG) 

 

Influential predictor variables have low uncertainties in the model parameters of multivariate 

regression models [29]. Therefore, the significance of the regression coefficients, and of the 

property REGk will also be large. This significance can be estimated by jack-knifing. 

 

The significance of the PLS regression coefficient bk of variable k, denoted as SIGk, is defined 

as the Student t value, calculated as 

  

kb

k

kk
s

b
tSIG            (5) 

 

with tk the Student t value for variable k, bk the PLS regression coefficient of variable k 

calculated with Eq. (3), and
kbs the standard deviation of the estimates of bk calculated from n 

fold jack-knifing with Eq. (6).  

 

 
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1
        (6) 

 

where bk(-j) is the estimate of coefficient bk based on the calibration with all objects, except for 

the objects in the left out segment j [36]. 
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b

b
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j

j
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k




 
1

)(

)(            (7) 

 

with )( jkb  the mean of the bk(-j). Influential variables have large PLS regression coefficients 

and low standard deviations, and therefore large SIGk values.  
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6.3.2.3 Norm loading weights (NLW) 

 

In the PLS1 algorithm a loading weight vector wa is sought which maximizes the covariance 

between the linear combination Xa-1wa and the response vector y under the constraint wa
T
wa=1 

[1]. The influence of a variable k of matrix X on the a
th

 PLS factor in the model is determined 

by the value of the k
th

 element in the loading weight vector wa, wka, and is considered to be 

large if the loading weight wka is large [2]. Large loading weights wka of variable k for the A 

PLS factors will result in a high norm of the loading weight vector wk. The norm of the 

loading weight vector wk, NLWk, with weights of variable k on each of the A PLS factors in 

the model is defined by  

 





A

a

kak wNLW
1

2
          (8) 

 

A scaled version of NLW is used for variable selection in [24].  

 

6.3.2.4 Variable importance in the projection (VIP) 

 

The variable importance in the projection (VIP) score was first published in [27]. VIP is a 

measure for the importance of a predictor variable for both X and y [2]. For each variable k a 

weighted sum of y-variance, VIPk, is calculated [28], applying 1kw , with: 
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22

         (9) 

 

where K is the number of predictor variables, qa the a-the element of the y-loading vector q(1 

× A), ta the a-th column vector of score matrix T. VIPk weighs the contribution of each 

variable k according to the variance explained by each PLS component [28]. VIPk is large for 

influential variables. The criterion VIPk>1 for influential variables is often used for variable 

selection [18,28]. However, in this study, variables are ranked in descending order of VIP 

scores and the threshold is not used. 

 

6.3.2.5 Selectivity ratio (SR) 

 

The selectivity ratio of predictor variable k can be calculated after developing an A factor PLS 

model, after reconstruction of the X matrix by 

 
Tˆ TPX A            (10) 

 

From Eqs. (1) and (10) it follows that for the residual X matrix EA holds that  

 

AA XXE ˆ            (11) 
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The explained variance of predictor variable k, 
2

,expl ks ,  in the reconstructed AX̂ matrix is 

 

 

1
1
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expl,
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N

i

kAikA

k          (12) 

 

where xA are the elements of the reconstructed AX̂ matrix. 

The residual variance of predictor variable k is calculated from the residual matrix EA (Eq. 

(11)) with  

 

 
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where eA are the elements of the residual matrix EA. 

 

The selectivity ratio SRk is defined in Ref. [31] as the ratio of the explained variance from Eq. 

(12) to the residual variance from Eq. (13): 

 

2

,

2

expl,
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k

k
s

s
SR             (14) 

 

6.3.2.6 Squared correlation coefficient between variables of X and y (COR) 

 

The squared correlation coefficient of predictor variable xk with the response y, Rk
2
, is 

considered as a measure for influential variables. Rk is calculated with 

 

  

  yk

N

i
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ssN

yyxx
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where xik is the i
th

 value of variable k, kx the mean of xk, yi the i
th

 response, y  the mean of y, 

sk and sy the standard deviations of xk and y, respectively. Rk
2
 is denoted as CORk. CORk is a 

model independent variable property [3,11,26].  

 

6.3.2.7 Combinations of predictor-variable properties 

 

Combinations of properties can also be used for variable reduction. Wold et al. [27] 

recommend a combination of REG and VIP which states that both should be small 

for a variable to be excluded. In [18] it was observed that REG and VIP might be 

complementary and in [11] products of absolute values of predictor variable properties were 

used for variable selection. 
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Table 6-1 Results of variable reduction using individual predictive variable properties for the Diesel data set. Abbreviations: see text. 

Model Response Method characteristics Full 
spectrum 

Predictor-variable properties 

REG SIG NLW VIP SR COR 

1 Viscosity PLS complexity  11 7 5 13 14 12 11 

  Number of variables, KBest     401 13 7 59 46 141 353 

  RMSEP  0.102 0.099 0.117 0.103 0.099 0.093 0.101 

  R
2
Test 0.934 0.938 0.914 0.932 0.937 0.944 0.935 

2 BP50 PLS complexity 11 7 6 11 13 11 11 

  Number of variables, KBest     401 11 8 266 87 285 326 

  RMSEP  3.605 3.485 3.989 3.656 3.264 3.693 3.749 

  R
2
Test 0.956 0.959 0.946 0.954 0.965 0.953 0.952 

3 CN PLS complexity  5 4 4 4 5 5 13 

  Number of variables, KBest     401 4 4 5 21 13 258 

  RMSEP  2.106 2.076 2.103 2.191 2.174 2.179 2.001 

  R
2
Test 0.654 0.661 0.655 0.624 0.629 0.632 0.691 

4 D4052 PLS complexity  15 10 12 15 15 15 15 

  Number of variables, KBest     401 17 13 111 134 99 326 

  RMSEP  9.20∙10
-4
 1.07∙10

-3
 1.14∙10

-3
 9.32∙10

-4
 9.10∙10

-4
 1.14∙10

-3
 9.23∙10

-4
 

  R
2
Test 0.991 0.989 0.987 0.991 0.992 0.987 0.991 

5 Freeze PLS complexity  9 7 4 10 8 9 8 

  Number of variables, KBest     401 7 6 33 25 256 278 

  RMSEP  2.490 2.685 2.532 2.599 2.735 2.438 2.638 

  R
2
Test 0.624 0.570 0.623 0.590 0.549 0.642 0.581 

6 Total PLS complexity  14 9 9 15 13 15 13 

  Number of variables, KBest     401 15 12 90 47 72 64 

  RMSEP  0.592 0.617 0.622 0.577 0.664 0.616 0.633 

  R
2
Test 0.991 0.990 0.990 0.991 0.988 0.990 0.989 
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The combined predictor-variable properties were made by taking the unweighted sum of two 

individual variable properties. Because of the good selective abilities of REG and SIG found 

in this study (see section 6.7.1), only combinations of REG or SIG with the other individual 

properties were investigated.  Combined properties are denoted with a plus sign between the 

individual properties.  

 

6.3.3 Model validation and selection criterion for the preferred variable set 

 

The predictive ability of the models is both assessed by internal validation in the training set, 

using segmented (n-fold) cross validation, and external validation with a test set, resulting in 

the root mean squared error of cross validation (RMSECV) and the root mean squared error of 

prediction (RMSEP), respectively. After variable reduction, using the reduced variable set, the 

best PLS model complexity is redetermined by segmented cross validation (SCV), which is 

then used for the external validation. The best complexity of a PLS model is determined by 

SCV [9]. In order to avoid overfitting an adjusted Wold’s R criterion, Radj < 0.98, is applied 

[37-39].  

 

RMSECV values are plotted as a function of the number of remaining variables. The model 

with the global minimal value, RMSECVMin, corresponds to the variable set with optimal 

predictive capability. However, a smaller variable set, with KBest variables, and with RMSECV 

not significantly higher than that corresponding to the global minimal value, RMSECVMin, and 

smaller than or equal to the RMSECV of the full spectrum (FS) model, RMSECVFS, is selected 

as the best set [9].   

 

For prediction with a test set, squared values of the correlation coefficient between estimated 

and experimental properties ( 2

TestR ) are calculated with the retained variable sets, using the 

model complexity, redetermined after variable reduction. 

 

Further details about model validation and the selection of the preferred variable set are 

described in Ref. [9]. 

 

 

6.4 FCAM method 

 

The FCAM method is a backward stepwise variable-reduction method based on predictive-

property-ranked variables. Variables are reduced with constant PLS1 model complexity A 

until A variables remain. Then, the PLS model complexity is stepwise decreased, A-1, A-2, 

…,1, after each removal of a variable, allowing reduction to small numbers of variables.  

The method consists of four steps. First, the data set is split into a training and a test set. The 

predictive ability of the full spectrum PLS1 models is assessed by internal validation with the 

training set, using SCV. The optimal number of PLS1 factors A, is determined by the 

application of the adjusted Wold’s R criterion Radj <0.98, see section  6.3.3. Based on the A 

factor PLS1 model, a given property is calculated for all variables and ranked. 

In step 2, iteratively, the variable with the smallest property value is eliminated, a new PLS1 

model, RMSECV, and new property values calculated, and variables reranked. When the 

number of remaining variables is A, the model complexity is decreased by one. Step 2 is 

repeated until the number of remaining variables and the PLS model complexity equals 1.  
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Table 6-2 Results of variable reduction using combined predictive variable properties for the Diesel data set. Abbreviations: see text. 

Model Response Method characteristics Predictor-variable properties 

REG+ 
SIG 

REG+ 
NLW 

REG+ 
VIP 

REG+ 
SR 

REG+ 
COR 

SIG+ 
NLW 

SIG+ 
VIP 

SIG+ 
SR 

SIG+ 
COR 

1 Viscosity PLS complexity selecting best set  5 7 5 12 7 7 7 12 6 

  Number of variables, KBest     10 7 8 83 13 8 8 140 9 

  RMSEP  0.107 0.100 0.110 0.106 0.099 0.110 0.133 0.093 0.109 

  R
2
Test 0.926 0.935 0.925 0.927 0.938 0.922 0.889 0.944 0.925 

2 BP50 PLS complexity selecting best set  7 7 7 8 7 7 8 11 8 

  Number of variables, KBest     11 11 11 27 11 8 24 290 9 

  RMSEP  3.485 3.485 3.485 3.939 3.485 3.771 3.972 3.673 3.595 

  R
2
Test 0.959 0.959 0.959 0.947 0.959 0.951 0.946 0.954 0.957 

3 CN PLS complexity selecting best set  4 4 4 5 4 4 4 5 2 

  Number of variables, KBest     4 4 4 13 4 4 4 13 3 

  RMSEP  2.076 2.076 2.076 2.179 2.076 2.110 2.103 2.179 2.229 

  R
2
Test 0.661 0.661 0.661 0.632 0.661 0.653 0.655 0.632 0.611 

4 D4052 PLS complexity selecting best set  11 11 12 15 11 12 11 15 11 

  Number of variables, KBest     13 18 18 99 16 13 13 99 12 

  RMSEP  1.06∙10
-3
 1.06∙10

-3
 1.09∙10

-3
 1.14∙10

-3
 1.10∙10

-3
 1.14∙10

-3
 1.12∙10

-3
 1.14∙10

-3
 1.13∙10

-3
 

  R
2
Test 0.989 0.989 0.988 0.987 0.988 0.987 0.987 0.987 0.987 

5 Freeze PLS complexity selecting best set  6 6 6 8 7 4 5 9 4 

  Number of variables, KBest     6 6 6 24 7 6 7 167 6 

  RMSEP  2.672 2.672 2.672 2.551 2.685 2.454 2.469 2.492 2.445 

  R
2
Test 0.576 0.576 0.576 0.609 0.570 0.648 0.642 0.627 0.660 

6 Total PLS complexity selecting best set  9 9 9 13 19 10 10 15 10 

  Number of variables, KBest     15 15 15 58 15 11 10 72 11 

  RMSEP  0.617 0.617 0.617 0.657 0.617 0.646 0.596 0.616 0.641 

  R
2
Test 0.990 0.990 0.990 0.988 0.990 0.989 0.990 0.990 0.989 
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In the third step, RMSECVBest is determined (see [9]) and the corresponding subset of 

variables selected. In the fourth step, using the reduced  variable set, the PLS model is 

externally validated (RMSEP) using a test set, after a renewed determination of the optimal 

number of PLS factors A by SCV and the application of the criterion Radj <0.98.  

To illustrate the results of steps 1 and 2, Fig. 6-1 shows the RMSECV curve and the PLS 

model complexity as a function of the number of remaining variables for the FCAM method 

on one of the studied data sets (Corn set, response moisture) with REG as predictive variable 

property. 

