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Inferring the most probable explanation to a set of variables, given a partial observation 
of the remaining variables, is one of the canonical computational problems in Bayesian 
networks, with widespread applications in AI and beyond. This problem, known as MAP, 
is computationally intractable (NP-hard) and remains so even when only an approximate 
solution is sought. We propose a heuristic formulation of the MAP problem, denoted 
as Inference to the Most Frugal Explanation (MFE), based on the observation that many 
intermediate variables (that are neither observed nor to be explained) are irrelevant with 
respect to the outcome of the explanatory process. An explanation based on few samples 
(often even a singleton sample) from these irrelevant variables is typically almost as 
good as an explanation based on (the computationally costly) marginalization over these 
variables. We show that while MFE is computationally intractable in general (as is MAP), 
it can be tractably approximated under plausible situational constraints, and its inferences 
are fairly robust with respect to which intermediate variables are considered to be relevant.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Abduction or inference to the best explanation refers to the process of finding a suitable explanation (the explanans) 
of observed data or phenomena (the explananda). In the last decades, Bayesian notions of abduction have emerged due to 
the widespread popularity of Bayesian or probabilistic techniques for representing and reasoning with knowledge [5,26,30,
47,52]. They are used in decision support systems in a wide range of problem domains (e.g., [7,11,21,23,32,45,64]) and as 
computational models of economic, social, or cognitive processes [10,25,33,48,58,60]. The natural interpretation of ‘best’ in 
such models is ‘most probable’: the explanation that is the most probable one given the evidence, i.e., that has maximum 
posterior probability, is seen as the hypothesis that best explains the available evidence; this explanation is traditionally 
referred to as the MAP explanation and the computational problem of inferring this explanation as the MAP problem.1

However, computing or even approximating the MAP explanation is computationally costly (i.e., NP-hard), especially 
when there are many intermediate (neither observed nor to be explained) variables that may influence the explanation 
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Netherlands. Tel.: +31 0 24 3616288.
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1 Other relationships have been proposed that compete in providing ‘sufficiently rational’ relations between observed phenomena and their explanation 

that can be used to describe why we judge one explanation to be preferred over another [28,44]. Examples include maximum likelihood [29], which does 
not take the prior probabilities of the hypotheses into account, the conservative Bayesian approach [6], generalized Bayes factor [66], and various Bayesian 
formalisms of coherence theory [5,15,26,49]. While the posterior probability of such explanations is not the deciding criterion to prefer one explanation 
over another, it is typically so that explanations we consider to be good for other reasons also have a high posterior probability compared to alternative 
explanations [27,44].
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[1,4,51,56]. To compute the posterior probability distribution of the explanation variables, all these intermediate variables 
need to be marginalized over. One way of dealing with this intractability might be by assuming modularity of knowledge 
representations, i.e., by assuming that these representations are informationally encapsulated and do not have access to 
background knowledge. However, this is problematic as we cannot know beforehand which elements of background knowl-
edge or observations may be relevant for determining the best explanation [17,19].

Fortunately, even when a full Bayesian computation may not be feasible in large networks, we need not constrain infer-
ences only to small or disconnected knowledge structures. It is known that in general the posterior probability distribution 
of a (discrete) Bayesian network is skewed, i.e., few joint value assignments together cover most of the probability space 
[13], and that typically only a few of the variables in a network are relevant for a particular inference query [14]. We 
propose to utilize this property of Bayesian networks in order to make tractable (approximate) inferences to the best ex-
planation over large and unencapsulated knowledge structures. We introduce a heuristic formulation of MAP, denoted as 
Inference to the Most Frugal Explanation (MFE), that is explicitly designed to reflect that only a few intermediate variables 
are typically relevant in real-world situations. In this formulation we partition the set of intermediate variables in the net-
work into a set of ‘relevant’ intermediate variables that are marginalized over, and a set of ‘irrelevant’ intermediate variables 
that we sample from in order to estimate an explanation.

Note that in the MFE formalism there is marginalization over some of the intermediate variables (the variables that are 
considered to be relevant), but not over those intermediate variables that are not considered to be relevant. Thus, MFE can 
be seen as a ‘compromise’ between computing the explanation with maximum posterior probability, where one marginalizes 
over all intermediate variables, and the previously proposed Most Simple Explanation (MSE) formalism [35] where there is 
no marginalization at all, i.e., all intermediate variables are seen as irrelevant. We want to emphasize that the notions 
‘relevant’ and ‘irrelevant’ in the problem definition denote subjective partitions of the intermediate variables; we will revisit 
this issue in Section 3.1.

We claim that this heuristic formalism of the MAP problem exhibits the following desirable properties:

1. The knowledge structures are isotropic, i.e., they are such that, potentially, everything can be relevant to the outcome of 
an inference process. They are also Quinean: candidate explanations are sensitive to the entire belief system [17,18].

2. The inferences are provably computationally tractable (either to compute exactly or to approximate) under realistic 
assumptions with respect to situational constraints [43,53].

3. The resulting explanations have an optimal or close-to-optimal posterior probability in many cases, i.e., MFE actually 
‘tracks truth’ in the terms of Glass [28].

In the remainder of this paper, we will discuss some needed preliminaries in Section 2. In Section 3 we discuss MFE in 
more detail. We give a more formal definition, including a formal definition of relevance in the context of Bayesian networks, 
and show how MFE can be tractably approximated under realistic assumptions despite computational intractability of the 
problem in general. In Section 4 we show that MFE typically gives an explanation that has a close-to-optimal posterior 
probability, even if only a subset of the relevant variables is considered. We discuss how MFE performs under various 
scenarios (e.g., when there are few or many relevant variables, when there are many hypotheses that are almost equally 
likely, or when there is a misalignment between the actual relevant variables and the variables that are mistakenly presumed 
to be relevant). We conclude our paper in Section 5.

2. Preliminaries

In this section we will introduce some preliminaries from Bayesian networks, in particular the MAP problem as standard 
formalization of Bayesian abduction. We will discuss the ALARM network which we will use as a running example through-
out this paper. Lastly, we introduce some needed concepts from complexity theory, in particular the complexity class PP, 
oracles, and fixed parameter tractability.

2.1. Bayesian networks and Bayesian abduction

A Bayesian or probabilistic network B is a graphical structure that models a set of stochastic variables, the conditional 
independences among these variables, and a joint probability distribution over these variables [52]. B includes a directed 
acyclic graph GB = (V, A), modeling the variables and conditional independences in the network, and a set of parameter 
probabilities Pr in the form of conditional probability tables (CPTs), capturing the strengths of the relationships between the 
variables. The network models a joint probability distribution Pr(V) = ∏n

i=1 Pr(V i | π(V i)) over its variables, where π(V i)

denotes the parents of V i in GB . We will use upper case letters to denote individual nodes in the network, upper case 
bold letters to denote sets of nodes, lower case letters to denote value assignments to nodes, and lower case bold letters to 
denote joint value assignments to sets of nodes. We will sometimes write Pr(x | y) as a shorthand for Pr(X = x | Y = y) if no 
ambiguity can occur.

