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a b s t r a c t

Using a systematic approach, a collection of expressions for the series resistance of a solar cell are
derived from the diode model. Many published series resistance determination methods are among
them, or are slight variations on them. Some expressions have not yet been described in the literature.
Representation of the methods in a two-dimensional array allows for easy comparison and reveals that
many of the previously published methods are more alike than might appear at first sight. From a
discussion of the various methods, on the basis of the two-dimensional array arrangement, an overview
of the required approximations and assumptions for each method is assembled. Taking the effect of
these approximations and assumptions into account, it is expected that the method of Wolf &
Rauschenbach will provide the most accurate value for the series resistance of a solar cell.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of ohmic losses in a solar cell was already
mentioned in the famous 1954 paper by Chapin, Fuller and Pearson
from Bell Labs which marked the start of the modern era of
photovoltaics [1]. Since the ohmic loss between the collector and the
point in the solar cell where an electron–hole pair is generated
depends on the location of that point [2–5], and electron–hole pairs
are generated throughout an illuminated solar cell, the concept of Rs as
a lumped effective series resistance of the solar cell is – by definition –

a simplification. Nevertheless, as long as current crowding phenomena
are small the series resistance of a solar cell can be well modeled by Rs
[6], making Rs a useful concept and an important parameter in the
analyses of a solar cell's performance. Unfortunately the value of Rs
cannot be measured directly and is, in fact, rather a challenge to
determine accurately. Studies concerning this started not long after the
start of the modern era of photovoltaics and because of the emergence
of new solar cell materials and designs the topic has been readdressed
ever since. Recent developments in high-efficiency concentrator cells
provide the latest challenge to determine Rs with an accuracy in the m
Ω range for cells with surface areas in the mm2 range. This is required
in order to determine the optimal configuration of the grid contact as
this has a major impact on the power output of a concentrator
photovoltaic (CPV) system.

Themanymethods to determine Rs that have been described in the
literature over the years have resulted in a large number of expressions
for Rs in parameters that can be directly determined from a solar cell's
IV-characteristic. The present study provides a systematic approach
towards the derivation of these expressions for Rs for a large collection
of methods [7–20], resulting in a framework in which these methods
are arranged and compared with each other. This reveals that they are
more alike than might appear at first sight. They all follow a derivation
involving either an equation based on the diode model of a solar cell
(labeled f here), its derivative (labeled f 0), its integral (labeled F) or a
combination of two of them. The systematic derivation of these
equations and their arrangement in a two-dimensional array provides
a convenient overview of all possible approaches to determine the
series resistance of a solar cell from one or two of the above-
mentioned equations. The two-dimensional array arrangement also
reveals that there are several approaches to determine Rs which have
not yet been described in the literature.

In a subsequent analysis of the methods we determine from a
theoretical perspective which method is expected to give the best
approximation for Rs. That is, which method uses the least
unfavorable approximations and assumptions in the derivation
towards its expression for Rs.

2. Theory

A general equivalent circuit of a single junction solar cell with a
lumped effective series resistance Rs is displayed in Fig. 1. The
associated expression for the current I generated by the cell as a
function of voltage V is [21]:

I¼ IL� ∑
α ¼ a;b;c;…

ðID;αÞ� Ish

¼ IL� ∑
α ¼ a;b;c;…

I0;α exp
Vþ IRs

nαVt

� �
�1

� �� �
�Vþ IRs

Rsh
; ð1Þ

with I, V being the light induced current IL (which is proportional
to the irradiance E), the current ID;α of diode α,1 the series

resistance Rs and the current Ish flowing through shunt resistance
Rsh all as defined in Fig. 1. I0;α and nα are the saturation current and
ideality factor of diode α. Lastly, there is the thermal voltage Vt,
defined as kT=q, with k being the Boltzmann constant, T being the
absolute temperature of the solar cell and q being the elemental
charge. A list of symbols is provided in Appendix A. With the sign
convention used in Eq. (1) the direction in which the light
generated current flows is defined as positive and the illuminated
IV-curve lies in the first quadrant.

Unfortunately Eq. (1) has no general analytic solution. For this
reason, the set of diodes is usually represented by a single diode
with an associated n and I0 value. This simplification causes these
values to be functions of I and E. The diode ideality factor increases
with I and decreases with E as illustrated in Fig. 2 and approaches
1 at high E and/or high V since recombination in the quasi-neutral
region dominates under these conditions [22,23]. However, n and
I0 are generally approximated as constants. Another generally used
approximation is that Rsh-1, which is valid for a high quality
solar cell. Using these simplifications Eq. (1) can be written as

I¼ IL� I0 exp
Vþ IRs

nVt

� �
�1

� �
; ð2Þ

the so-called single-diode equation. And although this equation
still has no general analytic solution, it can be rearranged into the
explicit function

V ¼ nVt ln
ILþ I0� I

I0

� �
� IRs: ð3Þ

This equation could also be rewritten into an expression for Rs.
However, the parameters IL, I0 and n are notoriously hard to
determine. Therefore, the idea is to find an expression for Rs in
terms of cell parameters which are easier to determine such as the
short circuit current Isc, the current and voltage at the maximum
power point Imp and Vmp, the open-circuit voltage Voc and the area
A under the IV-curve in the first quadrant. Since I0{IL in practice,
a frequently applied way to avoid having to determine I0 is to
make sure it only appears in a sum together with IL so that the
approximation

Ic � ILþ I0 � IL ð4Þ
can be applied. At short circuit conditions, Eq. (3) can be rewritten
as

Isc ¼ ILþ I0� I0 exp
IscRs

nVt

� �
; ð5Þ

from which it follows that the short circuit current Isc is a good
approximation for the photo current IL and/or Ic, as long as IscRs is

IL

I

ID,a ID,b ID,c Ish

VRsh

Rs

Fig. 1. General equivalent circuit of a solar cell with a lumped effective series
resistance.