 

 
 

Fig. 6-1 RMSECV curve and PLS model complexity as a function of the number of remaining variables 

for the FCAM method using REG for response moisture of the Corn data set; — RMSECV-curve 

 

 

6.5 Wilcoxon signed rank test 

 

The results of the predictor-variable properties are compared using the one-tailed Wilcoxon 

signed rank test. This is a robust and sensitive non-parametric statistical test for two groups of 

paired samples. It is used just as the paired t-test, without any distributional assumptions [40-

42]. The null hypothesis is accepted if the originating populations of the paired samples have 

the same median. Both the direction and the magnitude of the difference between the results 

of two methods for each subset are considered in the test.   

 

The absolute differences |di|, between results of paired samples for two properties, are given a 

rank Ri in ascending order. Thereafter, each rank Ri is attributed with the same sign as the 

original difference di, and the sum of all positive ranks T+ and of all negative ranks T- is 

determined. The minimum of T+ and T- is the test statistic. The test statistic is small if there is 

no true difference between the two paired samples. For a one-tailed Wilcoxon signed rank 

test, the direction of the differences between the paired samples is determined from the 

maximum of T+ and T- and the one-tailed probability p of the test statistic is calculated [42].
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Table 6-3 Results of variable reduction using individual predictive variable properties for the Corn data set. Abbreviations: see text. 

Model Response Method characteristics Full 
spectrum 

Predictor-variable properties 

REG SIG NLW VIP SR COR 

7 Moisture PLS complexity  15 2
 

2 12 15 15 15 

  Number of variables, KBest     700 2 2 12 113 51 376 

  RMSEP  1.19∙10
-2
 3.00∙10

-4
 3.00∙10

-4
 3.08∙10

-4
 3.55∙10

-3
 2.02∙10

-3
 6.56∙10

-3
 

  R
2
Test 0.999 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

8 Oil PLS complexity  11 10 7 11 11 10 9 

  Number of variables, KBest     700 18 7 12 29 11 110 

  RMSEP  0.060 0.021 0.017 0.078 0.070 0.056 0.085 

  R
2
Test 0.869 0.983 0.990 0.789 0.850 0.879 0.728 

9 Protein PLS complexity  14 12 11 14 14 14 15 

  Number of variables, KBest     700 28 11 16 582 20 238 

  RMSEP  0.090 0.071 0.071 0.094 0.082 0.065 0.092 

  R
2
Test 0.968 0.982 0.984 0.966 0.974 0.985 0.971 

10 Starch PLS complexity  15 10 8 14 15 15 15 

  Number of variables, KBest     700 26 8 14 109 44 691 

  RMSEP  0.170 0.125 0.129 0.235 0.204 0.100 0.170 

  R
2
Test 0.962 0.979 0.978 0.927 0.946 0.987 0.962 

 

 

Table 6-4 Results of variable reduction using combined predictive variable properties for the Corn data set. Abbreviations: see text. 

Model Response Method characteristics Predictor-variable properties 

REG+ 
SIG 

REG+ 
NLW 

REG+ 
VIP 

REG+ 
SR 

REG+ 
COR 

SIG+ 
NLW 

SIG+ 
VIP 

SIG+ 
SR 

SIG+ 
COR 

7 Moisture PLS complexity selecting best set  2
 

2
 

2 15 2 2
 

2 15 2 

  Number of variables, KBest     2 2 2 51 2 2 2 51 2 

  RMSEP  3.00∙10
-4
 3.00∙10

-4
 3.00∙10

-4
 2.02∙10

-3
 3.00∙10

-4
 3.00∙10

-4
 3.00∙10

-4
 2.02∙10

-3
 3.00∙10

-4
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

8 Oil PLS complexity selecting best set  11 10 9 10 10 7 4 10 8 

  Number of variables, KBest     23 14 15 11 15 7 4 11 8 

  RMSEP  0.018 0.022 0.024 0.056 0.023 0.075 0.087 0.056 0.018 

  R
2
Test 0.987 0.983 0.978 0.879 0.981 0.816 0.757 0.879 0.988 

9 Protein PLS complexity selecting best set  13 12 12 14 11 10 11 14 10 

  Number of variables, KBest     24 26 23 20 18 13 18 20 11 

  RMSEP  0.046 0.075 0.066 0.066 0.064 0.067 0.073 0.066 0.073 

  R
2
Test 0.993 0.983 0.985 0.985 0.987 0.985 0.981 0.985 0.982 

10 Starch PLS complexity selecting best set  10 14 10 10 15 13 13 15 9 

  Number of variables, KBest     16 46 16 44 26 13 13 44 9 

  RMSEP  0.120 0.131 0.105 0.100 0.125 0.121 0.153 0.100 0.108 

  R
2
Test 0.984 0.978 0.987 0.987 0.979 0.980 0.969 0.987 0.985 
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6.6 Data and methodology 

 

6.6.1 Data sets 

 

Three data sets were investigated. The first data set is the Diesel set from Eigenvector 

Research http://software.eigenvector.com/. The Diesel set consists of first derivative NIR data 

at 401 wavelengths (no wavelengths provided), of 252 diesel samples, and six physical 

properties as responses. The physical properties viscosity (Visc), boiling point (BP50), cetane 

number (CN), density (D4052), freezing temperature (Freeze) and total aromatics (Total) are 

the responses. The set was split into a training and a test set with 136 and 116 samples, 

respectively. Ten-fold cross validation is conducted during model building. 

 

The second data set is the Corn set from Eigenvector Research, consisting of NIR spectra of 

80 corn samples from the “m5” spectrometer with a wavelength range of  1100–2498 nm at 2 

nm intervals, resulting in 700 predictor variables. Moisture, oil, protein and starch contents of 

the samples are the responses. The Corn set was split into a training and a test set using the 

duplex method [43], with 60 and 20 samples, respectively. Eight fold cross validation is 

conducted during model building. 

 

The third simulated data set consists of six subsets. They represent the spectra or 

chromatograms of mixtures with one to four compounds (A, B, C or D), see Table 6-5 and 

Table 6-6. The response vector y contains the concentrations of compound A. The pure 

spectral/chromatographic profiles of the compounds were Gaussian peaks g(μ,σ), with mean μ 

and standard deviation σ, i.e. gA(50,1), gB(41,4), gC(59,4) and gD(50,15) for the respective 

components. The maximum heights of the Gaussian peaks are 1 for compounds A, B and C, 

and 0.5 for compound D. The first 100 variables in these profiles are informative, with x 

values used for the calculation of the analyte profiles in the mixtures. The last 100 variables 

are uninformative, consisting of random numbers between 0 and 1. These uninformative 

variables have a high signal level, comparable to that of the informative variables in the range 

x=1-100. This is to investigate if the FCAM method is capable to find informative variables 

with a chemical meaning in profiles containing many uninformative variables at a similar 

signal level. The simulated subsets were split using the duplex method, into a training and a 

test set with 100 and 20 samples, respectively, and ten-fold cross validation is conducted 

during model building.  

 

Further details about the data sets are described in Ref. [9]. 

 

6.6.2 Methodology 

 

The data sets contain a total of 16 X-y combinations. The variables and responses of all X-y 

combinations are pre-processed by mean-centring. This may affect the results of the variable 

reduction applied [10]. For each X-y combination, the FCAM method is applied using one of 

the individual or combined properties. The numbers of retained variables and the resulting 

RMSEP’s are used to investigate the effectiveness of these properties. The numbers of 

retained variables are compared using box plots. Pairwise differences in numbers of retained 

variables and in RMSEP’s are statistically tested, using the one-tailed Wilcoxon signed rank 

http://software.eigenvector.com/
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test. The ability of the FCAM method to retain variables with a chemical meaning, using the 

applied variable properties, is also investigated.  

 

6.6.3 Software 

 

All calculations are made with in-house programs developed in Matlab (V. 6.5) (The Math 

Works, Natick, MA, USA) (http://www.mathworks.com/). The procedure for the duplex 

splitting algorithm is from ChemoAC Standard Functions Toolbox for MATLAB 

(http://www.vub.ac.be/fabi/publiek/index.html). Statistical tests are conducted with SPSS V20 

(http://www-01.ibm.com/software/analytics/spss/products/statistics). 

 

 

6.7 Results and discussion 

 

First, for each of the 16 responses (Table 6-1,3,5) a PLS1 model is developed. The optimal 

model complexities were determined for the full spectra, by segmented cross validation, and 

RMSECV and RMSEP calculated for the full spectrum models. Variable reduction is then 

applied on the X-y sets by the FCAM method, considering an individual or combined 

property, using the optimal PLS model complexity determined for the full spectrum. After 

variable reduction the optimal PLS model complexity is redetermined for the remaining best 

variable set. 

 

In Table 6-1, 3 and 5, for the full spectrum models, the optimal PLS complexity, the number 

of variables, RMSEP and the squared correlation coefficient for prediction with the test set, 
2

TestR  are given. For each individual and combined property, the redetermined optimal PLS 

complexity, the number of remaining variables KBest, RMSEP and 2

TestR , are shown in Table 

6-1, 3, 5 and Table 6-2, 4, 6 respectively. For the simulated sets, the relatively high PLS 

model complexities of the full spectrum models are noteworthy. These complexities are 

strongly increased by the addition of the 100 uninformative variables to the informative 

variables at the applied high signal level, to compensate for change correlations with the 

response. 

 

In this section, for the 16 X-y combinations, the predictive and selective performances of the 

models resulting from variable reduction using individual or combined predictor-variable 

properties are compared with those resulting from REG or SIG.  

It is statistical tested if (i) RMSEP’s of the PLS models after variable reduction, and (ii) 

numbers of retained variables KBest , are significantly lower than those resulting from REG or 

SIG. In addition, it is also tested if RMSEP’s of the PLS models developed for the retained 

variable sets are significantly lower than those of the full spectrum models. The RMSEP’s and 

the numbers of retained variables are compared to test the predictive and selective 

performances, respectively. Therefore, pairwise differences for RMSEP’s and numbers of 

remaining variables are statistically tested, using a one-tailed Wilcoxon signed rank test.  

The tests are conducted such that differences dij between RMSEP’s or numbers of remaining 

variables of paired samples, are calculated as dij=hproperty j-hproperty i; h=RMSEP or KBest, i refers 

to a property in the first column of Table 6-7, and j to the full spectrum, REG or SIG. This 

results in  negative differences if RMSEPj or KBest_j is lower than the equivalent i property. 

Then, the sum of the negative ranks T- will be larger than the sum of the positive ranks T+.  

 

http://www.mathworks.com/
http://www.vub.ac.be/fabi/publiek/index.html
http://www-01.ibm.com/software/analytics/spss/products/statistics
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Table 6-5 Results of variable reduction using individual predictive variable properties for the Simulated data set. Abbreviations: see text.   

Model Mixtures Method characteristics Full 
spectrum 

Predictor-variable properties 

REG SIG NLW VIP SR COR 

11 A PLS complexity  11 3 2 6 3 11 11 

  Number of variables, KBest     200 3 2 6 3 11 11 

  RMSEP  0.069 1.12∙10
-3
 1.23∙10

-3
 1.49∙10

-3
 1.12∙10

-3
 1.25∙10

-3
 1.33∙10

-3
 

  R
2
Test 0.957 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

12 A,B PLS complexity  14 2 2 13 5 8 2 

  Number of variables, KBest     200 4 4 32 7 20 2 

  RMSEP  0.052 1.33∙10
-3
 1.35∙10

-3
 1.62∙10

-3
 1.33∙10

-3
 1.38∙10

-3
 1.57∙10

-2
 

  R
2
Test 0.964 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

13 A,D PLS complexity  12 2 5 9 2 12 2 

  Number of variables, KBest     200 7 14 18 6 17 2 

  RMSEP  0.081 1.59∙10
-3
 1.66∙10

-3
 1.88∙10

-3
 1.65∙10

-3
 1.25∙10

-3
 4.24∙10

-3
 

  R
2
Test 0.932 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

14 A,B,C PLS complexity  13 3 3 9 10 9 12 

  Number of variables, KBest     200 5 5 21 31 29 71 

  RMSEP  0.042 1.21∙10
-3
 1.33∙10

-3
 2.40∙10

-3
 1.35∙10

-3
 1.25∙10

-3
 1.62∙10

-3
 

  R
2
Test 0.986 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

15 A,B,D PLS complexity  16 3 5 7 4 10 10 

  Number of variables, KBest     200 11 11 8 11 25 16 

  RMSEP  0.050 1.67∙10
-3
 1.73∙10

-3
 2.26∙10

-3
 1.97∙10

-3
 1.72∙10

-3
 2.24∙10

-3
 

  R
2
Test 0.974 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

16 A,B,C,D PLS complexity  15 4 7 11 7 9 15 

  Number of variables, KBest     200 11 16 18 11 48 35 

  RMSEP  0.085 1.84∙10
-3
 1.67∙10

-3
 1.87∙10

-3
 1.99∙10

-3
 1.47∙10

-3
 3.50∙10

-3
 

  R
2
Test 0.935 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 
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In Table 6-7, the probabilities p and the direction of differences are given, for the one-tailed 

Wilcoxon signed rank test. T- >T+ is indicated by (T-) and T+>T- by (T+). The results are 

discussed below. In the comparison of properties, significantly lower results are found for the 

properties  j than for i if p<0.05, and T- >T+. The results for the properties i are significantly 

lower than those for j if p<0.05, and T+ >T-. 