In a Bayesian abduction task there are three types of variables: the evidence variables, the explanation variables, and a 
set of variables called intermediate variables that are neither evidence nor explanation variables. The evidence variables are 
instantiated, i.e., have been assigned a value; the joint value assignment constitutes the explananda (what is to be explained, 
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Fig. 1. The ALARM network [2].

viz., the observations, data, or evidence). The explanation variables together form the hypothesis space: a set of possible 
explanations for the observations; a particular joint value assignment to these variables constitutes an explanans (the actual 
explanation of the observations). When determining what is the best explanation, typically we also need to consider other 
variables that are not directly observed, nor are to be explained: the intermediate variables. By convention, we will use E, 
H, and I, to denote the sets of evidence variables, explanation variables, and intermediate variables, respectively. We will 
use e to denote the evidence, viz., the (observed) joint value assignment to the evidence variables.

The problem of inferring the most probable explanation, i.e., the joint value assignment for the explanation set that has 
maximum posterior probability given the evidence, is defined as MAP, or also Partial MAP or Marginal MAP to emphasize 
that the probability of any such joint value assignment is computed by marginalization over the intermediate variables. MAP 
is formally defined as follows.

Maximum A Posteriori Probability (MAP)

Instance: A Bayesian network B = (GB, Pr), where V is partitioned into evidence variables E with joint value assignment e, 
explanation variables H, and intermediate variables I.
Output: The joint value assignment h to the nodes in H that has maximum posterior probability given the evidence e.

2.2. The ALARM network

The ALARM network (Fig. 1) will be used throughout this paper as a running example. This network is constructed 
as a part of the ALARM monitoring system, providing users with text messages denoting possible problems in anesthesia 
monitoring [2]. It consists of thirty-seven discrete random variables. Eight of these variables are designed as diagnostic 
variables that are to be explained, indicating problems like pulmonary embolism or a kinked tube; another sixteen variables 
indicate measurable or observable findings. The remaining thirteen variables are intermediate variables, i.e., they are neither 
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diagnostic variables, nor can be observed (in principle or in practice). Apart from its practical use in the system described 
above, the ALARM network is one of the most prominent benchmark networks in the Bayesian network community.2

As an example, consider that a high breathing pressure was detected (PRSS = high) and that minute ventilation was low 
(MINV = low); all other observable variables take their default (i.e., non-alarming) value. From these findings a probability of 
0.92 for the diagnosis ‘kinked tube’ (KINK = true) can be computed. Likewise, we can compute that the most probable joint 
explanation for the diagnostic variables, given that PCWP (pulmonary capillary wedge pressure) and BP (blood pressure) are 
high, is that HYP = true (hypovolemia, viz., loss of blood volume) and all other diagnostic variables are negative. This joint 
value assignment has probability 0.58. The second-best explanation (all diagnostic variables are negative, despite the two 
alarming conditions) has probability 0.11.

2.3. Complexity theory

In the remainder, we assume that the reader is familiar with basic concepts of computational complexity theory, such 
as Turing Machines, the complexity classes P and NP, and intractability proofs. For more background we refer to classical 
textbooks like [22] and [50]. In addition to these basic concepts we will introduce concepts that are in particular relevant to 
Bayesian computations, in particular Probabilistic Turing Machines, Oracle Turing Machines, the complexity class PP and the 
Counting Hierarchy; the interested reader will find more background in [34] or [8]. Finally, we will briefly, and somewhat 
informally, introduce parameterized complexity theory. A more thorough introduction can be found in [12] or [16].

A Probabilistic Turing Machine (PTM) augments the more traditional Non-deterministic Turing Machine (NTM) with a 
probability distribution associated with each state transition. Without loss of generality we may assume that state transitions 
are binary and that the probability distribution at each transition is uniform. A PTM accepts a language L if the probability 
of ending in an accepting state when given some input x is strictly larger than 1/2 if and only if x ∈ L. Given uniformly 
distributed binary state transitions this is exactly the case if the majority of computation paths accepts. The complexity class 
PP is defined as the class of languages accepted by some PTM in polynomial time. Observe that NP ⊆ PP; the inclusion is 
thought to be strict. PP contains complete problems, the canonical one being Majsat: given a Boolean formula φ, does the 
majority of truth assignments to the variables satisfy it?

An Oracle Turing Machine (OTM) is a Turing Machine enhanced with a so-called oracle tape and an oracle O for deciding 
membership queries for a particular language L O . Apart from its usual operations, the OTM can write a string y on the 
oracle tape and ‘summon the oracle’. In the next state, the OTM will have either replaced the string with 1 if y ∈ L O , 
or 0 if y /∈ L O . The oracle can thus be seen as a ‘black box’ that answers membership queries in constant time. Note that 
both accepting and rejecting answers of the oracle can be used. Various complexity classes are defined using oracles; for 
example, the class NPPP includes exactly those languages that can be decided on an NTM with an oracle for PP-complete 
languages. Using the class PP and hierarchies of oracles the Counting Hierarchy [61] can be defined as a generalization of 
the Polynomial Hierarchy [59], including classes as NPPP , PNPPP

, or NPPPPP
. Canonical complete problems for such classes 

include various Satisfiability variants, using the quantifiers ∀, ∃, and Maj to bind subsets of variables [61,63].
Sometimes problems are intractable (i.e., NP-hard) in general, but become tractable if some parameters of the problem 

can be assumed to be small. Informally, a problem is called fixed-parameter tractable for a parameter k (or a set of pa-
rameters {k1, . . . , km}) if it can be solved in time, exponential (or even worse) only in k and polynomial in the input size 
|x|. In practice, this means that problem instances can be solved efficiently, even when the problem is NP-hard in general, 
if k is known to be small. If an NP-hard problem Π is fixed-parameter tractable for a particular parameter set k then k is 
denoted a source of complexity [53] of Π : bounding k renders the problem tractable, whereas leaving k unbounded ensures 
intractability under usual complexity-theoretic assumptions like P �= NP. On the other hand, if Π remains NP-hard inde-
pendent of the value of parameter k, then Π is para-NP-hard with respect to k: bounding k does not render the problem 
tractable. The notion of fixed-parameter tractability can be extended to deal with rational, rather than integer, parame-
ters [36]. Informally, if a problem is fixed-rational tractable for a (rational) parameter k, then the problem can be solved 
tractably if k is close to 0 (or, depending on the definition, to 1). For readability, we will liberally mix integer and rational 
parameters in the remainder.

3. Most frugal explanations

In real-world applications there are many intermediate variables that are neither observed nor to be explained, yet may 
influence the explanation. Some of these variables can considerably affect the outcome of the abduction process. Most of 
these variables, however, are irrelevant as they are not expected to influence the outcome of the abduction process in all 
but maybe the very rarest of cases [14]. To compute the most probable explanation of the evidence, however, one needs to 
marginalize over all these variables, that is, take their prior or conditional probability distribution into account. This seems 
like a waste of computing resources in cases where we might as well have assigned an arbitrary value to these variables 
and still arrive at the same explanation.

2 See, e.g., http :/ /www.cs .huji .ac .il /site /labs /compbio /Repository/.

http://www.cs.huji.ac.il/site/labs/compbio/Repository/
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One way of ensuring tractability of inference may be by ‘weeding out’ the irrelevant aspects in the knowledge structure 
prior to inference, reducing the network to a simplified version. For example, one might try to identify intermediate vari-
ables in the network that are conditionally independent of the explanation variables, given the evidence. While this can be 
done tractably in principle [24], it may still leave us with many variables that are conditionally dependent, yet do not influ-
ence the most probable explanation of the evidence. These variables are still in a sense redundant for finding explanations, 
as illustrated in the following example.

