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We prove that the functional renormalization group flow equation admits a perturbative solution and
show explicitly the scheme transformation that relates it to the standard schemes of perturbation theory. We
then define a universal scheme within the functional renormalization group.
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I. INTRODUCTION

In the functional renormalization group (FRG) approach
to quantum field theory (QFT), the effective average action
(EAA) Γk½φ� is a scale-dependent functional that interpo-
lates between the effective action (EA) Γ½φ� of a quantum
field theory when the scale k is zero Γk¼0½φ� ¼ Γ½φ�, and a
bare UV action SΛ½φ� when k is equal to a given UV scale
Λ. The scale dependence of the EAA is governed by the
flow equation

∂tΓk½φ� ¼
ℏ
2
TrðΓð2Þ

k ½φ� þ RkÞ−1∂tRk; ð1Þ

where we used t ¼ log k to parametrize the change with the
scale k [1]. In (1) we introduced the cutoff Rk that modifies
the propagator of the IR modes and that makes (1) both IR
and UV finite. Importantly, the property Rk¼0 ¼ 0 ensures
that the method reproduces the EA of the system. The
integration of the flow to k ¼ 0 will provide us a renor-
malized EA and we will indicate renormalized quantities
with the subscript R.

II. PERTURBATIVE SOLUTION OF THE
FUNCTIONAL RENORMALIZATION GROUP

It is possible to provide a solution of (1) as a perturbative
expansion in powers of ℏ [2]. We first expand

Γk½φ� ¼ SB½φ� þ
X
L≥1

ℏLΓL;k½φ�: ð2Þ

The functional SB will play the role of bare action of the
method, as will become clear below. Plugging (2) in (1) a
flow equation for each order ΓL;k½φ� can be derived by
comparing powers of ℏ on both sides. The first three orders
are

∂tSB½φ� ¼ 0;

∂tΓ1;k½φ� ¼
1

2
TrðGB;k∂tRkÞ;

∂tΓ2;k½φ� ¼
1

2
TrðΓð2Þ

1;k½φ�∂tGB;kÞ; ð3Þ

where we defined a modified propagator

GB;k ≡ ðSð2ÞB ½φ� þ RkÞ−1:

Each flow equation of this system can be separately
integrated in k by showing that the right-hand side is a
total t derivative. The procedure, however, requires regu-
larization because commuting the operators ∂t and Tr
spoils the UV finiteness of the result. We thus regularize
the functional trace

Tr∂t ¼ ∂tTrreg: ð4Þ

Any known regularization technique can be applied to (4).
In the following, we will adopt dimensional regularization
to make the closest contact with the standard methods of
perturbation theory. Integrating the first and second orders
we obtain

(5)

where the lines represent GB;k.
The traces (5) are regularized by analytically continuing

d to the value d ¼ dc − ϵ, where dc is the upper critical
dimension and ϵ > 0 but small: divergences appear as poles
of the form 1=ϵL [3]. The divergences have to be canceled
by a suitable renormalization technique. We thus introduce
a further expansion consisting of a renormalized tree-level
action SR and counterterms to subtract the divergences
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SB½φ� ¼ SR½φ� þ
X
L≥1

ℏLδSL½φ�: ð6Þ

The counterterms δSL½φ� have to cancel the divergences of
ΓL;k½φ� order by order in ℏ using the prescription of the MS
method that introduces a reference scale μ [3]. We choose

δSL ≡ −Γdiv
L;k ¼ −Γdiv

L;k¼0: ð7Þ

The crucial assumption of (7) is that the divergences are not
dressed by the scale k. Equation (7) ensures that bare and
renormalized vertices share in form the same expansion. It
is possible to prove in general that (7) holds within the
formalism, giving thus a consistency check of the method.
We will discuss the implications of (7) in the example
below, but it could be interesting to speculate on violations
of (7). We shall leave the possibility open.

