
Effect of long-term ageing on i-vector speaker verification

Finnian Kelly1, Rahim Saeidi2, Naomi Harte1, David van Leeuwen3

1 Department of Electronic & Electrical Engineering, Trinity College Dublin, Ireland
2 Speech and Image Processing Unit, School of Computing, University of Eastern Finland

3Centre for Language and Speech Technology, Radboud University Nijmegen, The Netherlands
kellyfp@tcd.ie, rahim.saeidi@uef.fi, nharte@tcd.ie, d.vanleeuwen@let.ru.nl

Abstract
Assessing the impact of ageing on biometric systems is an

important challenge. In this paper, an i-vector speaker verifi-
cation framework is used to evaluate the impact of long-term
ageing on state-of-the-art speaker verification. Using the Trin-
ity College Dublin Speaker Ageing (TCDSA) database, it is ob-
served that the performance of the i-vector system, in terms of
both discrimination and calibration, degrades progressively as
the absolute age difference between training and testing sam-
ples increases. In the case of male speakers, the equal error
rate (EER) increases from 4.61% at an ageing difference of
0–1 years to 32.74% at an age difference of 51–60 years. The
performance of a Gaussian Mixture Model - Universal Back-
ground Model (GMM-UBM) system is presented for compari-
son. It is shown that while the i-vector system outperforms the
GMM-UBM system, as absolute age difference increases, the
performance of both degrades at a similar rate. It is concluded
that long-term ageing variability is distinct from everyday inter-
session variability, and therefore must be dealt with via dedi-
cated compensation strategies.
Index Terms: speaker verification, ageing, i-vector, GMM-
UBM

1. Introduction
The process of ageing leads to gradual changes in the voice
throughout adulthood. The impact of ageing on the properties of
the voice has been well documented [1, 2, 3, 4, 5]. As biometric
systems grow in their reach and scale, establishing the impact
of ageing is becoming increasingly important [6, 7]. However,
the effect of ageing on speaker verification has not received sig-
nificant research attention.

In our previous papers [8, 9, 10], and in studies by Rhodes
[11, 12], long-term ageing is demonstrated to impact negatively
on speaker verification and forensic automatic speaker recogni-
tion, leading to errors in classification and weight-of-evidence
computation for most speakers within a time-span of 10 years.
Prompted by this, proposals for ageing compensation were pre-
sented in [8, 9].

In our previous studies, a Gaussian Mixture Model - Uni-
versal Background Model (GMM-UBM) approach [13] has
been used exclusively. There have been significant develop-
ments in speaker verification research in recent years, with
progress driven by the regular NIST speaker recognition evalu-
ations (SREs) [14, 15]. The current wave of systems, the ma-
jority of which build upon the GMM-UBM framework, incor-
porate various techniques to improve performance in the pres-
ence of inter-session variability. As a result, they have reached a
level of performance that significantly outperforms the ‘classic’

GMM-UBM approach in challenging conditions; for example,
see the comparison of GMM-UBM and Joint Factor Analysis
(JFA) presented in Kinnunen’s review paper [16]. A current re-
search trend [17] is the use of an i-vector framework [18] with
PLDA (probabilistic linear discriminant analysis) [19].

Optimisation of speaker verification performance is not the
focus of this paper; what is of interest however, is to evaluate
how these recent developments, aimed at dealing with inter-
session variability, behave when faced with ageing variabil-
ity. Thus, we employ an i-vector system with PLDA mod-
elling, developed at Radboud University Nijmegen (RUN) for
the NIST SRE 2012 evaluation [20, 15]. A speaker verification
experiment using the Trinity College Dublin Speaker Ageing
(TCDSA) database is designed to observe the extent to which
this ‘state-of-the-art’ system is affected by long-term ageing
variability. The performance of a GMM-UBM system on the
same evaluation is presented for comparison.

2. Speaker Ageing Data
The Trinity College Dublin Speaker Ageing (TCDSA)Database
is a longitudinal speech corpus containing recordings of 26
speakers (15 males and 11 females) with an age difference range
of 28–58 years per speaker. The most recent version of TCDSA
[9] is used for the experiments in this paper. The data was ob-
tained from a variety of sources; however, all recordings are
professional radio or television broadcasts. In previous papers,
e.g., [8, 9], TCDSA recordings were screened subjectively and
objectively to limit non-ageing-related variability, a process de-
tailed fully in [8]. Here however, the objective screening mea-
sure was not applied, maximising the quantity of data under
test.

Accompanying the main database is the TCDSA-UBM
database, containing 30 seconds of speech from each of 120
speakers, balanced across gender, age and accent, and contain-
ing recordings comparable to those of the main database. In
addition, male and female speakers from an expanded version
of the TCDSA-FD (Forensic Development) database [10] were
used for normalization purposes. All data used in this paper is
freely available for academic research1.