Example 1. Consider in the ALARM network the observations that PCWP and BP are high and the other observable variables 
take their non-alarming states. The actual value of ACO2 does not influence the most probable value of the observable 
variables in the network, i.e., argmaxhPr(h, e, i, ACO2 = high) = argmaxhPr(h, e, i, ACO2 = mid) = argmaxhPr(h, e, i, ACO2 =
low) for every joint value assignment i to the intermediate variables other than ACO2. However, ACO2 is not conditionally 
independent of (e.g.) KINK given the observed evidence variables.

An alternative to only selecting those intermediate variables that are conditionally dependent on the explanation vari-
ables is to apply a stronger criterion for relevance, e.g., selecting only those variables whose value may potentially change 
the most probable explanation. However, finding these variables itself would require potentially intractable computations 
as we will illustrate in Section 3.1 and formally prove in Appendix A. Furthermore, we might want to even constrain the 
number of variables to select even more by demanding not only that their value might change the most probable explana-
tion (e.g., in some extraordinary combination of values for the other variables), but in fact actually does change the most 
probable explanation in a non-trivial number of situations. In addition, it is preferable to have a means of trading off the 
quality of a solution and the time needed to obtain a solution.

Example 2. (Adapted from [35].) Mr. Jones typically comes to work by train. Today Mr. Jones is late while he has been seen 
to leave his house at the usual time. One explanation can be that the train is delayed. However, it might also be the case 
that Mr. Jones was the unlucky individual who walked through 11th Street at 8.03 AM and was shot during an armed bank 
robbery, while mistakenly taken for a police constable. When trying to explain why Mr. Jones is not at his desk on 8.30 AM, 
there is a number of variables we might take into account, for example whether he has to change trains. A whole lot of 
variables are typically not taken into account because they are normally not relevant in most of the cases, for example the 
color of Mr. Jones’s coat, or whether walked on the left or right pavement in 11th Street. Only in the awkward coincidence 
that Mr. Jones was in the wrong place at the wrong time they become relevant to explain why he is not at work.

Our approach is not to reduce the network to only include those intermediate variables we consider to be relevant and 
do inference on the resulting pruned network. In contrast, we propose that (the computationally costly) marginalization is 
done only on a subset of the intermediate variables (the variables that are considered to be relevant), and that a sampling 
strategy is used for the remaining intermediate variables that are not considered to be relevant. Such a sampling strategy 
may be very simple (‘decide using a singleton sample’) or more complex (‘compute the best explanation on N samples and 
take a majority vote’). This allows for a trade-off between time to compute a solution and the quality of the result obtained, 
by having both a degree of freedom on which variables to include in the set of relevant intermediate variables and a degree 
of freedom on how many samples to take on the remaining intermediate variables. In Section 4 we will discuss the effects 
of such choices using computer simulations on random networks.

We now formally define the Most Frugal Explanation problem as follows3:

Most Frugal Explanation (MFE)

Instance: A Bayesian network B, partitioned into a set of observed evidence variables E, a set of explanation variables H, 
a set of ‘relevant’ intermediate variables I+ that are marginalized over, and a set of ‘irrelevant’ intermediate variables I−
that are not marginalized over.
Output: The joint value assignment to the variables in the explanation set that is most probable for the maximum number 
of joint value assignments to the irrelevant intermediate variables.

The approach sketched above guarantees that, as in the MAP problem, the knowledge structures remain both isotropic 
and Quinean, i.e., everything still can be relevant to the outcome of the inference process and the candidate explanations 
remain sensitive to the entire belief system, as claimed in Section 1. For example, when new evidence arises (say, that 
we learn of a bank robbery where an innocent passerby was shot), the color of Mr. Jones’s coat suddenly may become 
relevant to explaining his absence. We will elaborate on the tractability claim in Section 3.2 and on the tracking truth claim 
in Section 4.2.

3 To improve readability, this formulation does not explicate how to deal with the following borderline cases: (a) for any given joint value assignment to 
the irrelevant intermediate variables, multiple hypotheses have the same posterior probability; and (b) multiple hypotheses are most probable for the same 
maximum number of (possibly distinct) hypotheses. The implementation of the algorithm described in Section 3.3 dealt with both these borderline cases 
by randomly selecting one of the competing hypotheses in case of a tie.
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Example 3. As in the previous example, we assume that in the ALARM network PCWP and BP have been observed to be 
high and the other observable variables take their non-alarming states. Furthermore, let us assume that we consider VTUB, 
SHNT, VLNG, VALV and LVV to be relevant intermediate variables, and VMCH, PVS, ACO2, CCHL, ERLO, STKV, HR, and ERCA to 
be irrelevant variables. The most frugal joint explanation for the diagnostic variables is still that HYP = true while all other 
diagnostic variables are negative: in 31% of the joint value assignments to these irrelevant intermediate variables, this is 
the most probable explanation. In 16% of the assignments ‘all negative’ is the most probable explanation, and in 24% of the 
assignments HYP = true and INT = one sided (one sided intubation, rather than normal) is the most probable explanation 
of the observations. If, in addition, we also consider VMCH, PVS, and STKV to be relevant, then every joint value assignment 
to ACO2, CCHL, ERLO, HR, and ERCA will have HYP = true as the most probable explanation for the observations. In other 
words, rather than marginalizing over these variables, we might have assigned just an arbitrary joint value assignment to 
these variables, decreasing the computational burden. If we had considered less intermediate variables to be relevant, this 
strategy may still often work, but has a chance of error, if we pick a sample for which a different explanation is the most 
probable one. We can decrease this error by taking more samples and take a majority vote.

Note that MFE is not guaranteed to give the MAP explanation, unless we marginalize over all intermediate variables (i.e., 
consider all variables to be relevant). When the set of irrelevant variables is non-empty, the most frugal explanation may 
differ from the MAP explanation, even when using a voting strategy based on all joint value assignments to the irrelevant 
intermediate variables, since both explanations are computed differently. Take for example the small network with two 
ternary variables H with values {h1, h2, h3} and I with values {i1, i2, i3}, with I uniformly distributed and H conditioned on 
I as follows:

Pr(h1 | i1) = 0.4 Pr(h2 | I = i1) = 0.3 Pr(h3 | i1) = 0.3
Pr(h1 | i2) = 0.4 Pr(h2 | I = i2) = 0.3 Pr(h3 | i2) = 0.3
Pr(h1 | i3) = 0.1 Pr(h2 | I = i3) = 0.6 Pr(h3 | i3) = 0.3

Now, the most probable explanation of H , marginalized on I , would be H = h2, but the most frugal explanation of H with 
irrelevant variable I would be H = h1 as this is the most probable explanation for two out of three value assignments to I . 
Only in borderline cases MAP and MFE are guaranteed to give the same results independent of the number of samples 
taken and the partition in relevant and irrelevant intermediate variables. This will, for example, be the case when the MAP 
explanation has a probability of 1 and all the intermediate variables are uniformly distributed. In this case, every joint value 
assignment to any subset of the intermediate variables gives the MAP explanation as most frugal explanation.4

3.1. Relevance

Until now, we have quite liberally used the notion ‘relevance’. It is important here to note that we consider the rele-
vance of intermediate variables. This is in contrast with Shimony’s well-known account [55] where relevance is a property 
of explanation variables, i.e., the relevance criterion partitions the non-observed variables in MAP variables—that are to be 
explained—and intermediate variables that do not need to be assigned a value in the explanation. In this paper we as-
sume that the partition between the explanation variables H and the intermediate variables I is already made. However, 
in our model we again partition the intermediate variables I and perform full inference only on the relevant intermediate 
variables I+ .