1 Usually the number of constituent diodes is taken to be 2 or 3. Each diode
represents a section of the solar cell where a specific recombination mechanism
dominates. One diode represents the recombination in the quasi-neutral regions,
another the recombination in the depletion region and at the cell surface. A third

(footnote continued)
diode is sometimes included to represent Auger recombination in the solar cell,
which can be important for in particular silicon cells and III–V cells under very high
concentration ratios.
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small. In practice this condition is considered to be met as long as
the exponential knee of the IV-curve remains in the first quadrant.
The I0 that appears in the denominator of the logarithmic term in
Eq. (3) can be eliminated using the following equation for open-
circuit conditions:

Voc ¼ nVt ln
Ic
I0

� �
; ð6Þ

and the fact that lnððIc� IÞ=I0Þ ¼ lnððIc� IÞ=IcÞþ lnðIc=I0Þ, from which
it follows that

V ¼ nVtλþVoc� IRs; ð7Þ
with

λ� ln
Ic� I
Ic

� �
: ð8Þ

Note that here it is assumed that the values of n and I0 at open-circuit
conditions are equal to those at the current of interest. Eq. (7) can be
rearranged into the first expression for Rs, expression (12), presented
as approach f-, in Table 1.

A second expression for Rs can be obtained by first taking the
derivative with respect to I of Eq. (3) or (7). The dV=dI term on the
left hand side of the resulting equation can also be written as

dV
dI

¼
dP
dI �V

I
; ð9Þ

where P¼VI is the power generated by the solar cell under
illumination. Since dP=dI¼ 0 at maximum power point (MPP)
conditions, dV=dIjMPP ¼ �Vmp=Imp. Using this substitution, and
the assumption that dn=dI and dI0=dI are zero at the point of

interest, the derivative of Eq. (3) or (7) can be rearranged into
expression (13) for Rs presented in Table 1 as approach f 0-, with

Ia � Ic� Imp: ð10Þ
A third expression for Rs can be obtained by first integrating

Eq. (7) with respect to I over the interval ½0; Isc�. The integral equals
A, the area under the IV-curve in the first quadrant. Under the
assumption that n and I0 are constant over the entire IV-curve, the
resulting equation can be rearranged into expression (14) for Rs,
with

Ib � 2Ic� Isc: ð11Þ
Expression (14) is also displayed in Table 1, as approach F-.

Note that expressions (12)–(14) all still contain the unknown
parameter n. However, any combination of f, f 0 and F can be used
to obtain an expression for Rs from which n (as well as Vt) is
eliminated. This results in the remaining expressions presented in
Table 1, labeled by the column and row they are in.

Sets of V and I in Eqs. (12)–(20) can in principle be arbitrarily
chosen. However, since n and I0 are functions of I but are taken as
constants, the determined Rs values will depend on I. Therefore, Rs
should preferably be determined at the MPP since this is the point
at which the cell should be operating. This means V and I in
expressions (12)–(20) should be replaced with Vmp and Imp. And as
mentioned earlier, Ic can be approximated by Isc as long as IscRs is
small. For the combination of an expression with itself, i.e.
approaches ff , f 0f 0 and FF , subscripts 1 and 2 are used to
distinguish the variables stemming from each expression. A
second IV-curve measured under different conditions (usually a
different irradiance, under the assumption that n and I0, and Rs for
that matter, are independent of E) is used to supply the required
second set of variables.

The above described systematic approach to derive expressions
for Rs not only results in a number of expressions that can be found
in the literature, but also reveals expressions (15), (17)–(20) which
have, to our knowledge, not appeared in the literature before. The
others have, and in some cases the author(s) have applied elegant
procedures or set some extra requirements to improve the
methods as they appear in Table 1. Several examples will be
discussed below. An overview of all the assumptions and approx-
imations required for each method is presented in Table 2 in the
Discussion and conclusions section.

3. Evaluation of approaches

For any approach, the accuracy with which the value of Rs of
can be determined of course depends on the accuracy with which
the IV-curve(s) can be obtained experimentally. Only for methods

n1 n2 n3

n4

n5

n n n5 4 3> >

n n n1 2 3> >

V

I

Fig. 2. Variation of diode ideality factor n with current and irradiance when
multiple diodes are represented by a single diode (adapted from Hamdy and Call
[22]).

Table 1
Two-dimensional array arrangement of expressions for Rs, resulting from the single-diode equation (f), its derivative (f 0), its integral (F) and combinations thereof.