3. i-vector system description
An i-vector system developed for NIST SRE 2012 at Radboud
University Nijmegen (RUN) [20, 17] was used in an ‘off the
shelf’ manner for the experiments in this paper. It consists of a
standard i-vector [18] configuration with PLDAmodelling [21].

1To access the data and associated documentation, see: http://
www.sigmedia.tv/Research/SpeakerVerification
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All speech data used was at 8 kHz (downsampling was ap-
plied where necessary). The speech signal was enhanced by ap-
plying a Wiener filtering based module to the magnitude spec-
trum of the frames, with the noise spectrum estimated using an
improved minima controlled recursive averaging (IMCRA) ap-
proach [22]. The front-end consisted of 19-dimensional MFCC
(plus log energy) extraction over 20 ms windows every 10 ms.
Delta and acceleration coefficients, computed over 9 consecu-
tive frames, were then appended. Speech activity detection was
applied according to a Gaussian modelling of the frame energy
[23]. Lastly, feature warping [24] was applied.

Gender-dependent UBMs of 2048 components were trained
using segments from the following datasets: NIST SRE 2004-
2006, Switchboard cellular phase 1 and 2 and Fisher English
[17]. An i-vector extractor matrix T of rank 400 was estimated
using the same utterances used to train the UBM. Baum-Welch
statistics of 0th, 1st and 2nd order are computed using the UBM,
and along with the T matrix, were used to extract i-vectors for
the relevant utterances.

To reduce intra-speaker variability and enhance inter-
speaker variability, LDA (linear discriminant analysis) was ap-
plied to the i-vectors, reducing their dimensionality to 200.
Finally, the i-vectors are centred, whitened [25] and length-
normalized [26]. The speaker and session dependent i-vector
distribution was modelled with PLDA [19]. PLDA develop-
ment data was drawn from NIST SRE 2006-2012 according to
the I4U development lists [17]. The score for each trial is the
log-likelihood ratio of the pair of i-vectors originating from the
same speaker versus different speakers. Score calibration was
not applied.

4. GMM-UBM system description
A GMM-UBM system configuration, consistent with our pre-
vious work on ageing speaker verification [9], was used in this
paper. All speech was preprocessed by downsampling to 8 kHz,
applying pre-emphasis and removing silences with an energy-
based speech activity detector. Feature extraction consisted of
12-dimensional MFCC extraction over 20 ms windows every
10 ms. Delta coefficients, computed over 5 consecutive frames
were appended. RASTA filtering, and mean and variance nor-
malisation were then applied to the feature vector [16]. A
gender-independent UBM of 512 components was trained with
the TCDSA-UBM database. Speaker GMMs were trained with
mean-only adaptation. A relevance factor of 16 was used, and
all UBM components were considered in adaptation and scor-
ing.

A log-likelihood ratio (LLR) score was computed for each
trial from the likelihoods of the test sample given both the
speaker GMM and the UBM. Z-norm [16] was applied to each
score. The Z-norm statistics for each speaker GMM were esti-
mated given a set of 25 speakers (of the same gender) from the
TCDSA-FD database.

5. Experimental evaluation
A ‘forwards’ and ‘backwards’ verification approach has gener-
ally been adopted in our previous papers, e.g., [27, 8, 9], where
a speaker’s youngest and oldest recordings are used in train-
ing, and the remainder of their recordings are reserved for test-
ing. In this paper, the experimental protocol is expanded by us-
ing speaker recordings at all ages for both training and testing,
maximising the number of trials. There were a few constraints
to this all-vs-all protocol: given the widely variable recording

durations within the database, all training and testing samples
were restricted to 30 seconds, and a maximum of five samples
from a recording were used for testing. No same-session trials
were considered at the results analysis stage.

5.1. Experimental results

A feature of the TCDSA database is that the number of record-
ings per speaker, and their distribution across age, is variable.
This makes performance evaluation challenging. Figure 1 illus-
trates the distribution of trials across speaker and age difference
range with our evaluation protocol; it is evident that a subset
of the speakers dominate the trials (note the log scale on the y-
axis), and that the number of trials generally decreases with age
difference.
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Figure 1: The number of target trials for each speaker at increas-
ing age difference ranges, given the evaluation protocol adopted
in this paper. ‘Age Diff.’ denotes the upper limit of a ten year
absolute age difference range, e.g., Age Diff. = 20 indicates an
age difference range of±11–20 years between training and test-
ing samples. The indices of male and female speakers are 1–15
and 16–26 respectively. The distribution of non-target trials is
similar

In assessing the performance of the speaker verification sys-
tems therefore, it is necessary to account for the trial ‘imbal-
ances’ in Figure 1. In [28], van Leeuwen presents a method for
calculating the equal error rate (EER) in a way that balances the
contributions of different conditions in an evaluation. The false
acceptance rate (FAR) and false rejection rate (FRR) are deter-
mined for each condition individually and combined. This has
the effect of weighting each trial by the inverse of the number
of trials of that condition. A similar trial weighting scheme is
applied in [29]. In the present case, speakers or age difference
ranges can be considered as different ‘conditions’.