It will be clear that the formal notion of (conditional) independence is too strong to capture relevance as we understand 
it: even if an intermediate variable is formally not independent of all the explanation variables, conditioned on the observed 
evidence variables, its influence may still be too small to have an impact on which explanation to select as the most probable 
as we saw in the previous sub-section. In contrast, we define relevance as a statistical property of an intermediate variable 
that is partly based on Druzdzel and Suermondt’s [14] definition of relevance of variables in a Bayesian model, and partly on 
Wilson and Sperber’s [65] relevance theory, and is related to the definition in [37]. According to Druzdzel and Suermondt a 
variable in a Bayesian model is relevant for a set T of variables, given an observation E, if it is “needed to reason about the 
impact of observing E on T” ([14], p. 60). Our operationalization of “needed to reason” is inspired by Wilson and Sperber, 
who state that “an input is relevant to an individual when its processing in a context of available assumptions yields (. . . ) 
a worthwhile difference to the individual’s representation of the world” ([65], p. 608). The term ‘worthwhile difference’ in 
this quote refers to the balance between the actual effects of processing that particular input and the effort required to do 
so. We therefore define the relevance of an intermediate variable as a measure, indicating how sensitive explanations are 
to changes in its value assignment. Informally, an intermediate variable I has a low relevance when there are only a few
possible worlds in which the most probable explanation changes when the value of I changes.5

Definition 4. Let B = (GB, Pr) be a Bayesian network partitioned into evidence nodes E with joint value assignment e, 
intermediate nodes I, and an explanation set H. Let I ∈ I, and let Ω(I \ {I}) denote the set of joint value assignments to 

4 We thank one of the anonymous reviewers for this observation.
5 Note that the size of the effect on the probability distribution of H is not taken into account here, only that the distribution alters sufficiently enough for 

the most probable joint value assignment to ‘flip over’ to a different value.
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Fig. 2. The intrinsic relevance of the intermediate variables of the ALARM network for the diagnostic variables given PCWP = true and BP = true. Note 
that the left ventricular end-diastolic blood volume (LVV) is highly relevant for the diagnosis, while the amount of catecholamines in the blood (CCHL) is 
irrelevant given these observations.

the intermediate variables other than I . The relevance of I , denoted as R(I), is the fraction of joint value assignments i
in Ω(I \ {I}) for which argmaxhPr(h, e, i, i) is not identical for all i ∈ Ω(I).

As computing the relevance of a variable I is NP-hard, i.e., intractable in general (see Appendix A for a formal proof), 
we introduce the notion estimated relevance of I as a subjective assessment of R(I) which may or may not correspond to 
the actual value. Such a subjective assessment might be based on heuristics, previous knowledge, or by approximating the 
relevance, e.g., by sampling some instances of Ω(I \ {I}). Where confusion may arise, we will use the term intrinsic relevance
to refer to the actual statistical property ‘relevance’ of I , in contrast to the subjective assessment thereof. Note that both 
intrinsic and estimated relevance of a variable are relative to a particular set of candidate explanations H, and conditional 
on a particular observation, i.e., a value assignment e to the evidence nodes E.

Example 5. Let, in the ALARM network, pulmonary capillary wedge pressure and blood pressure be high, and let all other 
observable variables take their non-alarming default values. The intrinsic relevance of the intermediate variables for the 
diagnosis is given in Fig. 2.

When solving an MFE problem, we marginalize over the ‘relevant intermediate variables’. This assumes some (subjective) 
threshold on the (estimated or intrinsic) relevance of the intermediate variables that determine which variables are consid-
ered to be relevant and which are considered to be irrelevant. For example, if the threshold would be 0.85 then only SHNT 
and LVV would be relevant intermediate variables in the ALARM network, but if the threshold would be 0.40 then also 
VMCH, VTUB, VLNG, VALV, and STKV would be relevant variables. That influences the results, as the distribution of MFE ex-
planations tends to be flatter when less variables are marginalized over. With a threshold of 0.85 there are 24 explanations 
that are sometimes the most probable explanation, with the actual MAP explanation occurring most often (26%). With a 
threshold of 0.40 there are just three such explanations, with the MAP explanation occurring in 75% of the cases. Thus, the 
distribution of MFE explanations is typically more ‘skewed’ towards one explanation when more variables are considered to 
be relevant.

3.2. Complexity analysis

To assess the computational complexity of MFE, we first define a decision variant.

Most Frugal Explanation (MFE)

Instance: A Bayesian network B = (GB, Pr), where V is partitioned into a set of evidence nodes E with a joint value assign-
ment e, an explanation set H, a set of relevant intermediate variables I+ , and a set of irrelevant intermediate variables I−; 
a rational number 0 ≤ q < 1 and an integer 0 ≤ k < |Ω(I−)|.
Question: Is there a joint value assignment h to the nodes in H such that for more than k disjoint joint value assignments 
i to I− , Pr(h, i, e) > q?

It will be immediately clear that MFE is intractable, as it has the NPPP-complete MAP [51] and MSE [35] problems as 
special cases for I− = ∅, respectively I+ = ∅. In this section we show that MFE happens to be even harder, viz., that it is 
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Fig. 3. Example of the construction of Bφex for the Boolean formula φex = x1 ∧ (x2 ∨ x3) ∧ (x4 ∨ x5).

NPPPPP
-complete, making it one of few real world-problems that are complete for that class.6 The canonical Satisfiabil-

ity-variant that is complete for this class is E-MajMajsat, defined as follows [61].

EMajMajsat

Instance: A Boolean formula φ whose n variables x1 . . . xn are partitioned into three sets E = x1 . . . xk , M1 = xk+1 . . . xl , and 
M2 = xl+1 . . . xn for some numbers k, l with 1 ≤ k ≤ l ≤ n.
Question: Is there a truth assignment to the variables in E such that for the majority of truth assignments to the variables 
in M1 it holds, that the majority of truth assignments to the variables in M2 yield a satisfying truth instantiation to E ∪ M1
∪ M2?

As an example, consider the formula φex = x1 ∧ (x2 ∨ x3) ∧ (x4 ∨ x5) with E = {x1}, M1 = {x2, x3} and M2 = {x4, x5}. This 
is a yes example of E-MajMajsat: for x1 = true, three out of four truth assignments to {x2, x3} (all but x2 = x3 = false) are 
such that the majority of truth assignments to {x4, x5} satisfy φex.

To prove NPPPPP
-completeness of the MFE problem, we construct a Bayesian network Bφ from an E-MajMajsat instance 

(φ, E, M1, M2). For each propositional variable xi in φ, a binary stochastic variable Xi is added to Bφ , with uniformly dis-
tributed values true and false. These stochastic variables in Bφ are three-partitioned into sets XE , XM1 , and XM2 according 
to the partition of φ. For each logical operator in φ an additional binary variable in Bφ is introduced, whose parents are the 
variables that correspond to the input of the operator, and whose conditional probability table is equal to the truth table 
of that operator. The variable associated with the top-level operator in φ is denoted as Vφ , the set of variables associated 
with the remaining operators is denoted as Opφ . Fig. 3 shows the graphical structure of the Bayesian network constructed 
for the example E-MajMajsat instance given above.

Theorem 6. MFE is NPPPPP
-complete.

