A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments

Tom Heskes¹*, Rob Eisinga² and Rainer Breitling³

Abstract

Background: The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution.

Results: We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood.

Conclusions: We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip.

Keywords: Rank product statistic, p-value distribution, Transcriptomics, Proteomics, Metabolomics

Background

Post-genomic data analysis (transcriptomics, proteomics, metabolomics) is often concerned with the identification of differentially expressed molecules (transcripts, proteins, metabolites) under different experimental conditions (e.g., treatment vs. control) using multiple biological replicates. A simple and widely used non-parametric statistical method, initially introduced by Breitling et al. [1] for gene expression microarrays, is to rank the molecules within each experiment in order of evidence for differential expression and to calculate the product of the ranks across experiments. This rank product method is based on the common biological belief that if a molecule is repeatedly at the top of the lists ordered by up- or down-regulation fold change in multiple treatment–control experiments, the molecule is more likely to be differentially expressed.

The rank product statistic is particularly useful for the analysis of noisy datasets and a small number of replicates, as it does not rely on any distributional assumptions [1-4]. Its main weakness is sensitivity to variations in molecule-specific variance, namely higher variance of weakly expressed molecules. This limitation is mitigated, in practice, by variance-stabilizing normalization [5]. The rank product method is used to combine ranked lists in gene expression profiling and in various other post-genomic datasets with ranked scores, including proteomics and metabolomics [6-8]. Such ranking is important because only a limited number of candidate molecules (transcripts

* Correspondence: t.heskes@science.ru.nl

¹Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands

Full list of author information is available at the end of the article

© 2014 Heskes et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
or proteins or metabolites) can usually be followed up in a
typical biological downstream analysis for confirmation or
further study. Another advantage of the ranking is the
resulting suppression of the unwanted influence of corre-
lated behaviour between different molecules. In contrast to
traditional marginal tests, such as the t-test, in the rank
product approach correlating molecules ‘compete’ for posi-
tions in the ranked list. In the extreme case of identical
behaviour of all molecules, a t-test would yield the same
(possibly false positive) result for all molecules, whereas in
a rank product test, ties in the ranked list would be broken
randomly, guaranteeing that none of them would be con-
sidered differentially expressed. As a useful side effect
of this feature, the rank product test becomes increasingly
conservative as larger fractions of the set of molecules
studied are differentially expressed: if all molecules are
changing to the same extent, their rank ordering will again
be random.

Having ranked the molecules by their rank product, the
next step is to obtain the p-value associated with each
molecule under the null hypothesis that the molecule is
differentially expressed in any of the independent
replicate experiments. The crux here is the requirement
to correct for multiple testing inherent in the need to per-
form one test per queried molecule. Methods that use the
entire distribution of p-values to estimate or control the
false discovery rate (FDR) assume and perform well only
when accurate p-values are available [9]. It is therefore
imperative to obtain the most accurate probability esti-
mates in applications that involve a massive number of tests
[10], such as in the analysis of transcriptome profiling data.

For this reason, exact calculation is preferred in computing
p-values for use in subsequent molecule-specific FDR-
adjustment procedures. Eisinga et al. [11] recently provided
a derivation of the exact probability distribution of the
discrete rank product statistic and its true tail probabilities.
An obstacle of exact calculation is that, whereas the p-values
of small rank products can be calculated swiftly, computing
the probabilities of large rank products may consume con-
siderable amounts of time. Although the speed of execution
will depend on computing power, exact p-value calculation
becomes time prohibitive in multiple experiments for rank
product values exceeding 10^7. Unfortunately, in a typical
large postgenomic molecular profiling study, such rank
products may occur for the bulk of the molecules analysed.

If exact calculation is infeasible, re-sampling-based
inference methods such as permutation testing may be
considered. The permutation re-sampling procedure in-
volves a trade-off between accuracy and number of permuta-
tions [12]. That is, the number of permutations needed is always larger than the inverse of the p-value, but
a factor of the order of 100 or so more permutations is
required so that the p-values can be accurately estimated
to several decimal places for performing multiple-testing
adjustment. In practice, the number of permutation sam-
ple may perhaps go up to 10^{13}, but re-sampling then starts
to become unrealistically expensive, meaning that it is hard
to accurately estimate p-values smaller than 10^{-11}. Such
p-values are common in rank product analysis of the
expression values of many molecules in multiple batches.