2nd Index Category

f f 0 F

� nVtλþVoc�V
I

(12)
Vmp

Imp
�nVt

Ia (13)
2
Ib

VocIc�A
Isc

�nVt

� �
(14)

f ðVoc1�V1Þλ2�ðVoc2�V2Þλ1
I1λ2� I2λ1

(15) Iaλ
Vmp

Imp
þVoc�V

Iþ Iaλ
(16)

2λ
Ibλþ2I

Voc�V
λ

þVocIc�A
Isc

� �
(17)

f 0 see f 0f Ia1
Vmp1

Imp1
� Ia2

Vmp2

Imp2

Ia1� Ia2
(18)

2
Isc�2Imp

VmpIa
Imp

�VocIc�A
Isc

� �
(19)

F see Ff see Ff 0 2
Ib1� Ib2

Voc1Ic1�A1

Isc1
�Voc2Ic2�A2

Isc2

� �
(20)

G.M.M.W. Bissels et al. / Solar Energy Materials & Solar Cells 130 (2014) 605–614 607



Table 2
Overview of the various assumptions and approximations applied for each Rs determination method. A ‘� ’ indicates the use of the particular assumption/approximation and ‘n/a’ stands for not applicable.

Rs

Determination
approach

Rs

Determination
method

Minimum number
of required IV-
curves

Assumption/approximation

Single-
diode
model

n¼ 1 nanðIÞa
and
I0aI0ðIÞ

nanðIÞ and
I0aI0ðIÞ, around
MPPb

nanðIÞ and
I0aI0ðIÞ; at
MPPc

nmp ¼ noc and
I0 ;mp¼ I0;oc

nanðEÞ
and
I0aI0ðEÞ

ILþI0 ¼ IL Rsh-1 Rs2 ¼ Rs1 Rs2{V2 �V1
IL1 � I1

IL ¼ Isc IL1� IL2 ¼ Isc1�Isc2
d

f - General (fit
around MPP)

1 � � � � n/a � � n/a n/a � �

ff General 2 � � e � e � e � � � � � � �
ff Swanson 2 � e,f � e,f � e,f � f � �
ff Aberle et al. 2 � e,f � e,f � e,f � f � � �
ff Wolf &

Rauschenbach
2 � e,f � e,f � e,f � f � f �

ff Mialhe &
Charette

2 � � g � � n/a � � � �

f 0 � Warashina &
Ushirokawa

1 � � � n/a � � n/a n/a � �

f 0f Picciano 1 � � � n/a � � n/a n/a � �
f 0f Jia et al. 1 � � � h n/a � � n/a n/a � �
f 0f 0 general 2 � � e � e � � � � � � �
F- Araujo &

Sánchez
1 � � � � � � n/a � � n/a n/a � �

Ff General 1 � � � � � n/a � � n/a n/a � �
Ff 0 General 1 � � � � � n/a � � n/a n/a � �
FF General 2 � � � � � � � � � � �

a Note that if the more vigorous approximation n¼1 is used, the present approximation is automatically applied as well.
b Note that if the more vigorous approximations nanðIÞ and I0a I0ðIÞ are used, the present approximations are automatically applied as well.
c Note that if the more vigorous approximations nanðIÞ and I0a I0ðIÞ, around MPP are used, the present approximations are automatically applied as well.
d Note that if the more vigorous approximation IL ¼ Isc is used, the present approximation is automatically applied as well.
e The present approximation applies since Imp 2 will differ significantly from Imp 1.
f Any I and/or E dependence of n and I0 will not be caused by the single-diode model approximation.
g Since Imp 2 will differ (only) slightly from Imp 1 it is only the present approximation that applies, and not the more vigorous approximation that nanðIÞ and I0a I0ðIÞ.
h Only I0;mp ¼ I0;oc is assumed here, not nmp ¼ noc .
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where the determined value of Rs is particularly sensitive to the
accuracy of the IV-curve(s) will this fact be explicitly stressed.

3.1. F category

A general weak point of the approaches in the F category (F-, Ff ,
Ff 0 and FF) is that Rs cannot be determined specifically around the
MPP, but instead an average of the entire IV-curve is given.

3.1.1. F- approach
One approach in the F category that can be found in the

literature is F-, which is known as the (IV) Area method and was
first described by Araujo and Sánchez [15]. Note that this is an
example where the unknown n still appears in the expression. The
authors deal with this by the additional simplification of setting
n¼1 (for the entire IV-curve2)with the motivation that this is valid
at the illumination levels required for the resistance effects of a
concentrator cell to show, at which the emitter diffusion current is
dominant along almost the entire IV-characteristic. This method
requires the cell temperature to be known, since Vt appears in
expression (14).

3.2. f 0 category

3.2.1. f 0-approach
The f 0-approach in category f 0 is another example where the

unknown n still appears in the expression. However, Warashina
and Ushirokawa presented a way to eliminate it in their 1980
paper [12]. To do this expression (13) has to be written in the
general form which is also valid for points other than the MPP:

Rs ¼ �dV
dI

� nVt

Ic� I
: ð21Þ

Applying it to two data points of the (single) measured IV-curve
and eliminating nVt result in

Rs ¼
ðIc� I1Þ

dV
dI

���
1
�ðIc� I2Þ

dV
dI

���
2

I1� I2
; ð22Þ

which gives Rs in its simplest form. Of course, the same equation
would be obtained for the f 0f 0 approach if one imposed the
conditions that IL2 ¼ IL1 and I2a I1. An easy way to increase the
accuracy by which Rs is determined is to make use of (many) more
available data points from the single IV-measurement. It then
becomes a least squares fit of ðdV=dIÞðIÞ, with Ic taken as a known
parameter. This is done by plotting dV=dI against �ðIc� IÞ�1 since
the y-intercept of a linear fit equals �Rs, which follows from Eq.
(21) and is the method presented by Warashina and Ushirokawa
[12].3 The resulting expression for Rs is

Rs ¼
∑ξi∑ξiV 0

i�∑ξ2i ∑V 0
i

N∑ξ2i � ∑ξi
� �2 ; ð23Þ

with ξi � �ðIc� IiÞ�1, V 0
i � dV=dIji and N being the number of data

points used. Note that the method assumes n and I0 to be constant
over the fitted range.