A comparison of unweighted EERs with EERs weighted
by speaker and by age difference range (the six ranges in Fig-
ure 1), is provided in Table 1. The effect of weighting is ap-
parent in all cases, shifting the EER by 1–2% in the speaker
weighted case and by 1–8% in the age weighted case. Compar-
ing the speaker weighted EERs, the i-vector system outperforms
the GMM-UBM system, as anticipated, with an absolute EER
difference between the systems of approximately 7% and 2%
for males and females respectively. For both systems, female
EER is higher than male EER. Corresponding DET curves for
the speaker weighted case are provided in Figure 2.

To evaluate the effect of increasing age difference between
training and testing samples, the speaker weighted EERs were
evaluated for each system at seven absolute age difference
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pooled s.weighted a.weighted

male EER% i-vec. 13.12 11.52 21.17
GMM 16.73 18.21 21.68

female EER% i-vec. 14.82 16.69 16.77
GMM 19.35 18.59 20.83

Table 1: EERs for unweighted trials (‘pooled’) and for tri-
als weighted per speaker (‘s.weighted’), and per age difference
range (‘a.weighted’). Trials at all absolute age differences (±0–
60 years) are considered.
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Figure 2: DET curves, weighted per-speaker, for the i-vector
and GMM-UBM systems given trials at all absolute age differ-
ences (±0–60 years).

ranges, and are shown in Table 2. The first range, 0–1, is based
on all trials with an absolute age difference of less than or equal
to one year (excluding same-session trials). The effect of ageing
over a one year period is assumed to be minimal, and thus the
resulting EERs can be considered as ageing-independent base-
lines. The i-vector system clearly outperforms the GMM-UBM
system in the male case. In the female case however, the GMM-
UBMEER is slightly lower. At the 0–1 age range, there are zero
trials for several female speakers, and a low number of target tri-
als overall (441). This likely contributes to the discrepancy in
i-vector performance at this range.

The speaker weighted EER values in Table 2 generally
follow an increasing trend as the age ranges increase. In the
male case, the EER for the i-vector system at the range 0–10
is lower than the GMM-UBM system, as would be expected
based on Figure 2. For subsequent age ranges, the EER
increases for both systems at approximately the same rate. At
the final range 51–60 however, the GMM-UBM EER drops
below that of the i-vector system. In the female case, there
is little difference between the EERs of both systems at each
age range. For both, there is an increase up to 31–40 range,
followed by a decrease to the final age range. For the final
four age ranges, the GMM-UBM EER is lower than that of
the i-vector system. The ‘spike’ in the EER at 31–40 is likely
attributable to the particular distribution of speakers at this age
range.

In addition to the EER, a detection cost metric [14] was
defined as:

Cdet(θ) = PtarCFRFRR(θ) + (1−Ptar)CFAFAR(θ) (1)

Ptar is the prior probability of a target speaker, and was set
at 0.5. CFR and CFA are the cost of false rejection and false
acceptance errors, and were both set equal to 1. θ is the deci-
sion threshold. As shown in [30], with these parameters, Cdet

becomes the average of the FAR and the FRR, which is equiv-
alent to the half total error rate (HTER), a frequently used per-
formance metric in biometric identification, e.g., [31]. Prior to
evaluating Cdet, scores were converted into ‘calibrated likeli-
hood ratios’ [32]: linear calibration parameters w0 and w1 were
optimized on scores of trials in the range 0–10. The scores S
of all trials were then linearly mapped to calibrated likelihood
ratios Scal:

Scal = w0 + w1S (2)
For each age difference range in Table 2 (greater than 0–

1), Cdet was calculated by thresholding all Scal at LLR = 0,
i.e. where − log (Ptar (1− Ptar)CFR/CFA) = 0 [33]. The
minimum detection cost, Cmin

det , was also obtained, by adjusting
the decision threshold θ to minimize Cdet. These error metrics
are shown in Figure 3, along with the EER values from Table 2
for comparison.

In the male case, top of Figure 3, Cdet increases progres-
sively for the i-vector and GMM-UBM systems. It diverges
from the EER after 20 years, indicating that the detection per-
formance is decreasing. Cmin

det is close to the EER, and slightly
lower above 40 years. However, it too increases progressively
with age difference, indicating that even with a well-chosen de-
cision threshold, performance decreases. Calibration therefore
becomes more difficult with age-difference. The overall trends
are similar in the female case, with variability at the 31–40 age
range.