As an alternative procedure, Koziol [13] suggested to
use the continuous gamma distribution to approximate
the sampling distribution of the discrete rank product
statistic. For large rank products the gamma calculation
performs well, and for extremely large values the gamma
p-values are close to exact. However, Eisinga et al. [11]
have shown that for smaller rank product values, i.e., the
ones biologists are most interested in, the gamma approxima-
tion has a serious bias, overestimating p-values by several
orders of magnitude, and that the error increases as the
p-values become smaller.

There is therefore a range of intermediate rank product
values in postgenomic studies where current approaches,
exact calculation and stochastic and deterministic approx-
imations, all have serious drawbacks in terms of computa-
tion time, accuracy or both. The goal of this paper is to
obtain guaranteed lower and, in particular, upper bounds
for the p-values of any rank product value observed, with
the conservative upper bound protecting against false posi-
tives. The strict bounds may also be exploited to quickly cal-
culate accurate approximate p-values for rank product
analysis of a variety of postgenomic molecular profiling data.

Methods

The rank product approach was originally derived for
paired experiments (two-colour microarrays). However
it can be applied for unpaired data, which are common
in postgenomic molecular profiling, by creating random
pairs of experiments and calculating the average rank
product for several random pairings. Without loss of
generality, we thus consider n molecules profiled in k
paired experiments. In each experiment i, a molecule
receives a random ranking r_i, i.e., any number between 1 and
n. We define $G_k(p) = n^k$ as the probability that the product
of these random rankings is smaller than rank product p:

$$G_k(p) = \frac{\sum_{r_1=1}^{n} \sum_{r_2=1}^{n} \cdots \sum_{r_k=1}^{n} \Theta(p-r_1 \times r_2 \times \cdots \times r_k)}{n^k},$$

with the Heaviside step function $\Theta(x) = 1$ iff $x \geq 0$ and 0
otherwise. We obviously have $G_1(p) = 0$ for any $p < 1$ and
$G_1(p) = n^k$ for $p \geq n^k$. Our starting point is the observa-
tion that the distribution of p for k experiments relates
to that for $k-1$ experiments. Since any rank product ρ
based on k experiments can be written as the product
of a rank r_1 in the first experiment times a rank product ρ'
based on $k-1$ experiments, we have:
can be bounded by integrals (and vice versa). As the following theorem indicates, this can be used to derive upper and lower bounds that obey recursion equations involving integrals instead of summations.

THEOREM 1. Consider the two functions \(\bar{G}_k(\rho) \) and \(\bar{G}_k(\rho) \) that satisfy the recursions

\[
\bar{G}_k(\rho) = \bar{G}_{k-1}(\rho) + \int_{1}^{\min(\rho,n)} \bar{G}_{k-1}(\rho/r) \, dr
\]

and

\[
\bar{G}_k(\rho) = G_{k-1}(\max(1,\rho/n)) + \int_{1}^{\min(\rho,n)} G_{k-1}(\rho/r) \, dr,
\]

and are both initialized at \(\bar{G}_0(\rho) = G_0(\rho) = G_0(\rho) = \Theta(\rho-1) \).

For any \(k \geq 0 \) and \(\rho \leq n^k \) we have

\[
G_k(\rho) \leq \bar{G}_k(\rho) \leq G_k(\rho).
\]

That is, \(\bar{G}_k(\rho) \) gives an upper bound on \(G_k(\rho) \) and \(\bar{G}_k(\rho) \) a lower bound. The proof is detailed in Additional file 1.

For ease of exposition, we introduce the constant \(\Delta \) and consider the recursion

\[
\bar{G}_k(\rho) = \Delta \bar{G}_{k-1}(\rho) + (1-\Delta) \bar{G}_{k-1}(\max(1,\rho/n))
\]

\[
+ \int_{1}^{\min(\rho,n)} \bar{G}_{k-1}(\rho/r) \, dr.
\]

Setting \(\Delta \) to either 0 or 1, we obtain the recursion for the lower and upper bound, respectively. We will argue and empirically show that an accurate approximation (but no guaranteed bound) can be obtained by taking the geometric mean of the upper and lower bound.