An example of a plot of dV=dI against �ðIc� IÞ�1 (with Ic
approached by Isc) is displayed in Fig. 3 for the 11 data points
surrounding the MPP of the IV-curve obtained at a concentration
ratio C of 500. The data is obtained from an experimental study of
the Rs determination methods applied to a CPV cell [24]. Note that
while the linear relation can indeed be observed, the large
extrapolation required to reach the dV=dI-axis introduces a con-
siderable uncertainty for the Rs value. It also turns out that the
value of Rs obtained with this method is very sensitive to the value
of I at which it is obtained, especially around the MPP. This is
illustrated in Fig. 4, where Rs is plotted as a function of I=Isc .
Consequently, a small uncertainty in the determination of Imp

translates into a large uncertainty of Rs. In this particular example,
the Rs value derived from the cell's IV-characteristic obtained at a
concentration ratio of 200 is even negative at the MPP.

Another disadvantage of this method is that it is not entirely
straightforward to determine dV=dI in practice (which for this
reason was replaced by �Vmp=Imp in expression (13)). To deter-
mine the data points of Figs. 3 and 4 dV=dI was, therefore,
approximated by taking the derivative of the best quadratic
polynomial fit for each data point and its two nearest neighbors.4

3.2.2. f 0f approach
In this approach, n (as well as Vt) is eliminated by combining

f 0- and f -. An example of the f 0f approach can be found in the
literature as the Maximum Power Point method and was first
described by Picciano [10].5

The method Jia et al. presented in 1988 as an improvement on
the method of Picciano [18] is an example where an extra
requirement was set to the method as it appears in Table 1. For
this the authors take the diode ideality factor's dependence on the
output current of the solar cell into account by setting n at open
circuit conditions (defined as noc here) equal to 1, while n at the
MPP (defined as nmp here) is not set to a specific value.6,7 This is
based on the fact that n approaches 1 at high voltages, as
mentioned in Section 2. In this way expression (12) at MPP
conditions changes to

Rs ¼
λmpnmpVtþnmpVoc�Vmp

Imp
; ð24Þ

where λmp is defined as λ at MPP conditions, and expression (13)
changes to

Rs ¼
Vmp

Imp
�nmpVt

Ia
: ð25Þ

Rearranging Eq. (25) into an expression for nmp and substituting
that into Eq. (24) result in

Rs ¼
VmpðId� ImpÞ
ImpðIdþ ImpÞ

; ð26Þ

2 It is also possible to slightly alter the method of Araujo & Sánchez so that n
only has to be set equal to 1 for high voltages, for example for the range
VmprVrVoc . It only requires reducing the upper integration limit from Isc to Imp

when integrating Eq. (7), so that one only calculates the area A0 under the IV-curve
below the MPP. Rearranging the resulting expression for A0 results in

Rs ¼ 2
2Ic� Imp

VocIc�A0 �VmpðIc� ImpÞ
Imp

�nVt

� �
:

3 Almost a decade later the method was published again by Sites and Mauk
[19].

4 This generally applied approximation can be omitted by deriving the exact
expression

ΔV
ΔI

¼
ln Ic � I2

Ic � I1

ΔI
nVt �Rs;

and applying the technique of Warashina & Ushirokawa to it, i.e. plotting ΔV=ΔI
against lnðIc� I2Þ=ðIc� I1Þ=ΔI. This method would fall under the f- approach.

5 Although expression (16) might appear to be different from Picciano's
expression for Rs, the only differences are that he has already substituted V and I
by Vmp and Imp and has applied the approximation Ic � IL .

6 They also set n¼2 at Isc. This, however, is irrelevant since it disappears from
the equations once ILþ I0 is approximated by Isc in their derivation.

7 The same conditions can be applied to other approaches, for example the ff
approach. This results in

Rs ¼ �ðVtλ1þVoc1ÞV2�ðVtλ2þVoc2ÞV1

ðVtλ1þVoc1ÞI2�ðVtλ2þVoc2ÞI1
:
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after some rewriting, with

Id � λmpþ
Voc

Vt

� �
Ia: ð27Þ

However, since the adaptation of Picciano's method by Jia et al. is
based on the notion that n is not constant throughout the IV-curve,
it should be noted that in order to obtain Eq. (25) the assumption
that dn=dIjMPP � 0 has been applied, although Jia et al. do not state
this explicitly. Without this assumption Eq. (26) becomes

Rs ¼
VmpðId� ImpÞ
ImpðIdþ ImpÞ

þ I2d
IaðIdþ ImpÞ

dn
dI

�����
MPP

: ð28Þ

Note that I2d=IaðIdþ ImpÞ can in fact be very large compared to Rs, so
that this method strongly relies on the above assumption being
correct. Also note that this method also assumes that I0;mp ¼ I0;oc
and that I0 is independent of I around the MPP. The method also
requires the cell temperature to be known, since Vt ¼ kT=q.

