Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

Measurements of fiducial and differential cross sections of Higgs boson production in the $H \to ZZ^* \to 4\ell$ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb$^{-1}$ of pp collision data, produced at $\sqrt{s} = 8$ TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.
Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

Measurements of fiducial and differential cross sections of Higgs boson production in the $H \to ZZ^* \to 4\ell$ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on $20.3\,\text{fb}^{-1}$ of pp collision data, produced at $\sqrt{s} = 8$ TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.

1. Introduction

In 2012 the ATLAS and CMS collaborations announced the discovery of a new particle [1, 2] in the search for the Standard Model (SM) Higgs boson [3–8] at the CERN Large Hadron Collider (LHC) [9]. Since this discovery, the particle’s mass m_H was measured by the ATLAS and CMS collaborations [10–12]. The result of the ATLAS measurement based on $25\,\text{fb}^{-1}$ of data collected at centre-of-mass energies of 7 TeV and 8 TeV is 125.36 ± 0.41 GeV. Tests of the couplings and spin/CP quantum numbers have been reported by both collaborations [11, 13, 14] and show agreement with the predicted scalar nature of the SM Higgs boson.

In this Letter, measurements of fiducial and differential production cross sections for the $H \to ZZ^* \to 4\ell$ decay channel are reported and compared to selected theoretical calculations. The event selection and the background determination are the same as in Ref. [15], where a detailed description is given. For this measurement, an integrated luminosity of $20.3\,\text{fb}^{-1}$ of pp collisions is analysed. The data were collected at the LHC at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and recorded with the ATLAS detector [16].

The ATLAS detector covers the pseudorapidity range $|\eta| < 4.9$ and the full azimuthal angle ϕ. It consists of an inner tracking detector and spin/CP quantum numbers have been reported by both collaborations [11, 13, 14] and show agreement with the predicted scalar nature of the SM Higgs boson.

[1] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) at the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln[\tan(\theta/2)]$.
m_{34} (the leading and subleading lepton pairs are defined in Section 3) and the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos \theta^*|$. The number of jets n_{jets} and the transverse momentum of the leading jet $p_{T,\text{jet}}$ are also included. The distribution of the $p_{T,H}$ observable is sensitive to the Higgs boson production mechanisms as well as spin/CP quantum numbers, and can be used to test perturbative QCD predictions. This distribution has been studied extensively and precise predictions exist (see e.g. Refs. [17, 21]), including the effect of finite quark masses. The distribution of the $|y_H|$ observable can be used to probe the parton distribution functions (PDFs) of the proton. The distributions of the decay variables m_{34} and $|\cos \theta^*|$ are sensitive to the Lagrangian structure of Higgs boson interactions, e.g. spin/CP quantum numbers and higher-dimensional operators. The jet multiplicity and transverse momentum distributions are sensitive to QCD radiation effects and to the relative rates of Higgs boson production modes. The distribution of the transverse momentum of the leading jet probes quark and gluon radiation.

2. Theoretical predictions and simulated samples

The Higgs boson production cross sections and decay branching fractions as well as their uncertainties are taken from Refs. [21, 22]. The cross sections for the gluon-fusion (ggF) process have been calculated to next-to-leading order (NLO) [23, 24], and next-to-next-to-leading order (NNLO) [26, 28] in QCD with additional next-to-next-to-leading logarithm (NNLL) soft-gluon resummation [29]. The cross section values have been modified to include NLO electroweak (EW) radiative corrections, assuming factorization between QCD and EW effects [30, 31]. The cross sections for the vector-boson fusion (VBF) processes are calculated with full NLO QCD and EW corrections [35, 37], and approximate NNLO QCD corrections are included [38]. The cross sections for the associated WH/ZH production processes (VH) are calculated at NLO [39] and at NNLO [40] in QCD, and NLO EW radiative corrections [41] are applied. The cross sections for associated Higgs boson production with a $t\bar{t}$ pair (tH) are calculated at NLO in QCD [42, 43].