 

 

6.7.1 Comparison of the individual properties  

 

To compare the selective performances of the FCAM method with all investigated predictive-

variable properties, box plots are made for the numbers of retained variables (see Fig. 6-2). 

The box plots in Fig. 6-2A show much smaller numbers of retained variables for REG and 

SIG than for the other individual properties.  

 

The Wilcoxon signed rank test (Table 6-7) shows that the RMSEP’s of the full spectrum 

models are significantly higher than those resulting from the individual variable properties 

REG, SIG and SR (p=0.0008, p=0.049, p=0.044 and T+ >T-). For REG and SIG, the numbers 

of the retained variables are significantly lower than those of the other individual properties 

(p<0.05 and T- >T+).  

 

The RMSEP’s of models resulting from REG or SIG are similar (p=0.106) and the numbers 

of retained variables for SIG are significantly lower than for REG (p=0.046 and T- >T+). That 

means that SIG has better selective abilities than REG, while the predictive abilities are 

similar. 

 

The RMSEP’s of models resulting from REG, are significantly lower than those of NLW, VIP 

and COR (p=0.017, p=0.015, p=0.022, respectively, and T- >T+), and similar to those of SIG 

and SR. The RMSEP’s of models resulting from SIG are similar to those of the other 

individual properties (p≥0.05). 

 

Therefore, it is concluded that the predictive performance of the models is significantly 

improved after variable reduction with the FCAM method, using either the individual 

property REG, SIG or SR. From the individual variable properties, REG and SIG have the 

best selective abilities, while the predictive abilities are better than or similar to those of the 

other individual properties. SIG has the best selective abilities. REG is faster because no jack-

knifing is needed to calculate standard deviations of the regression coefficients. 

 

Because REG and SIG have the best predictive and selective abilities, only combinations of 

REG or SIG with the other individual properties are investigated. 
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Table 6-6 Results of variable reduction using combined predictive variable properties for the Simulated data set   

Model Mixtures Method characteristics Predictor-variable properties 

REG+ 
SIG 

REG+ 
NLW 

REG+ 
VIP 

REG+ 
SR 

REG+ 
COR 

SIG+ 
NLW 

SIG+ 
VIP 

SIG+ 
SR 

SIG+ 
COR 

11 A PLS complexity selecting best set  2 2 2 11 3 3 3 11 3 

  Number of variables, KBest     2 2 2 12 3 3 3 13 3 

  RMSEP  1.23∙10
-3
 1.23∙10

-3
 1.29∙10

-3
 1.39∙10

-3
 1.12∙10

-3
 1.12∙10

-3
 1.12∙10

-3
 1.30∙10

-3
 1.12∙10

-3
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

12 A,B PLS complexity selecting best set  2 2 5 8 2 2 2 8 2 

  Number of variables, KBest     4 3 7 23 7 4 4 23 4 

  RMSEP  1.33∙10
-3
 1.43∙10

-3
 1.33∙10

-3
 1.36∙10

-3
 1.34∙10

-3
 1.35∙10

-3
 1.33∙10

-3
 1.43∙10

-3
 1.33∙10

-3
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

13 A,D PLS complexity selecting best set  4 2 2 12 2 4 4 7 3 

  Number of variables, KBest     15 3 4 18 7 15 11 20 7 

  RMSEP  1.66∙10
-3
 1.65∙10

-3
 1.86∙10

-3
 1.72∙10

-3
 1.78∙10

-3
 1.39∙10

-3
 1.48∙10

-3
 1.47∙10

-3
 1.66∙10

-3
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

14 A,B,C PLS complexity selecting best set  3 3 7 9 3 3 3 9 3 

  Number of variables, KBest     5 5 18 28 10 5 5 29 5 

  RMSEP  1.33∙10
-3
 1.24∙10

-3
 1.26∙10

-3
 1.34∙10

-3
 1.18∙10

-3
 1.22∙10

-3
 1.25∙10

-3
 1.35∙10

-3
 1.25∙10

-3
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

15 A,B,D PLS complexity selecting best set  4 4 3 15 3 5 7 15 5 

  Number of variables, KBest     10 4 5 28 7 10 13 27 13 

  RMSEP  1.75∙10
-3
 2.38∙10

-3
 1.74∙10

-3
 2.04∙10

-3
 2.03e-003 1.93∙10

-3
 2.06∙10

-3
 1.92∙10

-3
 1.95∙10

-3
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

16 A,B,C,D PLS complexity selecting best set  5 4 4 10 5 7 5 9 8 

  Number of variables, KBest     12 4 7 48 11 14 12 48 16 

  RMSEP  2.07∙10
-3
 1.77∙10

-3
 1.78∙10

-3
 1.58∙10

-3
 3.17∙10

-3
 2.41∙10

-3
 1.96∙10

-3
 1.68∙10

-3
 1.74∙10

-3
 

  R
2
Test >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 
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Table 6-7 Probabilities p and direction of effects for pair-wise differences in RMSEP and in 

numbers of retained variables, applied in one-tailed Wilcoxon signed rank tests 

 
Test on differences in RMSEP Test on differences in numbers of 

retained variables 

Models resulting 
from 

Comparison with 
full spectrum 
model 

Comparison with 
model resulting 
from REG 

Comparison with 
model resulting 
from SIG 

Comparison with 
model resulting 
from REG 

Comparison with 
model resulting 
from SIG 

REG 0.008 (T+) - 0.106 (T+) - 0.046 (T-) 

SIG 0.049 (T+) 0.106 (T-) - 0.046 (T+) - 

NLW 0.418 (T+) 0.017 (T-) 0.067 (T-) 0.021 (T-) <0.0005 (T-) 

VIP 0.163 (T+) 0.015 (T-) 0.064 (T-) 0.001 (T-) 0.002 (T-) 

SR 0.044 (T+) 0.459 (T+) 0.096 (T+) 0.005 (T-) <0.0005 (T-) 

COR 0.219 (T+) 0.022 (T-) 0.090 (T-) 0.0005 (T-) <0.0005 (T-) 

      

REG+SIG 0.012 (T+) 0.395 (T+) 0.085 (T+) 0.206 (T+) 0.037 (T-) 

REG+NLW 0.008 (T+) 0.042 (T-) 0.475 (T+) 0.040 (T+) 0.270 (T-) 

REG+VIP 0.012 (T+) 0.464 (T-) 0.167 (T+) 0.051 (T+) 0.136 (T-) 

REG+SR 0.190 (T+) 0.074 (T-) 0.213 (T-) 0.0005 (T-) <0.0005 (T-) 

REG+COR 0.075 (T+) 0.146 (T-) 0.140 (T+) 0.264 (T+) 0.054 (T-) 

SIG+NLW 0.067 (T+) 0.099 (T-) 0.254 (T+) 0.028 (T+) 0.214 (T-) 

SIG+VIP 0.054 (T+) 0.050 (T-) 0.438 (T-) 0.101 (T+) 0.252 (T-) 

SIG+SR 0.042 (T+) 0.438 (T-) 0.257 (T+) 0.0005 (T-) <0.0005 (T-) 

SIG+COR 0.022 (T+) 0.191 (T-) 0.352 (T+) 0.025 (T+) 0.280 (T-) 

Direction of effect is indicated by (T+) or (T-); (T+) =T+ >T- ; (T-)= T- >T+ ;
  

Significant one-tailed p values (p<0.05) are in bold 

 

6.7.2 Comparison of the combined properties  

 

The box plots in Fig. 6-2B show small numbers of retained variables for REG and SIG and 

for all combinations of REG or SIG with the other properties, except for REG+SR and 

SIG+SR for which large spreads are seen. 

Table 6-7 shows that the RMSEP’s of models resulting from all combined properties are 

significantly or borderline significantly lower than those of the full spectrum models, except 

for REG+SR. RMSEP’s of models resulting from REG or SIG are similar to those of all 

combined properties, except for REG+NLW with higher RMSEP’s than for REG.  

The numbers of the retained variables are significantly lower for REG+NLW (p=0.040 and T+ 

>T-), and borderline significantly lower for REG+VIP (p=0.051 and T+ >T-) than for REG, 

but similar to SIG. That means that the selective ability of REG is improved by combining it 

with NLW or VIP. 

 

In this study only equal contributions of the individual properties in combined properties are 

investigated. The contribution of the individual properties in the combinations REG+NLW 

and REG+VIP with improved selective abilities compared to REG, may further be optimised 

in future studies. 

 

For SIG, (i) the numbers of the retained variables are either similar or significantly lower than 

for all individual and combined properties, and (ii) the RMSEP’s are similar for all individual 

and combined properties. SIG combines a good predictive with the best selective ability. 

 

While the individual property SR has significantly better predictive abilities than the full 

spectrum models its selective ability is lower than those of REG and SIG and of combinations 

of SR with REG or SIG. Therefore, the use of SR for variable reduction will mostly be 

disadvantageous.   
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In combined properties, both the sums of normalised and of auto scaled individual properties 

were also investigated, but the results were worse than for the individual properties and are 

therefore not reported.  

 

 (A) 

 
(B) 

 

Fig. 6-2 Box plots for the numbers of retained variables by the FCAM method; (A) using the individual 

predictor-variable properties,  (B) using REG, SIG and combined predictor-variable properties  
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In the FCAM method, variable selection starts with complexity A, determined for full 

spectrum modelling. The PLS model complexity is adapted to the decreasing numbers of 

selected variables at the end of the variable reduction process. From Table 6-1 - Table 6-6 it is 

seen that, for REG 9 out of 16 and for SIG 14 out of 16, best-set models have a lower 

complexity than the starting complexity A. For the combined properties REG+SIG, 

REG+COR, SIG+NLW, SIG+VIP, and SIG+COR, 10, 9, 15, 14 and 15 best-set models, 

respectively, are simpler than A. This demonstrates again that the adaptation of the PLS1 

model complexity to decreasing numbers of selected variables is advantageous.  

 

6.7.3 Quality of the selected variable sets  

 

The ability of the FCAM method, using individual or combined predictor-variable properties 

to select features with a chemical meaning relevant to the response, is demonstrated for 

responses 7 (moisture from Corn set) and 14 (A, B and C from simulated set). However, this 

is not possible for the Diesel set because no wavelength information is provided. 

 

Dry food samples, such as corn, show a strong absorption band for water from 1900 to 1950 

nm, which is often used for the quantitative analysis of water contents [44].  Fig. 6-3A shows 

the corn spectra, the selected wavelengths for all individual and combined properties, and the 

water absorption band. The individual properties REG and SIG are very selective because 

only two wavelengths at 1908 and 2108 nm, having large values for REG and SIG, are 

retained, with very good predictive abilities (Table 6-3). Wavelength 1908 nm lies inside and 

2108 nm outside the water band. The latter signal is possibly due to an interferent. All other 

individual and combined properties have also these two key wavelengths in their selection. 

Other wavelengths around 1908 and 2108 nm are also selected. An increased spread in the 

selected variables is observed for properties NLW, VIP, SR and COR.  

All combinations of REG and SIG, except for REG+SR and SIG+SR, have only two variables 

in their selections. REG and SIG have already good selective abilities with two retained 

variables. Therefore, in this case, it is not possible to further improve the variable selection by 

making combinations of properties. 

 

In the simulated data set the selective abilities of the FCAM method, are investigated for all  

mixtures by using as response the concentrations of analyte A, i.e. the substance with the 

narrowest peak profile. Table 6-5 shows for model 14, the model for analyte A in mixtures of 

A with interferents B and C, that REG and SIG are very selective, because sets with only 5 

variables are selected with good predictivety, 9995.02 TestR .   