The recursion starts from \(\bar{G}_0(\rho) = \Theta(\rho-1) \). The constraint that \(\bar{G}_k(\rho) = G_k(\rho) = 0 \) for \(\rho < 1 \), and the consequence that the upper limit of the integral is a nonlinear function of \(\rho \), seriously complicates the solution of the recursion (4). However, we will see that if we write \(\bar{G}_k(\rho) \) as a piecewise function,

\[
\bar{G}_k(\rho) = \begin{cases}
\bar{G}_{k,0}(\rho) = n^k & \text{if } \rho \geq n^k \\
\bar{G}_{k,j}(\rho) = \bar{G}_{k,j+1}(\rho) = 0 & \text{otherwise}
\end{cases}
\]

the recursion equation for the pieces \(\bar{G}_{k,j}(\rho) \) simplifies considerably and can in fact be solved.

THEOREM 2. With \(\bar{G}_k(\rho) \) a piecewise function of the form (5), the pieces \(\bar{G}_{k,j}(\rho) \) satisfy, for \(1 \leq j \leq k - 1 \), the recursion
\[\tilde{G}_{kj}(\rho) = \Delta \tilde{G}_{k-1,j-1}(\rho) + (1 - \Delta) \tilde{G}_{k-1,j}(\rho/n) + \int_{\rho/n}^{\rho} dr \tilde{G}_{k-1,j-1}(\rho/r) + \int_{\rho/n}^{\rho} \tilde{G}_{k-1,j}(\rho/r) dr, \]

and, for \(j = k, \)
\[\tilde{G}_{kk}(\rho) = \Delta \tilde{G}_{k-1,k-1}(\rho) + 1 - \Delta + \int_{0}^{\rho} \tilde{G}_{k-1,k-1}(\rho/r) dr. \]

The proof is given in Additional file 2. The intuition behind the piecewise construction follows if one tries to construct the recursion for \(k = 1, 2, 3, \) and so on. For \(k = 1, \rho \) is always smaller than \(n, \) so \(\max(1, \rho/n) = 1 \) and \(\min(\rho, n) = \rho. \) For \(k = 2, \) we can separate the cases \(\rho \geq n \) and \(\rho < n, \) corresponding to the pieces \(\tilde{G}_{21} \) and \(\tilde{G}_{23}, \) respectively. For \(k = 3, \) we again separate the cases \(\rho \geq n \) and \(\rho < n, \) but now we also have to check whether \(\rho/r \) in the integrand \(\tilde{G}_{2}(\rho/r) \) is larger than \(n \) (i.e., refers to \(\tilde{G}_{22} \)) or smaller than \(n \) (i.e., refers to \(\tilde{G}_{21} \)). Working this out, one realizes that three different pieces are needed for \(\tilde{G}_{3}. \) Induction on \(k \) leads to the piecewise function (5) and the recursions (6) and (7). These recursions now involve integrals, instead of summations, with limits that are either constants or linear in \(\rho, \) instead of a nonlinear function of \(\rho. \)

Lattice

Figure 1 sketches the dependencies between different combinations of \(k \) and \(j, \) where \(j \) is the index of the interval \([n^{k-j}, n^{k-j+1}]\) that contains the rank product \(\rho, \) i.e., \(j = \text{ceiling}(k - \log \rho / \log n). \)

An actual implementation to compute \(\tilde{G}_{kj}(\rho) \) can be recursive, e.g., starting at node \((k,j)\) and recursively computing the parameters that are needed. The alternative is to pre-calculate which parameters are needed and then go through these in two for-loops. To compute \(\tilde{G}_{kj}(\rho), \) one possibility is then to have an outer loop with \(j' \) running from 0 to \(j \) (from left to right on the lattice in Figure 1), with an inner loop with \(k' \) running from \(j' \) to \(\max(k, k - j + j') \) (from top to bottom). The other option is to have an outer loop with \(k' \) running from 0 to \(k \) (from top to bottom) and \(j' \) from \(\max(k' - k + j, 0) \) to \(\min(k', j) \) (from left to right).

