I. INTRODUCTION

Lepton flavor conservation in the charged lepton sector is a fundamental assumption of the Standard Model (SM) but there is no associated symmetry. Thus, searches for lepton flavor violation (LFV) processes are good candidates for probing new physics. The observation of neutrino oscillations is a clear indication of LFV in the neutral lepton sector; however, such an oscillation mechanism cannot induce observable LFV in the charged lepton sector. All searches in the charged lepton sector have produced null results so far [1]. Lepton flavor violation in the charged lepton sector may have a different origin than LFV induced by neutrino oscillations and the search for this effect provides constraints on theories beyond the SM (see for example Refs. [2–4]).

In this paper, a search for the lepton flavor violating decay $Z \rightarrow e\mu$ is presented. There are stringent experimental limits on other charged lepton flavor violating processes, which can be used to derive an upper limit on the branching fraction for $Z \rightarrow e\mu$ with some theoretical assumptions. For example, the upper limit on $\mu\rightarrow 3e$ yields $B(Z \rightarrow e\mu) < 10^{-12}$ [5] and on $\mu\rightarrow e\gamma$ yields $B(Z \rightarrow e\mu) < 10^{-10}$ [6]. The experiments at the Large Electron-Positron Collider (LEP) searched directly for the decay $Z \rightarrow e\mu$ [7–10]. The most stringent upper limit is $B(Z \rightarrow e\mu) < 1.7 \times 10^{-6}$ at the 95% confidence level (C.L.) using a data sample of 5.0×10^6 Z bosons produced in e^+e^- collisions at $\sqrt{s} = 88–94$ GeV [7]. The Large Hadron Collider (LHC) has already produced many more Z bosons in pp collisions, but with substantially more background. In this paper, the 20.3 ± 0.6 fb$^{-1}$ [11] of data collected at $\sqrt{s} = 8$ TeV by the ATLAS experiment corresponds to 7.8×10^8 Z bosons produced. Despite the larger background at the LHC, a more restrictive direct limit on the $Z \rightarrow e\mu$ decay is reported in this paper.

II. ATLAS DETECTOR

The ATLAS detector [12] consists of an inner detector (ID) surrounded by a solenoid that produces a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) immersed in a magnetic field produced by a system of toroids. The ID measures the trajectories of charged particles over the full azimuthal angle and in a pseudorapidity [13] range of $|\eta| < 2.5$ using silicon pixel, silicon microstrip, and straw-tube transition-radiation tracker (TRT) detectors. Liquid-argon (LAr) electromagnetic (EM) sampling calorimeters cover the range $|\eta| < 3.2$ and a scintillator-tile calorimeter provides hadronic calorimetry for $|\eta| < 1.7$. In the end caps ($|\eta| > 1.5$), LAr is also used for the hadronic calorimeters, matching the outer $|\eta|$ limit of end-cap electromagnetic calorimeters. The LAr forward calorimeters extend the coverage to $|\eta| < 4.9$ and provide both the electromagnetic and hadronic energy measurements. The MS measures the deflection of muons within $|\eta| < 2.7$ using three stations of precision drift tubes (with cathode strip chambers in the innermost station for $|\eta| > 2.0$) and provides separate trigger measurements from dedicated chambers in the region $|\eta| < 2.4$.

A three-level trigger system is used to select interesting events to be recorded for subsequent offline analysis [14]. For this analysis, the candidate events of interest are required to satisfy either a single electron or a single muon trigger that have transverse momentum (p_T) thresholds of 24 GeV.

III. ANALYSIS STRATEGY

The event selection requires two high-p_T isolated, oppositely charged leptons of different flavor: $e^\pm\mu^\mp$. Events are required to contain little jet energy (i.e. small
\(p_{T,\text{max}} \), the maximum transverse momentum of any jet in an event) and small missing transverse momentum (with magnitude \(E_{\text{T,miss}} \)). The former eliminates background processes such as \(\tilde{t} \rightarrow e\nu b\bar{b} \) while the latter rejects \(WW \rightarrow e\mu\nu\nu \). These \(p_{T,\text{max}} \) and \(E_{\text{T,miss}} \) requirements are chosen to maximize the Monte Carlo (MC) simulated signal efficiency divided by the square root of the number of candidate background events in the data. Further details of this procedure are given in Sec. VI. After all selection criteria are applied, the dominant background process is \(Z \rightarrow \tau\tau \rightarrow e\mu\nu\nu\), which has an \(e\mu \) invariant mass (\(m_{e\mu} \)) spectrum extending into the \(Z \) signal region.