Proof. Membership in NPPPPP
follows from the following algorithm: non-deterministically guess a value assignment h, and 

test whether there are at least k joint value assignments i− to I− such that Pr(h, i−, e) > q. This inference problem can be 
decided (for given value assignment h and i−) using a PTM capable of deciding Inference (marginalizing over the variables 
in I+). We can decide whether there are at least k such joint value assignments i− using a PTM capable of threshold 
counting. Thus, as both deciding Inference and threshold counting are PP-complete problems, we can solve this problem 
by augmenting an NTM with an oracle for PPPP-complete problems; note that we cannot ‘merge’ both oracles as the 
‘threshold’ oracle machine must accept inputs for which the Inference oracle answers ‘no’ as well as inputs for which the 
oracle answers ‘yes’.

To prove NPPPPP
-hardness, we reduce MFE from E-MajMajsat. We fix q = 1/2 and k = |Ω(I−)|/2. Let (φ, E, M1, M2)

be an instance of E-MajMajsat and let Bφ be the network constructed from that instance as shown above. We claim the 
following: If and only if there exists a satisfying solution to (φ, E, M1, M2), there is a joint value assignment to xE such that 
Pr(Vφ = true, xE, xM2 ) > 1/2 for the majority of joint value assignments xM2 to XM2 .

⇒ Let (φ, E, M1, M2) denote the satisfiable E-MajMajsat instance. Note that in Bφ any particular joint value assign-
ment xE ∪ xM1 ∪ xM2 to XE ∪ XM1 ∪ XM2 yields Pr(Vφ = true, xE, xM1 , xM2 ) = 1, if and only if the corresponding 
truth assignment to E ∪ M1 ∪ M2 satisfies φ, and 0 otherwise. When marginalizing over xM1 (and Opφ ) we thus 

6 Informally, one could imagine that for solving MFE one needs to counter three sources of complexity: selecting a joint value assignment out of poten-
tially exponentially many candidate assignments to the explanation set; solving an inference problem over the variables in the set I+ , and deciding upon 
a threshold of the joint value assignments to the set I− . While the ‘selecting’ aspect is typically associated with problems in NP, ‘inference’ and ‘threshold 
testing’ are typically associated with problems in PP. Hence, as these three sub-problems work on top of each other, the complexity class that corresponds 
to this problem is NPPPPP

.
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Table 1
Overview of parameters for MFE.

Parameter Description

Treewidth (t) A measure on the network topology (see, e.g., [3]).
Cardinality (c) The maximum number of values any variable can take.
#Relevants (|I+|) The number of relevant intermediate variables that we marginalize over.
Decisiveness (d) A measure on the probability distribution [42], denoting the probability that for a given evidence set E with evidence e

and an explanation set H, two random joint value assignments i1 and i2 to the irrelevant variables I− would yield the 
same most probable explanations. Decisiveness is high if a robust majority of the joint value assignments to I− yields a 
particular most probable explanation.

have that a joint value assignment xE ∪ xM2 to XE ∪ XM2 yields Pr(Vφ = true, xE, xM2 ) > 1/2 if and only if the 
majority of truth assignments to M1 , together with the given truth assignment to E ∪ M2 , satisfy φ. Thus, given 
that this is the case for the majority of truth assignments to M2 , we have that Pr(Vφ = true, xE, xM2) > 1/2
for the majority of joint value assignments xM2 to XM2 . We conclude that the corresponding instance (Bφ, Vφ =
true, XE, XM1 ∪ Opφ, XM2 , 1/2, |Ω(XM2 )|/2) of MFE is satisfiable.

⇐ Let (Bφ, Vφ = true, XE, XM1 ∪ Opφ, XM2 , 1/2, |Ω(XM2 )|/2) be a satisfiable instance of MFE, i.e., there exists a 
joint value assignment xE to XE such that for the majority of joint value assignments xM2 to XM2 , Pr(Vφ =
true, xE, xM2) > 1/2. For each of these assignments xM2 to XM2 , Pr(Vφ = true, xE, xM2 ) > 1/2 if and only if the 
majority of joint value assignments xM1 to XM1 satisfy φ.

Since the reduction can be done in polynomial time, this proves that MFE is NPPPPP
-complete. �

Given the intractability of MFE for unconstrained domains, it may not be clear how MFE as a heuristic mechanism for 
Bayesian abduction can scale up to task situations of real-world complexity. One approach may be to seek to approximate 
MFE, rather than to compute it exactly. Unfortunately, approximating MFE is NP-hard as well. Given that MFE has both MAP 
and MSE as special cases (for I− = ∅, respectively I+ = ∅), it is intractable to infer an explanation that has a probability 
that is close to optimal [51], that is similar to the most frugal explanation [40], or that is likely to be the most frugal 
explanation with a bounded margin of error [42]. By and of itself, for unconstrained domains, approximation of MFE does 
not buy tractability [43].

3.3. Parameterized complexity

An alternative approach to ensure computational tractability is to study how the complexity of MFE depends on situa-
tional constraints. This approach has firm roots in the theory of parameterized complexity as described in Section 2. Building 
on known fixed parameter tractability results for MAP [36] and MSE [42], we will consider the parameters treewidth and 
cardinality of the Bayesian network, the size of I+ , and a decisiveness measure on the probability distribution. An overview 
is given in Table 1.

For I+ = ∅, MAP can be solved in O (ct · n) for a network with n variables, and since Pr(X = x) = ∑
y∈Ω(Y ) Pr(X = x,

Y = y), we have that MAP can be solved in O (ct · c|I+| · n). Note that even when we can tractably decide upon the most 
probable explanation for a given joint value assignment i to I− (i.e., when c, t , and |I+| are bounded) we still need to test 
at least �c|I−|/2� + 1 joint value assignments to |I−| to decide MFE exactly, even when d = 1. However, in that case we can 
tractably find an explanation that is very likely to be the MFE if d is close to 1. Consider the following algorithm for MFE 
(adapted from [35]):

Algorithm 1 Compute the Most Frugal Explanation.
Sampled-MFE(B, H, I+, I−, e, N)

1: for n = 1 to N do
2: Choose i ∈ I− at random
3: Determine h = argmaxhPr(H = h, i, e)

4: Collate the joint value assignments h
5: end for
6: Decide upon the joint value assignment hmaj that was picked most often
7: return hmaj

This randomized algorithm repeatedly picks a joint value assignment i ∈ I− at random, determines the most probable 
explanation, and at the end decides upon which explanation was found most often. Due to its stochastic nature, this al-
gorithm is not guaranteed to give correct answers all the time. However, the error margin ε can be made sufficiently low 
by choosing N large enough. If there are only two competing most probable explanations, the threshold value of N can be 
computed using the Chernoff bound: N ≥ 1

(p−1/2)2 ln 1/
√

ε (more sophisticated methods are to be used to compute or ap-

proximate N when there are more than two competing explanations). Assume we require an error margin of less than 0.1, 
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then the number of repeats depends on the probability p of picking a joint value assignment i for which hmaj is the most 
probable explanation. This probability corresponds to the decisiveness parameter d that was introduced in Table 1. If deci-
siveness is high (say d = 0.85), then N can be fairly low (N ≥ 10), however, if the distribution of explanations is very flat, 
and consequently, decisiveness is low, then an exponential number of repetitions is needed.

If d is bounded (i.e., larger than a particular fixed threshold) we thus need only polynomially many repetitions to obtain 
any constant error rate. When in addition determining the most probable explanation is easy—in particular, when the 
treewidth and cardinality of B are low and there are few relevant variables in the set I+—the algorithm thus runs in 
polynomial time, and thus MFE can be decided in polynomial time, with a small possibility of error.