3.3. f category

3.3.1. ff approach
This approach eliminates n (as well as Vt) by combining f with

itself. Three popular methods have been reported in the literature
[7,8,20] that according to the present study and are adaptations of
the ff approach. They have in common that they all apply the
additional constraint

IL1� I1 ¼ IL2� I2: ð29Þ

Once the first IV-curve is measured and I1 is selected, this
constraint dictates either the irradiance at which the second
IV-curve should be measured or the value of I2. The easiest way
to demonstrate the effect of this constraint on expression (15) is to
first rewrite it as

Rs ¼ �V2μ1�V1μ2

I2μ1� I1μ2
; ð30Þ

with

μi � ln
Ic;i� Ii
I0

� �
: ð31Þ

This equation can be obtained by using Eq. (3) instead of Eq. (7) in
a similar derivation as the one that led to expression (15). Applying
the constraint leads to μ2 ¼ μ1 and I1� I2 ¼ IL1� IL2, simplifying
Eq. (30) to

Rs ¼
V2�V1

IL1� IL2
: ð32Þ

The above constraint might seem to simply limit the general
applicability of expression (15). However, even though the original
papers do not fully explain or even mention this, it does not go
unrewarded [7,8,20]. Since it is at exactly this condition that the ff
approach is valid for solar cell models involving multiple diodes
and a finite shunt resistance, i.e. with an I(V) characteristic of the
form given by Eq. (1). Because if na is eliminated from this
equation in the typical fashion for the ff approach, then after
some rearrangement (see Appendix B) this results in

IL1þ I0;a� I1�∑α ¼ b;c;…I0;α exp
V1þ I1Rs1

nαVt

� �
�1

� �
�V1þ I1Rs1

Rsh

I0;a

¼
IL2þ I0;a� I2�∑α ¼ b;c;…I0;α exp

V2þ I2Rs2

nαVt

� �
�1

� �
�V2þ I2Rs2

Rsh

I0;a

0
BB@

1
CCA

ðV1 þ I1Rs1Þ=ðV2 þ I2Rs2Þ

:

ð33Þ
Note that for completeness both curves have been given their own
value for the series resistance, Rs1 and Rs2, symbolizing a possible
irradiance dependence of the series resistance. Now if IL1� I1 ¼
IL2� I2, then Eq. (33) is valid when V1þ I1Rs1 ¼ V2 þ I2Rs2. Combin-
ing these last two equations results in

Rs1 ¼
V2�V1þ I2Rs2

IL1� IL2þ I2
; ð34Þ

which simplifies to Eq. (32) when Rs1 and Rs2 are equal.8

The difference between the three adaptations lies in the way in
which IL1, IL2, I1 and I2 are chosen, and will be discussed in detail
below. Note that all these methods are described in their simplest
form here, i.e. requiring the minimum number of (two) IV-curve
measurements. In practice an increase of the number of IV-curves
will generally improve the accuracy with which Rs can be deter-
mined. Since the required IV-curves are measured at a different
irradiance, all three methods rely on the assumption that nα and
I0;α are independent of the irradiance.

3.3.2. Method of Swanson
One adaptation of the ff approach found in the literature is the

method suggested by Swanson in a private communication with
Wolf and Rauschenbach [8]. A few years later it was described by

Fig. 3. Plot of dV=dI as a function of �ðIsc� IÞ�1 for 11 data points surrounding the
MPP of the IV-curve measured at a concentration ratio of 500, and the linear fit.

Fig. 4. Plot of Rs, determined using the method of Warashina & Ushirokawa, as a
function of I=Isc , for concentration ratios 200 and 500. The diagonal crosses indicate
the MPPs.

8 It can be shown that the same is true for the f 0f 0 case, as long as the condition
dV=dIj1Rs1 ¼ dV=dIj2Rs2 is satisfied. However, since Rs1 and Rs2 are unknown it is
impossible to find such a match. It is possible when one assumes Rs2 ¼ Rs1 because
then one only has to find the spot on curve 2 where its slope equals the slope of a
chosen spot on curve 1. It turns out, however, that this is the exact spot at which
IL1� I1 ¼ IL2� I2 is valid. This means this method is identical to the Method of
Swanson, discussed below.
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Handy [9] in a graphical approach for more than two curves. It is
also the International Standard procedure to determine the series
resistance of a silicon solar cell, as defined by the International
Electrotechnical Commission in IEC standard 60891 [17]. This
standard basically prescribes measuring three IV-curves, deter-
mining Rs using the method of Swanson for each of the three
possible combinations and then taking the average.

Besides the earlier mentioned condition that IL1� I1 ¼ IL2� I2,
the method of Swanson assumes Rs1 and Rs2 to be equal, so that Eq.
(34) simplifies to Eq. (32). This means that if Rs varies with
irradiance [6] then the irradiances at which the two curves are
measured should not differ by too much, to avoid large deviations.
It is best to measure the first curve at an irradiance slightly above
the irradiance of interest, and the second one slightly below. Since
IL1 and IL2 cannot be determined, in practice the approximation
IL1� IL2 � Isc1� Isc2 is also applied.