An excess of events above the background expectation is searched for in the \(m_{e\mu} \) spectrum at the \(Z \)-boson mass. The number of \(Z \rightarrow e\mu \) candidates is estimated by fitting the \(m_{e\mu} \) spectrum. The expected signal shape is obtained from MC simulation, while the background is parametrized using a Chebychev polynomial. The branching fraction is obtained from the ratio of the number of observed \(Z \rightarrow e\mu \) candidates to the number of observed \(Z \rightarrow \ell\ell \) events in the data in the mass range \(70 < m_{\ell\ell} < 110 \) GeV, where \(\ell = e, \mu \). These \(Z \rightarrow ee \) and \(\mu\mu \) samples are selected with the same selection criteria, resulting in the cancellation of the majority of systematic uncertainties due to electron, muon, and jet reconstruction and modeling. The simulated events are used to cross-check the background level in data and to calculate the selection efficiency for \(Z \rightarrow e\mu/ee/\mu\mu \). All selection requirements were fixed before analyzing the data in the \(Z \) signal region from 85 to 95 GeV.

IV. MONTE CARLO SAMPLES

Monte Carlo simulated samples normalized to the data integrated luminosity are used to determine the major backgrounds pertinent to this analysis as well as to determine the optimal \(E_{\text{T,miss}} \) and \(p_{T,\text{max}} \) requirements. All MC samples are produced using the ATLAS detector simulation [15] based on geant 4 [16]. Signal \(Z \rightarrow e\mu \) MC events are produced with powheg-box r1556 [17] using the CT10 parton distribution function (PDF) [18] and the AU2 set of tunable parameters (tune) [19] along with pythia 8.175 [20] for parton showering, hadronization and underlying event simulation. To ensure proper normalization of the upper limit to the number of observed \(Z \rightarrow ee \) and \(Z \rightarrow \mu\mu \), these events are simulated using the same generator as for the signal simulation. In practice, the \(Z \rightarrow ee \) sample is created from a \(Z \rightarrow e\mu \) sample by replacing one of the electrons by a muon at the generator level. The \(Z \rightarrow \tau\tau \) and \(W+W \) samples are simulated with alpgen 2.13 [21] interfaced to herwig 6.520.2 and pythia 6.426 [22], respectively, using the CTEQ6L1 PDF [23] with the AUET2 tune [24]. The three diboson backgrounds, \(ggq, ggW, gqW \), and \(WZ \), are simulated with the CT10 PDF using mc@nlo 4.0 [25] with the AUET2 tune, gg2ww [26] with the AUET2 tune, and powheg-box interfaced to pythia 8.165 with the AU2 tune, respectively. The top-quark backgrounds, \(t\bar{t} \) and single top-quark production, are simulated with mc@nlo 4.0 and AcerMC 3.8 [27] interfaced to herwig 6.520.2 and pythia 6.426, respectively, for parton showering and fragmentation. An average of 20 additional \(pp \) collisions per event in the same bunch crossing, known as pileup, are included in each event to match the data.

V. OBJECT SELECTION

Candidate electrons must have \(p_T^e > 25 \) GeV and, to ensure the shower is well contained in the high-granularity region of the EM calorimeter, \(|\eta^e| < 2.47 \) [28]. The candidate must not be in the transition region between the barrel and end-cap calorimeters, 1.37 < \(|\eta^\pi| \) < 1.52. The impact parameters of the candidate must also be consistent with originating from the primary vertex, defined as the reconstructed vertex with the largest sum of track \(p_T^\pi \), constructed from at least three tracks each with \(p_T > 400 \) MeV. The longitudinal impact parameter, \(z_0 \), measured with respect to the primary vertex, of the candidate must satisfy \(|z_0 \sin \theta| < 0.5 \) mm and the transverse impact parameter, \(d_0 \), must satisfy \(|d_0| < 5 \sigma_{d_0} \), where \(\sigma_{d_0} \) is the uncertainty of the impact parameter. The electron candidate must be isolated from other event activity by requiring the sum of the transverse momentum of tracks with \(p_T > 1 \) GeV in a cone of size \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.2 \) around the candidate to satisfy \(\Sigma p_T(\Delta R < 0.2)/p_T^e < 0.13 \). In the calorimeter, the sum of the transverse energy deposits in the calorimeter clusters in a cone of size \(\Delta R = 0.2 \) around the candidate must satisfy \(\Sigma E_T(\Delta R < 0.2)/p_T^e < 0.14 \). Candidates must also satisfy the “tight” identification requirements of Ref. [28], which are based on calorimeter shower shape, ID track quality, and the spatial match between the shower and the track.

