Creating and using large monolingual parallel corpora for sentential paraphrase generation

Sander Wubben, Antal van den Bosch, Emiel Krahmer
Tilburg University, Radboud University Nijmegen, Tilburg University
Warandelaan 2 Tilburg, Comeniuslaan 4 Nijmegen, Warandelaan 2 Tilburg

s.wubben@uvt.nl, a.vandenbosch@let.ru.nl, e.j.krahmer@uvt.nl

Abstract
In this paper we investigate the automatic generation of paraphrases by using machine translation techniques. Three contributions we make are the construction of a large paraphrase corpus for English and Dutch, a re-ranking heuristic to use machine translation for paraphrase generation and a proper evaluation methodology. A large parallel corpus is constructed by aligning clustered headlines that are scraped from a news aggregator site. To generate sentential paraphrases we use a standard phrase-based machine translation (PBMT) framework modified with a re-ranking component (henceforth PBMT-R). We demonstrate this approach for Dutch and English and evaluate by using human judgements collected from 76 participants. The judgments are compared to two automatic machine translation evaluation metrics. We observe that as the paraphrases deviate more from the source sentence, the performance of the PBMT-R system degrades less than that of the word substitution baseline system.

Keywords: paraphrasing, parallel corpora, monolingual machine translation

1. Introduction

Paraphrasing can be defined as transforming a word, phrase, sentence or longer text segment in a language from its original surface form to an alternative surface form in the same language that still expresses approximately the same semantic content as the original. The use of paraphrase generation has been demonstrated to be valuable for question answering (Lin and Pantel, 2001; Riezler et al., 2007), machine translation (Callison-Burch et al., 2006; Marton et al., 2009) and the evaluation thereof (Kauchak and Barzilay, 2006; Zhou et al., 2006; Pado et al., 2009). Adding certain constraints to paraphrasing allows for additional useful applications. When the constraint is specified that a paraphrase should be shorter than the input text, paraphrasing can be used for sentence compression (Knight and Marcu, 2002; Barzilay and Lee, 2003). Another specific task that can be approached this way is text simplification (Zhu et al., 2010; Woodsend and Lapata, 2011; Wubben et al., 2012), to convert for example medical terms into layperson’s English (Elhadad and Sutaria, 2007; Deléger et al., 2009), or for subtitle generation (Daelemans et al., 2004).

Two important problems arise when developing a system that learns to generate paraphrases automatically from examples, namely how to obtain a sufficient number of examples to train the system on, and how to evaluate properly. We present a paraphrase corpus composed of data scraped from Google News to create a parallel corpus, and a standard PBMT framework modified with a re-ranking component (PBMT-R) to learn phrase alignments and generate paraphrases. We demonstrate this approach on Dutch and English and perform an extensive evaluation using human judgements collected from 76 participants, as well as two automatic machine translation evaluation metrics. Our approach can easily be adapted to other languages.

1.1. Phrase-based machine translation (PBMT) for paraphrasing

Sentential paraphrase generation can be approached as a monolingual machine translation task, where the source and target languages are the same (Quirk et al., 2004; Bannard and Burch, 2005; Callison-Burch, 2008; Zhao et al., 2009; Wubben et al., 2010) and where the output should be different in form from the input but similar in meaning. Statistical machine translation (SMT) typically makes use of large parallel corpora to train a model on. These corpora need to be aligned at the sentence level. Large parallel corpora, such as the multilingual proceedings of the European Parliament (Europarl), are readily available for many languages.

Phrase-based machine translation (PBMT) is a form of SMT where the translation model aims to translate longer sequences of words (“phrases”) in one go, solving part of the word ordering problem along the way that would be left to the decoder and the target language model in a word-based SMT system (Koehn et al., 2003). One advantage of PBMT is that it is adaptable to any language pair for which there is a parallel corpus available. The PBMT model makes use of a translation model, derived from the parallel corpus, and a language model, derived from a monolingual corpus in the target language. The language model is typically an n-gram model with smoothing. In principle, all of this should be transportable to a data-driven machine translation account of paraphrasing. For this to work, however, a preferably large collection of data is required, which in this case would be pairs of sentences that paraphrase each other.

1.2. Parallel corpora for paraphrasing

Two recently published surveys on paraphrasing address the need for paraphrase corpora to further develop research into paraphrasing (Madnani and Dorr, 2010; Androutsopoulos and Malakasiotis, 2010). (Androutsopoulos and Malakasiotis, 2010) observe that not many such parallel corpora currently exist, and that the ones that do exist
are not even close to the size of corpora generally used to
train statistical machine translation systems (Androuts-
poulos and Malakasiotis, 2010). (Barzilay and McKe-
own, 2001) suggest building parallel paraphrase corpora by
using multiple human translations of literary works origi-
nally written in a different language (Barzilay and McK-
eown, 2001). The fact that different translators may use
different wordings can be exploited to find paraphrase pairs
within a language. In general, for the machine translation
approach to paraphrasing to work, first the texts need to be
aligned at the sentence level to obtain sentence pairs that
can be used in a parallel monolingual corpus, where each
sentence in translation \(T_1 \) is ideally semantically equivalent
to each sentence in translation \(T_2 \) in language \(L \).
(Shinoya et al., 2002) use named entity recognition to ex-
tract paraphrases from various news articles describing the
same event. The Microsoft Research Paraphrase Corpus
(MSR) (Quirk et al., 2004; Dolan et al., 2004; Nelken and
Shieber, 2006) is a paraphrase corpus constructed in an un-
supervised manner. The MSR contains 5,801 pairs of sen-
tences that were extracted from news sources on the Web,
along with human annotations indicating whether each pair
captures a paraphrase/semantic equivalence relationship.
Of these sentences, the judges agreed that 67% were indeed
paraphrases. (Cohn et al., 2008) developed a monolingual
parallel corpus consisting of 900 sentence pairs annotated
with alignments at the word and phrase level, which also
contained sentences from the MSR (Cohn et al., 2008).
While these corpora are valuable, for a statistical paraphras-
ing approach to work they are generally several orders too
small. Preferably, such systems are trained on hundreds
of thousands to millions of parallel sentences, where the
available paraphrase corpora contain several thousand sen-
tences at best. One solution to this problem is to leverage
the abundance of bilingual parallel corpora to find para-
phrases. (Bannard and Burch, 2005) use a bilingual corpus
and a pivot language to construct a monolingual phrase-
table (Bannard and Burch, 2005). They do this by aligning
phrases across the two languages and then harvesting all
phrases aligned to one phrase in the pivot language as para-
phrases. In contrast to using a pivot language, we demon-
strate that it is possible to construct a sufficiently large par-
allel corpus without relying on a second language, but by
harvesting different headlines for the same event. This has
several advantages. One reason to use headlines is that
these are abundant on the Web in many languages, and
every day new ones appear describing real world events.
The real world knowledge implicitly present in the sys-
tem stays up to date this way: it will know that in this
time frame (early 2014) “Barack Obama” can be para-
phrased as “The President of the United States”. A more
crucial reason is that there is much paraphrastic variety in
headlines. Different journalists and news editors will try
to come up with their own unique headlines that describe
the same event. Another reason is that we have less of a
problem dealing with sentence alignment between two texts
to construct the parallel corpus, because headlines can be
clustered relatively accurately by news aggregators such as
Google News. Finally, headlines tend to be shorter than
regular sentences and therefore words and phrases in them
are easier to align.

1.3. Evaluation
As (Callison-Burch et al., 2008) argue, automatic eval-
uation of paraphrasing is problematic (Callison-Burch et
al., 2008). The essence of paraphrasing is to be able to
generate a sentence that paraphrases a source, but that is at
the same time structurally different from that source. Auto-
matic evaluation metrics in related fields such as standard
multilingual machine translation (e.g. BLEU (Papineni
et al., 2002)) operate on a notion of joint semantic and
structural similarity, while paraphrasing aims to achieve
semantic similarity, but also structural dissimilarity. As
(Madnani and Dorr, 2010) rightfully observe, precision and
recall are not suited when evaluating sentential paraphrase
generation, because no exhaustive list of paraphrases
can exist (Madnani and Dorr, 2010). There have been
efforts to develop automatic metrics for the evaluation of
paraphrases, such as ParaMetric (Callison-Burch, 2008)
and PEM (Liu et al., 2010). ParaMetric is used to measure
performance in alignment between two given sentences,
and is not suited to measure the performance of a sentential
paraphrase generation method given unseen sentences.
PEM (Paraphrase Evaluation Metric) seems a promising
approach in that it addresses the three crucial parts in
paraphrase evaluation, namely fluency, adequacy and
to some extent structural dissimilarity (PEM measures
lexical dissimilarity). PEM makes no use of reference
paraphrases; rather, it makes use of bilingual parallel
corpora through the pivot approach. This suggests it
might be biased towards paraphrasing approaches that
use statistical machine translation and in particular pivot
approaches. Another approach is to look at dissimilarity to
the source sentence in addition to similarity to a collection
of reference paraphrases. This is the approach we take
and which has also been investigated by (Chen and Dolan,
2011). Chen and Dolan propose a new metric called PINC,
which can be seen as a complement to BLEU: it measures
the \(n \)-gram overlap between output and source sentence.
The higher the overlap, the lower the PINC score. The
idea is that good paraphrases show a high amount of
overlap with reference paraphrases, and low overlap with
the source sentence. We evaluate the output of our system
by comparing it to a word substitution baseline, which
uses a semantic lexicon and a language model to perform
edit operations to construct a paraphrasing sentence, and a
randomly selected human authored paraphrasing headline.
We do this for Dutch and English and let 76 participants
rate the paraphrases. We also take into account automatic
machine translation evaluation metrics to see whether these
correlate with human judgements, and show the results at
different edit distances.

2. Data collection
For the development of our data collection method we use
headline data from the DAESO corpus\(^1\), a parallel monolin-
gual treebank for Dutch (Marsi and Krahmer, 2007). Part

\(^1\)http://daeso.uvt.nl/
of the data in the DAESO corpus consists of headline clusters scraped from Google News in the period April–August 2006. Google News uses clustering algorithms that consider the full text of each news article, as well as other features such as temporal and category cues, to produce sets of topically related articles. The scraper stores the headline and the first 150 characters of each news article scraped from the Google News Website. Roughly 13,000 clusters were retrieved. It is clear that although clusters deal roughly with one subject, the headlines can represent quite a different perspective on the content of the article; certain headlines are paraphrases, others are clearly not. To obtain only paraphrase pairs, the clusters need to be more coherent. In the DAESO project 865 clusters were manually subdivided into sub-clusters of headlines that show clear semantic overlap.

With these data we develop a method to extract paraphrase pairs from headline clusters. We divide the annotated 865 headline clusters in a development set of 40 clusters, while the remaining 825 are used as test data. The headlines are stemmed using the Porter stemmer for Dutch (Kraaij and Pohlmann, 1994). Instead of a word overlap measure as used by (Barzilay and Elhadad, 2003), we use a modified TF.IDF word score as suggested by (Nelken and Shieber, 2006).

2.1. Pairwise similarity

Our approach for aligning paraphrasing headlines is to directly calculate similarities for each pair of headlines within a cluster. If the similarity exceeds a certain threshold, the pair is accepted as a paraphrase pair. If it is below the threshold, it is rejected. However, as (Barzilay and Elhadad, 2003) have pointed out, this type of sentence alignment is only effective to a certain extent. Beyond that point, context is needed. With this in mind, we adopt two thresholds and the cosine similarity function to calculate the similarity between two sentences. If the similarity is higher than the upper threshold, it is accepted. If it is lower than the lower threshold, it is rejected. In the remaining case of a similarity between the two thresholds, similarity is calculated over the contexts of the two headlines, namely the text snippet that was retrieved with the headline. If this similarity exceeds the upper threshold, it is accepted. Threshold values as found by optimizing on the development data using again an \(F_{0.25} \)-score, \(Th_{\text{lower}} = 0.2 \) and \(Th_{\text{upper}} = 0.5 \). An optional final step is to add transitive alignments. For instance, if headline \(A \) is paired with headline \(B \), and headline \(B \) is aligned to headline \(C \), headline \(A \) can be aligned to \(C \) as well. We do not add these alignments, because when one incorrect alignment is made, this process adds a large number of incorrect alignments, particularly in large clusters.

We extract paraphrasing headline pairs from new expanded datasets this way consisting of roughly 51,000 English headline clusters and 31,000 Dutch headline clusters, scraped from Google News in 2006 and in 2010. This method produces a collection of 9.3 million pairwise alignments of 1.9 million unique headlines for English and 841,588 pairwise alignments of 394,056 unique headlines for Dutch\(^2\). To our knowledge this new paraphrase source is several orders larger than existing paraphrase corpora.

3. Paraphrase generation

We use the collection of automatically obtained aligned headlines to train a paraphrase generation model using a phrase-based machine translation (PBMT) framework, extended with a post-hoc re-ranking model based on dissimilarity, resulting in our model PBMT-R. We compare this approach to a word substitution baseline. The generated paraphrases along with their source headlines are presented to human judges, whose ratings are compared to a collection of automatic machine translation evaluation metrics.

3.1. PBMT-R

We use the Moses software to train a PBMT model (Koehn et al., 2007). The GIZA++ statistical alignment package is used to perform the word alignments, which are later combined into phrase alignments in the Moses pipeline (Och and Ney, 2003) to build the paraphrase model. GIZA++ implements IBM Models 1 to 5 and an HMM word alignment model to find statistically motivated alignments between words. We first tokenize our data before training a re-caser. We then lowercase all data and use all unique headlines in the training data to train an \(n \)-gram language model with the SRILM toolkit (Stolcke, 2002). Then we invoke the GIZA++ aligner using the training paraphrase pairs. We run GIZA++ with standard settings and we perform no optimization. Finally, we use the Moses decoder to generate paraphrases for our test data.

We perform post-hoc re-ranking on the output based on dissimilarity to the input, as described earlier in (Wubben et al., 2012). We do this to select output that is as different as possible from the source sentence, so that ideally multiple phrases are paraphrased; at the same time, we base our re-ranking on a top-\(n \) of output candidates according to Moses, with a small \(n \), to ensure that the quality of the output in terms of fluency and adequacy is also controlled for. Setting \(n = 10 \), for each source sentence we re-rank the ten best sentences as scored by the decoder according to the Levenshtein Distance (or edit distance) measure (Levenshtein, 1966) at the word level between the input and output sentence, counting the minimum number of edits needed to transform the source string into the target string, where the allowable edit operations are insertion, deletion, and substitution of a single word and casing is ignored. In case of a tie in Levenshtein Distance, we select the sequence with the better decoder score. When Moses is unable to generate ten different sentences, we select from the lower number of outputs. The resulting headlines are de-tokenized and re-cased using the previously trained re-caser.

3.2. Word substitution baseline

3.2.1. English

The PBMT-R results are compared with a word substitution baseline. For each noun, adjective and verb in the sentence this model takes that word and its part-of-speech tag and

\(^2\)The aligned headline collection can be found at http://ilk.uvt.nl/ swubben/resources.html
retrieves from the English WordNet (Fellbaum, 1998) all synonyms from all synsets the word occurs in. The English WordNet contains over 200K word-sense pairs. The word is then replaced by all of its synset words, and each replacement is scored by the trained SRILM language model also used in the PBMT-R system. The highest scoring alternative is kept. If no relevant alternative is found, the word is left unaltered. We use the Memory Based Tagger (Daelemans et al., 1996) trained on the Brown corpus to compute the part-of-speech tags. The WordNet::QueryData Perl module is used to query WordNet.

3.2.2. Dutch
The word substitution baseline for Dutch works similarly to the English baseline and relies on the Cornetto database instead of WordNet. Cornetto is a lexical semantic database for Dutch, similar to WordNet. It includes 40K entries, covering the most generic and central part of the Dutch language (Vossen et al., 2008). As with the English system, all synonyms for a given word are extracted and the synonym which scores best in the sentence according to the language model is kept. The SRILM language model is trained on the Dutch headline paraphrase corpus.

4. Evaluation
A human judgement study was set up to evaluate the generated paraphrases by both the baseline and the PBMT-R system, and to compare these with a human produced referent. The human judges rated both adequacy and fluency, and their judgements are compared to automatic evaluation measures in order to gain more insight into the automatic evaluation of paraphrasing.

4.1. Method
4.1.1. Participants
Participants were 76 students of Tilburg University, who participated for partial course credits. All were native speakers of Dutch, and all were proficient in English, having taken a course on Academic English at university level.

4.1.2. Materials
We randomly selected 1,000 headline clusters for Dutch and 1,000 headline clusters for English that appeared online in January 2011. Each cluster consisted of between 10 and 50 aligned paraphrasing headlines. We used these clusters as multiple references for our automatic evaluation measures to account for the diversity in real-world paraphrases, as the aligned paraphrased headlines in Figure 2? witness. For each participant we randomly selected 40 clusters, and from each cluster we randomly selected one headline as the source headline. Each headline was used as input for the word substitution baseline and the PBMT-R system, to generate two target paraphrases. In addition, we randomly selected one of the aligned headlines in a cluster to serve as the human produced upper bound to compare our systems with. For each source headline, we thus generated three target headlines (word substitution, PBMT-R, human-produced paraphrase). Each participant saw 40 different source headlines.

<table>
<thead>
<tr>
<th>operation</th>
<th>sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>single word replacement</td>
<td>50%</td>
</tr>
<tr>
<td>single word deletion or insertion</td>
<td>34%</td>
</tr>
<tr>
<td>word/phrase reordering</td>
<td>11%</td>
</tr>
<tr>
<td>phrase replacement</td>
<td>33%</td>
</tr>
<tr>
<td>sentence rewriting</td>
<td>2%</td>
</tr>
</tbody>
</table>

Table 1: Analysis of a sample of output from the English PBMT-R system indicating the number of sentences containing one or more of the specified edit operations.

4.1.3. Procedure
Participants were randomly assigned to the Dutch (N = 36) or English (N = 40) condition. In one version participants rated only Dutch target headlines, in the other they rated English ones. The instructions were otherwise identical for both versions. Participants were told that they participated in the evaluation of a system that could automatically generate headlines, and that they would see one source headline and three automatically generated paraphrases of that headline. Following earlier evaluation studies (Doddington, 2002; ?), we asked participants to evaluate both the fluency and adequacy of the target headlines on a five point Likert scale. Fluency was defined in the instructions as the extent to which a sentence reads well. Adequacy was defined as the extent to which the sentence is a good paraphrase of the example sentence. Each source headline was presented on the computer screen, together with the three target headlines. The order of these targets on the screen was randomized, to prevent a bias towards one of the paraphrases. The experiment was individually performed, and self-paced; participants could take as much time as they required. On average the experiment lasted 33 minutes for English and 28 minutes for Dutch.

4.1.4. Data analysis
In total we collected 76 (participants) × 40 (clusters) × 3 (targets) = 9120 judgements. In practice, it turned out that the baseline system failed to generate a paraphrase in 12% of the cases for English and in 21% of the cases for Dutch. These could not be included in the analysis, so that the total number of collected judgements was lower. Since we are interested in the amount of edit operations a system performs and how these influence the evaluation, we computed the Levenshtein Distance (LD) from the source sentence of each target sentence at the word level ignoring casing. We created bins of LD 1, 2, 3, 4, and a collapsed bin of 5 or more to prevent data sparseness.

We performed two kinds of analyses. First we analyzed the human judgements in a by-item Multivariate Analysis of Variance (MANOVA) with Levenshtein Distance (levels: 1, 2, 3, 4, 5+), System (levels: word substitution, PBMT, human reference) and Language (levels: Dutch, English) as fixed factors and fluency and adequacy as dependent variables. Planned pairwise comparisons were made with the Bonferroni method.

Next, we evaluated the paraphrases using two automatic metrics, originating from the evaluation of machine translation: the BLEU (Papineni et al., 2002) and NIST (Dod-
dington, 2002) metrics. BLEU measures n-gram overlap between strings, and is expressed as a score between 0 and 1, with higher scores representing more overlap. Different scores are calculated for n-grams of different size, up to n-grams of four. NIST is a BLEU variant giving more importance to less frequent (and hence more informative) n-grams. For each of the target paraphrases used in the evaluation experiment we compute BLEU and NIST scores, which we submitted to a MANOVA with the same design as used for the human judgements. We used the remaining headlines for each cluster as the reference paraphrases for the automatic measures. In addition, we look at the correlations between the human judgements and the automatic metrics.

<table>
<thead>
<tr>
<th>system</th>
<th>LD English</th>
<th>LD Dutch</th>
<th>fr En</th>
<th>fr Du</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Sub</td>
<td>2.73</td>
<td>1.76</td>
<td>12%</td>
<td>21%</td>
</tr>
<tr>
<td>PBMT-R</td>
<td>2.57</td>
<td>2.88</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Human</td>
<td>5.76</td>
<td>4.40</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 2: Levenshtein distance and fail rate (fr) of output of the various systems

4.2. Results

Table 2 offers statistics showing the average LD of the target paraphrases in the cases where the system could find one, and the percentage of cases where the system was not able to generate a paraphrase of the source sentence. It can be observed that in general the PBMT-R system executes roughly equally many as the baseline for English, and more than the baseline for Dutch. Human produced paraphrases tend to differ more from the source. In addition, for 12 percent of the English sentences and 21 percent of the Dutch sentences the word substitution baseline could not provide a paraphrase. The PBMT-R system provided a paraphrase for every sentence.

4.2.1. Human judgements

Next, we analyzed the human judgements of fluency and adequacy of the target paraphrases. As expected, on both measures, the baseline word substitution system scored lowest (fluency: $M_f = 2.86$, adequacy: $M_a = 2.61$), and the randomly selected human reference scored highest ($M_f = 4.18$, $M_a = 3.24$) with the PBMT-R system sandwiched in between ($M_f = 3.32$, $M_a = 2.86$), showing a significant main effect for both fluency ($F(2, 7584) = 449.33, p < .001$) and adequacy ($F(2, 7584) = 95.48, p < .001$). All pairwise comparisons were statistically significant ($p < .001$). In addition, main effects were found for Language and Levenshtein Distance, but these are qualified by interactions with System. A significant interaction was found between Language and System for fluency ($F(8, 7584) = 11.89, p < .001$), whereas the same interaction showed a trend towards significance for adequacy ($F(8, 7584) = 3.37, p = .071$). These effects are illustrated in Figure 1. First consider the results for fluency. It can be seen that fluency judgements of the human reference sentences do not vary with Levenshtein Distance, whereas the scores for the automatic systems show a steady decline as distance increases. Crucially, the performance of the PBMT-R system decreases less than the word substitution baseline beyond LD = 1. The picture for adequacy is slightly different: here all systems score lower as a function of LD, which is what one would expect given that the more distant a sentence is, the more likely it is that its content is also different. Crucially, however, while at LD = 1 the PBMT-R system scores roughly comparable to the baseline system, the two diverge more starting from LD = 2, and the PBMT-R system scores closer to the human reference than to the Baseline at LD = 5+.

Figure 1: Fluency scores (top) and adequacy scores (bottom) per system as a function of Levenshtein Distance

4.2.2. Automatic measures

The results of the automatic evaluation metrics were analyzed next. We found that the baseline word substitution system attains the lowest scores (BLEU = 0.11, NIST = 7.00), and the randomly selected human reference scored highest (BLEU = 0.28, NIST = 8.19). We see that the PBMT-R system again scores between those two (BLEU = 0.18, NIST = 8.11), showing a significant effect for...
both BLEU ($F(2, 7584) = 200.91, p < .001$) and NIST ($F(2, 7584) = 105.54, p < .001$). In addition, main effects of Language and System are found, but these are again qualified by interactions.

![Figure 2: BLEU scores (top) and NIST scores (bottom) per system as a function of Levenshtein Distance](image)

Significant interactions between Levenshtein Distance and System were found for both BLEU ($F(8, 7584) = 5.790, p < .001$) and NIST ($F(8, 7584) = 14.070, p < .001$). These interactions can be explained by looking at Figure 2: at LD = 1, the word substitution baseline and the PBMT system score roughly comparable and substantially lower than the human referent. However, when considering larger distances, the scores show a decreasing trend, but the scores for the PBMT-R system drop less than those of the word substitution baseline. At LD = 5 the PBMT-R system scores very comparable to the human referent; this pattern is especially pronounced for the NIST scores. In addition, significant interactions were found of Language and System, for both BLEU ($F(4, 7584) = 3.781, p < .01$) and NIST ($F(4, 7584) = 4.329, p < .01$). This figure shows that, even though the PBMT-R system always scores higher than the word substitution system, the difference is more pronounced for English than for Dutch.

In general, it is fair to say that the results of the automatic evaluation mirror those of the human judgements. This is confirmed by a correlation analysis. We found a strong correlation between BLEU and NIST, as expected, but, more interestingly, we also found that both correlate significantly and positive with fluency ($r = .10$ for BLEU, and $r = .06$ for NIST, both $p < .001$) and adequacy ($r = .12$ for BLEU, and $r = .13$ for NIST, both $p < .001$).

Table 1 lists a breakdown of the paraphrasing operations the PBMT-R approach has performed. The number indicates the percentage of generated headlines out of a sample of 160 English generated headlines that contain one of the specified edit operations. Phrase replacements should be interpreted as a replacement involving multi-word phrases. Sentence rewriting means that the sentence is fundamentally changed in its entirety, for instance changing from passive to active and vice versa. We observe that even though the PBMT-R system is capable of manipulating multi-word phrases, the most frequent change is still single word replacement, and a majority of changes involve single word edits (replacements, insertions, or deletions). Yet, a substantial number of changes made by the PBMT-R system involve more complex phrasal manipulations and re-orderings.

5. Conclusion and discussion

In this paper we have presented a method to build a corpus of aligned sentential paraphrases. We used a standard PBMT framework with a dissimilarity component to generate the output paraphrases for two languages, English and Dutch, and compared this approach to a word substitution baseline.

In general, we found that the PBMT-R system outperforms the word substitution system on all dimensions of evaluation: it always succeeds in generating a paraphrase, while the baseline system fails to do so on 12% (English) to 21% (Dutch) of the source sentences. If we concentrate on the cases where the baseline system succeeds in generating a paraphrase, we find that the PBMT-R paraphrases are on average more dissimilar to the source sentences, as shown by their higher average Levenshtein distance. The human evaluators rated the output of the PBMT-R system higher than that of the baseline system, both in terms of adequacy and fluency. The human judgements show that while the performance of the baseline system drops substantially with higher Levenshtein distances, the PBMT-R system shows a less steep decline on both dimensions of evaluation. The automatic evaluation metrics (BLEU and NIST) reveal a similar pattern. Human judges preferred the output of our PBMT-R system over the output of the word substitution system. However, it should be noted that the fluency of the PBMT-R system output is still very much below the fluency of human produced headlines. We have also addressed the problem of automatic paraphrase evaluation. We measured BLEU and NIST scores, and observed that these automatic scores correlate with human judgements to some degree. Overall, they show the same picture: the selected human paraphrase scores best, followed by the PBMT-R system and the word substitution baseline comes in last. Because standard MT metrics such as BLEU and NIST do not take into account the notion of dissimilarity, these scores tend be high when few edits are made and drop as the paraphrases deviate more from the source sentence. When edit distance is considered, the decline of the scores of different systems can be compared.
We feel that our approach of using a corpus of scraped and aligned headlines together with an off-the-shelf PBMT package, modified to re-rank on dissimilarity (PBMT-R), despite the bias to the headline genre, is an important contribution in paraphrase research, as it allows the research to extend beyond English.

Our system, trained on the corpus of scraped and aligned headlines, may be usable in other domains and genres as well; it may be possible to train a language model on text from the new domain, and use the translation model acquired from the headlines to generate paraphrases for the new domain. We are also interested in capturing other monolingual text-to-text data, such as simplification or compression data, but acquiring monolingual parallel corpora for different domains is no trivial task.

6. References

Koehn, P., Hoang, H., Birch, A., Burch, C. C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens,