3.3.3. Method of Aberle et al.
Another adaptation of the ff approach found in the literature is

the method presented by Aberle et al. [20], which requires the first
curve to be measured at the irradiance of interest while the second
IV-curve is to be measured under dark conditions. This means
Rs2oRs1, since under dark conditions the current not only flows in
the direction opposite to that under illuminated conditions, but
also has a different flow pattern with a lower series resistance
[20].9 Since IL2 ¼ 0, I2 ¼ �ðIL1� I1Þ according to the generally
applied constraint given in Eq. (29). This means Eq. (34) becomes

Rs1 ¼
V2�V1

I1
�ðIL1� I1ÞRs2

I1
: ð35Þ

Because I1 should be chosen as Imp, Aberle et al. state that, since
IL1� I1 and Rs2 are both small, the second term on the right hand
side of the equation can be neglected. This means the series
resistance is approximated as

Rs ¼
V2�V1

I1
; ð36Þ

and in practice the approximation that IL1 � Isc1 will have to be
applied in order to determine I2.

In his dissertation of 2003 [25] Dicker does not ignore the
second term on the right hand side of Eq. (35) and presents this as
a correction term to the work of Aberle et al. He expresses the
unknown Rs2 as

Rs2 ¼
VR�Voc1

IL1
; ð37Þ

with VR being the voltage of the dark curve for which the current
equals � IL1. This follows from the substitution of this current,
together with IL2 ¼ 0, I1 ¼ 0 and V1 ¼ Voc1 in Eq. (33), which results
in an equation that is only valid when Eq. (37) is satisfied. This is
actually the expression for the series resistance under dark
conditions as already presented by Rohatgi et al. [26], but derived
here for more general conditions. Substituting this expression for
Rs2 in Eq. (35) yields

Rs1 ¼
V2�V1

I1
� IL1� I1

I1

VR�Voc1

IL1
: ð38Þ

One should note, however, that if Rs2 varies with current level I2,
then the expression for Rs2 in Eq. (37) is not valid for the current of
interest I2 ¼ �ðIL1� Imp1Þ, but for the much lower current I2 ¼ � IL1
as illustrated in Fig. 5.

3.3.4. Method of Wolf & Rauschenbach
A third adaptation of the ff approach was first described by

Wolf and Rauschenbach [7] and is also known as the Suns-Voc

method. The strength of this method is that the unknown Rs2 is
eliminated from Eq. (34) by simply applying the condition I2 ¼ 0.
The first IV-curve should then be measured at the irradiance of
interest, and the constraint presented in Eq. (29) dictates that the
second curve is to be measured at the irradiance for which
IL2 ¼ IL1� I1. This transforms Eq. (34) into

Rs ¼
Voc2�V1

I1
: ð39Þ

The fact that the second curve is measured at an irradiance far
below the irradiance of interest might seem to introduce a devia-
tion if Rs is irradiance dependent. However, the second curve is only
required for its Voc and this parameter is independent of Rs2.

Since IL1 and IL2 cannot be obtained in practice the approxima-
tion IL1� IL2 � Isc1� Isc2 is necessary. The accuracy with which C2,
the concentration ratio of the second IV-curve, can be set so that
Isc2 will have the proper value of Isc1� Imp1 will influence the point
in the first curve at which Rs is determined. However, from Fig. 6,
taken from the experimental study of the Rs determination
methods applied to a CPV cell [24], it is clear that C2, and therefore
Isc2, can deviate quite substantially from its intended value before
Rs digresses more than 1%.

3.3.5. Method of Mialhe & Charette
There is one last method belonging to the ff approach that

should be mentioned. Unlike the last three methods discussed, it
does not use the general solar cell model from Eq. (1) but the
single-diode model from Eq. (2). As mentioned in Section 2 this
generally has the disadvantage that n becomes a function of I and
E, but is approximated as a constant, introducing errors in the
determination of Rs. However, for the ff (as well as f 0f 0 and FF)
approach this error can be minimized by varying the series
resistance instead of varying E. This can be achieved by simply
connecting a precisely known external resistance Ra in series with
the solar cell. This use of an additional series resistance was briefly
suggested in 1983 as an exercise for students by Mialhe and
Charette [16] but the idea has not been worked out in much detail
or picked-up by the solar cell research community.10

Fig. 5. Representation of the data to be retrieved from an illuminated (1) and a
dark IV-curve (2) for the method of Aberle et al. and the correction term of Dicker.
Indicated are the MPP of curve 1 and the associated point in curve 2 (where
I2 ¼ �ðIL1� I1Þ). Also indicated is the point in curve 2 where I2 ¼ � IL1.

9 A particular version of the method by Aberle et al., with the additional
condition that I1 ¼ 0 and the assumption that Rs2 ¼ Rs1, was published earlier by
Rajkanan and Shewchun [11]. However, this assumption is not very realistic
considering Rs2oRs1 as just stated.

10 In 1980, Chaffin and Osbourn already proposed an Rs determination method
using two known additional external resistances Ra1 and Ra2 [13]. It requires the
measurement of two IV-curves at the same irradiance, with the cell connected in
series with Ra1 for the first curve, and with Ra2 for the second curve. Instead of
looking at the MPPs, the authors look at the short circuit points, i.e. V1 ¼ V2 ¼ 0.
Eliminating nVt in the typical fashion for the ff approach, but without introducing

G.M.M.W. Bissels et al. / Solar Energy Materials & Solar Cells 130 (2014) 605–614 611



Utilizing the external series resistance concept means that not
only IL (i.e. E) is kept constant but the Imp values of both curves also
differ only slightly, which is illustrated by curves 1 and 2 in Fig. 7.
This means that n around the MPP of curve 2 should be virtually
the same as n around the MPP of curve 1 (see Fig. 2). In the
approach where the second IV-curve is measured at a different
irradiance (and without an additional series resistance) the Imp

values (and therefore, the associated values of n) of the two curves
will differ substantially, as illustrated by curves 1 and 3 in Fig. 7.