Muon candidates must have \(p_T^\mu > 25 \) GeV and \(|\eta^\mu| < 2.5 \) to ensure coverage by the ID. Muons are required to have a high-quality TRT track segment if they are within the detector acceptance of the TRT. To ensure the muon originated from the primary vertex, the distances of closest approach to the primary vertex in both \(z \) and the transverse plane must satisfy \(|z_0 \sin \theta| < 0.5 \) mm and \(|d_0| < 3 \sigma_{d_0} \), respectively. To reject secondary muons from hadronic jets, the ID track used in the muon reconstruction must be isolated by requiring the sum of the \(p_T \) of the tracks around the muon candidate to satisfy \(\Sigma p_T(\Delta R < 0.2)/p_T^\mu < 0.15 \). In the calorimeter, there should be little activity around the muon candidate by requiring the sum of the \(E_T \) around the muon candidate to satisfy \(\Sigma E_T(\Delta R < 0.2)/p_T^\mu < 0.3 \). Candidates must also satisfy the “tight” identification requirements of Ref. [29] and have their MS track matched to the ID track [30].

Hadronic jets [31] are reconstructed using the anti-\(k_t \) algorithm with distance parameter \(R = 0.4 \) [32]. The scalar sum of \(p_T \) of tracks associated with the jet which come
from the primary vertex, divided by the scalar sum of \(p_T \) of all tracks associated with the jet, must be greater than 50% for jets with \(|y| < 2.4 \) and \(p_T < 50 \) GeV to remove jets originating from pileup in the central region. The rapidity \([33]\) of jets must satisfy \(|y| < 4.4 \). Finally, only jets with \(p_T > 20 \) GeV are considered in the event selection.

The \(E_T^{\text{miss}} \) is defined as the \(p_T \) imbalance in the detector. It is formed from the vector sum of the \(p_T \) of reconstructed high-\(P_T \) objects—electrons, photons, jets, \(\tau \) leptons, and muons—as well as energy deposits not associated with any reconstructed objects \([34]\).

VI. EVENT SELECTION

A \(Z \) candidate is constructed from two opposite-sign, different-flavor leptons (\(e \) or \(\mu \)). Electron candidates are vetoed if they are within \(\Delta R = 0.1 \) of a candidate muon. Jets are removed if they are within \(\Delta R = 0.3 \) of a candidate lepton. Events with more than two candidate leptons are vetoed, as are events with an additional electron or muon that passed the lepton requirements but is not isolated.

As stated above, the selection criteria for \(E_T^{\text{miss}} \) and \(p_T^{\text{jet max}} \) are chosen to maximize the reconstruction efficiency divided by the square root of the estimated number of background events. The efficiency for selecting \(e\mu \) candidates is calculated using MC signal events in the \(Z \) signal region, \(85 < m_{\mu\mu} < 95 \) GeV. The background is determined by fitting the \(m_{\mu\mu} \) spectrum in data in the mass range \(70 < m_{\mu\mu} < 110 \) GeV, excluding the \(Z \) signal region, and then interpolating the fitted curve into the \(Z \) signal region to estimate the number of background events. The fitting range is chosen so that the \(m_{\mu\mu} \) spectrum can be parametrized with a polynomial. In particular, the lower \(m_{\mu\mu} \) limit is chosen to be above the peak in the \(Z \rightarrow \tau\tau \rightarrow e\mu \) mass distribution. The optimum selection criteria are found to be \(E_T^{\text{miss}} < 17 \) GeV and \(p_T^{\text{jet max}} < 30 \) GeV.