3.4. Discussion

In the previous subsections we showed that MFE is intractable in general, both to compute exactly and to approximate, 
yet can be tractably approximated (with a so-called expectation–approximation [42]) when the treewidth of the network 
is low, the cardinality of the variables is small, the number of relevant intermediate variables is low, and the probability 
distribution for a given explanation set H, evidence e and relevant intermediate variables I+ is fairly decisive, i.e., skewed 
towards a single MFE explanation. We also know that MAP can be tractably computed exactly7 when the treewidth of the 
network is low, the cardinality of the variables is small, and either the MAP explanation has a high probability, or the total 
number of intermediate variables is low [36]. How do these constraints compare to each other?

For MAP, the constraint on the total number of intermediate variables seems implausible. In real-world knowledge struc-
tures there are many intermediate variables, and while only some of them may contribute to the MAP explanation, we 
still need to marginalize over all of them to compute MAP. Likewise, when there are many candidate hypotheses, it is not 
obvious that the most probable one has a high (i.e., close to 1) probability. Note that the actual fixed-parameter tractable 
algorithm [4,36] has a running time with log p

log 1−p in the exponent, where p denotes the probability of the MAP explanation. 
This exponent quickly grows with decreasing p. Furthermore, treewidth and cardinality actually refer to the treewidth of the 
reduced junction tree, where observed variables are absorbed in the cliques. Given that we sample over the set I− in MFE, 
but not in MAP, both parameters (treewidth and cardinality) will typically have much lower values in MFE as compared to 
MAP. That is, it is more plausible that these constraints are met in MFE than that they are met in MAP.

Given the theoretical considerations in [14] it seems plausible that the decisiveness constraint is met in many practical 
situations. Surely, one could argue that the fixed parameter tractability of MFE is misguided, as the set of candidate hy-
potheses and the observations are given in the input of the formal problem, and it is known beforehand what the relevant 
variables are. Thus, the problem of finding candidate hypotheses, the problem of deciding what counts as evidence, and the 
problem of deciding which variables are relevant are left out of the problem definition. We acknowledge that this is indeed 
the case, and that the problem of non-demonstrative inference is much broader than ‘merely’ inferring the best explanation 
out of a set of candidate explanations [39]; yet, this is no different for MAP, at least when it comes to deciding upon the 
candidate hypotheses and the observations. With respect to the partition between irrelevant and relevant intermediate vari-
ables we will show in Section 4 that MFE is fairly robust: including even few variables with a high intrinsic relevance will 
suffice to find relatively good MFE explanations.

4. Simulations

In Section 3 we illustrated, using the ALARM example, that computing MFE can give similar results as when MAP is 
computed, while requiring less variables to be marginalized over. In this section, we will simulate MFE on random graphs 
to obtain empirical results to support that claim. We will also illustrate that, in order to obtain a good explanation using 
only a few samples, the decisiveness of the probability distribution indeed must be high. Finally we show how MFE behaves 
under various scenarios where the intrinsic and estimated relevance of the intermediate variables (i.e., the actual relevance 
and the subjective assessment thereof) do not match. As the goal of these simulations is to explore how MFE behaves under 
scenarios that can be considered either natural (occurring in real-world networks) or artificial, we use randomly generated 
networks, rather than an existing set of benchmark networks, like the ALARM network, in our simulations.

4.1. Method

We generated 100 random Bayesian networks, each consisting of 40 variables, using the (second) method described 
in [51]. Each variable had either two, three, or four possible values, and the in-degree of the nodes was limited to five. With 
each variable, a random conditional probability distribution was associated. We randomly selected five explanation variables 
and five evidence variables, and set a random joint value assignment to the evidence variables. Given the variation on the 
cardinality of the variables, the number of candidate joint value assignments to the explanation variables could vary from 25

7 There are to the best of our knowledge no stronger (or even different) fixed parameter tractable results for approximate MAP than the results listed 
above for exact computations.
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Fig. 4. MAP distribution and MFE results for the 16 most probable joint value assignments of one of the random networks (#99) for a particular set of 
relevant intermediate variables, using 1000 samples. The light gray bar denotes the cumulative MFE result of the five most probable joint value assignments. 
Note that the most probable joint value assignment (which has a probability of 0.0131) is also the most frugal explanation, as it is the MAP for about 40% 
of the joint value assignments to the irrelevant intermediate variables. The ‘second-best MAP’, while it has a relative high posterior probability, is always 
‘second-best’: there are no joint value assignments to the irrelevant intermediate variables in which this particular explanation has the highest probability. 
There are other explanations, with a lower posterior probability, that become the most probable explanation for some particular value assignments to these 
irrelevant intermediate variables. Note that in this situation there is no error as the most probable and most frugal explanation are identical.

Fig. 5. A similar plot as in Fig. 4, but in this random network (#68) the most frugal explanation is the second most probable explanation, yielding a 
difference between the ‘marginalizing’ and the ‘sampling’ approach. Note, however, that both explanations are almost as good: they differ in a single 
variable, and the probability ratio is 0.965, meaning that the probability of the most frugal explanation is only slightly lower than the probability of the 
most probable explanation.

to 45; in practice, it ranged from 48 to 576 (mean 208.5, standard deviation 107.4). See also the on-line supplementary 
materials: http :/ /www.dcc .ru .nl /~johank /MFE/.

Using the Bayes Net Toolbox for MATLAB [46] we computed, for each network, the posterior distribution over the expla-
nation variables, approximated the relevance of each intermediate variable, and approximated the MFE distribution under 
various conditions. The results presented below are based on 91 random networks. The MATLAB software was unable to 
compute the MAP of seven networks due to memory limitations, and the results of two networks were lost due to hardware 
failure. In Figs. 4 and 5 some typical results are given for illustrative purposes.

4.2. Tracking truth

We compared the MAP explanation with the MFE explanation using 100 samples of the irrelevant variables, varying 
the I+/I− partition. In particular we compared the explanations where all variables are deemed irrelevant (I+ = ∅), 
where I+ consisted of the five intermediate variables with the highest relevance, and where I+ consisted of the inter-
mediate variables that have a relevance of more than 0.00, 0.05, 0.10, 0.25, respectively 0.50. To assess how similar the 
most frugal explanations are to the MAP results, we used three different error measures: (1) the structural deviation from 
MAP (how many variables have different values, i.e., the Hamming distance between the MFE and MAP explanations), (2) the 
rank k of the MFE explanation, indicating that the MFE explanation is the k-th MAP instead of the most probable explana-
tion, and (3) the ratio of the MFE probability and the MAP probability, indicating the proportion of probability mass that 
was allocated to the MFE explanation.

Furthermore, we estimated how often the MFE was picked relative to other explanations, indicating how likely it is that 
a singleton sample over the irrelevant variables would yield this particular explanation. This yields a measure on how many 
samples are needed to arrive at a confident decision. Lastly, we estimated the likelihood of picking the MAP explanation and 

http://www.dcc.ru.nl/~johank/MFE/
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Table 2
Overview of simulation results. In this simulation the partition between relevant and irrelevant variables was varied and ranged from ‘none’ (all variables 
are irrelevant), ‘best 5’ (the five variables with the highest relevance are deemed relevant) to a relevance threshold between 0.50 and 0.00, yielding an 
average I+ size between 11.32 and 16.35.