Functional form

The recursions (6) and (7), together with the initialization \(\tilde{G}_{k0}(\rho) = n^{k'}, \) fully determine \(\tilde{G}_{kj}(\rho) \) for any \(\rho \) (and corresponding \(j \)) and \(k. \) We could replace analytical integration by numerical integration. However,
trying a few steps, one soon realizes that the integrations that are required in each of the steps can be done analytically and a pattern starts to emerge. It appears that every solution can be written in the form
\[\tilde{G}_{kj}(\rho) = \varepsilon_{kj} + \delta_{kj} \rho + y_{kj}^T \Psi(\rho; \alpha_j, \nu^{j+\beta_i}), \] (8)
with
\[\Psi(\rho; \alpha, \lambda) = \rho \left(\log \frac{\rho}{1} \right)^\alpha, \]
and appropriate choices for the parameters \(\alpha, \beta, \gamma, \delta, \) and \(\epsilon. \) Here \(\alpha_{kj}, \beta_{kj}, \) and \(y_{kj} \) are vectors of equal length. We used vector notation such as
\[y^T \Psi(\rho; \alpha, n^{j+\beta_i}) = \sum_m y_m \Psi(\rho; \alpha_m, n^{j+\beta_m}), \]
where the sum runs over all elements of the vectors.

THEOREM 3. The solutions of the recursions (6) and (7), starting from the initialization \(\tilde{G}_{k0} = n^k, \) can be written in the form (8). See Additional file 3 for the proof.

Updates and implementation

Now that we have confirmed that the solution is indeed of the form (8), what remains is to find the proper updates of the parameters \(\theta \equiv \{ \alpha, \beta, \gamma, \delta, \epsilon \}. \) These are given in the following theorem, the proof of which is given in Additional file 4.

THEOREM 4. The parameters \(\theta \equiv \{ \alpha, \beta, \gamma, \delta, \epsilon \} \) of the solution \(\tilde{G}_{kj}(\rho) \) obey the update equations, for \(1 \leq j \leq k - 1, \)
\[a_{kj} = [1, 1, \alpha_{kj-1}, 1, \alpha_{kj-1} + 1, \alpha_{kj} + 1] \]
\[b_{kj} = [0, 1, \beta_{kj-1} + 1, \beta_{kj-1} + 1, \beta_{kj} + 1] \]
\[y_{kj} = [\delta_{kj-1}, -\delta_{kj-1}, \Delta y_{kj-1}, -\Delta y_{kj-1}, -\phi_{kj-1}] \]
\[\delta_{kj} = \Delta \delta_{kj-1} + \frac{\Delta \delta_{kj-1}}{\varepsilon_{kj-1}} + \frac{1}{\epsilon_{kj-1}} \left(z_{kj-1} - z_{kj-1} \right) \]
\[e_{kj} = \left(1 - \Delta \right) \left(\varepsilon_{kj-1} - \varepsilon_{kj-1} \right) + n \varepsilon_{kj-1}, \] (9)

with shorthand
\[\phi_{kj} = \left(\frac{y_{kj}}{\left(1 - \beta_{kj} \right)} \right) \log(n), \]
and, for \(j = k, \)
\[a_{kk} = [1, 1, \alpha_{k-1}, 1, \alpha_{k-1} + 1] \]
\[b_{kk} = [0, 1, 1, 1, 1] \]
\[y_{kk} = [\delta_{k-1}, \Delta y_{k-1}, -\phi_{k-1}] \]
\[\delta_{kk} = \Delta \delta_{k-1} + \delta_{k-1} \]
\[e_{kk} = (1 - \Delta) \left(1 - e_{k-1} \right). \] (10)

In the above expressions, division \((y \div (\beta + 1)) \) and exponentiation \((\beta \to power (\alpha + 1)) \) are to be interpreted element-wise (hence the "\(\equiv \)" and \([1, 1, \alpha_{k-1}, 1, ...] \)) stands for the concatenation of elements and vectors into a new (longer) vector. The update equations can be initialized by setting
\[e_{k0} = n^k, \]
\[\delta_{k0} = 0, \]
\[\alpha_{k0} = \beta_{k0} = y_{k0} = 0, \] (11)
for all \(0 \leq k \leq k. \)

From the updates it can be seen that each \(a_{kj,m} \in [1, ..., k] \) and each \(b_{kj,m} \in [0, 1]. \) So, at most there will be \(2k \) unique combinations of \(\alpha \) and \(\beta \) values. In an actual implementation, with every update we first compute and concatenate all \(\alpha \)'s and \(\beta \)'s and then confine them to unique combinations by adding the \(\gamma \) coefficients that correspond to the same combination.