Several background functions with a small number of free parameters in the fit were investigated before analyzing (“unblinding”) the events in the \(Z \) mass region. This includes Chebychev polynomials of second to fourth orders, a Landau function, and an exponential function plus a linear term. The second-order polynomial has an unacceptable \(\chi^2 \) per degree of freedom, \(\chi^2/\text{d.o.f.} = 3.3 \). All other functions have \(\chi^2/\text{d.o.f.} \sim 1 \). The third-order polynomial is chosen as the default background function for simplicity. The systematic error due to the choice of fitting functions is discussed below.

The \(E_T^{\text{miss}} \) and \(p_T^{\text{jet max}} \) distributions in the data are compared with the expectation for a MC simulation of the background and signal in Fig. 1. Each plot has all kinematic cuts applied with the exception of the cut on the kinematic variable being shown—as indicated by the vertical lines and arrows. The signal MC is scaled to the 95% C.L. upper limit presented in Sec. VII. The multijet background in these distributions refers to events where at least two jets are misidentified as leptons. The shape and normalization of this background can be estimated from like-sign \(e\mu \) candidates in the data. The contributions to the same-sign distribution from top-quark and \(W/Z \) events are estimated using simulation (Sec. IV) and subtracted from the same-sign data.

The \(E_T^{\text{miss}} \) distribution of \(e\mu \) candidate events is shown in Fig. 1(a). The \(E_T^{\text{miss}} \) requirement removes most of the
diboson background while retaining the majority of the simulated signal events. The distribution of the $p_{T\text{jet}}^{\text{jet}}$ of the candidate events is shown in Fig. 1(b). The entries in the first bin correspond to events that have no jets passing the jet-selection requirements described in Sec. V. The jet veto eliminates most of the $t\bar{t}$ background while maintaining a high reconstruction efficiency for $Z \to e\mu$. The remaining major backgrounds in the Z signal region are diboson, multijet, $Z \to \tau\tau$, and $Z \to \mu\mu$. For the $Z \to \mu\mu$ background, one of the muons can interact with the detector material leading to the muon being misidentified as an electron due to its overlap with a bremsstrahlung photon. The E_{T}^{miss} and the $p_{T\text{jet}}^{\text{jet}}$ distributions of the background are well reproduced by the MC simulation. However, in extracting the upper limit on the branching fraction for $Z \to e\mu$, the background is estimated from the data instead of using MC simulation.

VII. RESULT

The $m_{e\mu}$ distribution with the background expectations superimposed is shown in Fig. 2. The mass spectrum is consistent with the MC background expectation with no evidence of an enhancement at the Z mass. The mass spectrum is fit as a sum of signal and background contributions as shown in Fig. 3. The signal shape is a binned histogram obtained from the signal MC sample and the absolute normalization is a free parameter in the fit. The background is a third-order Chebychev polynomial function. The fit yields a signal of 4 ± 35 events.

![FIG. 2 (color online). The $e\mu$ invariant mass distribution in data with the background expectations from various processes after all cuts are applied. The hatched bands show the total statistical uncertainty of backgrounds. The expected distribution of $Z \to e\mu$ signal events, normalized to 13 times the upper limit on the branching fraction $[13 \times B(Z \to e\mu) = 1.0 \times 10^{-5}]$, is indicated by a black line.](image)

![FIG. 3 (color online). The $e\mu$ invariant mass distribution fitted with a signal shape obtained from MC simulation and a third-order Chebychev polynomial to describe the background (solid). The observed 95% C.L. upper limit (dashed) is indicated $[B(Z \to e\mu) = 7.5 \times 10^{-7}]$. The lower plot shows the data with the background component of the fit subtracted.](image)