The Higgs boson branching fractions for decays to four-lepton final states are provided by PROPHECY4F [46, 47], which implements the complete NLO QCD+EW corrections and interference effects between identical final-state fermions.

The $H \rightarrow ZZ^* \rightarrow 4\ell$ signal is modelled using the POWHEG Monte Carlo (MC) event generator [48–52], which calculates separately the ggF and VBF production mechanisms with matrix elements up to NLO. The description of the Higgs boson transverse momentum spectrum in the ggF process is adjusted to follow the calculation in Ref. [18, 20], which includes QCD corrections up to NLO and QCD soft-gluon resummations up to NNLL, as well as finite quark masses [53]. POWHEG is interfaced to PYTHIA8 [54] for showering and hadronization, which in turn is interfaced to PHOTOS [55, 56] to model photon radiation in the final state. PYTHIA8 is used to simulate VH and tH production. The response of the ATLAS detector is modelled in a simulation [57] based on GEANT4 [58].

The measured fiducial cross-section distributions are compared to three ggF theoretical calculations: POWHEG without the adjustments to the $p_{T,H}$ spectrum described above, POWHEG interfaced to MINLO (Multi-scale improved NLO) [59] and HRES2 (v.2.2) [13, 20]. POWHEG with MINLO provides predictions for jet-related variables at NLO for Higgs boson production in association with one jet. The HRES2 program computes fixed-order cross sections for ggF SM Higgs boson production up to NNLO. All-order resummation of soft-gluon effects at small transverse momenta is consistently included up to NNLL, using dynamic factorization and resummation scales. The program implements top- and bottom-quark mass dependence up to NLL+NLO. At NNLL+NNLO level only the top-quark contribution is considered. HRES2 does not perform showering and QED final-state radiation effects are not included.

The contributions from the other production modes are added to the ggF predictions. At a centre-of-mass energy of 8 TeV and for a Higgs boson mass of 125.4 GeV, their relative contributions to the total cross section are 87.3% (ggF), 7.1% (VBF), 3.1% (WH), 1.9% (ZH) and 0.6% (tH), respectively.

All theoretical predictions are computed for a SM Higgs boson with mass 125.4 GeV. They are normalized to the most precise SM inclusive cross-section predictions currently available [60], corrected for the fiducial acceptance derived from the
simulation.

The \(ZZ, WZ, t\bar{t}\) and \(Z + \text{jets}\) background events are modelled using the simulated samples and cross sections described in Ref. 12.

3. Event selection

The detector level physics object definitions of muons, electrons, and jets, and the event selection applied in this analysis are the same as in Ref. 13, with the exception of the jet selection and the additional requirement on the four-lepton invariant mass described below. A brief overview is given in this section.

Events with at least four leptons are selected with single-lepton and dilepton triggers. The transverse momentum and transverse energy thresholds for the single-muon and single-electron triggers are 24 GeV. Two dimuon triggers are used, one with symmetric thresholds at 13 GeV and the other with asymmetric thresholds at 18 GeV and 8 GeV. For the dielectron trigger the symmetric thresholds are 12 GeV. Furthermore there is an electron–muon trigger with thresholds at 12 GeV (electron) and 8 GeV (muon).

Higgs boson candidates are formed by selecting two same-flavour opposite-sign (SFOS) lepton pairs (a lepton quadruplet). The leptons must satisfy identification, impact parameter, and track-based and calorimeter-based isolation criteria. Each muon (electron) must satisfy transverse momentum \(p_T > 6\) GeV (transverse energy \(E_T > 7\) GeV) and be in the pseudorapidity range \(|\eta| < 2.7\) (2.47). The highest-\(p_T\) lepton in the quadruplet must satisfy \(p_T > 20\) GeV, and the second (third) lepton in \(p_T\) order must satisfy \(p_T > 15\) (10) GeV. The leptons are required to be separated from each other by \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.1\) (0.2) when having the same (different) lepton flavours.