III. SCALAR ϕ4 MODEL IN
d ¼ 4 − ϵ DIMENSIONS

To illustrate the technique of solving the FRG perturba-
tively, it is convenient to resort to the example of a scalar ϕ4

model in proximity of the critical dimension d ¼ 4 − ϵ. The
bare action of the theory is

SB½φ� ¼
Z

ddx

�
1

2
ð∂μφÞ2 þ

m2
B

2
φ2 þ λB

4!
φ4

�
: ð8Þ

We parametrize the renormalized action as in perturbation
theory

SR½φR� ¼
Z

ddx

�
1

2
ð∂μφRÞ2 þ

m2
R

2
φ2
R þ λRμ

ϵ

4!
φ4
R

�
; ð9Þ

where we introduced the renormalized field φR ≡ Z−1=2
B φ

and renormalized couplings mR and λR. The counterterms
δS ¼ P

L≥1ℏ
LδSL are parametrized as

Z
ddx

�
δZB

2
ð∂μφRÞ2 þ

m2
RδZm

2
φ2
R þ λRμ

ϵδZλ

4!
φ4
R

�
;

and, through (6), define implicitly the renormalization
constants ZB ¼ 1þ δZB, Zm ¼ 1þ δZm, and Zλ ¼ 1þ
δZλ as functions of bare and renormalized couplings. These
constants renormalize the theory canceling the divergences
of the Feynman diagrams through (7).
As easily evinced from (5), up to two loops the

diagrams involved in the renormalization of (8) are
the same involved in the standard perturbation theory.
The only difference lies in the propagator that is here
modified by the IR cutoff Rk and in momentum space
takes the form ðq2 þm2

R þ Rkðq2ÞÞ−1. For the computa-
tion, we found it convenient to choose the optimized
form [4] given by

Rkðq2Þ ¼ ðk2 − q2Þθðk2 − q2Þ: ð10Þ

We illustrate the effects of the IR cutoff taking a closer
look at two diagrams. At one loop, the relevant diagram
for the computation of Zλ is

(11)

whose finite part we gave at zero external momenta. At
two loops one of the relevant diagrams is

(12)

The diagrams (11) and (12) illustrate the general property
that the highest divergence of the Lth loop, which
diverges as 1=ϵL, is never dressed by the FRG scale
k. This property is not hard to be shown to hold for any
admissible cutoff choice. Subdivergences and finite parts,
instead, do depend on k. However, counterdiagrams
appearing from second loop order on are tailored to
cancel against subdivergences. Therefore, it is possible to
prove in general that the divergent part of the EAA does
not depend on k consistently with the requirement (7).
The renormalization constants take the standard values of
the MS scheme

δZm ¼ λR
16π2ϵ

þ λ2R
128π4ϵ2

−
λ2R

512π4ϵ
;

δZB ¼ −
λ2R

3072π4ϵ
;

δZλ ¼
3λR
16π2ϵ

þ 9λ2R
256π4ϵ2

−
3λ2R

256π4ϵ
: ð13Þ

The renormalization is completed requiring that λB is
independent of the reference scale μ as a function of λR
[5]. We can derive the β function and the anomalous
dimension in the usual way,

β ¼ ∂λRðμÞ
∂ log μ ¼ −ϵλR þ 3λ2R

16π2
−

17λ3R
768π4

;

η ¼ βðλRÞ
∂ logZB

∂λR ¼ λ2R
1536π4

: ð14Þ

The above results, together with the diagrammatic
expansion arising from (5), show that the FRG method
reproduces perturbation theory and, in particular, the
MS scheme at two loops. It is however instructive to
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elaborate further in this direction. The scale k of the FRG
plays a crucial role in reconstructing the loop expansion
(5) and unveils the presence of divergences that required
renormalization through (4). However, the property (7)
allows one to subtract the divergences, and therefore to
renormalize, using solely the reference scale μ of the MS
scheme, while k plays no role. This implies that the
renormalized coupling λR defined in (9) is actually the
renormalized coupling of the MS scheme and therefore
we shall refer to it as λMS ¼ λR, while its β function will
be βMS ¼ βðλMSÞ. Generally, the couplings of the FRG
method are defined through an operatorial expansion of
the EAA of the form