 

Fig. 6-3B shows the simulated profiles and the retained variables for all properties for model 

14. REG and SIG are very selective because only 5 informative variables are retained, inside a 

region below the tops of analyte A and of the two interferents B and C, at positions 41, 50, 

and 59, respectively. The other properties NLW, VIP, SR and COR are again less selective 

because more variables are retained, also inside the uninformative noise area between 

variables 101-200. Using the combinations REG+VIP, REG+SR and SIG+SR, also 

uninformative random variables are selected.  
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(A) 

 
(B) 

 

Fig. 6-3 (A) Spectra from data set Corn, response moisture, and retained wavelengths using individual  

and combined predictor-variable properties; the yellow column represents the water band (see text), (B) 

Profiles of the simulated set, model 14, and retained variables using individual and combined predictor-

variable properties 
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Fig. 6-4 (Top) Profiles of the simulated set, for model 14; (Bottom) PLS regression coefficients of retained 

variables using individual predictor-variable properties 

 

Table 6-8 Simulated data set: number of random variables (x=101-200) retained  

(A) 
Model Components Predictor-variable properties 

REG SIG NLW VIP SR COR 

11 A 0 0 5 0 9 2 

12 A,B 0 0 27 3 11 0 

13 A,D 0 2 15 0 9 0 

14 A,B,C 0 0 17 18 9 25 

15 A,B,D 0 2 5 1 12 10 

16 A,B,C,D 0 3 13 3 10 26 

 

(B) 
Model Components Predictor-variable properties 

REG+ 
SIG 

REG+ 
NLW 

REG+ 
VIP 

REG+ 
SR 

REG+ 
COR 

SIG+ 
NLW 

SIG+ 
VIP 

SIG+ 
SR 

SIG+ 
COR 

11 A 0 0 0 10 0 0 0 10 0 

12 A,B 0 0 3 11 0 0 0 11 0 

13 A,D 0 0 0 9 0 2 1 9 1 

14 A,B,C 0 0 8 9 0 0 0 9 0 

15 A,B,D 1 0 0 12 0 2 5 12 2 

16 A,B,C,D 0 0 0 8 0 2 1 10 3 

 

 

Mostly, regression coefficients of uninformative variables are small. This is demonstrated in 

Fig. 6-4. PLS regression coefficients of the retained variables are shown, together with the 

spectral profiles, for model 14, and for all individual properties. Large positive regression 

coefficients are observed below the central peak in the spectra of compound A, which is 
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modelled. Regression coefficients of retained uninformative variables after using NLW, VIP, 

SR and COR (see Fig. 6-3B) are so small that they cannot be seen in the graph (Fig. 6-4).  

 

In addition to that, for the six simulated sets 11-16 , the FCAM method using REG or SIG, 

selects none or only few uninformative random variables, while many of these are retained by 

the other individual properties (Table 6-8A). Using the combined properties, REG+VIP, 

REG+SR, SIG+VIP and SIG+SR, also many random variables are retained (Table 6-8B). 

 

It is concluded that the capability of the properties REG and SIG, to select low numbers of 

informative variables, with a meaning relevant to the response, is better than that of the other 

individual properties considered. All combinations of REG and SIG with the other properties, 

except REG+SR, REG+VIP, SIG+VIP and SIG+SR, are capable to select low numbers of 

informative variables, with a meaning relevant to the response. 

 

 

6.8 Conclusions 

 

The PPRVR-FCAM method is a backward stepwise variable-reduction method based on 

predictive-property-ranked variables, in which variables are first reduced at constant PLS1 

model complexity A, until the selection of A variables, followed by further variable reduction 

and a stepwise decrease in PLS complexity (A-1, A-2, …,1), after each removal of a variable, 

allowing the selection of small numbers of variables.  

The aim of this work was to investigate and to compare the utility and effectiveness of six 

individual (REG, SIG, COR, NLW, VIP and SR) and nine combined properties, in variable 

reduction by the PPRVR-FCAM method. The predictive and selective abilities of the different 

PLS1 models developed after variable reduction were statistically compared using the one-

tailed Wilcoxon signed rank test. 

 

Variable reduction with the FCAM method, using the properties REG and SIG, based on the 

PLS regression coefficients, after mean-centring of the data, provides low numbers of 

informative variables, with a meaning relevant to the response, and lower than the other 

individual properties. The resulting models have similar or better predictive abilities than the 

full spectrum models.  

REG and SIG have better selective abilities than the other individual properties, while the 

predictive abilities are similar or better. SIG has the best selective ability of all individual and 

combined properties, while the predictive ability is similar. REG is faster than SIG. This 

means that variable reduction with the FCAM method is preferably conducted with property 

REG or SIG. The selective ability of REG can be improved by combining it with NLW or 

VIP. 
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7 Predictive-Property-Ranked Variable Reduction with Final 

Complexity Adapted Models in Partial Least Squares 

Modelling for Multiple Responses
4
  

 

 

7.1 Abstract 

 

For partial least-squares regression with one response (PLS1), many variable-reduction 

methods have been developed. However, only few address the case of multiple-response 

partial-least-squares (PLS2) modelling. The calibration performance of PLS1 can be 

improved by elimination of uninformative variables. Many variable-reduction methods are 

based on various PLS-model-related parameters, called predictor-variable properties. 

Recently, an important adaptation, in which the model complexity is optimised, was 

introduced in these methods. This method was called Predictive-Property-Ranked Variable 

Reduction with Final Complexity Adapted Models, denoted as PPRVR-FCAM or simply 

FCAM.  

 

In this study, variable reduction for PLS2 models, using an adapted FCAM method, FCAM-

PLS2, is investigated. The utility and effectiveness of four new predictor-variable properties, 

derived from the multiple response PLS2 regression coefficients, are studied for six data sets 

consisting of  ultraviolet-visible (UV-VIS) spectra, near-infrared (NIR) spectra, NMR spectra 

and two simulated sets, one with correlated and one with uncorrelated responses. The four 

properties include the mean of the absolute values as well as the norm of the PLS2 regression 

coefficients and their significances. 

 

The four properties were found to be applicable by the FCAM-PLS2 method for variable 

reduction. The predictive abilities of models resulting from the four properties are similar. 

The norm of the PLS2 regression coefficients has the best selective abilities, low numbers of 

variables with an informative meaning to the responses are retained. The significance of the 

mean of the PLS2 regression coefficients is found to be the least-selective property.  

 

Keywords: Variable selection, Partial least squares, PLS2, predictor-variable properties, 

FCAM-PLS2 
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7.2 Introduction 

 

 

Partial least squares (PLS) is a commonly used multivariate regression technique, able to deal 

to a certain extent with large numbers of noisy and correlated variables and small numbers of 

samples [1-3]. PLS calibration of multiple response data can be performed in two ways, either 

building multiple models each with one response (PLS1) or constructing one model with 

several  responses (PLS2). PLS2 has a few advantages. First, there is one common set of PLS 

factors for all responses. This simplifies the procedure and interpretation, and it allows a 

simultaneous graphical inspection. Second, when the responses are strongly correlated, one 

may expect the PLS2 model to be more robust than with separate PLS1 models. Finally, when 

the number of responses is large, the development of a single PLS2 model is performed much 

faster than that of many separate PLS1 models. Practical experience, however, indicates that 

PLS1 calibration usually performs equally well or better in terms of predictive accuracy [4].
 

 

Both theoretical [5-9] and experimental evidence [3,10-18] exist that elimination of 

uninformative variables improves the performance of PLS calibration. For PLS1, many 

variable-reduction methods have been developed [3,12,19-22]. However, only a few address 

PLS2 modelling [23-26]. In this study, a new variable reduction method for PLS2 modelling 

is proposed and evaluated. 

 

For PLS1, many variable-elimination methods are based on so-called predictor-variable 

properties, which are functions of various PLS1-model parameters, and which may change 

during the variable-reduction process. In these methods reduction is made on the variables 

ranked in descending property magnitude. This ranking reflects their importance for the 

model. The higher its magnitude, the more important the variable.  

 

In the Stepwise Variable Reduction methods using Predictive-Property-Ranked Variables, 

denoted as SVR-PPRV methods, iteratively, the variable with the smallest property value is 

eliminated and a new PLS1 model calculated [10]. The predictive abilities of the models are 

assessed by the root-mean-squared error of cross validation (RMSECV). The set of variables 

resulting in the optimal model is then selected. The goal is to obtain models from small sets of 

variables with improved or similar predictability relative to that of the original data set. A low 

number of variables can also be beneficial with regard to (i) a better understanding of the 

model, and (ii) selection of a viable set of sensors in process control. 

 

Properties such as weights, loadings, and PLS regression coefficients are functions of the 

parameters of the PLS1 algorithm, and they are interdependent [1]. In the stepwise variable 

reduction process the data matrix changes continuously and therefore the parameters of the 

PLS algorithm can also change. The optimal number of PLS factors, i.e. the best PLS model 

complexity, can change as well. If the same PLS model complexity is used during the entire 

variable reduction procedure, as is done often, RMSECV values may become overoptimistic 

[27], since the best model complexity decreases due to the elimination of uninformative 

variables [28].
 

 

In a previous study [10], a new backward variable-reduction method for PLS1 was 

introduced, based on variables ranked in descending order of a predictor-variable property. 

The method accounts for the facts that both the property values of the remaining variables and 

the best model complexity change during the variable-reduction process. The method was 

called Predictive-Property-Ranked Variable Reduction with Final Complexity Adapted 
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Models, denoted as PPRVR-FCAM and abbreviated to FCAM, or FCAM-PLS1. With the use 

of a fixed PLS1 model complexity A, from all to A variables, iteratively, the variable with the 

smallest property value is eliminated, a new model calculated, and the variables re-ranked. In 

this part of the procedure, the model complexity is not re-optimized because computationally 

it would slow down the method considerably. In the final part of variable reduction, the PLS 

model complexity is stepwise decreased, A-1, A-2, etc. after each removal of a variable.  

The FCAM-PLS1 method combines good selective and predictive abilities because it is able 

to retain small numbers of variables with improved or similar predictability compared to the 

full spectrum model. 

 

In a second study evaluating different properties [11], the best predictive and selective models 

resulted from variable reduction using either the absolute values of the PLS1 regression 

coefficients (REG) or their significance (SIG) as predictor-variable properties.  

 

In this study, the FCAM method is adapted for variable reduction with PLS2 models. The 

method is called FCAM-PLS2. Because of its computational efficiency and the good results 

obtained with FCAM-PLS1, in FCAM-PLS2 again a fixed model complexity A is used from 

all to A variables. This is followed by a stepwise decreased complexity, A-1, A-2, etc. after 

each removal of a variable.  

In the proposed FCAM-PLS2 method, only the relative values of predictive-variable 

properties are again important. Therefore, no threshold for the predictor-variable properties is 

used to remove uninformative variables. Four new predictor-variable properties, derived from 

the PLS2 regression coefficients, are investigated. The FCAM-PLS2 method is tested using 

six data sets from different sources, consisting of  UV-VIS spectra, normal and second-

derivative NIR spectra, NMR spectra and of simulated data, one set with correlated and one 

with noncorrelated responses. The simulated data sets are used to test the general applicability 

of the method for PLS2 models. 

 

 

7.3 Theory 

7.3.1 PLS2 regression coefficients 

 

The variable reduction may be based on predictor-variable dependent properties derived from 

the matrix of PLS2 regression coefficients, B(K × M), calculated as, 

 

  QWPWB
1

 T           (1) 

 

where W(K × A) is the X weight matrix, P(K × A) the X-loading matrix and Q(M × A) the Y-

loading matrix. K is the number of predictor variables in the X(N × K) matrix, M the number 

of  responses in the Y(N × M) matrix, A the number of  PLS2 factors and N the number of 

objects. Further details of PLS2 can be found in refs [1,2,29].  

 

Four predictor-variable properties, the mean and the norm of the PLS2 regression coefficients, 

and their significances, derived from B, are used for variable reduction in order to find an 

optimal set of variables for PLS2 modelling. They are described below. These properties are 

dependent of the A-factor PLS2 model.  
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7.3.2 Mean and norm of PLS2 regression coefficients  

 

Predictor variables influential for a response have large positive or negative regression 

coefficients in the corresponding row of the B matrix. Therefore, both the mean of the 

absolute values and the norm of the PLS2 regression coefficients bk1, bk2, …, bkm of predictor 

variable k for the responses y1, y2, …, ym in the Y matrix, denoted as MREG,k and NREG,k, 

respectively, are considered as measures for the influence of k on the PLS2 model.  
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Influential variables have large MREG,k and NREG,k values. 

 

7.3.3 Significance of mean and norm of PLS2 regression coefficients  

 

Influential predictor variables have low uncertainties in the model parameters of multivariate 

regression models [28,30]. Therefore, the significance of the properties MREG,k and NREG,k will 

also be high. These significances are also considered as measures for the influence of 

variables k on the PLS2 model. They can be estimated by jack knifing. Influential variables 

will have large MREG,k and NREG,k values, combined with low standard deviations.  

 

The significance of MREG,k, denoted as SIG(MREG,k), is defined as the student t value calculated 

from n fold jack knifing by  

 

 kREG

kREG

kkREG
Ms

M
tMSIG
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,

, )(          (4) 

 

tk is the student t value for variable k; kREGM , is calculated by eq 2 and s(MREG,k) is the 

standard deviation of the estimates of MREG,k, calculated from n fold jack knifing with eq 5.  
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MREG,k(-j) is the estimate of MREG,k based on the calibration of all objects except for the objects 

in the left-out segment j [31].  
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with )(, jkREGM   the mean of MREG,k(-j). 

Similar equations are used for SIG(NREG,k), the significance of  NREG,k.  
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7.3.4 Internal model validation  

 

The predictive ability of the PLS2 models is assessed by internal validation with the training 

set, using venetian blinds segmented (n-fold) cross validation (SCV), resulting in the root-

mean-squared error of cross validation (RMSECV), 

 

 
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1 1

2
ˆ
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       (7) 

 

where yij and ŷij are the experimental and predicted responses for the training set, respectively, 

of the j
th

 response in the i
th

 calibration sample when situated in a left-out segment, Ncal is the 

number of calibration samples in the training set, and M is the number of responses.  