To compute \(\tilde{G}_{kj}(\rho) \) for the whole range of rank products \(\rho \) at once, we first compute the set of corresponding intervals labelled by \(j. \) For all \(j \in [1, \infty) \) we then need to calculate the corresponding \(\theta_{kj} \). We can do this recursively or using for-loops. When doing this recursively, it is wise to keep track of the parameters that already have been computed to prevent repetitive calculations. See Algorithm 1 in the Additional file 5. When using for-loops, following the same line of reasoning as suggested by Figure 1, we have an outer loop with \(j \) running from 0 to max(\(j \)) (from left to right) and an inner loop with \(k \) running from \(j \) to max(\(k \)) (from top to bottom). Alternatively, we can have an outer loop with \(k \) running from 0 to \(k \) (from top to bottom) and \(j \) from \(\max(k - \min(j), \max(j)) \) to min(\(k, \max(j) \)) (from left to right). This latter ordering is taken in Algorithm 2 in Additional file 5. The solution for each \(\rho \) then follows by computing \(\tilde{G}_{kj}(\rho) \) from (8), with \(j \) labelling the interval containing \(\rho. \) Algorithm 1 is implemented in R (R Core Team [14]) and the R code is published in Additional file 6 and is available at http://www.ru.nl/publish/pages/72696/rankprodounds.zip.

Exact calculation and gamma approximation

The exact \(p \)-values may be obtained by a brute force search using the discrete recursion (1). An alternative method, proposed by Eisinga et al. [11], is to use number theory to obtain a combinatorial exact expression for calculating the discrete probability distribution of the rank product statistic. The distribution is asymmetric (i.e., positively skewed) and in determining the \(p \)-value, all probabilities need to be
calculated, from the smallest rank product possible, with $\rho = 1$, to the rank product value of interest. This implies that the exact statistical significance of large rank products may take unacceptably long amounts of time to compute [11,15,16].

In [13], Koziol argues that under the null hypothesis for experiment i the p-values $r_i/(n + 1)$ are approximately uniformly distributed on the interval [0,1]. As the probability distribution of the negative log-transformed p-values is given by the exponential distribution with scale parameter 1, the negative sum of the log-transformed p-values over k independent experiments has a Gamma($k,1$) distribution (see also Pounds and Cheng [17]). This approach is equivalent to Fisher’s [18] method of combining p-values over independent tests. As illustrated below, the assumption that the distribution of the p-values is uniform on the continuous interval [0,1], when in fact it is uniform on the discrete set $\{1/(n + 1), 2/(n + 1), \ldots, n/(n + 1)\}$, leads to substantial deviations from the right tail of the true distribution.

Results and discussion

Time performance and accuracy

The R program computes the bounds and the geometric mean p-value approximation at a very fast speed. For example, it takes approximately 2 milliseconds to calculate the upper bound p-value of any rank product ρ in the range 1 to n^k, for $n = 10000$ and $k = 4$, on a HP desktop computer using the interpreted R language running under Windows 7 with an Intel Core i7 CPU at 2.9 GHz. It takes twice as much time to calculate the geometric mean p-value approximation. Unlike exact calculation, the algorithm’s computational time is almost unrelated to the value of rank product ρ.

To examine the effect of the number of experiments k on the algorithm’s running time, we generated 10000 random draws from the discrete uniform distribution on $[1, n^k]$ and calculated the upper bounded p-value of the simulated rank products, for $n = 10000$ and $k = 2, \ldots, 50$. Figure 2 plots the computation time (in milliseconds) for the calculation of 10000 p-values and a third-order polynomial fitted line.

The figure indicates that computation time is no limiting factor when it comes to approximate p-value calculation of rank products, even for very demanding problems. Running time increases polynomially (of maximum order 3) with increasing k. Also, the time needed to do the same calculation for much larger n is similar to the time figures shown in the plot, as the algorithm’s computational time is not only virtually unrelated to rank product ρ, but also unaffected by n. This implies that the proposed calculation method should work well with all sample and replicate
Figure 3 (See legend on next page.)
sizes typically encountered in postgenomic molecular profiling experiments.