Multiple quadruplets within a single event are possible: for four muons or four electrons there are two ways to pair the masses, and for five or more leptons there are multiple combinations. The quadruplet selection is done separately in each channel: \(4\mu, 2e2\mu, 2\mu2e, 4e\), keeping only a single quadruplet per channel. Here the first flavour index refers to the leading lepton pair, which is the pair with the invariant mass \(m_{12}\) closest to the \(Z\) boson mass \([61]\). The invariant mass \(m_{12}\) is required to be between 50 GeV and 106 GeV. The subleading pair of each channel is chosen as the remaining pair with mass \(m_{34}\) closest to the \(Z\) boson mass and satisfying the requirement \(12 < m_{34} < 115\) GeV. Finally, if more than one channel has a quadruplet passing the selection, the channel with the highest expected signal rate is kept, in the order: \(4\mu, 2e2\mu, 2\mu2e, 4e\). A \(J/\psi\) veto is applied: \(m(\ell_i, \ell_j) > 5\) GeV for SFOS lepton pairs. Only events with a four-lepton invariant mass in the range 118–129 GeV are kept. This requirement defines the signal mass window and was chosen by minimizing the expected uncertainty on the total signal yield determination, taking into account the experimental uncertainty on the Higgs boson mass.

Jets are reconstructed from topological clusters of calorimeter cells using the anti-\(k_t\) algorithm \([62]\) with the distance parameter \(R = 0.4\). In this analysis, jets \([63]\) are selected by requiring \(p_T > 30\) GeV, \(|\eta| < 4.4\) and, in order to avoid double counting of electrons that are also reconstructed as jets, \(\Delta R(\text{jet}, \text{electron}) > 0.2\).

The events are divided into bins of the variables of interest, which are computed with the reconstructed four-momenta of the selected lepton quadruplets or from the reconstructed jets: the transverse momentum \(p_T^{\text{reco}}\) and the rapidity \(y^{\text{reco}}\) of the four-lepton system, the invariant mass of the subleading lepton pair \(m_{34}^{\text{reco}}\), the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis \(|\cos \theta^{\text{reco}}|\), the number of jets \(n_{\text{jets}}^{\text{reco}}\), and the transverse momentum of the leading jet \(p_T^{\text{jet}}\). In order to distinguish them from the unfolded variables used in the cross section bin definition, they are labelled with “reco”.

4. Definition of the fiducial region

The fiducial selection, outlined in Table 1, is designed to replicate at simulation level, before applying detector effects, the analysis selection as closely as possible in order to minimize model-dependent acceptance effects on the measured cross sections.

The fiducial selection is applied to electrons and muons originating from vector-boson decays before they emit photon radiation, referred to as Born-level leptons. An alternative approach would be to correct the lepton momenta by adding final-state radiation photons within a cone of size \(\Delta R < 0.1\) around each lepton (dressing). For this analysis the acceptance difference between Born and dressed-lepton definitions is less than 0.5\%. Particle-level jets are reconstructed from all stable particles ex-
the subleading lepton pair mass as \(m_{12} \), and the subleading pair mass as \(m_{34} \).

<table>
<thead>
<tr>
<th>Event selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton kinematics: (p_T > 20, 15, 10) GeV</td>
</tr>
<tr>
<td>Mass requirements: (50 < m_{12} < 106) GeV</td>
</tr>
<tr>
<td>(12 < m_{34} < 115) GeV</td>
</tr>
<tr>
<td>Lepton separation: (\Delta R(\ell_i, \ell_j) > 0.1) (0.2)</td>
</tr>
<tr>
<td>for same- (different-) flavour leptons</td>
</tr>
<tr>
<td>J/(\psi) veto: (m(\ell_i, \ell_j) > 5) GeV</td>
</tr>
<tr>
<td>for all SFOS lepton pairs</td>
</tr>
<tr>
<td>Mass window: (118 < m_{4t} < 129) GeV</td>
</tr>
</tbody>
</table>

The background estimates used in this analysis are described in detail in Ref. \[13\]. The irreducible \(ZZ \) and the reducible \(WZ \) background contributions are estimated using simulated samples normalized to NLO predictions. For the jet-related variables, the simulation predictions are compared to data for \(m_{4t} > 190 \) GeV where the \(ZZ \) background process is dominant; shape differences between the distributions in data and simulation are used to estimate systematic uncertainties.