 

7.3.5 Model complexity  

 

Before and after variable reduction, the best complexity A of a PLS2 model is determined by 

venetian blinds n-fold SCV. In order to avoid over-fitting an adjusted Wold’s R criterion, Radj, 

is applied [32,33].  

First, the minimum in the RMSECV versus model-complexity curve is determined. 

Thereafter, to select a model with an as low as possible number of factors, the additional 

criterion Radj < 0.98 is applied. The idea is that an additional factor should be only included in 

the model if the RMSCEV is improved with at least 2% [34],  ( i.e. if Radj  <  0.98).  Models 

with complexities less than the one giving the smallest RMSECV are pairwise compared in eq 

8. 

 

1


A

A
adj

RMSECV

RMSECV
R           (8) 

 

The maximal complexity A, for which Radj  <  0.98, is then considered as the best model 

complexity. 

 

7.3.6 External model validation  

 

Before and after variable reduction, the predictive ability of the PLS2 models, developed with 

the training set, is also assessed by external validation with a test set, resulting in the root-

mean-squared error of prediction (RMSEP), 
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1 1
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        (9) 

 

where yij and ŷij are the experimental and predicted responses for the test set, Ntest the number 

of samples in the test set, and M the number of responses.  
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As another measure for external validation of each response, 2

TestR , the squared values of the 

correlation coefficient R between estimated (from the PLS2 models developed for the reduced 

variable sets) and experimental responses are also calculated for the test set samples. 

 

7.3.7 Selection criterion for the preferred variable set 

 

After variable reduction, RMSECV values are plotted as a function of the number of 

remaining variables. The model with the global minimal value, RMSECVMin, corresponds to 

the variable set with optimal predictive capability. However, a smaller variable set with 

RMSECV not significantly higher than RMSECVMin is preferred. Its maximal value, 

RMSECVCrit is defined from the one-tailed F-test stochastic [35], 

 

 
2

,,

2

MinMNMNCrit RMSECVFRMSECV
calcal        (10) 

 

with significance level  = 0.05, Ncal the number of calibration samples in the training set, M 

the number of responses, and NcalM is the degrees of freedom for both numerator and 

denominator.  

 

Thus, the remaining variable set with a smaller number of variables, KBest, than in the variable 

set corresponding to RMSECVMin, and a RMSECVBest, not significantly higher than 

RMSECVMin, is considered the best.  

 

 

7.4 Data and methodology 

 

7.4.1 Metal ions data set 

 

The first data set contains 130 samples and consists of ultraviolet/visible absorption spectra 

involving three-component mixtures of metal ions (Cr
3+

, Ni
2+

, Co
2+

). The data set was 

downloaded from the Web site of the Chemometrics Group of the Dalhousie University,  

http://myweb.dal.ca/pdwentze/downloads.html (accessed on October 16, 2012). Details are 

both found on the Web site and described in ref [36]. After deletion of noisy signals at low 

and high wavelengths, the range of 394-590 nm with 2 nm intervals was used, resulting in 94 

predictor variables. The molar concentrations of the three metal ions in the samples are used 

as responses. The data set is split into a training set of 100 and a test set of 30 samples using 

the duplex method [37]. A 10-fold cross validation is conducted during model building.  

 

7.4.2 Corn data set 

 

The second data set consists of NIR spectra of 80 corn samples with a wavelength range of  

1100–2498 nm with 2 nm intervals, resulting in 700 predictor variables. This data set, labelled 

corn from the “m5” spectrometer, is provided by Eigenvector Research,  

http://software.eigenvector.com/ (accessed on October 16, 2012). Moisture, oil, protein and 

starch contents of the samples are the responses. The data set is split into a training set of 60 

and a test set of 20 samples using the duplex method. An 8-fold cross validation is conducted 

during model building. 

http://myweb.dal.ca/pdwentze/downloads.html
http://software.eigenvector.com/
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7.4.3 Sugars data set 

 

The third data set consists of second derivative NIR spectra of sugar samples with a 

wavelength range of  1100–2498 nm with 2 nm intervals, resulting in 700 predictor variables. 

This data set, labelled sugars, is downloaded from 

http://www.blackwellpublishing.com/rss/Volumes/Bv64p3_read1.htm 

 (accessed on October 16, 2012). Details are described in refs [38,39]. The concentrations of 

sucrose, glucose and fructose are the responses. The data set is provided with 125 samples in 

the training set and 21 samples in the test set. A 10-fold cross validation is conducted during 

model building. 

 

7.4.4 Alcohols data set 

 

The fourth data set is composed of 231 samples and contains 
1
H NMR spectra of mixtures of 

the  alcohols propanol, butanol and pentanol, with chemical shifts from 3.85 to 0.65 ppm, 

resulting in 14000 predictor variables. The data set was downloaded from 

http://www.models.kvl.dk/datasets (accessed on October 16, 2012). Details are described in 

ref [40]. The alcohol percentages in the mixtures are used as responses. The data set is split 

into a training set of 171 and a test set of 60 samples using the duplex method. A 10-fold 

cross validation is conducted during model building.  

 

7.4.5 Simulated data sets 

 

Because PLS2 models perform better with correlated responses [2,4], variable reduction is 

also investigated with two simulated sets, I and II, having a correlated and uncorrelated 

response matrix Y, respectively. Both simulated sets represent the spectra or chromatograms 

of mixtures containing three compounds, A, B and C. Samples of mixtures ABC are created. 

The pure profiles of the compounds were formed by Gaussian peaks g(μ,σ), with mean μ and 

standard deviation σ [gA(50,1), gB(41,4), gC(59,4)], and equal maximum heights 1, measured 

within the first 100 variables of the global profile.  

 

For set I, correlated responses Y’(i,j), (i = 1…120, j = 1..3), of the three compounds were 

generated with mean 0, standard deviation 1 and a predefined covariance matrix, using the 

Matlab function mvnrnd for the creation of random vectors from the multivariate normal 

distribution. The generated responses Y’(i,j) are rescaled between 0 and 1 using Y(i,j) = [Y’(i,j) 

-min(y’j)]/[max(y’j) - min(y’j)]. Y(i,j) is the rescaled response of profile i and compound j, and 

min(y’j) and max(y’j) the minimum and maximum, respectively, of column vector j of the 

originally generated unscaled responses of compound j. The sample profiles i in the mixtures 

were generated using these rescaled correlated responses as weight factors, and the above 

mentioned Gaussian peaks, by Y(i,1)·gA+ Y(i,2)·gB+ Y(i,3)·gC 

 

For set II, with uncorrelated random responses Z(i,j), (i = 1…120, j = 1..3), these responses 

were randomly generated between 0 and 1, using the Matlab function for uniformly 

distributed pseudorandom numbers, rand. The sample profiles i in the mixtures were 

generated analogously as described above but now using the uncorrelated random responses 

Z(i,j) instead of Y(i,j), without rescaling.  

http://www.blackwellpublishing.com/rss/Volumes/Bv64p3_read1.htm
http://www.models.kvl.dk/datasets
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Both simulated sets consist of 120 samples each with 200 predictor variables. The first 100 

variables are informative, representing the sample profiles in the mixtures. The last 100 

variables are uninformative, consisting of random numbers from 0 to 1. These uninformative 

variables have a high signal level, comparable to that of the informative variables in the range 

x = 1-100. This is to investigate if the FCAM-PLS2 method can be used to find informative 

variables with a chemical meaning in spectra containing many uninformative variables with a 

similar signal level. Additionally, noise is added to the simulated spectra, consisting of 

random numbers in the range between 0 and 0.005, i.e. small compared to the pure signals. 

Each set is split into a training set of 100 and a test set of 20 samples, using the duplex 

method and a10-fold cross validation is conducted during model building.  

 

7.4.6 FCAM-PLS2 method 

 

In the FCAM-PLS2 method, variables are reduced with constant PLS model complexity A, 

until A variables remain. Then, the model complexity is stepwise decreased, A-1, A-2, …, m, 

after each removal of a variable. The minimal number of remaining variables is equal to the 

number of independent responses, m. In order to obtain useful predictions of all responses, the 

minimal PLS2 complexity is A = m, and therefore at least m variables are needed.  

The FCAM method described in ref [10] is adapted to the PLS2 modelling regarding (i) the 

calculation of RMSECV and RMSEP (eqs 7 and 8), and (ii) the PLS2-related predictor-

variable properties as described above in the theory section. 

The FCAM-PLS2 method consists of four steps. First, the data set is split into a training and 

test set. The predictive ability of the full spectrum PLS2 models is assessed by internal 

validation with the training set, using SCV. The optimal number of PLS2 factors A, is 

determined by the application of the adjusted Wold’s R criterion Radj  < 0.98. On the basis of 

the A factor PLS2 model, the values for a given property are calculated for all variables and 

ranked. In step 2, iteratively, the variable with the smallest property value is eliminated; a new 

PLS2 model, RMSECV, and new property values are calculated, and the variables are re-

ranked. When the number of remaining variables becomes  A, the model complexity is 

decreased by one until the number of remaining variables and the PLS2 model complexity 

equal m. In the third step, RMSECVBest and the corresponding set of remaining variables is 

determined. In the fourth step, using the reduced variable set, the PLS2 model is externally 

validated (RMSEP) using a test set, after a renewed determination of the optimal number of 

PLS2 factors by SCV and the application of the criterion Radj  < 0.98.  

 

7.4.7 PLS2 algorithm 

 

The PLS2 algorithm, according to ref [1], is implemented, with the modification that, if no 

covariance of Y with X is left, the extraction of factors is aborted. 

 

 



119 

 

7.4.8 Software 

 

All calculations are made with in-house programs developed in Matlab (V. 7.14) (The Math 

Works, Natick, MA, USA. The procedure for the duplex splitting algorithm is from 

ChemoAC Standard Functions Toolbox for MATLAB, CHEMOAC Standard Function 

Toolbox, http://www.vub.ac.be/fabi/publiek/index.html. The correlated responses in 

simulated set I were generated using the statistic toolbox of Matlab. 

 

 

7.5 Results and discussion 

 

Variable reduction is conducted after pre-processing the x variables and y responses by mean 

centring. Variable reduction was also investigated with mean-centred x variables and auto-

scaled y responses. However, the results were worse and therefore not reported. 

 

First, for the six data sets, the optimal factor number A of the PLS2 models was determined by 

segmented cross validation and the application of the criterion Radj  < 0.98. The RMSECV and 

RMSEP are calculated for the full spectrum models. Variable reduction is then applied on the 

X-Y sets by the FCAM-PLS2 method, using one of the four predictor-variable properties 

mentioned in the theory section. One PLS2 model is selected for each response matrix Y. 

With the use of  the selection criterion described in the theory section, the best variable set 

with KBest variables is selected.  Thereafter, the optimal number of PLS2 factors is determined 

for the best variable set by SCV and the application of the criterion Radj  < 0.98.  

 

For the six data sets, for property NREG, the resulting curves of the RMSECVs and the 

corresponding model complexities as a function of the number of remaining variables are 

shown in Fig. 7-1A-F. For the full spectrum models and for those with the variable sets 

reduced based on one of the four predictor-variable properties, the optimal PLS2 complexity, 

the number of (remaining) variables KBest, RMSEP and 2

TestR  of the M components, are shown 

in Table 7-1. The ability of the FCAM-PLS2 method, using one of the four predictor-variable 

properties, to select predictors with a meaning relevant to the responses is discussed below in 

more detail for all data sets. 