The very fact that the MPP currents are so similar when using
the method of Mialhe & Charette, does make this method very
sensitive to deviations in their values, which follows from the
denominator in the replacement for Eq. (15) (with points 1 and
2 already taken as the MPPs of the two curves):

Rs ¼
ðVoc1�Vmp1Þλmp2�ðVoc2�Vmp2Þλmp1þ Imp2λmp1Ra

Imp1λmp2� Imp2λmp1
: ð40Þ

This means the value of Ra should be chosen such that there is a
good trade-off between Imp1 and Imp2: the values should differ
enough, but not too much.

4. Discussion and conclusions

The present study provides a systematic approach to derive a
large collection of methods to determine the series resistance of a
solar cell. Representation of the methods in the two-dimensional
array presented in Table 1 allows for easy comparison and reveals
that many previously published methods are more alike than
might appear at first sight.

Each method requires at least some assumptions and/or
approximations, some more influential than others. An overview
of all the assumptions and approximations for the discussed
methods is presented in Table 2. The approximation that is
expected to have the largest influence on the value of Rs to be
determined is the one where the general solar cell model is
represented by the single-diode model. Since the methods of
Swanson, Aberle et al. and Wolf & Rauschenbach do not require
this approximation, it is expected that these methods will be the
most accurate. Because these three methods all require two
IV-curves measured at a different irradiance, they do rely on the
assumption that nα and I0;α are independent of E. The method of
Swanson also assumes that Rs is independent of E, while the
method of Aberle et al. relies on the assumption that
Rs25ðV2�V1Þ=ðIL1� I1Þ. Since the method of Wolf & Rauschenbach
requires neither of these last two assumptions, it is expected to be
the most secure of these three methods. From a theoretical point
of view it would, therefore, be preferable if the International
Electrotechnical Commission adopted this method as its series
resistance determination standard, instead of the method of
Swanson [17]. One practical advantage that the method of Aberle
et al. has over that of Wolf & Rauschenbach is that its second
IV-curve does not require an (accurate) change in irradiance
settings, but is simply measured under dark conditions.

Of course, the methods which only require a single IV-curve
have even more experimental convenience. However, as men-
tioned previously, these basically all use the single-diode model
approximation. Not only does this ignore the influence of any
shunt resistance, it also causes n and I0 to depend on I and E. The
degree to which this dependence is ignored varies per method. All
methods from the F category assume n and I0 to be constant over
the entire IV-curve. Methods from the f category assume the
values of n and I0 at MPP conditions to be equal to their values
at open circuit conditions. And methods from the f 0 category only
assume n and I0 to be constant around the MPP. One example of
this last category is the method of Warashina & Ushirokawa.
Unfortunately, the present study indicates that the Rs value that
this method determines is extremely sensitive to small deviations
in Imp, making this an inferior method to obtain an accurate value
of Rs. The method of Araujo & Sánchez is an example of a single
curve method in the F category and it even sets n equal to 1 for the
entire IV-curve. The motivation behind it is based on the assump-
tion that the irradiance required to show the resistance effects of a
concentrator solar cell will be high enough for recombination in
the quasi-neutral region to dominate. It should be noted, however,

Fig. 7. Three IV-curves with their MPP indicated. Each curve was generated using
the same parameters, except the 100 mΩ series resistance of curve 2 is ten times as
high as that of the other two, and the 1 A photo current of curve 3 is half that of the
other two curves.

Fig. 6. Plot of Rs for C1 ¼ 500, determined using the method of Wolf & Rauschenbach,
for a range of concentration ratio settings for the second curve. The dashed line
indicates C2 ¼ 19:5, the value at which Isc2 ¼ Isc1� Imp1.

(footnote continued)
Voc in the equation, gives Rs¼ �ðμsc1Isc2Ra2�μsc2Isc1Ra1Þ=ðμsc1Isc2�μsc2Isc1Þ, with
μsci � lnððIc� IsciÞ=I0Þ. By using an irradiance that is high enough to let the
exponential knees of both curves lie far into in the second quadrant, Isci≪Ic , so
that μsc2 � μsc1 and Rs� �ðIsc2Ra2� Isc1Ra1Þ=ðIsc2� Isc1Þ. Note that the irradiance
required for the approximation to be reasonable is very high and that Rs is not
determined at the MPP. The next year Cape, Oliver and Chaffin produced a follow-
up paper presenting another method according to similar principles [14]. Basically
it comes down to taking the short circuit point, but now according to the f �
approach. Under these conditions expression (12) becomes
Rs ¼ ðnVtλscþVocÞ=Isc � Voc=Isc for very high irradiances, because then Isc≪Ic , so
λsc � lnðIc� IscÞ=Ic � 0. Although they present the method in a way that uses an
additional series resistance Ra in series with the solar cell, so that Rs � Voc=Isc�Ra ,
this is not strictly necessary. It only serves to make the approximation better for a
given (very high) irradiance.
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that at high irradiances Auger recombination can reduce n to less
than 1 [23], so that the method of Araujo & Sánchez can only
perform well for a certain irradiance range. The method of Jia et al.
is an exception to the rule that methods from the f category
assume nmp ¼ noc, because it sets noc equal to 1 while leaving nmp

free to take on another value. Using this approach it only ignores
the I dependence of n to a small degree. It does, however, strongly
rely on the implicit assumption that n is truly independent of I at
the MPP. The method also still assumes that I0;mp ¼ I0;oc and that I0
is independent of I around the MPP.