6. Discussion
In this paper, the effect of ageing on the performance of a state-
of-the-art i-vector speaker verification system was presented
and compared to a classic GMM-UBM approach. An exper-
imental protocol was designed that maximised the number of
trials given the TCDSA database.

For male speakers, the i-vector system significantly out-
performs the GMM-UBM approach at ‘short’ age difference
ranges (0–1 and 0–10) and overall (over the complete 0–60
range). This result is expected given the additional levels of
inter-session compensation present in the i-vector framework.
For female speakers however, there is a less significant dif-
ference between the i-vector and GMM-UBM approaches (in
terms of weighted EER) at ‘short’ age difference ranges (0–1
and 0–10) and overall (over the 0–60 range). It is unclear why
there is not a more marked improvement with the i-vector sys-
tem, though the ‘imbalances’ in the TCDSA data are likely a
contributing factor.

Unlike the GMM-UBM system, the i-vector system was not
optimised for this experiment (by including data similar to the
TCDSA database content in development, for example). De-
spite this, it performs effectively: the EER of the i-vector system
for males at the 0–1 range (4.61%) is comparable to the perfor-
mance of the system in the NIST SRE 2012 common conditions
‘CC1’ (EER = 5.75%) and ‘CC3’ (EER = 4.83%) [17]. For fe-
males, the EER at the 0–1 range (6.90%) is slightly higher than
the common conditions ‘CC1’ (EER = 4.86%) and ‘CC3’ (EER
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absolute age difference: 0–1 0–10 11–20 21–30 31–40 41–50 51–60

male

EER % i-vector 4.61 8.13 10.50 13.83 18.37 22.49 32.74
GMM-UBM 6.90 12.99 14.14 19.93 26.52 29.83 25.81
num. tar 2247 9822 4118 3202 1689 819 248
num. non-tar 4826 25025 24417 20175 13343 10886 5184

female

EER % i-vector 9.64 11.62 16.74 19.54 31.99 30.83 24.07
GMM-UBM 9.62 12.56 19.56 19.44 31.54 23.79 18.92
num. tar 441 2965 1751 1236 1240 1207 437
num. non-tar 1734 9104 8592 6937 4486 2280 1059

Table 2: Speaker weighted EERs of i-vector and GMM-UBM systems for trials at increasing absolute age difference ranges. ‘num. tar’
and ‘num. non-tar’ are the number of target and non-target trials respectively.
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Figure 3: Error metrics for i-vector (‘i-vec’) and GMM-UBM
(‘GMM’) systems at increasing absolute age difference ranges,
Top: Male, Bottom: Female

= 4.09%) [17]. This indicates that the i-vector system may not
be as well suited to the female content of the TCDSA database,
resulting in the greater discrepancy between male and female
EER at the 0–60 age range (11.52% vs 16.69%).

The relative change in i-vector performance (in terms of

both EER and Cdet) in the presence of ageing is equivalent to
that of the GMM-UBM system, demonstrating that long-term
ageing variability is not removed by the inter-session compen-
sation applied in the i-vector framework. This therefore moti-
vates dedicated compensation approaches for ageing variabil-
ity, such as the model-based eigenageing compensation [9] or
score-based compensation [8] proposed previously.

Eigenageing compensation was not applied in this paper
due to the requirement for an independent set of ageing speak-
ers. With additional data, ageing compensation could also be
applied in the PLDA model of the i-vector system. Compensa-
tion at a score-level could be achieved by a calibration proce-
dure, treating ageing information as a ‘Quality Measure Func-
tion (QMF)’ [32, 34]. The imbalance of the trials across speak-
ers and age-differences make this approach challenging. Ul-
timately, additional ageing data will be necessary to evaluate
these compensation strategies given the experimental protocol
adopted in this paper.

As age difference increases, femaleCdet is generally higher
in absolute terms, and more rapidly increasing, than male Cdet.
A gender-dependent modelling approach is usually taken in
speaker verification systems. However, performance is often
worse with female speakers, e.g., observed in an evaluation of
both NIST SRE 2008 and 2010 tasks [35]. Ageing is a gender-
dependent process [1] and thus it may inflate previously exist-
ing gender-dependent performance differences. In addition to
an ageing compensation approach that is gender-dependent, a
front-end that is gender-aware may be necessary to overcome
this male/female performance discrepancy.

The large changes to the EER after balancing the contribu-
tion from each speaker and each age difference range shows the
importance of condition weighting in results analysis. The large
spread in the number of per-speaker recordings, and the small
number of speakers make the effect particularly significant here.
This is likely to be an unavoidable feature of long-term ageing
evaluations, due to the nature of the data that is required.

The results of the evaluation in this paper provide bench-
mark levels of performance on the TCDSA database. Since the
database has been made freely available for academic research,
this will hopefully stimulate research in the area.
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