  

http://www.vub.ac.be/fabi/publiek/index.html
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Fig. 7-1 RMSECV curve and PLS model complexity for variable reduction with the FCAM-PLS2 method 

using NREG : (A) Metal ion set, (B) Corn set, (C) Sugars set , (D) Alcohols set, (E) Simulated set I, (F) 

Simulated set II; — RMSECV-curve;  −∙− PLS model complexity 
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Table 7-1 Results of the FCAM-PLS2 method for 

(A) Metal ions set 
Method characteristics Full 

spectrum 
Predictor-variable properties 

MREG NREG SIG(MREG) SIG(NREG) 
PLS2 complexity  4 4 4 4 4 
Number of variables Kbest    94 48 8 90 14 
RMSEP  1.89×10

-4
 2.01×10

-4
 2.26×10

-4
 2.02×10

-4
 2.46×10

-4
 

R
2
Test Cr >0.9995 >0.9995 0.999 >0.9995 0.999 

R
2
Test Ni >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

R
2
Test Co >0.9995 >0.9995 >0.9995 >0.9995 >0.9995 

 

(B) Corn set  
Method characteristics Full 

spectrum 
Predictor-variable properties 

MREG NREG SIG(MREG) SIG(NREG) 
PLS2 complexity  27 24 23 24 24 
Number of variables Kbest    700 80 48 45 62 
RMSEP  0.077 0.056 0.051 0.079 0.068 
R
2
Test moisture 0.999 0.996 0.998 >0.9995 >0.9995 

R
2
Test oil 0.961 0.986 0.978 0.974 0.977 

R
2
Test protein 0.976 0.991 0.993 0.979 0.986 

R
2
Test starch 0.981 0.988 0.993 0.976 0.984 

 

(C) Sugars set  
Method characteristics Full 

spectrum 
Predictor-variable properties 

MREG NREG SIG(MREG) SIG(NREG) 
PLS2 complexity  16 6 7 12 12 
Number of variables Kbest    700 8 11 86 91 
RMSEP  1.738 0.771 0.687 1.843 0.895 
R
2
Test sucrose 0.967 0.998 0.998 0.960 0.996 

R
2
Test glucose 0.983 0.996 0.996 0.996 0.999 

R
2
Test fructose 0.991 0.997 0.999 0.977 0.997 

 
(D) Alcohols set  
Method characteristics Full 

spectrum 
Predictor-variable properties 

MREG NREG SIG(MREG) SIG(NREG) 
PLS2 complexity  10 10 8 9 8 
Number of variables Kbest    14,000 19 21 117 61 
RMSEP  0.753 1.104 1.090 0.945 1.053 
R
2
Test propanol 0.999 0.998 0.998 0.998 0.998 

R
2
Test butanol 0.999 0.999 0.999 0.999 0.999 

R
2
Test pentanol 0.999 0.998 0.998 0.999 0.998 

 

(E) Simulation set I  
Method characteristics Full 

spectrum 
Predictor-variable properties 

MREG NREG SIG(MREG) SIG(NREG) 
PLS2 complexity  6 3 3 3 3 
Number of variables Kbest    200 16 18 16 16 
RMSEP  0.046 7.97×10

-4
 7.71×10

-4
 7.60×10

-4
 8.02×10

-4
 

R
2
Test A 0.932 >0.9995 >0.9995 >0.9995 >0.9995 

R
2
Test B 0.944 >0.9995 >0.9995 >0.9995 >0.9995 

R
2
Test C 0.966 >0.9995 >0.9995 >0.9995 >0.9995 

 

(F) Simulation set II  
Method characteristics Full 

spectrum 
Predictor-variable properties 

MREG NREG SIG(MREG) SIG(NREG) 
PLS2 complexity  19 3 3 7 3 
Number of variables Kbest    200 11 9 17 15 
RMSEP  0.033 9.89×10

-4
 1.07×10

-3
 9.34×10

-4
 8.77×10

-4
 

R
2
Test A 0.985 >0.9995 >0.9995 >0.9995 >0.9995 

R
2
Test B 0.997 >0.9995 >0.9995 >0.9995 >0.9995 

R
2
Test C 0.995 >0.9995 >0.9995 >0.9995 >0.9995 
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7.5.1 Metal ion set 

 

From Fig. 7-1A, for the metal ion set, it is seen that the RMSECVs for the remaining variable 

sets, until 13 variables, are similar to that of the full spectrum model. The selected best set has 

eight variables and the best PLS2 complexity is 4. 2

TestR for Cr
3+

, Ni
2+

 and Co
2+

 are >0.999. 

Table 7-1A shows that the least variables are retained using NREG. Large numbers of variables 

remain from MREG and SIG(MREG). The predictive abilities of all retained variable sets are 

similar. They are very good because, in all cases, for the three components, 999.02 TestR . 

Fig. 7-2 shows the spectra of the pure components and the selected wavelengths for the metal 

ion data set. The eight variables selected using NREG correspond to the maxima in the pure 

spectra and the isobestic point of the Co
2+

 and Ni
2+

 spectra. SIG(NREG) and MREG select 14 and 

48 variables, respectively, which are usually also located around the maxima and the isobestic 

point, while with SIG(MREG), hardly any variable reduction is realised. For the metal ion data, 

it is concluded that with NREG or SIG(NREG), low numbers of variables are selected with a 

chemically relevant meaning. 

 

 

Fig. 7-2 Metal ions set:  Spectra of pure components and selected wavelengths for PLS2 models using one 

of the predictor-variable properties  

 

7.5.2 Corn set 

 

Fig. 7-1B shows, for the Corn set, that the RMSECVs decrease almost steadily with the 

number of remaining variables, while the model complexity remains 27. With the use of the 

best set with 48 variables, the best PLS2 model complexity becomes 23. 2

TestR for moisture, 

oil, protein and starch are 0.998, 0.978, 0.993 and 0.993, respectively. Table 7-1B shows that 

the number of retained variables is higher for MREG than for the other properties. The 

predictive ability of the model resulting from NREG is best because of the lowest RMSEP. For 
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all four components, 98.02 TestR . The predictive abilities of the other retained variable sets 

are either slightly better or similar to that of the full spectrum model. 

 

For each of the four components considered in corn, strong absorption bands in NIR are 

reported. Dry food samples, such as corn, show a strong absorption band for water from 1900 

to 1950 nm [41].  Absorption bands for oil are at 1650-1780 nm and 2100-2200 nm [42,43], 

for protein they are at 1610-1760 nm and 2130-2320 nm [44] and for starch they are at 1700-

1800 nm [45]. Fig. 7-3 shows the corn spectra, the selected wavelengths, and the combined 

absorption bands of the four components. For all properties, variables are selected from or 

close to the combined absorption bands. For the corn set, it is also concluded that, for the four 

properties, variables are selected relevant to the responses. 

 

 

Fig. 7-3 Corn set: Spectra and selected wavelengths for PLS2 models using one of the predictor-variable 

properties as variable-reduction criterion; the yellow columns represent specific absorption bands (see 

text)  

7.5.3 Sugars set 

 

Fig. 7-1C shows, for the Sugars set, that the RMSECVs decrease with the number of 

remaining variables. With the use of the best set with 11 variables, the best PLS2 model 

complexity becomes 7. 2

TestR for sucrose, glucose and fructose is 0.998, 0.996 and 0.999, 

respectively. Table 7-1C shows that the numbers of retained variables are much higher for 

SIG(MREG) and  SIG(NREG) than for MREG and NREG. The predictive ability of the model 

resulting from NREG is best because of the lowest RMSEP, which is much lower than for the 

full spectrum model, while for the three responses, 996.02 TestR . The predictive abilities of 

the other retained variable sets are lower but still good because, in all cases, for the three 

components, 2

TestR is similar or better than for the full spectrum model. 

Fig. 7-4 shows the second derivative NIR spectra of the sugars dataset. Strong absorption 

bands for sugar molecules are at 2050-2380 nm [46,47]. For all properties, variables are 

retained from this absorption band. The selectivity of NREG and MREG is best, because only 

variables from or close to the absorption band remain. 
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Fig. 7-4 Sugars set:  Spectra and selected wavelengths for PLS2 models using one of the predictor-variable 

properties; the yellow columns represent specific absorption bands (see text)  

 

7.5.4 Alcohols set 

 

Fig. 7-1D shows, for the Alcohols set, that the RMSECVs remain rather constant as well as 

the model complexity (remains 10). With the use of the best set with 21 variables, the best 

PLS2 model complexity becomes 8. For the three responses 998.02 TestR . 

Table 7-1D shows that for all four predictor-variable properties, the number of variables is 

strongly reduced from 14000 to 117 or less. The predictive abilities of the models resulting 

from the reduced variable sets  are slightly worse than that of the full spectrum model because 

the RMSEPs are slightly higher. However, in all cases, the three alcohol components are 

predicted well because, for all components, 998.02 TestR .  

Fig. 7-5 shows the NMR spectra and the variables selected from the alcohols data set. Pure 

propanol yields a triplet at 0.90 ppm from CH3, a quintet at 1.55 ppm from CH2 and a triplet 

at 3.57 ppm from CH2 next to an OH group. Similar assignments apply to butanol and 

pentanol, but they also contain aliphatic CH2’s with a chemical shift in the range of 1.30–1.35 

ppm [40]. For all properties, variables remain around the three multiplets 0.90, 1.30-1.35 and 

3.57 ppm. Variables around the quintet of 1.55 ppm are only retained in the large set of 

SIG(MREG), possibly because they belong to the weakest common signal group in the NMR 

spectra of the pure alcohols [40].
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Fig. 7-5 Alcohols set:  Spectra and selected variables for PLS2 models using one of the predictor-variable 

properties 

7.5.5 Simulated set I 

 

In the simulated set I, the concentration vectors y1, y2 and y3 of the three compounds in the Y 

matrix are correlated. The correlation coefficients between the vectors are: R1,2 = 0.966,   R1,3 

= 0.933 and R2,3 = 0.896. In Fig. 7-1E, the RMSECVs for the reduced variable sets decrease 

slowly after about 140 and strongly after 30 remaining variables. For the best set with 18 

variables, the best PLS2 model complexity becomes 3. 2

TestR for the three compounds are all 

>0.9995. 

Table 7-1E shows that the number of retained variables and the RMSEPs are similar for all 

four predictor-variable properties. The selectivity of the FCAM-PLS2 method for all 

properties is good because low numbers of variables are retained. The predictive abilities of 

the models from all retained variable sets are similar and much better than for the full 

spectrum model because the RMSEPs are smaller, while for the three components 

9995.02 TestR . 

Fig. 7-6A shows the simulated signals and the selected variables for all properties. Only small 

sets of variables are retained, situated in the informative area underneath the Gaussian peaks. 

 

7.5.6 Simulated set II 

 

In simulated set II, the concentration vectors in the Y matrix are uncorrelated. The correlation 

coefficients between the concentration vectors are: R1,2 = -0.106,   R1,3 = -0.178,  R2,3 = -

0.057. In Fig. 7-1F, the RMSECVs of the PLS2 models for the reduced variable sets steadily 

decrease after about 140 remaining variables, until 65 variables. The best set contains 9 

variables, and the best PLS2 model complexity becomes 3. 2

TestR for the three compounds are 

all >0.9995, which is better than for the full-spectrum model. Table 7-1F shows that similar 

results are found as described for Simulated Set I. Also similar conclusions can be drawn. 
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Fig. 7-6B shows the simulated signals and the selected variables for all properties. Mostly, 

variables are selected in the informative area, underneath the Gaussian peaks. Only for 

property SIG(MREG), uninformative variables are selected. In all cases, the selected sets are 

small.  

 

 

  

 Fig. 7-6  Signals and selected variables for PLS2 models using one of the predictor-variable properties; 

(A) simulated set I, (B) simulated set II  

 

For both simulated sets, the capability of the properties NREG, MREG, and SIG(NREG), to select 

low numbers of informative variables, with a meaning relevant to the response, is good and 

better than that of SIG(MREG).  

 

For the simulated sets, I with correlated and II with uncorrelated responses, the PLS2 model 

complexity and the shape of RMSECV-curves during variable reduction are different, but the 

results of variable reduction, measured by KBest and RMSEP, are similar for all predictive-

properties. The RMSECV curves in Fig. 7-1E and F show also a strong reduction in the 

prediction error of the PLS2 models after variable reduction. Therefore, it is concluded that 

variable reduction by the FCAM-PLS2 method, using each of the four predictor-variable 

properties, works equally well for correlated and uncorrelated responses in the Y matrix. 

However, this result should be considered as a preliminary indicative, because it is only based 

on two data sets. 

 

7.5.7 Comparison of the predictive properties 

 

The selectivity of MREG and NREG is better than that of  SIG(MREG) and SIG(NREG). NREG is the 

most selective property because, for all data sets, the minimum or a similar number of 

variables are retained. The predictive abilities of the resulting models are mostly similar or 

better than for the models resulting from the other properties. Therefore, the curves for 

RMSECV and the PLS2 complexity in Fig. 7-1 are drawn for this property. In general, 

SIG(MREG) is the least selective property, because for three out of six data sets most variables 

are retained while moreover uninformative variables are selected for simulation set II. The 

finding that the selectivity of MREG and NREG is better than that of  SIG(MREG) and SIG(NREG), 

should further be investigated. In a future study, we will compare also the outcome of the best 

FCAM-PLS2 method, using NREG, with those of existing variable reduction methods for 

PLS2. 
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The influence of important predictor variables with large absolute regression coefficients 

seems lower on the estimation of the mean than on the norm of the PLS2 regression 

coefficients. Probably, for important predictor variables, the corresponding quadratation in eq 

3 has a larger influence on the norm than the absolute value used in eq 2 has on the mean.  

 

7.5.8 Final adaptation of the PLS2 model complexity in the FCAM-PLS2 method  

 

Especially the results of the selected sets from the Sugars data, using MREG or NREG, and for 

the Simulation set II, using all properties, demonstrate the benefits of the adaptation of the 

PLS2 model complexity in the FCAM-PLS2 method in the final part of the variable reduction 

process. Variable reduction is started with PLS2 complexity A = 16 (Sugars) or A = 19 

(Simulation set II). After having 16, then 19 remaining variables, respectively, less variables 

are then selected, simpler models are build and finally found better. 

 

 

7.6 Conclusions 

 

The FCAM-PLS2 method, is a backward stepwise variable reduction method based on ranked 

predictor-variable properties. The variable number is first reduced with constant PLS2 model 

complexity A, until the selection of A variables, followed by a further variable reduction with 

a stepwise decrease in PLS2 complexity, A-1, A-2, …,m, after each removal of a variable.  