Cond. I+ size Ratio Rank Dist. % mfe % map % 5-map

None 0.00 0.66 25.90 2.05 0.08 0.03 0.14
Best 5 5.00 0.82 10.73 1.30 0.13 0.08 0.27
>0.50 11.32 0.87 5.36 0.87 0.25 0.17 0.46
>0.25 14.93 0.91 4.59 0.79 0.38 0.25 0.58
>0.10 15.79 0.91 5.56 0.81 0.39 0.25 0.60
>0.05 15.99 0.91 6.09 0.75 0.41 0.27 0.60
>0.00 16.35 0.92 4.12 0.75 0.41 0.26 0.61

Fig. 6. On the left: Three error indicators of MFE versus MAP explanations: The ratio between their probabilities, rank of the MFE explanation, and Hamming 
distance between MFE and MAP for various I+/I− settings. On the right: Scatter plots of ratio and rank, and stacked box plot for Hamming distance. In 
the scatter plots, results of all random networks are shown, for the conditions where all variables are irrelevant (‘None’, square), the five variables with the 
highest relevancy were deemed relevant (‘best 5’, triangle) and where all variables with non-zero relevancy where relevant (‘>0.00’, circle). The stacked 
box plot illustrates the distribution of the Hamming distance between MFE and MAP explanation, where darker colors indicate a higher Hamming distance. 
Error bars indicate standard error of the mean.

one of the five most probable explanations using a single sample. This indicates how likely it is that an arbitrary singleton 
sample will yield an explanation with the maximum, respectively a relatively high, posterior probability.

The results are summarized in Table 2 and Fig. 6. The scatter plots in Fig. 6 illustrate the spread of the errors along 
different networks. In general one can conclude that MFE explanations are reasonably close to the MAP explanations, when 
there is marginalization over those variables that are ‘sufficiently relevant’. From the results it follows that including the five 
most relevant variables gives fairly good results, and that including variables that have a relevance of less than 0.25 does 
not significantly improve the average MFE results. Including no relevant variables at all (i.e., computing the Most Simple 
Explanation [35]) gives considerably worse results, however.
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Fig. 7. This plot shows part of the MAP distribution and MFE results using 1000 samples for a random network (#93) with a very steep distribution of 
the MFE explanations. This network is strongly skewed towards the most probable explanation which is picked in 83% of the samples, so that an arbitrary 
singleton sample is quite likely to be the MFE; we can be guaranteed to obtain the most frugal explanation with 95% confidence by generating thirteen 
samples and decide which explanation is most often picked. Even a single sample is guaranteed to correspond to one of the five most probable examples.

Fig. 8. This plot shows part of the MAP distribution and MFE results using 1000 samples for a random network (#89) with a very flat distribution of the 
MFE explanations. No explanation really stands out; the most frugal explanation being picked in just over 3% of the samples. In this network, that is not at 
all skewed towards any particular explanation, an arbitrary sample can have a low posterior probability, and we will need a massive number of samples to 
decide with reasonable confidence about which explanation is the MFE.

4.3. Number of samples

As shown in Section 3.3, approximating the MFE (i.e., finding the explanation which is very likely the MFE) can be done 
by sampling, where the number of samples needed to guarantee a particular confidence level is related to the decisiveness 
of the network. When decisiveness is low, and consequently the MFE distribution is flat (many competing explanations, none 
of which has a high probability of being the most probable explanation for a random joint value assignment to the irrelevant 
intermediate variables), we need much more samples to make confident decisions. This is illustrated by the following figures. 
In Fig. 7 we see a typical result for a random network which is highly skewed towards a singleton explanation, and in Fig. 8
the results of a random network with a low decisiveness are shown.

However, even when there is no explanation which stands out, the sampling algorithm can still give good results. In 
Fig. 9 we show a typical result when there are few competing explanations that all have a relatively high probability. While 
it may take many samples to decide on which of them is the MFE, we still can be quite sure that a singleton sample of 
the irrelevant intermediate variables would yield one of them as the most probable explanation; here, sampling seems like a 
reasonable strategy to obtain an explanation that is likely to have a reasonably high probability.

4.4. Other parameters

Obviously, the I+/I− partition influences the quality of the MFE solution in terms of the three error measures introduced 
in Section 4.2. We also investigated whether the size of the hypothesis space, the number of relevant variables, or the 
probability of the most probable explanation influences this quality. First we observe that these parameters are not inde-
pendent. There is a strong negative correlation (−0.65) between the size of the explanation set and the probability of the 
most probable explanation. This can be explained by the random nature of the networks and the probability distribution 
they capture: on average, if there are more candidate explanations in the explanation set, the average probability of each of 
them is lower, and so it is expected that the average probability of the most probable explanation is also lower. The results 
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Fig. 9. This plot shows part of the MAP distribution and MFE results using 1000 samples for a random network (#70) where three explanations are often 
picked as the most probable, and quite some samples are needed to decide on the most frugal explanation with confidence. However, since one of these 
three (almost equally probable) most probable explanations is picked in 61% of the samples, we can expect that few samples, possibly just a singleton 
sample, may return a quite good explanation.

Table 3
Overview of correlations (Pearson’s r) with significance levels.

Cond. Explanation set size Intrinsic relevance Probability of MPE

Ratio Rank Dist. Ratio Rank Dist. Ratio Rank Dist.

MSE −0.01 0.15 0.15 −0.09 0.02 0.18 −0.11 −0.23* −0.20
Best 5 −0.16 0.22* 0.27* 0.13 0.18 0.07 −0.15 −0.35** −0.40**

>0.50 0.08 0.12 0.02 −0.11 0.01 0.18 −0.04 −0.17 −0.16
>0.25 −0.09 0.24* 0.12 −0.11 0.05 −0.02 0.06 −0.22* −0.12
>0.10 −0.10 0.26* 0.21* −0.08 0.01 −0.06 0.05 −0.17 −0.18
>0.05 −0.08 0.22* 0.10 −0.08 0.01 −0.02 0.02 −0.13 −0.11
>0.00 0.06 0.17 0.03 −0.20 0.11 0.01 −0.01 −0.19 −0.03

* Indicates significance at the p < 0.05 level.
** Indicates significance at the p < 0.01 level.

of the correlation analysis are shown in Table 3, and can be summarized as follows. Neither explanation set size, intrinsic 
relevance, or probability of the most probable explanation (MPE) correlates with the ratio between probability of MPE and 
probability of MFE. There is a weak correlation between explanation set size and rank, and a weak negative correlation 
between probability of MPE and rank: the bigger the explanation size, the larger the average rank k. Neither explanation set 
size, intrinsic relevance, or probability of MPE correlates (or correlates only very weakly) with distance errors.

4.5. Wrong judgments

Obviously, taking more intermediate variables into account (i.e., considering more variables to be relevant) helps to 
obtain better results; still, we can make reasonable good inferences using only the five most relevant intermediate variables. 
But what if ones subjective assessment of what is relevant does not match the intrinsic relevance of these variables? Fig. 10
illustrates what typically happens when there is a mismatch between intrinsic and estimated relevance. Here we plotted 
the results of the >0.00 (top left) and Best 5 (bottom right) conditions, as well as some conditions in which there is a 
mismatch between intrinsic and expected relevance. In particular, we omitted the two (top right), five (middle left), ten 
(middle right), respectively fifteen (bottom left) most relevant variables.

This example illustrates a graceful degradation of the results, especially when the cumulative results of the five most 
probable joint value assignments are compared. Observe that including the twenty-five least relevant variables leads to 
comparable results as including the five most relevant variables. Clearly, it helps to know what is relevant, yet there is 
margin for error.