The two-dimensional array arrangement also brings to light
several methods to determine Rs based on the above stated
principle which have not yet been described in the literature:
the (general) method of the ff , f 0f 0, FF, Ff and Ff 0 approaches.
However, they all ignore the dependence of n and I0 on I and E to a
high degree and do not have any particular advantages consider-
ing the other assumptions and approximations. In addition, the
first three methods have no experimental convenience since they
require at least two IV-curves measured at a different irradiance
and so cannot be considered as an important asset to the
collection of series resistance determination methods.

The method of Mialhe & Charette also requires the measure-
ment of two IV-curves and is based on the single-diode model, but
has the advantage that its E is constant and the Imp values of both
curves only differ slightly, so that the n and I0 values at those
points are not expected to differ much. Still, the method does
assume that the values of n and I0 at MPP conditions are equal to
their values at open circuit conditions. And, depending on the
accuracy with which the Imp values of the two curves can be
determined, a too small difference between Imp1 and Imp2 will lead
to deviations in the determined value of Rs.

From a theoretical perspective we thus conclude that the
method of Wolf & Rauschenbach is expected to determine Rs most
accurately, followed by the methods of Swanson and Aberle et al.
The method of Jia et al. is expected to be the best performing
method that only requires a single curve, as long as dn=dIjMPP is
really negligible. The verification of these conclusions in an
experimental study comparing the here discussed Rs determina-
tion methods for CPV cells are published in a contemporary paper
[24].
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Appendix A

List of symbols

A area under the IV-curve in the first quadrant
A0 area under the IV-curve below the maximum power

point in the first quadrant
C concentration ratio
E irradiance
I current
I0ð;αÞ saturation current of diode (α)
Ia � Ic� Imp

Ib � 2Ic� Isc
Ic � ILþ I0
Id � ðλmpþVoc

Vt
ÞIa

IDð;αÞ current flowing through diode (α)
IL light induced current
Imp current at maximum power point conditions

Isc short circuit current
Ish current flowing through the shunt resistance
k Boltzmann constant
nðαÞ ideality factor of diode (α)
nmp n at maximum power point conditions
noc n at open circuit conditions
N number of data points used
P power generated by the solar cell (� VI)
q elemental charge
Ra additional resistance, externally connected in series to

the solar cell
Rs series resistance
Rsh shunt resistance
T absolute temperature of the solar cell
V voltage
V 0
i � dV

dI

��
i, with i indicating the ith data point of the IV-curve

Vmp voltage at maximum power point conditions
Voc open circuit voltage
VR voltage of dark IV-curve for which I equals � IL of an

accompanying IV-curve measured under illumination
Vt thermal voltage ð � kT

q Þ
λ � lnðIc � I

Ic
Þ

λmp � lnðIc � Imp

Ic
Þ

μ � lnðIc � I
I0

Þ
μsc � lnðIc � Imp

I0
Þ

ξi � �ðIc� IiÞ�1, with i indicating the ith data point of the
IV-curve

For methods using two IV-curves the associated curve is indicated
using a numerical subscript.

Appendix B

According to Eq. (1)

I¼ IL� I0;a exp
Vþ IRs

naVt

� �
�1

� �� �
� ∑

α ¼ b;c;…
I0;α exp

Vþ IRs

nαVt

� �
�1

� �� �
�Vþ IRs

Rsh
:

ðB1Þ
Rearranging this into an expression for naVt gives

naVt ¼
Vþ IRs

ln ILþ I0;a� I�∑α ¼ b;c;… I0;α exp
Vþ IRs

nαVt

� �
�1

� �� �
�Vþ IRs

Rsh

� �:
ðB2Þ

Since na (as well as the other nα , I0;α and Vt) is assumed to be
independent of irradiance it follows that for two curves measured
at a different irradiance

V1þ I1Rs1

ln IL1þ I0;a� I1�∑α ¼ b;c;… I0;α exp
V1þ I1Rs1

nαVt

� �
�1

� �� �
�V1þ I1Rs1

Rsh

� �

¼ V2þ I2Rs2

ln IL2þ I0;a� I2�∑α ¼ b;c;… I0;α exp
V2þ I2Rs2

nαVt

� �
�1

� �� �
�V2þ I2Rs2

Rsh

� �;
ðB3Þ

where for completeness both curves have been given their own
value for the series resistance, Rs1 and Rs2, symbolizing a possible
irradiance dependence of the series resistance. Rearranging gives

ln IL1þ I0;a� I1� ∑
α ¼ b;c;…

I0;α exp
V1þ I1Rs1

nαVt

� �
�1

� �� �
�V1þ I1Rs1

Rsh

 !

¼ ln IL2þ I0;a� I2� ∑
α ¼ b;c;…

I0;α exp
V2þ I2Rs2

nαVt

� �
�1

� �� �
�V2þ I2Rs2

Rsh

 !
V1þ I1Rs1

V2þ I2Rs2
:

ðB4Þ
Taking the exponential on both sides of the above equation results
in Eq. (33).
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