 

The aim of this work was to investigate the utility and effectiveness of four predictor-variable 

properties, derived from the multiple-response PLS2 regression, on variable reduction by the 

FCAM-PLS2 method. The four variable properties include the mean of the absolute values 

and the norm of the PLS2 regression coefficients, and their significances. 

 

It is found that the four predictor-variable properties can be used for variable reduction by the 

FCAM-PLS2 method. The predictive abilities of the four properties are similar. NREG has the 

best selective abilities, and low numbers of variables with an informative meaning to the 

responses are retained. SIG(MREG) is the least selective property. 

 

Summarized, this study indicates that variable reduction in PLS2 modelling can be performed 

by the application of the FCAM-PLS2 method, using one of the  proposed predictor-variable 

properties as reduction criterion.  
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8 Summary, conclusions, discussion and future perspectives 
 

8.1 Summary and conclusions 

 

In the introduction is stated that new or improved chemometric methods should be developed 

to master the data flood, generated by the wide application of modern highly sophisticated 

instrumental analysis techniques in analytical chemistry, life sciences, bio-informatics, and 

metabolomics [1]. The goal of the research presented in this thesis was to develop new or 

improved chemometric methods both for sample and variable selection, to help mastering the 

data flood. 

 

The development of a new method for sample selection is focussed on classical Quantitative 

Structure-Retention Relationships (QSRRs) for the widely used Reversed-Phase Liquid 

Chromatography (RPLC). Sample selection is used for the construction of reduced calibration 

sets for the development of classical QSRRs, based on linear regression or multiple linear 

regression models. Efficient and cost effective sample selection for RPLC can reduce the 

number of experiments, and hence also less data will be generated. 

 

In chapter 1 an introduction is given to his thesis, and chapter 2 gives an introduction to 

sample selection for RPLC. RPLC columns can be characterised either by empirical methods 

or based on QSRR models. For empirical methods, generally, a low number of test 

components is used, while for QSRR based methods, with four to six components per 

descriptor, the number of components is much larger. 

 

In chapter 3, a strategy is presented for the construction of reliable reduced calibration sets 

that are useful for three types of classical QSRR models containing small numbers (1-5) of 

descriptors:  

Pkw loglog 10   ,  

WASw Ak 3

2

2min10log   , 

and VBASEkw  log . 

The analytes in the reduced calibration sets were selected using the Kennard-Stone algorithm, 

applied on the independent variables in the molecular-descriptor space, before the 

experimental determination of retentions in the chromatographic system at hand.  

 

The proposed strategy works very well. The calibration and prediction errors of the QSRR 

models, developed with the reduced calibration sets, are similar to the calibration errors of the 

corresponding QSRR models developed with all available calibration samples. Both the 

dependent and independent variable spaces are covered well by the QSRR models, developed 

with the reduced calibration sets. For each type of classical QSRR model, the required 

minimal number of calibration samples in the reduced sets is determined. With the use of the 

proposed strategy, a substantial reduction of the number of analytes for the calibration sets is 

realised, allowing the reduction of the number of RPLC experiments. 

 

The development of new variable-selection methods is focussed on PLS modelling because it 

dominates multivariate modelling in chemometrics. With the use of variable selection, the 

data flood becomes manageable by the elimination of noisy and uninformative variables. 
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Subsets containing only informative variables are obtained, which can be used for the 

development of simple, robust and interpretable PLS models. These PLS models can be used 

for both qualitative and quantitative analysis in many different application fields, such as food 

chemistry, pharmaceutical analysis, agriculture, environment, industrial and clinical 

chemistry, bio-informatics and metabolomics.  

 

Following the strategy described in section 4.15, three new backward variable-selection 

methods for PLS1 with good selective and predictive abilities are developed. They select 

individual variables and are therefore generally applicable, both for continuous and non-

continuous data. These methods are described in chapter 5. 

 

The new methods are iterative, and predictive-variables are ranked on the size of a specified 

property. They are so-called Predictive-Property-Ranked Variables based methods, denoted as 

PPRV methods. These methods use Complexity Adapted Models (CAM), meaning that, 

during the variable-reduction process, the PLS1 model complexity can be adapted. Three new 

CAM methods are developed. They include Repetitive Complexity Adapted Models 

(RCAM), Final Complexity Adapted Models (FCAM), and Integral Complexity Adapted 

Models (ICAM). These methods are different in the way the PLS model complexity is 

adapted.  

 

The selective and predictive abilities of the new CAM methods were investigated, using the 

absolute PLS1 regression coefficient as predictive-variable property. They were compared 

with two modifications of existing related iterative PPRV methods, using a constant PLS1 

model complexity, and with two reference methods: Uninformative Variable Elimination, 

followed by either a Genetic Algorithm for PLS or interval PLS. It was found that the three 

new CAM methods combine good selective and predictive abilities. They are similar for the 

three CAM methods. The selectivities of the CAM methods are significantly better than those 

of the two modifications of existing related iterative PPRV methods, and both reference 

methods, while the predictive abilities are similar. Important variables, with a chemical 

meaning relevant to the response, are retained by the CAM methods.  

 

RCAM is the least attractive new method. It is based on a computer intensive brute force 

technique where variable reduction is conducted repeatedly, starting with all variables, with 

stepwise descending complexities. FCAM is the preferred variable-selection method, seen 

from computational intensity, predictive and selective capabilities. ICAM is an attractive 

method for future developments in variable selection. Its predictive and selective capabilities 

are similar to those of FCAM and its computational intensity is only slightly higher than that 

of FCAM. 

 

The preferred FCAM method was used for further development of the variable-selection 

methods for PLS1. In chapter 6 the utility and effectiveness of six individual and nine 

combined predictor-variable properties are investigated, when used in the FCAM method. It 

was found that the models resulting from variable reduction have similar or better predictive 

abilities than the models developed with all available variables. The individual properties 

absolute value of the PLS1 regression coefficient and significance of the PLS1 regression 

coefficient, have the best selective abilities. They provide lower numbers of informative 

variables, with a meaning relevant to the response, than the other individual properties, while 

the predictive abilities are similar or better. The significance of the PLS1 regression 

coefficient has the best selective ability while the absolute value of the PLS1 regression 

coefficient is computationally faster.  
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The preferred FCAM method for PLS1 (FCAM-PLS1) was also used as starting point for the 

development of a variable-selection method for PLS with multiple responses (PLS2). In 

chapter 7 four new predictor-variable properties, derived from the multiple response PLS2 

regression coefficients, were proposed and investigated. They include the mean of the 

absolute values of the PLS2 regression coefficients as well as the norm of the PLS2 regression 

coefficients, and their significances. It was found that these four new properties are applicable 

by the adapted FCAM method for variable reduction with PLS2 models (FCAM-PLS2). The 

predictive abilities of models resulting from the four properties are similar. The norm of the 

PLS2 regression coefficient has the best selective abilities, and low numbers of variables with 

an informative meaning to the responses retained. The significance of the mean of the PLS2 

regression coefficients is the least selective property.  

 

Summarized, in this PhD project, five new chemometric methods are developed and tested 

which can help mastering the data flood. The methods include (i) one for sample selection to 

construct reduced calibration sets for classical QSRR modelling for Reversed-Phase Liquid 

Chromatography, (ii) three generally applicable variable-selection methods for PLS1 

(RCAM-PLS1, FCAM-PLS1 and ICAM-PLS1), and (iii) one generally applicable variable-

selection method for PLS2 (FCAM-PLS2). These methods form a good starting point for a 

new research line dedicated to the mastering of the data flood in chemometrics, as discussed 

below. 

 

8.2 Discussion and future perspectives 

 

The variable-selection methods developed in this project and summarized above, can further 

be extended and improved in future research. Extension of the methods can be realised by the 

adaptation of the ICAM method to PLS2. Improvement is possible by acceleration of the 

variable-selection methods, resulting in faster method modifications, allowing shorter 

calculation times. Additionally, the (modified) methods can be applied in combination with 

other methodologies, such as PLS-DA, QSRRs and Quantitative Structure-Activity 

Relationships (QSARs), and in new application fields, such as metabolomics. Finally, the 

application of the sample selection method and variable-selection methods can be integrated, 

for instance in QSRR and QSAR. This is explained below. 

 

From the results of the studies presented in chapter 5 is found that ICAM is a variable-

selection method for PLS1 with good selective and predictive abilities. Like the FCAM 

method, the ICAM method can also be adapted to PLS2, using the new predictor-variable 

properties, derived from the multiple response PLS2 regression coefficients, as proposed in 

chapter 7. This will result in a new ICAM-PLS2 method. After this development, the selective 

and predictive abilities of the ICAM-PLS2 method can be investigated and compared with 

those of FCAM-PLS2. Although it would also be possible to adapt the RCAM method to 

PLS2, it will not be very attractive, because of the repeated variable reduction iterations in the 

RCAM method, resulting in long data-analysis times. Adaptation of ICAM to PLS2 will 

finally result in four variable-selection methods with reasonable computation times, which 

can be used for PLS1 or PLS2: FCAM-PLS1, FCAM-PLS2, ICAM-PLS1, and ICAM-PLS2.  

 

Although the calculation times for the FCAM and ICAM methods are reasonable, especially 

on the fast modern computer systems, it would be advantageous to still accelerate these 

methods. In the FCAM and ICAM methods, iteratively, the variable with the smallest 
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predictive property value is eliminated, a new PLS model with the retained variables 

calculated, and its predictive ability assessed by the RMSECV. These iterative methods are 

rather time consuming [2]. However, they are effective because their selective and predictive 

abilities are good [3].  

 

The FCAM and ICAM may be accelerated, both for PLS1 and PLS2, by a group-wise 

elimination of the variables in an iterative process. In each iteration step, the variables with a 

predictor-variable property below a pre-defined upper limit, could be eliminated. After each 

iteration step, the predictive ability of the PLS model, built with the remaining variable set, 

can be assessed by the RMSECV. Variable elimination by the use of thresholds is fast and 

easy to compute. However, the selection of a good upper limit will be important [2].  

 

The variable-selection methods developed in this project have been used only for quantitative 

tasks in multivariate calibration and prediction. However, it is also possible to use them in the 

future in combination with other methodologies, such as (i) qualitative classification tasks in 

the form of Partial Least Squares Discrimination Analysis [4,5], (ii) for modelling with wide 

QSRR [6] or QSAR-data [7], both containing large numbers of theoretical molecular 

descriptors generated by calculation chemistry [8], and (iii) for biomarker discovery in 

metabolomics [9]. 

 

Additionally, the new variable-selection methods may also be used for quantitative tasks in 

multivariate calibration and prediction in application fields such as food chemistry, 

pharmaceutical analysis, agriculture, environment, industrial and clinical chemistry. 

 

Finally, the new sample-selection method for the construction of reduced calibration sets and 

the new variable-selection methods can be integrated for quantitative tasks in multivariate 

calibration and prediction for both wide QSRR and QSAR data sets. First, with the use of the 

new variable-selection methods, informative molecular descriptors can be selected based on 

PLS models. Then the strategy proposed in chapter 3 can be used to construct reduced 

calibration sets for either PLS or MLR modelling. 