4.6. Discussion

The simulation results, as illustrated by Table 2 and Fig. 6, clearly show that MFE ‘tracks truth’ quite well, even when 
only part of the relevant intermediate variables are taken into account. However, when more intermediate variables are 
marginalized over, we can be more confident of the results. In these cases the distribution of explanations typically is 
narrower and it is more likely that a majority vote using few samples, or even a singleton sample, results in an explanation 
that is close to the most probable explanation. The simulations also indicate that indeed the probability distribution must 
be skewed towards one (or few) explanations for obtaining acceptable results with few samples—and that indeed many 
distributions are skewed, even in completely random networks.
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Fig. 10. This plot shows part of the MAP distribution and MFE results of a random network (#78) with different partitions of the intermediate variables, 
where the subjective assessment that yields the partition may not match the actual relevance of the variables. Shown are the results when all variables 
with non-zero relevancy are deemed relevant (top left, 19 variables in I+), all but the two most relevant variables (top right, 28 variables in I+), all but the 
five most relevant variables (middle left, 25 variables in I+), all but the ten most relevant variables (middle right, 20 variables in I+), only the fifteen least
relevant variables (bottom left, 15 variables in I+), and only the five most relevant variables (bottom right, 5 variables in I+).

5. Conclusion

In this paper we proposed Most Frugal Explanation (MFE) as a tractable heuristic alternative to (approximate) MAP for 
deciding upon the best explanation in Bayesian networks. While the MFE problem is intractable in general—its decision 
variant is NPPPPP

-complete, and thus even harder than the NPPP-complete MAP problem [51], the PPPP-complete Same-
Decision Probability problem [9], or the PPPPP

-complete k-th MAP problem [41]—it can be tractably approximated under 
situational constraints that are arguably more realistic in large real-world applications than the constraints that are needed 
to render MAP (fixed-parameter) tractable. Notably, the {c, t w, 1 − p}-fixed-parameter tractable algorithm for MAP [4] has 
a running time with log p

log 1−p in the exponent. In the random networks used in the simulations, the average probability of 
the most probable explanation was 0.0245, which would yield an unpractical exponent of log 0.0245

log 0.9755 ≈ 150. In contrast, even 
when only half of the total set of intermediate variables are considered as relevant, for an arbitrary sample over the rest of 
the intermediate variables we will find the MFE in about 40% of the cases, and an explanation that is one of the five best 
in about 60% of the cases.

In future work we wish to investigate the possible explanatory power of MFE in cognitive science. In recent years it 
has been proposed that human cognizers make decisions using (Bayesian) sampling [31,57,62] and approximate Bayesian 
inferences using exemplars [54]; studies show that we have a hard time solving problems with many relevant aspects [20]. 
The parameterized complexity results of the MFE framework may theoretically explain why such approaches work fine in 
practice and under what conditions the limits of our cognitive capacities are reached.
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Fig. 11. Example of the construction of Bφex for the formula φex = ¬(x1 ∨ x2) ∧ x3.

Appendix A. Computing relevance is NP-hard

In Definition 4 we formally defined the intrinsic relevance of an intermediate variable as a measure indicating the 
sensitivity of explanations to its value. We here show that computing the intrinsic relevance of such a variable is NP-hard. 
The decision problem used in this proof is defined as follows:

Intrinsic Relevance

Instance: A Bayesian network B = (GB, Pr), where V is partitioned into evidence variables E with joint value assignment e, 
explanation variables H, and intermediate variables I, and a designated variable I ∈ I.
Question: Is the intrinsic relevance R(I) > 0?

We reduce from the following NP-complete decision problem [37]:

IsA-Relevant Variable

Instance: A Boolean formula φ with n variables, describing the characteristic function 1φ : {false, true}n → {1, 0}, and a des-
ignated variable xr ∈ φ.
Question: Is xr a relevant variable in φ, that is, is 1φ(xr = true) �= 1φ(xr = false)?

Here, the characteristic function 1φ of a Boolean formula φ maps truth assignments to φ to {0, 1}, such that 1φ(x) = 1
if and only if x denotes a satisfying truth assignment to φ, and 1φ(x) = 0 otherwise. We will use the formula φex =
¬(x1 ∨ x2) ∧ x3 as a running example, where x3 is the variable of interest. Note that x3 is relevant, since for x1 = x2 = false, 
1φ(x3 = true) �= 1φ(x3 = false).

We construct a Bayesian network Bφ from φ as follows. For each propositional variable xi ∈ φ we add a binary stochastic 
variable Xi ∈ Bφ with uniformly distributed values true and false. We add an additional binary variable X T

r with observed 
value true. For each logical operator o j in φ, we add two binary stochastic variables O j and O T

j in Bφ . The parents of the 
variables O j are the variables O k that represent the sub-formulas bound by O j ; in case such a sub-formula is a literal, the 
corresponding parent is a variable Xi . In contrast, the parents of the variables O T

j are the variables O T
k (for sub-formula), 

Xi (for literals except xr ), respectively X T
r (for the literal xr ). The variables corresponding with the top-level operator in φ

are denoted with Vφ , respectively V T
φ .

Furthermore, an additional binary variable C is introduced in Bφ , acting as ‘comparator’ variable. C has both Vφ and V T
φ

as parents and conditional probability Pr(C = true | Vφ, V T
φ ) = 1 if Vφ �= V T

φ and Pr(C = true | Vφ, V T
φ ) = 0 if Vφ = V T

φ . An 
example of this construction is given in Fig. 11 for the formula φex. We set H = C , E = X T

r , and I = Xr .

Theorem 7. Intrinsic Relevance is NP-complete.

Proof. Membership in NP follows from the following polynomial-time verifying algorithm for yes-instances: given a suit-
able joint value assignment i to I \ {I} and assignments i1, i2 to I , we can easily check that argmaxhPr(h, e, i, I = i1) �=
argmaxhPr(h, e, i, I = i2), and thus that R(I) > 0.

To prove NP-hardness, we reduce IsA-Relevant Variable to Intrinsic Relevance. Let (φ, xr) be an instance of IsA-

Relevant Variable. From (φ, xr), we construct (Bφ, I) as described above. If (φ, xr) is a yes-instance of IsA-Relevant 
Variable, then the characteristic function 1φ is not identical for xr = false and xr = true. In other words, there is at least 
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one truth assignment t to the variables in φ \ {xr} such that either t ∪ {xr = true} is satisfying φ and t ∪ {xr = false}
is not satisfying φ, or vice versa. Let i be the joint value assignment to I \ {Xr} that corresponds to the truth as-
signment t, and in addition fixes the values of the operator variables O T

j and O j according to their (deterministic) 
conditional probability tables. Now, we have that for the truth assignment Xr = true, Pr(C = true | i, X T

r = true) = 1
and thus argmaxcPr(C = c, i, Xr = false) = true. By definition, we have that for the truth assignment Xr = false that 
Pr(C = true | i, X T

r = false) = 0 and thus argmaxcPr(C = c, i, Xr = false) = false. Hence, the intrinsic relevance R(Xr) > 0
and thus (Bφ, I) is a yes-instance of Intrinsic Relevance.

Now we assume that R(I) > 0, implying that there is at least one truth assignment i to I{\Xr} such that Pr(C =
true | i, X T

r = false) �= argmaxcPr(C = c, i, Xr = false) where the joint value assignment to the operator variables O T
j and O j

matches the deterministic conditional probabilities imposed by the joint value assignment to the variables Xi . This implies 
that the characteristic function 1φ is not identical for xr = false and xr = true, hence, that (φ, xr) is a yes-instance of
IsA-Relevant Variable.

As the reduction can be done in polynomial time, this proves that Intrinsic Relevance is NP-complete. �
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