The reducible \(Z + \) jets and \(t\bar{t} \) background contributions are estimated with data-driven methods. Their normalizations are obtained from data control regions and extrapolated to the signal region using transfer factors. The \(\ell\ell + \mu\mu \) final state is dominated by \(Z + \) heavy-flavour jets and the \(\ell\ell + ee \) final state by \(Z + \) light-flavour jets. The misidentification of light-flavour jets as electrons is difficult to model in the simulation. Therefore the distributions for \(\ell\ell + ee \) are taken from data control regions and extrapolated to the signal region, while the background distributions for \(\ell\ell + \mu\mu \) are taken from simulated samples.

After the analysis selection about 9 background events are expected: 6.7 events from irreducible \(ZZ \) and 2.2 events from the reducible background.

The observed distributions compared to the signal and background expectations for the six reconstructed observables \(p_T^{\ell\ell,\mu\mu} \), \(|y_H^{\ell\ell,\mu\mu}| \), \(m_{34}^{\ell\ell,\mu\mu} \), \(|\cos \theta_{H^{\ell\ell,\mu\mu}}| \), \(n_{\text{jets}}^{\ell\ell,\mu\mu} \), and \(p_T^{\text{jet}}^{\ell\ell,\mu\mu} \) are shown in Fig. 1. The signal prediction includes VBF, \(ZH, WH, t\bar{t}H \), and the \textsc{Powheg} ggF calculation for a Higgs boson with \(m_H = 125 \) GeV and is normalized to the most precise SM inclusive cross-section calculation currently available [60].
Fig. 1: Data yield distributions for the transverse momentum $p_{T,\text{reco}}$ and the rapidity $|y_{\text{reco}}|$ of the four-lepton system, the invariant mass of the subleading lepton pair $m_{34,\text{reco}}$, the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos \theta_{\text{reco}}^*|$, the number of jets $n_{\text{reco, jets}}$, and the transverse momentum of the leading jet $p_{T,jet}^{\text{reco}}$ compared to signal and background expectations. The signal prediction includes VBF, ZH, WH, $t\bar{t}H$, and the Powheg ggF calculation for a Higgs boson with $m_H = 125$ GeV and is normalized to the most precise SM inclusive cross-section calculation currently available [60]. The hatched areas denote the systematic uncertainties on the backgrounds.
6. Observed differential yields and unfolding

The extraction of the signal yield for the measurement of the fiducial cross section is performed through a fit to the $m_{4\ell}$ distribution using shape templates for the signal and background contributions [13]. In this fit, the Higgs boson mass is fixed to 125.4 GeV and the parameter of interest is the total number of signal events. The extracted number of observed signal events in the mass window is $23.7^{+5.9}_{-5.3}\,(\text{stat.})^{+0.6}_{-0.4}\,(\text{syst.})$.

In the differential cross-section measurements, given the low number of signal events expected in each measured bin i, the signal yields n^{sig}_i are determined by subtracting the expected number of background events from the observed number of events. This is done within the mass window for each bin of the observable of interest. The total number of observed events in the mass window is 34 and the extracted signal yield is $25.1^{+6.3}_{-5.4}\,(\text{stat.})^{+0.6}_{-0.4}\,(\text{syst.})$ events.

The difference between the number of signal events extracted with the two methods is mainly due to fixing the Higgs boson mass to 125.4 GeV in the fit method. As reported in Ref. [10], the best fit mass in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel alone is 124.5 GeV, causing smaller weights for some events in the fit.

After subtracting the background, the measured signal yields are corrected for detector efficiency and resolution effects. This unfolding is performed using correction factors derived from simulated SM signal samples. The correction factor in the i-th bin is calculated as

$$ c_i = \frac{N^{\text{reco}}_i}{N^{\text{fid}}_i}, $$

where N^{reco}_i is the number of reconstructed events in the i-th bin of the observed distribution and N^{fid}_i is the number of events in the i-th bin of the particle-level distribution, within the fiducial region.