To assess numerical accuracy, the entire p-value distribution was obtained for both large and small values of n and k (i.e., $n = 10,10000$ and $k = 4,200$). Figure 3 displays the gamma approximation, the upper and lower bounds, and the geometric mean p-value approximation. The exact p-values are reported only for small values of ρ (right-hand panels of Figure 3) and for the entire range of rank products of the smallest n and k (left-hand panel of Figure 3C). Exact p-value calculation of the entire distribution is computationally unmanageable (or at least extremely time consuming) for the other values of n and k. As can be seen in Figure 3A, the upper and lower bounds are rather tight. Relatively speaking, i.e., on a logarithmic scale, they are most tight for large rank products. For small rank products they are in this case ($n = 10000$ and $k = 4$) at most a factor 3 off, that is higher/lower than the exact p-value. The approximation obtained by taking the geometric mean of the upper and lower bound is seen to be very accurate.

Trying different values of n and k, the curves look extremely similar when we plot them over the entire range of rank products, that is, for log-transformed p-values, between $-k \log n$ and 0. The range between the log upper bound and the log lower bound is more or less independent of n and increases roughly linear with k, but then so does the range of log p-values. With increasing n, the range of log p-values does increase logarithmically with n, where the range between upper and lower bound remains about constant (see Figure 3C for $n = 10$ and $k = 4$). This makes that curves for large n look most impressive in the sense of displaying tight bounds. Results for small n and large k are least impressive (see Figure 3D for $n = 10$ and $k = 20$). In any case, excluding extremely large rank products, the upper bounds are always orders of magnitude better than the gamma approximation. The latter assumes a continuous distribution and this assumption is too strong for the analysis of discrete rank products.

When trying to find an even better approximation or bound for $G_k(\rho)$, one option is to use the continuous approximation scheme to compute $G_{k-1}(\rho')$ for all $\rho' \leq \rho$ and then apply the discrete recursion (1) to arrive at better $\tilde{G}_k(\rho)$. Initial attempts revealed that this indeed yields somewhat tighter bounds (e.g., a factor 1.5 off instead of 2.5) and a more accurate approximation, but not to the extent that it seems worth the computational effort.

Application

To illustrate our method in a real-world application, gene expression data on human aging were obtained from Van den Akker et al. [19], available at http://onlinelibrary.wiley.com/doi/10.1111/acel.12160/supinfo [Supplementary Table S2]. The data set contains the statistical results for 9047 unique genes (expressed in 2539 individuals) from four different studies. The authors employed rank product analysis to identify genes consistently up- or down-regulated with age across the four data sets. Table 1 displays the top 25 genes having increased expression with age.

We obtained the exact p-values and, ideally, one should use these values in correcting for multiple testing as they are the gold standard in the sense that the sampling distribution is known exactly. Only by deciding to accept or reject the null on the basis of exact p-values are we guaranteed to be protected from Type-1 errors at the desired significance level. However, it takes considerable amounts of time to calculate the p-value for the gene listed in the bottom of Table 1 (approximately 120 minutes) and it is (by far) not feasible to obtain the exact p-values of the largest rank products on a timely enough basis. The strict upper and lower bounds, however, perform well in the sense that the limits are narrow and the bias is tiny. Although the geometric mean p-value approximation provides no absolute guarantee to protection from Type-1 errors, the estimates and the exact probabilities are seen to be very close. The gamma distribution is seen to produce rather inaccurate approximate results.

Bonferroni corrections are one approach for controlling the experiment-wide false positive rate (π) by specifying what α value should be used for each individual test, taking $\alpha = \pi / n$. For the current study, $\pi = 0.05$ gives $\alpha = 0.05/9047 = 5.526 \times 10^{-6}$. We declare a test (i.e., gene) to be significant if $p \leq \alpha$.

(See figure on previous page.)