 

As described above, the results of this thesis project form a sound basis to set up a new 

promising research line, dedicated to the mastering of the data flood with chemometrics.  
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Appendix 

 

A. List of abbreviations 
 

 
BiPLS Backward interval PLS 
CAM Complexity Adapted Models 
CARS Competitive Adaptive Reweighted Sampling 
CE-MS Capillary Electrophoresis-Mass Spectrometry 
COR Squared correlation coefficient  
CovProc Covariance Procedures 
CovSel Covariance Selection 
CSMWPLS Changeable Size Moving Window Partial Least Squares 
CV Cross-Validation 
Eq(s). Equation(s) 
FCAM Final Complexity Adapted Models 
FCAM-PLS1 Final Complexity Adapted Models for PLS1 
FCAM-PLS2 Final Complexity Adapted Models for PLS2 
FiPLS Forward interval PLS 
FS Full Spectrum 
FTIR Fourier Transform Infrared Spectroscopy 
GA(s) Genetic Algorithm(s) 
GA-PLS Genetic Algorithm for PLS 
GC-MS Gas Chromatography-Mass Spectrometry  
HPLC High Performance Liquid Chromatography 
ICAM Integral Complexity Adapted Models 
ICAM-PLS1 Integral Complexity Adapted Models for PLS1 
ICAM-PLS2 Integral Complexity Adapted Models for PLS2 
iPLS Interval PLS 
KS Kennard and Stone 
LASSO Least Absolute Shrinkage and Selection Operator 
LC-MS Liquid Chromatography-Mass Spectrometry 
LDA Linear Discriminant Analysis 
LR Linear Regression 
LSER(s) Linear Solvation Energy Relationship(s) 
MCSMWPLS Modified Changeable Size Moving Window Partial Least Squares 
MCUVE Monte-Carlo UVE 
MLR Multiple Linear Regression 
MSC Multiplicative Scatter Correction  
MWPLS Moving Window PLS  
NIPALS Nonlinear Iterative Partial Least Squares 
NIR Near Infrared  
NLW Norm of the loading weight vector 
NMR Nuclear Magnetic Resonance  
OSC Orthogonal Signal Correction 
PLS Partial Least Squares 
PLS1 PLS model with one response 
PLS2 PLS model with multiple responses 
PLS-DA Partial Least Squares Discrimination Analysis 
PPRV Predictive-Property-Ranked Variables 
PPRVR Predictive-Property-Ranked Variables Reduction 
PPRVR-CAM Predictive-Property-Ranked Variable Reduction with Complexity Adapted Models 
PPRVR-FCAM Predictive-Property-Ranked Variable Reduction with Final Complexity Adapted Models 
PPRVR-ICAM Predictive-Property-Ranked Variable Reduction with Integral Complexity Adapted 
 Models 
PPRVR-RCAM Predictive-Property-Ranked Variable Reduction with Repetitive Complexity Adapted 
 Models 
QCI Quantum Chemical Indices 
QSAR(s) Quantitative Structure-Activity Relationship(s)  
QSRR(s) Quantitative Structure-Retention Relationship(s) 
RCAM Repetitive Complexity Adapted Models 
REG Absolute value of the PLS1 regression coefficient  
RM Replacement Method 
RMSEC Root Mean Squared Errors of Calibration 
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RMSECV Root Mean Squared Errors of Cross-Validation 
RMSEP Root Mean Squared Errors of Prediction 
RPLC Reversed-Phase Liquid Chromatography 
SCMWPLS Searching Combination Moving Window Partial Least Squares 
SCV Segmented Cross-Validation 
SG Savitzky and Golay  
SIG Significance of the PLS1 regression coefficient  
siPLS Synergy interval PLS 
SNV Standard Normal Variate  
SPA Successive Projections Algorithms 
SR Selectivity Ratio  
SSRs Sums of Squared Residues 
SVR Stepwise Variable Reduction  
SVR-PPRV Stepwise Variable Reduction methods using Predictive-Property-Ranked Variables 
UVE Uninformative Variable Elimination 
UVE-GA-PLS Uninformative Variable Elimination followed by a Genetic Algorithm for PLS 
UVE-iPLS Uninformative Variable Elimination followed by interval PLS 
UVE-PLS Uninformative Variable Elimination for PLS 
UV-VIS Ultraviolet-Visible  
VIP Variable Importance in the Projection  
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Samenvatting 
 

 

Door de brede toepassing van instrumentele analysetechnieken in de analytische chemie, life 

sciences, bio-informatica en metabolomics is er een overvloed aan data ontstaan. Om deze te 

kunnen beheersen en analyseren zijn nieuwe of verbeterde chemometrische methoden nodig. 

Het doel van het onderzoek dat wordt gepresenteerd in dit proefschrift was om nieuwe of 

verbeterde chemometrische methoden te ontwikkelen voor zowel monster- als 

variabelenselectie die kunnen helpen bij de beheersing van deze overvloed aan data. 

 

De ontwikkeling van een nieuwe monsterselectiemethode is gericht op het gebruik bij  

klassieke Quantitatieve Structuur-Retentie Relaties (QSRRs) voor de veel toegepaste 

omkeerfase vloeistofchromatografie ofwel Reversed-Phase Liquid Chromatography (RPLC). 

Met de nieuwe monsterselectiemethode worden gereduceerde kalibratiesets samengesteld 

voor de ontwikkeling van klassieke QSRRs die zijn gebaseerd op lineaire of multipele lineaire 

regressiemodellen. Door efficiënte en kosteneffectieve monsterselectie voor RPLC kan het 

aantal experimenten worden beperkt. 

 

Hoofdstuk 1 vormt een inleiding op dit proefschrift. Hoofdstuk 2 geeft een inleiding op 

monsterselectie voor RPLC. Daarin wordt beschreven dat RPLC-kolommen kunnen worden 

gekarakteriseerd met behulp van empirische methoden of op basis van QSRR modellen. Voor 

de empirische methoden wordt in het algemeen een klein aantal test componenten gebruikt. 

Voor de methoden die zijn gebaseerd op QSRR modellen is het aantal componenten, met vier 

tot zes componenten per descriptor, veel groter.  

 

In hoofdstuk 3 wordt een strategie gepresenteerd voor de constructie van betrouwbare 

gereduceerde kalibratiesets voor drie soorten klassieke QSRR modellen met een klein aantal 

(1-5) descriptoren: 

Pkw loglog 10   ,  

WASw Ak 3

2

2min10log   , 

en VBASEkw  log .  

De chemische verbindingen in de gereduceerde kalibratiesets werden geselecteerd met behulp 

van het Kennard-Stone algoritme, dat wordt  toegepast op de onafhankelijke variabelen in de 

moleculaire descriptorruimte. Deze selectie vindt plaats vóór de experimentele bepaling van 

de retenties in een chromatografische systeem. 

 

De ontwikkelde strategie werkt naar behoren. De kalibratie- en predictiefouten van de QSRR 

modellen die zijn ontwikkeld met de gereduceerde kalibratiesets zijn van dezelfde grootte-

orde als de kalibratiefouten van de QSRR modellen die zijn ontwikkeld met alle beschikbare 

kalibratiecomponenten. Zowel de afhankelijke als onafhankelijke variabelenruimtes worden 

goed afgedekt door de gereduceerde kalibratiesets, en bijgevolg ook door de QSRR modellen 

die ermee zijn ontwikkeld. Voor elk van de drie QSRR modellen is het vereiste minimum 

aantal componenten voor de gereduceerde kalibratiesets bepaald. Door toepassing van deze 

strategie kan een substantiële reductie van het aantal verbindingen in de kalibratiesets worden 

gerealiseerd en kan ook het aantal RPLC experimenten worden beperkt. 

 

In hoofdstuk 4 wordt een inleiding gegeven op variabelenselectie. De ontwikkeling van 

nieuwe variabelen-selectiemethoden is gelinkt aan Partial Least Squares (PLS) omdat deze 

techniek in de chemometrie het meest wordt toegepast bij multivariate modellering. Door 
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toepassing van variabelenselectie worden variabelen, die slechts ruis voorstellen en/of die 

niet-informatief zijn, geëlimineerd en wordt de overvloed aan data beter beheersbaar. Er 

worden sub-sets verkregen die uitsluitend informatieve variabelen bevatten, die kunnen 

worden gebruikt voor de ontwikkeling van eenvoudige robuuste en interpreteerbare PLS 

modellen. Deze PLS modellen kunnen worden toegepast voor kwantitatieve en kwalitatieve 

analyses in veel domeinen zoals levensmiddelenchemie, farmaceutische analyse, landbouw, 

milieukunde, industriële en klinische chemie, bio-informatica en metabolomics. 

 

Er zijn drie nieuwe variabelen-selectiemethoden ontwikkeld voor PLS modellen met één 

afhankelijke variabele (PLS1), met goede selectieve en voorspellende eigenschappen. De 

methoden zijn algemeen toepasbaar, zowel voor continue als discontinue data, omdat er 

individuele variabelen mee worden geselecteerd. Ze worden beschreven in hoofdstuk 5. 

 

De nieuwe methoden zijn iteratief en de variabelen worden gerangschikt in volgorde van 

grootte van een eigenschap van voorspellende variabelen. Het zijn zogenaamde “Predictive-

Property-Ranked Variables” methoden, aangeduid als PPRV-methoden. Bij deze methoden 

wordt bovendien de PLS1 modelcomplexiteit aangepast gedurende het variabelen-reductie 

proces door het gebruik van zogenaamde “Complexity Adapted Models”, afgekort als CAM. 

Er zijn drie nieuwe CAM-methoden ontwikkeld: “Repetitive Complexity Adapted Models 

(RCAM)”, “Final Complexity Adapted Models (FCAM)”, en “Integral Complexity Adapted 

Models (ICAM)”. De methoden verschillen van elkaar in de wijze waarop de PLS1 

modelcomplexiteit wordt aangepast. 

 

Het selectieve en voorspellende vermogen van de nieuwe CAM methoden werd onderzocht 

met de PLS1-regressiecoefficient als eigenschap van de voorspellende (onafhankelijke)  

variabelen. De resultaten werden vergeleken met die van twee modificaties van bestaande 

verwante iteratieve PPRV-methoden met een constante PLS1-complexiteit, en met twee 

referentiemethoden: “Uninformative Variable Elimination”, gevolgd door een Genetisch 

Algoritme of door interval PLS. Gebleken is dat de selectiviteit van de CAM methoden 

significant beter is dan die van de twee modificaties van bestaande verwante PPRV-methoden 

en van beide referentiemethoden, terwijl de voorspellende vermogens vergelijkbaar zijn. Met 

de CAM methoden worden belangrijke variabelen geselecteerd die een chemisch relevante 

betekenis hebben voor de respons.  

 

De RCAM-methode is de minst aantrekkelijke omdat deze gebaseerd is op een 

rekenintensieve domme kracht techniek. De variabelenreductie wordt daarbij herhaald 

uitgevoerd, steeds opnieuw beginnend met alle variabelen, maar met stapsgewijs afnemende 

modelcomplexiteiten. De FCAM-methode heeft de voorkeur, gelet op de benodigde 

rekenkracht en het selectieve en voorspellend vermogen. De ICAM-methode kan mogelijk 

ook voor toekomstige ontwikkelingen op het gebied van variabelenselectie worden gebruikt 

omdat het selectieve en voorspellende vermogen vergelijkbaar is met die van FCAM, terwijl 

de benodigde rekenkracht maar weinig hoger is. 

 

De geprefereerde FCAM-methode werd bij dit onderzoek gebruikt voor de verdere 

ontwikkeling van variabelenselectiemethoden voor PLS1. In hoofdstuk 6 zijn de 

bruikbaarheid en effectiviteit van zes individuele en negen gecombineerde eigenschappen van 

voorspellende variabelen onderzocht, in combinatie met de FCAM-methode. Het bleek dat de 

modellen die ontwikkeld waren na variabelenreductie een vergelijkbaar of beter voorspellend 

vermogen hadden dan de modellen ontwikkeld met alle beschikbare variabelen.   
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De individuele eigenschappen “absolute waarde van de PLS1 regressiecoëfficiënt” en 

“significantie van de PLS1 regressiecoëfficiënt” zijn het meest selectief. Met behulp van deze 

eigenschappen worden kleinere aantallen voor de respons relevante informatieve variabelen 

geselecteerd dan met de andere individuele eigenschappen, terwijl het voorspellend vermogen 

vergelijkbaar of beter is. De “significantie van de PLS1 regressiecoëfficiënt” is het meest 

selectief, terwijl de “absolute waarde van de PLS1 regressiecoëfficiënt” rekentechnisch 

sneller is. 

 

De FCAM-methode voor PLS1 (FCAM-PLS1) is ook als startpunt gekozen voor de 

ontwikkeling van een variabelen-selectiemethode voor PLS met meerdere responsen (PLS2). 

In hoofdstuk 7 werden vier nieuwe eigenschappen van voorspellende variabelen gedefinieerd  

en onderzocht, die zijn afgeleid van PLS2 regressiecoëfficiënten. Het betreft het “gemiddelde 

van de absolute waarden van de PLS2 regressiecoëfficiënten”, de “norm van de PLS2 

regressiecoëfficiënten”, en de significanties ervan. Het bleek dat de vier nieuwe 

eigenschappen geschikt zijn om te gebruiken bij de  FCAM-methode die is aangepast voor 

variabelenreductie met PLS2-modellen (FCAM-PLS2). 

Het voorspellend vermogen van de modellen die zijn ontwikkeld na variabelenselectie op 

basis van deze vier eigenschappen is gelijkwaardig. De “norm van de PLS2 regressie-

coëfficiënten” is het meest selectief. Daarbij worden kleine aantallen informatieve variabelen 

geselecteerd die chemisch relevant zijn voor de respons. De “significantie van het gemiddelde 

van de absolute waarden van de PLS2 regressiecoëfficiënten” is het minst selectief. 

 

Samengevat. Bij het onderzoek dat wordt gepresenteerd in dit proefschrift zijn vijf nieuwe  

chemometrische methoden ontwikkeld en getest die kunnen helpen bij de beheersing van 

grote data sets. Het betreft (i) een monsterselectiemethode voor het samenstellen van 

gereduceerde data sets voor klassieke QSRR modellen voor RPLC, (ii) drie algemeen 

toepasbare variabelen-selectiemethoden voor PLS1 (RCAM-PLS1, FCAM-PLS1 en ICAM-

PLS1), en (iii) een algemeen toepasbare variabelen-selectiemethode voor PLS2 (FCAM-

PLS2). Deze methoden vormen een stevige basis voor het opzetten van een nieuwe 

onderzoekslijn die gericht is op de beheersing van grote data sets met chemometrie. 
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