The unfolded signal yield in each bin is then converted into a differential fiducial cross section via

$$ \frac{d\sigma_{\text{fid},i}}{dx_i} = \frac{n^{\text{sig}}_i}{c_i \cdot L_{\text{int}} \cdot \Delta x_i}, $$

where Δx_i is the bin width and L_{int} the integrated luminosity.

The correction factors used in this analysis are obtained from simulated samples for all SM Higgs production modes, using the relative rates as predicted by the SM. The inclusive correction factor is $c = 0.553 \pm 0.002\,(\text{stat.}) \pm 0.015\,(\text{syst.})$. The correction factors for the different production modes are 0.553 (ggF), 0.572 (VBF), 0.535 (WH), 0.551 (ZH) and 0.417 (ttH). In ttH production the Higgs boson is accompanied by light- and heavy-flavour jets as well as possible additional leptons from the top-quark decays. Since lepton isolation is applied to the reconstructed but not the fiducial objects, the correction factors for ttH differ from those for the other production modes.

For each bin, the number of expected background events, the number of observed events, the luminosity, and the correction factors are used to calculate a profile likelihood ratio [64]. The likelihood includes shape and normalization uncertainties of backgrounds and correction factors as nuisance parameters. For each variable all bins are included in the likelihood and correlations of uncertainties between the different bins and between backgrounds and correction factors are taken into account. The cross sections are extracted for each bin by minimizing twice the negative logarithm of the profile likelihood ratio $-2\ln \Lambda$. The uncertainties on the cross sections are also estimated using $-2\ln \Lambda$ by evaluating its variation as a function of the parameter of interest (the cross section value in each bin). Under the asymptotic assumption [64], $-2\ln \Lambda$ behaves as a χ^2 distribution with one degree of freedom. For some of the fitted intervals, due to the low number of events, the distribution of the profile likelihood ratio does not follow a χ^2 distribution and the uncertainties are derived using pseudo-experiments.

The compatibility between the measured cross sections and the theoretical predictions is evaluated by computing the difference between the value of $-2\ln \Lambda$ at the best-fit value and the value obtained by fixing the cross sections in all bins to the ones predicted by theory. Under the asymptotic assumption [64], this statistical observable behaves as a χ^2 with the number of degrees of freedom equal to the number of bins; it is used as a test statistic to compute the p-values quantifying the compatibility between the observed distributions and the predictions. For all measured observables the asymptotic assumption is verified with pseudo-experiments.

7. Systematic uncertainties

Systematic uncertainties are calculated for the estimated backgrounds, the correction factors, and
denote the systematic uncertainties. The bands of the theoretical prediction indicate the total uncertainty.

Fig. 2: Differential unfolded cross sections for the transverse momentum $p_{T,H}$ and rapidity y_H of the Higgs boson, the invariant mass of the subleading lepton pair m_{34}, the magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame with respect to the beam axis $|\cos \theta^*|$, the number of jets n_{jets}, and the transverse momentum of the leading jet $p_{T,jet}$ in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel compared to different theoretical calculations of the ggF process: POWHEG, MINLO and HRES2. The contributions from VBF, ZH/WH and $t\bar{t}H$ are determined as described in Section 2 and added to the ggF distributions. All theoretical calculations are normalized to the most precise SM inclusive cross-section predictions currently available [8]. The error bars on the data points show the total (stat.\,\oplus\,syst.) uncertainty, while the grey bands denote the systematic uncertainties. The bands of the theoretical prediction indicate the total uncertainty.
the SM theoretical predictions; the latter only have an impact on the quantitative comparison of the measurements with different predictions. An overview of the systematic uncertainties on the total background prediction and the correction factors is shown in Table 2.