Γk½φ� ¼
Z

ddx
X
i

giðkÞOiðφÞ; ð15Þ

where gi are the k-dependent couplings, OiðφÞ are the
corresponding operators, and the index i ranges over all
possible operators compatible with the symmetries of the
system (φ parity in the case of the simple scalar [6]). The
FRG beta functions of the couplings gi are defined as
their t derivatives and computed by inserting (15) in (1).
We define λFRG as the coefficient of the φ4=4! operator
or, alternatively, the local part of the four-point function
of the model. Using the perturbative technique described
above we have access to an expression for λFRG as a
function of λMS through the finite parts of the loop
expansion. The relevant result at one loop is contained in
the finite part of (11) as

λFRGðkÞ ¼ λMSðμÞ þ
3

32π2
log

�
k2 þm2

R

μ2

�
λ2
MS

ðμÞ

þ 3

64π2
2m4

R þ 2k2m2
R − k4

ðk2 þm2
RÞ2

λ2
MS

ðμÞ: ð16Þ

This computation can be performed for any coupling gi
and at any loop order (in particular beyond the one loop
method developed in [7]). Specializing (16) to the case
k ¼ μ we derive a perturbative scheme-change relation
between the couplings of the MS and FRG schemes

λFRGðμÞ ¼ λMSðμÞ þ F
�
m2

R

μ2

�
λ2
MS

ðμÞ þOðλ3Þ: ð17Þ

The transformation (17) is a function of the dimension-
less ratio of the renormalized mass with the RG scale
because of dimensional reasons, and its form depends on
the FRG scheme through the choice we made for the IR
cutoff (10). A similar result was obtained in [8], where an
equivalent relation between the MS scheme and the
Wilsonian blocking RG is computed. Presumably, the
result (17) may reduce to what is obtained in [8] if a
specific sharp cutoff Rk is chosen in place of (10) to mimic

the effects of blocking. The method outlined in this section,
however, is very general and the computation can be
repeated for any cutoff choice and for any perturbative
regularization method at will and at any loop order.
It is instructive to compute the beta function of the FRG

scheme from the one of the MS scheme. At one loop we
obtain

βFRG ¼ βMS − 2
m2

R

μ2
F 0λ2

MS
þ 2FλMSβMS

¼ 3λ2FRGμ
6

16π2ðμ2 þm2Þ3 ; ð18Þ

where at this order the mass can belong to either scheme
and the perturbative inverse of (17) was used. The result
(18) is in agreement with the computations performed in
the FRG approach [6]. Furthermore βFRG underlies the fact
that the beta functions of the FRG approach are not
universal in the customary sense of QFT. This is due to
the fact that the FRG method is a mass-dependent scheme
and manifests through the nontrivial coupling of mass and
scale in (17). Nevertheless it is possible to explicitly and
perturbatively map the results of MS and FRG.

IV. THE PAPENBROCK-WETTERICH SCHEME

The topic of universality of FRG results is discussed in
[9–11] and is treated extensively in [12]. We shall now
outline the construction of a new scheme, first hinted by
Papenbrock and Wetterich in [13], that obtains universal
results within the FRG method. A truncation of (15)
containing all the operators that are generated at one loop
and that contributes to the flow of the local part of the four-
point function of the scalar model is