The upper limit on $B(Z \to e\mu)$ is given by

$$B(Z \to e\mu) < \frac{N_{95\%}}{\epsilon_{e\mu}N_{Z}},$$

where $N_{95\%}$ is the upper limit on the number of $Z \to e\mu$ candidate events at 95% C.L., $\epsilon_{e\mu}$ is the reconstruction efficiency for a $Z \to e\mu$ event, and N_{Z} is an estimate of the total number of Z bosons produced in the data sample. This estimate is obtained from the weighted average of two measurements. One is the number of Z bosons produced as calculated from the number of $Z \to ee$ events detected in the data, after correcting for the reconstruction efficiency and branching fraction [35]. The other is calculated with the same procedure using the $Z \to \mu\mu$ channel. The numbers of ee and $\mu\mu$ events are estimated by counting the candidates with dilepton invariant mass in the region $70 < m_{ee} < 110 \text{ GeV}$. The reconstruction efficiencies are estimated using MC simulation, calibrated with Z candidates using the tag-and-probe method [28,30]. The result is summarized in Table I. The weight of each measurement is given by the total uncertainty, which is the quadratic sum of the statistical and systematic uncertainties. The systematic uncertainties include the uncertainties in the electron and muon reconstruction and trigger efficiencies and the absolute scale and resolution of the electron energy and muon p_{T} [30,36]. These systematic uncertainties are uncorrelated between ee and $\mu\mu$ events. Other systematic uncertainties such as those due to imperfect simulation of the E_{T}^{miss} and $p_{T\text{jet}}^{\text{jet}}$ distributions are correlated for the $e\mu$,
A search for the lepton flavor violating process $Z \rightarrow e\mu$ in pp collisions was performed with the ATLAS detector at the LHC. There is no evidence of an enhancement at the Z-boson mass in the m_{ee} spectrum for the data set with an integrated luminosity of 20.3 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. Using the CL_s method with a one-sided profile likelihood as a test statistic, an upper limit of 83 signal events at 95% C.L. was found. This leads to an upper limit on the branching fraction of $B(Z \rightarrow e\mu) < 7.5 \times 10^{-7}$ at 95% C.L., significantly more restrictive than that from the LEP experiments.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, INERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-TI (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

TABLE I. The reconstruction efficiencies for $Z \rightarrow e\mu$, ee, and $\mu\mu$ events are shown. Also shown are the number of Z bosons produced, N_Z, as estimated from the number of $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events, after correcting for the corresponding reconstruction efficiencies and branching fractions, as well as the weighted average. The total uncertainties are given.

<table>
<thead>
<tr>
<th>Z decay</th>
<th>Efficiency (%)</th>
<th>N_Z (106)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee</td>
<td>10.8 ± 0.3</td>
<td>7.85 ± 0.24</td>
</tr>
<tr>
<td>$\mu\mu$</td>
<td>17.8 ± 0.4</td>
<td>7.79 ± 0.17</td>
</tr>
<tr>
<td>$\langle ee, \mu\mu \rangle$</td>
<td>7.80 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>$e\mu$</td>
<td>14.2 ± 0.4</td>
<td></td>
</tr>
</tbody>
</table>

ee and $\mu\mu$ channels and cancel in the ratio [Eq. (1)], although they are major contributors to the systematic uncertainties shown in Table I before the cancellation. With the cancellation, the systematic uncertainty on $B(Z \rightarrow e\mu)$ is 1.2%, which is small compared to the overall fitting systematic uncertainty, and is neglected in the final result.

A one-sided profile likelihood [37] is used as a test statistic to calculate an upper limit on the number of signal events using the CL_s procedure [38]. The procedure yields an observed 95% C.L. upper limit of 72 events. This is consistent with the expected upper limit of 69 events obtained by generating pseudoexperiments from the observed background spectrum. For the pseudoexperiments, the observed data distribution in the sideband is fitted with a third-order Chebychev polynomial and the fitted function is then interpolated into the signal region to predict the central value for the number of background events in each bin. The central value of the background events in the background region or interpolated data for the signal region is then fluctuated.

There is a systematic uncertainty due to the choice of fitting function used to estimate the background and the associated fitting region (Sec. VI). The upper and lower limits of the fit region are varied in the ranges 100–120 GeV and 70–80 GeV in 5 GeV increments. The background parametrization that yields the largest upper limit on the number of signal events (83 events) is used to set an upper limit on the branching fraction at the 95% confidence level,

$$B(Z \rightarrow e\mu) < 7.5 \times 10^{-7}. \quad (2)$$

Energy, E, and the z component of the momentum along the beam axis, p_z, as
\[y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}. \]

[33] The rapidity is defined in terms of the energy, E, and the z component of the momentum along the beam axis, p_z, as
\[y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}. \]
SEARCH FOR THE LEPTON FLAVOR VIOLATING DECAY …
SEARCH FOR THE LEPTON FLAVOR VIOLATING DECAY ... PHYSICAL REVIEW D 90, 072010 (2014)

Dipartimento di Fisica, Università di Napoli, Napoli, Italy

Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands

Department of Physics, Northern Illinois University, DeKalb, Illinois, USA

Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

Department of Physics, New York University, New York, New York, USA

Ohio State University, Columbus, Ohio, USA

Faculty of Science, Okayama University, Okayama, Japan

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA

Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Center for High Energy Physics, University of Oregon, Eugene, Oregon, USA

LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

Graduate School of Science, Osaka University, Osaka, Japan

Department of Physics, University of Oslo, Oslo, Norway

Department of Physics, Oxford University, Oxford, United Kingdom

INFIN Sezione di Pavia, Italy

Dipartimento di Fisica, Università di Pavia, Pavia, Italy

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Petersburg Nuclear Physics Institute, Gatchina, Russia

INFIN Sezione di Pisa, Italy

Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Laboratorio de Instrumentação e Física Experimental de Partículas - LIP, Lisboa, Portugal

Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Department of Physics, University of Coimbra, Coimbra, Portugal

Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal

Departamento de Física, Universidade do Minho, Braga, Portugal

Departamento de Física Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain

Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFIN Sezione di Roma, Italy

Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFIN Sezione di Roma Tor Vergata, Italy

Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFIN Sezione di Roma Tre, Italy

Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca, Morocco

Centre National de l’Énergie des Sciences Techniques Nucléaires, Rabat, Morocco

Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco

Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco

Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA

Department of Physics, University of Washington, Seattle, Washington, USA

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
142 Department of Physics, Shinshu University, Nagano, Japan
143 Fachbereich Physik, Universität Siegen, Siegen, Germany
144 Department of Physics, Simon Fraser University, Burnaby BC, Canada
145 SLAC National Accelerator Laboratory, Stanford, California, USA
146a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
146b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
147a Department of Physics, University of Cape Town, Cape Town, South Africa
147b Department of Physics, University of Johannesburg, Johannesburg, South Africa
147c School of Physics, University of the Witwatersrand, Johannesburg, South Africa
148a Department of Physics, Stockholm University, Sweden
148b The Oskar Klein Centre, Stockholm, Sweden
149 Physics Department, Royal Institute of Technology, Stockholm, Sweden
150 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
151 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
152 School of Physics, University of Sydney, Sydney, Australia
153 Institute of Physics, Academia Sinica, Taipei, Taiwan
154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
160 Department of Physics, University of Toronto, Toronto ON, Canada
161a TRIUMF, Vancouver BC, Canada
161b Department of Physics and Astronomy, York University, Toronto ON, Canada
162 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
163 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
164 Centro de Investigaciones, Universidad Antonio Nariño, Bogota, Colombia
165 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
166a INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
166b ICTP, Trieste, Italy
166c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166d Department of Physics, University of Illinois, Urbana, Illinois, USA
166e Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNMT, University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver BC, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, Connecticut, USA
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Deceased.
Also at Department of Physics, King’s College London, London, United Kingdom.
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
Also at Novosibirsk State University, Novosibirsk, Russia.
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at TRIUMF, Vancouver BC, Canada.
Also at Department of Physics, California State University, Fresno CA, USA.
Also at Tomsk State University, Tomsk, Russia.
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
Also at Università di Napoli Parthenope, Napoli, Italy.
Also at Institute of Particle Physics (IPP), Canada.
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
Also at Louisiana Tech University, Ruston LA, USA.
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
Also at Department of Physics, The University of Texas at Austin, Austin TX, USA.
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
Also at CERN, Geneva, Switzerland.
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.
Also at Manhattan College, New York NY, USA.
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France.
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France.
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India.
Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
Also at Section de Physique, Université de Genève, Geneva, Switzerland.
Also at International School for Advanced Studies (SISSA), Trieste, Italy.
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, USA.
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia.
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
Also at Department of Physics, Oxford University, Oxford, United Kingdom.
Also at Department of Physics, Nanjing University, Jiangsu, China.
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
Also at Department of Physics, The University of Michigan, Ann Arbor MI, USA.
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa.
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.