The uncertainty on the integrated luminosity is propagated in a correlated way to the backgrounds evaluated from the MC predictions and to the unfolding, where it is used when converting the estimated unfolded signal yield into a fiducial cross section. This uncertainty is derived following the same methodology as that detailed in Ref. [65] from a preliminary calibration of the luminosity scale derived from beam-separation scans performed in November 2012.

Systematic uncertainties on the data-driven estimate of the reducible backgrounds are assigned both to the normalization and the shapes of the distributions by varying the estimation methods [12].

The systematic uncertainties on the lepton trigger, reconstruction and identification efficiencies [66, 67] are propagated to the signal correction factors and the ZZ^* background, taking into account correlations. For the correction factors, systematic uncertainties are assigned on the jet resolution and energy scales. The largest systematic uncertainty is due to the uncertainty in the jet flavour composition [63, 68, 69].

The uncertainties on the correction factors due to PDF choice as well as QCD renormalization and factorization scale variations are evaluated in signal samples using the procedure described in Ref. [15] and found to be negligible. A similar procedure is followed for most variables for the irreducible ZZ background. For the jet-related observables an uncertainty is derived instead by comparing the data with the predicted ZZ distributions for $m_{4\ell} > 190$ GeV, after normalizing the MC estimate to the observed data yield. The systematic uncertainty is estimated as the larger of the data-MC difference and the statistical uncertainty on the data. This systematic uncertainty accounts for both the theoretical and experimental uncertainties in the modelling of the ZZ jet distributions. Systematic uncertainties due to the modelling of QED final-state radiation are found to be negligible with respect to the total uncertainty.

The correction factors are calculated assuming the predicted relative cross sections of the different Higgs production modes. The corresponding systematic uncertainty is evaluated by varying these predictions within the current experimental bounds [14]. The VBF and VH fractions are varied by factors of 0.5 and 2 with respect to the SM prediction and the ttH fraction is varied by factors of 0 and 5.

The experimental uncertainty on m_H [10] is propagated to the correction factors by studying their dependence on the Higgs boson mass.

The systematic uncertainties on the theoretical predictions include the PDF and QCD scale choices as well as the uncertainty on the $H \rightarrow ZZ^*$ branching fraction [60]. The procedure described in Ref. [70] is used to evaluate the scale uncertainties of the predicted n_{jets} distribution.

The upper edges of the uncertainty ranges in Table 2 are in most cases due to the highest bins in the n_{jets} and p_T, jet distributions. The background systematic uncertainties are large in some bins due to the limited statistics in the data control regions.

8. Results

The cross section in the fiducial region described in Table 1 is

$$\sigma_{\text{fid}}^{\text{tot}} = 2.11^{+0.53}_{-0.49}(\text{stat.}) \pm 0.08(\text{syst.}) \text{ fb}.$$

The theoretical prediction from Ref. [66] for a Higgs boson mass of 125.4 GeV is 1.30 ± 0.13 fb.

The differential cross sections as a function of $p_T, H, y_H, m_{3\ell}, |\cos \theta^*|, n_{\text{jets}}$, and p_T, jet are shown in Fig. 2. For all variables and bins the total uncertainties on the cross-section measurements are

<table>
<thead>
<tr>
<th>Systematic Uncertainties (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Luminosity</td>
</tr>
<tr>
<td>Reducible background</td>
</tr>
<tr>
<td>Experimental, leptons</td>
</tr>
<tr>
<td>PDF/scale</td>
</tr>
<tr>
<td>Correction factors/conversion to σ</td>
</tr>
<tr>
<td>Luminosity</td>
</tr>
<tr>
<td>Experimental, leptons</td>
</tr>
<tr>
<td>Experimental, jets</td>
</tr>
<tr>
<td>Production process</td>
</tr>
<tr>
<td>Higgs boson mass</td>
</tr>
</tbody>
</table>