Figure 3

Figure 3 Approximations and strict bounds for ρ-value distribution. (A) Strict bounds and approximations (geometric mean of upper and lower bound, and gamma) for $n = 10000$ molecules and $k = 4$ experiments, on the left-hand side over the whole range of rank products, on the right-hand side for small rank products only (gamma approximation is outside the figure). It can be seen that, on the log scale, the bounds are very tight. Zooming in on small rank products, the bounds are on average about a factor 2.5 off (i.e., higher/lower than the exact p-value), yet the geometric mean approximation is still very close to the exact p-value. (B) Same as (A), but for $n = 10000$ and $k = 20$. The curve on the left looks more or less the same but, as is best seen on the right, the bounds are much further off (almost a factor 100). (C) Same as (A), but for $n = 10$ and $k = 4$. The curve on the left may look worse, but that is mainly because of the scaling of the y-axis. Relatively speaking, the bounds are still on average about a factor 2.5 off. (D) Same as (A), but for $n = 10$ and $k = 20$. With very small n and relatively large k, we get the worst of both worlds.
The results for both up- and down-regulated genes are shown in the left panel of Table 2. Under a strict Bonferroni correction, we reject the null hypothesis of no differential expression with associated exact \(p \)-value for 25 up- and 42 down-regulated genes. The geometric mean \(p \)-value approximation produces results identical to the exact method. The asymptotic gamma approximation is too conservative in that it tends to understate the evidence against the null hypothesis. While reducing the number of false positives, it also reduces the number of true discoveries, especially for down-regulated genes. The Bonferroni method applied to the gamma \(p \)-values declared 30 genes to be significant, instead of 42.

The traditional Bonferroni correction may be too stringent in postgenomic multiple testing, where the number of molecules profiled in parallel is very large, and falsely detecting a small number of molecules as differentially expressed will usually not be a serious problem if the majority of significant molecules are properly selected. A less stringent method is to estimate the FDR for the entire data.
collection of p-values, defined as the expected number of false positives amongst the molecules selected as significantly differentially expressed, described in detail in Storey [20] and Storey and Tibshirani [9]. We obtained the FDR adjusted p-values, i.e., q-values, for all approximate p-value estimates, using Storey’s R program Q-value (with the bootstrap estimator). The estimated q-value for any particular test is a function of the p-value for that test and the distribution of the entire set of p-values. As it utilizes information from all the p-values at once, it is impossible to obtain q-values based on the exact probabilities. The right panel of Table 2 presents the number of significant calls for various thresholds by p-value approximation method. As can be seen, about \([(57–40)/57 \times 100\%] 30\% of the differentially expressed up-regulated genes selected using the upper bounded p-values at a q-value of 0.01, were not detected by the overly conservative gamma approach.

Conclusions
In replicated molecular profiling experiments, where large numbers of molecules are simultaneously tested, accurately estimated p-values are essential for making justified, reproducible decisions about which molecules to consider as significantly differentially expressed in the downstream analysis. We provide a tailor-made solution to calculate strict bounds and accurate approximate p-values for rank product analysis of postgenomic molecular profiling data. The proposed algorithm runs very fast and gives a slightly conservative upper bound protecting against false positives and a close approximate estimate of the true p-values.

Over the past decade, the rank product method, developed originally for the analysis of microarray datasets, has found widespread use in various settings such as proteomics [6,7], metabolomics [8], RNAi screening [21], meta-analysis [4,15,22], and classification [23]. However, its application has been restricted to medium sample and replicate sizes due to an intensive permutation test used to calculate significance. The algorithm presented here can provide an order of magnitude increase in throughput as compared with permutation testing. It also allows researchers to explore new application domains with even larger multiple testing issue, e.g., in large genetics studies with millions of markers or RNAseq analyses where the number of studies transcripts is larger than the number of genes or in applications to image analysis.

Software availability
The R code is also freely available at http://www.ru.nl/~pub/726696/rankprodbounds.zip.

Additional files
Additional file 1: Proof of Theorem 1.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TH designed the approximation method, implemented the algorithm, and drafted the manuscript. RE participated in the design of the method, performed the data analysis and drafted the manuscript. RB supervised the study and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Rank products of the genes in the transcript study discussed here were obtained from Van den Akker et al. [19]. The authors are grateful to Erik van den Akker for valuable correspondence about the data. We also gratefully acknowledge financial support from the Netherlands Organization for Scientific Research (NWO) via the Complexity project (645.000.003).

Author details
1Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands. 2Department of Social Science Research Methods, Radboud University Nijmegen, Nijmegen, The Netherlands. 3Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, UK.

Received: 6 August 2014 Accepted: 29 October 2014
Published online: 21 November 2014

References
12. Knijnenburg TA: Fewer permutations, more accurate \(P \)-values.

doi:10.1186/s12859-014-0367-1

Cite this article as: Heskes et al.: A fast algorithm for determining bounds and accurate approximate \(P \)-values of the rank product statistic for replicate experiments. BMC Bioinformatics 2014 15:367.