Γk½φ� ¼
Z

d4x

�
Z
2
ð∂μφÞ2 þ g2φ2 þ g4φ4 þ φ2f1ðΔÞφ2

þ g6φ6 þ f2ðΔ1;Δ2;Δ3Þφ2
1φ

2
2φ

2
3

�
: ð19Þ

We introduced three couplings g2;4;6 and two form factors
f1;2 which contain an amount of information equivalent to
infinitely many couplings. The notation for the second form
factor f2 is understood as follows: each Laplacian Δj ¼
−∂2

xj acts only on the corresponding insertion φ2
j ¼ φ2ðxjÞ

and subsequently the limit x1 ¼ x2 ¼ x3 ¼ x has to be
taken. The form factors f1;2 resemble closely those of the
nonlocal heat-kernel expansion [14] and satisfy the boun-
dary conditions f1ð0Þ ¼ 0 and f2ð0; 0; 0Þ ¼ 0 to have
unambiguous definitions of g4 and g6. All couplings and
form factors implicitly encode the scale dependence k
which is driven by the flow (1). Introducing the renormal-
ized field φR ¼ Z1=2φ, we define anomalous dimension η,
dimensionless renormalized couplings ~g2;4;6, and form
factors ~f1;2 in momentum space
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g2 ¼ Zk2 ~g2; η ¼ −∂ logZ=∂ log k;
g4 ¼ Z2 ~g4; f1ðq2Þ ¼ Z2 ~f1ðq2=k2Þ;
g6 ¼ Z3k−2 ~g6; f2ðq2i Þ ¼ Z3k−2 ~f2ðq2i =k2Þ: ð20Þ

Inserting (19) in (1) we compute the FRG beta function
∂t ~g4 and η, respectively, from the coefficient of the local
part of the four-point function and the order p2 of the
two-point function with incoming momentum pμ as out-
lined in [15]. The leading result as a function of all other
couplings is

∂t ~g4 ¼ 2η~g4 þ 72~g24

Z
~q
G3
~qdR ~q − 432~g24 ~λ2

Z
~q
G4
~qdR ~q

þ 96~g4

Z
~q
G3
~qdR ~q

~f1ð ~q2Þ − 15~g6

Z
~q
G2
~qdR ~q

− 8~g34

Z
~q
G2
~qdR ~q

~f2ð ~q2;− ~q2; 0Þ;

η ¼ −12~g4
Z
~q
G2
~qdRq − 8

Z
~q
G2
~qdRq

~f01ð ~q2Þ

− 4

Z
~q
G2
~qdRq ~q2 ~f

00
1ð ~q2Þ; ð21Þ

where we introduced a dimensionless momentum integra-
tion

R
~q ¼ ð2πÞ−d R d4 ~q in ~q ¼ q=k, that is the natural

argument of dimensionless renormalized propagator G ¼
Zk2ðΓð2Þ

k þ RkÞ−1 and derivative of the cutoff dR ¼
Z−1k−2∂tRk in momentum space. The results (21) show
that ∂t ~g4 and η only depend on the other dimensionless
renormalized couplings as expected on dimensional
grounds. The difference between (21) and the universal
results (14) is that the former underlies a flow that requires
the inclusion of potentially infinitely many couplings for
consistency, while the latter depends solely on the coupling
λ. This difference is the fundamental distinction of the FRG
and MS methods. While previously we found a dictionary
to translate the couplings from one scheme to the other in
the form of (17), we now seek for a consistent closure of
(21) within (19). One prescription is obtained first by
computing the flow of all the couplings and form factors
but ~g4, and then by setting them at the Gaussian fixed point
(GFP) as a function of ~g4. We call the one-dimensional
submanifold of the theory space obtained in this way
generalized GFP (gGFP). The curve is parametrized by ~g4
and ends in the GFP when ~g4 ¼ 0. We outline the method
with two examples. The leading beta function of ~g2 and its
gGFP are

∂t ~g2 ¼ −2~g2 − 6~g4

Z
~q
G2
~qdR ~q; ~g2� ¼ −3~g4

Z
~q
G2
~qdR ~q;

and a similar structure holds for ~g6. Form factors have flows
that can be computed too and the gGFP conditions

correspond to differential equations as illustrated from
the ~f1ð ~q2Þ example

∂t
~f1 − 2η ~f1 − 2~f01 ~q2 ¼ 72~g24

Z
~Q
ðG ~Qþ ~q − G ~QÞG2

~Q
dR ~Q;

that can be solved with the method of characteristics

~f1�ð ~q2Þ ¼ −36~g24

Z
~Q
ðG ~Qþ ~q − G ~QÞG ~Q:

A similar procedure can be carried over for the other form
factor. It turns out that the gGFP values of the couplings are
equivalent to those obtained by directly using the one loop
EAA (5), thus implying that the bare theory underlying (19)
is actually massless. We now define the beta function and
anomalous dimension of the Papenbrock-Wetterich scheme
(PW) as the single-coupling beta function that is obtained
inserting all the gGFP values in (21)

βPWð~g4Þ ¼ ∂t ~g4ðη; ~g2�; ~g4; ~g6�; ~f1�; ~f2�Þ; ð22Þ

and similarly for η. We adopt an exponential cutoff for the
computation

RkðzÞ ¼ zðez=k2 − 1Þ−1; ð23Þ
and move to the conventional normalization of the coupling
~g4 ¼ λPW=4!. A new name was adopted for the coupling to
underline that it belongs to a new scheme. The nested
integrals appearing in (21) can be solved analytically along
the lines described in [13,16]. The flow βPW ¼ ∂tλPW is
two loops universal

βPW ¼ 3λ2PW
16π2

−
17λ3PW
768π4

; η ¼ λ2PW
1536π4

; ð24Þ

as seen by comparing with (14). The coupling λPW,
however, is not λMS. In fact, with the techniques developed
above we can compute at one loop

λPWðμÞ ¼ λMSðμÞ þ
log 8 − 3γ

32π2
λ2
MS

ðμÞ; ð25Þ

with γ the Euler-Mascheroni constant. Equation (25) differs
from (17) because of the cutoff (23) and the absence of a
bare mass,1 and preserves the universality of (14).

V. CONCLUSIONS

Motivated by the desire of bridging a gap that exists
between two powerful approaches to quantum field theory,

1The gGFP mass (22) is a correction of order λPW that would
affect (25) starting from the order λ3

MS
. The beta functions (14)

and (24) will then differ from the order λ4 on, in agreement with
the fact that three loop results are not universal.
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we proved that the functional renormalization group flow
equation admits a perturbative solution and showed explic-
itly that this solution can be related to the standard schemes
of perturbation theory. As a reference technique for the
perturbative computations we intentionally used the MS
method, being the most well-known and applied technique
in phenomenology.
In Sec. III we addressed the question of the scheme

dependence in the FRG approach, which was previously
almost never addressed in the literature with very few
exceptions, and provided a scheme transformation between
the FRG and MS methods. The transformation is shown to
belong to the class of transformations that do not preserve
universality of the beta functions, as we illustrated through
the example of a simple scalar field in four dimensions, and
holds in the overlapping region of validity of the FRG and
MSmethods which correspond to the vicinity of a Gaussian
fixed point. The results of Sec. III are very similar in spirit
to those of [8], where the Kadanoff and Wilson’s blocking
is investigated in the loop expansion and the relation
between blocking and MS methods is obtained at one
loop. In fact, the discussion made in [8] on the limitations
of the MS method and concerning the role of irrelevant
operators can be motivated as well by the results of this
paper. The results on the scheme change are expected to

prove valuable when comparing observables of the phe-
nomenologically more interesting Yang-Mills theories [17].
In Sec. IV we rigorously defined the PW scheme that

restores universality of the beta functions in a FRG
setting. It is a nontrivial feature since the FRG method
is a mass-dependent scheme and therefore expected to
violate two loop universality. In the PW scheme two loop
universality is achieved by considering a truncation of the
space of couplings that includes all operators that are
perturbatively generated at one loop, and thus the method
is reminiscent of the results of [18]. Our results thus help
bridge a gap that exists between the methods that use
truncations of the effective action, and those that renorm-
alize perturbatively through the relevant deformations.
The EAA appearing in Sec. IV is thus a prototype for a
truncation that is capable of providing two loops universal
results when dealing with a renormalizable quantum field
theory.
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