The uncertainties of the predicted relative cross sections of the different Higgs boson production modes are large in some bins due to the limited statistics in the data control regions.
Table 3: Compatibility tests of data with POWHEG, MINLO and HRES2 ggF calculations of SM Higgs boson production. The compatibility p-values are obtained, as explained in the text, from the difference between $-2 \ln \Lambda$ at the best-fit value and $-2 \ln \Lambda$ with the cross sections fixed to the theory computations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>POWHEG</th>
<th>MINLO</th>
<th>HRES2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{T,H}$</td>
<td>0.30</td>
<td>0.23</td>
<td>0.16</td>
</tr>
<tr>
<td>$</td>
<td>y_{H}</td>
<td>$</td>
<td>0.37</td>
</tr>
<tr>
<td>m_{34}</td>
<td>0.48</td>
<td>0.60</td>
<td>-</td>
</tr>
<tr>
<td>$</td>
<td>\cos\theta^*</td>
<td>$</td>
<td>0.35</td>
</tr>
<tr>
<td>n_{jets}</td>
<td>0.37</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>$p_{T,jet}$</td>
<td>0.33</td>
<td>0.26</td>
<td>-</td>
</tr>
</tbody>
</table>

dominated by statistical uncertainties. POWHEG, MINLO and HRES2 calculations of ggF, added to VBF, ZH/WH and tH (see Section 2), are overlaid. The HRES2 calculation was developed for modelling the Higgs kinematic variables and is only used for $p_{T,H}$ and y_{H}. The theoretical calculations are normalized to the most precise SM inclusive cross-section predictions currently available [60].

The p-values quantifying the compatibility between data and predictions, computed with the method described in Section 6, are shown in Table 3. No significant discrepancy is observed.

9. Conclusion

Measurements of fiducial and differential cross sections in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel are presented. They are based on 20.3 fb$^{-1}$ of pp collision data, produced at $\sqrt{s} = 8$ TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The cross sections are corrected for detector effects and compared to selected theoretical calculations. No significant deviation from the theoretical predictions is observed for any of the studied variables.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; STFC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNISw, Poland; GRCES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
51 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
52 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
54 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
55 Department of Physics, Hampton University, Hampton VA, United States of America
56 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
57 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
58 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
59 Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
60 Department of Physics, Indiana University, Bloomington IN, United States of America
61 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
62 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
63 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
64 Graduate School of Science, Kobe University, Kobe, Japan
65 Faculty of Science, Kyoto University, Kyoto, Japan
66 Department of Physics, Kyushu University, Fukuoka, Japan
67 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
68 Physics Department, Lancaster University, Lancaster, United Kingdom
69 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
70 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
71 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
72 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
73 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
74 Department of Physics and Astronomy, University College London, London, United Kingdom
75 Louisiana Tech University, Ruston LA, United States of America
76 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
77 Fysiska institutionen, Lunds universitet, Lund, Sweden
Laboratorio de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic

Czech Technical University in Prague, Praha, Czech Republic

Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic

State Research Center Institute for High Energy Physics, Protvino, Russia

Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom

Physics Department, University of Regina, Regina SK, Canada

Ritsumeikan University, Kusatsu, Shiga, Japan

INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy

INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy

INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (d) Centre National de l'Énergie des Sciences Techniques Nucléaires, Rabat; (e) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (f) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (g) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco

DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Énergie Atomique et aux Énergies Alternatives), Gif-sur-Yvette, France

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America

Department of Physics, University of Washington, Seattle WA, United States of America

Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom

Department of Physics, Shinshu University, Nagano, Japan

Fachbereich Physik, Universität Siegen, Siegen, Germany

Department of Physics, Simon Fraser University, Burnaby BC, Canada

SLAC National Accelerator Laboratory, Stanford CA, United States of America

Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden

Physics Department, Royal Institute of Technology, Stockholm, Sweden

Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America

Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom

School of Physics, University of Sydney, Sydney, Australia

Institute of Physics, Academia Sinica, Taipei, Taiwan

Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto ON, Canada
(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America

(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana IL, United States of America
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

Also at Department of Physics, King’s College London, London, United Kingdom
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Novosibirsk State University, Novosibirsk, Russia
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Tomsk State University, Tomsk, Russia
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Institutio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York NY, United States of America
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Department of Physics, Nanjing University, Jiangsu, China
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased