
1 
 

Clinical, genetic and functional characterization 

of intellectual disability disorders 

 

 

 

Christiane Zweier 

 

 

   



2 
 

 

 

 

 

 

 

 

 

The studies presented in this thesis were performed at the Department of Human Genetics, 

Radboud University Nijmegen Medical Centre, The Netherlands, and at the Institute of 

Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. 

The research presented in this thesis was financially supported by grants from the Deutsche 

Forschungsmeinschaft (DFG), from the German Federal Ministry of Education and Research 

(BMBF) as a part of the National Genome Research Network (NGFNplus), and from the 

Netherlands Organisation for Scientific Research (NWO). 

 

 

Copyright © 2014 Christiane Zweier, Erlangen, Germany 

All rights reserved. No parts of this publication may be reproduced, stored in a retrieval system of any 
nature, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or 
otherwise without prior written permission of the holder of the copyright. 

 

 

Cover: Michael Kraft and Christiane Zweier 

Printed and bound by: Gildeprint Drukkerijen, Enschede 

ISBN: 978-3-00-046154-5    

   



3 
 

Clinical, genetic and functional characterization 

of intellectual disability disorders 

 

 

 

 

 

 

Proefschrift 

 

ter verkrijging van de graad van doctor 

aan de Radboud Universiteit Nijmegen 

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, 

volgens besluit van het college van decanen 

in het openbaar te verdedigen op maandag 22 september 2014 

om 10.30 uur precies 

 

 

door 

 

 

Christiane Gertrud Zweier 

geboren op 21 juni 1978 

te Bamberg (Duitsland) 

 

   



4 
 

Promotoren: 

Prof. dr. H.G. Brunner 

Prof. dr. A. Reis (Friedrich-Alexander-University Erlangen-Nürnberg, DE) 

 

Copromotor: 

Dr. A. Schenck 

 

Manuscriptcommissie: 

Prof. dr. ir. J.H.L.M. van Bokhoven (voorzitter) 

Prof. dr. M.A.A.P. Willemsen 

Prof. dr. Y. Elgersma (Erasmus MC, Rotterdam) 

 



5 
 

Clinical, genetic and functional characterization 

of intellectual disability disorders 

 

 

 

 

 

 

Doctoral Thesis 

 

to obtain the degree of doctor 

from Radboud University Nijmegen 

on the authority of the Rector Magnificus prof. dr. S.C.J.J. Kortmann, 

according to the decision of the Council of Deans 

to be defended in public on Monday, September 22, 2014 

at 10.30 hours 

 

 

by 

 

 

Christiane Gertrud Zweier 

born on June 21, 1978 

in Bamberg (Germany) 

 



6 
 

Supervisors: 

Prof. dr. H.G. Brunner 

Prof. dr. A. Reis (Friedrich-Alexander-University Erlangen-Nürnberg, DE) 

 

Co-supervisor: 

Dr. A. Schenck 

 

Doctoral Thesis Committee: 

Prof. dr. ir. J.H.L.M. van Bokhoven (chairman) 

Prof. dr. M.A.A.P. Willemsen 

Prof. dr. Y. Elgersma (Erasmus MC, Rotterdam) 

  



7 
 

 

 

Contents 

 

 

Chapter 1 General introduction 9

Chapter 2 Haploinsufficiency of TCF4 causes syndromic mental retardation 

with intermittent hyperventilation (Pitt-Hopkins syndrome). 
39

Chapter 3 Further delineation of Pitt-Hopkins syndrome: phenotypic and 

genotypic description of 16 novel patients. 
51

Chapter 4 CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-

Hopkins-like mental retardation and determine the level of a 

common synaptic protein in Drosophila. 

65

Chapter 5 Expanding the clinical spectrum associated with defects in 

CNTNAP2 and NRXN1. 
89

Chapter 6 Genetics of ID – an inventory 107

Chapter 7 General discussion 139

 Summary 151

 References 153

 Acknowledgments 169

 Curriculum vitae 171

 List of publications 172

 List of abbreviations 175

  



8 
 

  



9 
 

 

 

 

Chapter 1 

 

General Introduction 



Chapter 1 
 

10 
 

1.1. Intellectual disability        11 
1.2. Genetic causes of ID        11 

1.2.1. Chromosomal aberrations      11 
1.2.2. Monogenic causes       12 

 1.2.3. Others         13 
1.3. Identification of novel ID genes      14 
 1.3.1. Linkage analysis       15 
 1.3.2. Homozygosity mapping      15 
 1.3.3. Chromosomal translocations      16 
 1.3.4. Molecular karyotyping      16 
 1.3.5. Sequencing of functional candidate genes    17 
 1.3.6. Next generation sequencing      17 
1.4. The clinical faces of ID        18 
1.5. The molecular faces of ID       20 
 1.5.1. Dosage sensitivity       20 
 1.5.2. Loss of function       20 
 1.5.3. Haploinsufficiency       21 
 1.5.4. Gain of function       21 
 1.5.5. Dominant negative effects      22 
 1.5.6. Dynamic mutations       22 
 1.5.7. Imprinting defects       23 
1.6. Common themes among ID disorders     23 
 1.6.1. Inborn errors of metabolism      23 
 1.6.2. Neurogenesis        24 
 1.6.3. Neuronal migration       24 
 1.6.4. Synapse formation and plasticity     25 
 1.6.6. Transcriptional regulation      26 
 1.6.7. Cytoskeleton        27 
 1.6.8. Channelopathies       27 
 1.6.9. Ciliopathies        27 
1.7. Modules and networks        28 
1.8. Taking the next step: functional analyses     29 
 1.8.1. Aims         29 
 1.8.2. Sources and approaches to investigate gene/protein function 30 
  a) Human samples       30 
  b) Cell system based analyses     30 
  c) Animal models       31 

1.8.3. Methods to investigate gene/protein function   32 
  a) In silico analyses       32 
  b) RNA        33 
  c) Protein        33 
  d) Protein-DNA binding      33 
  e) Protein-Protein binding      35 
  f)  Phenotyping in animal models     35 
1.9. Outline and aim of this thesis       36 



  General Introduction 
 

11 
 

1.1. Intellectual disability  

Intellectual disability (ID), formerly mental retardation, affects 2%-3% of the population in 

western countries and is characterized by significant limitations in both intellectual 

functioning and adaptive behavior that begin before the age of 18 years and are usually 

reflected in an IQ below 70.1,2 Severe or profound ID, reflected by an IQ below 35 or in 

simpler classifications below 50, affects 0.3% to 0.5% of the population.3 The causes for 

severe ID are highly heterogeneous. Despite an increasingly known number of underlying 

genes, the genetic etiology still remains unsolved in nearly half of the cases.4 Mild forms of 

ID are assumed to represent the lower end of normal IQ distribution and to result from the 

interaction of various genetic and other factors.2 ID disorders represent a large 

socioeconomic burden for families and an economic burden for health care.2 

 

1.2. Genetic causes of intellectual disability  

The first genetic anomalies to be detected as causative for ID were numeric chromosomal 

aberrations. Trisomy 21 as the first one was identified in 1959.5,6 In the 1970s banding 

techniques allowed the detection of cytogenetically visible structural chromosomal 

aberrations up to a resolution of 5-10 Mb in a diagnostic setting. With the development of 

techniques such as FISH (fluorescence in situ hybridization) in 1988,7 MLPA (Multiplex 

Ligation-dependent Probe Amplification) in 2002,8 and molecular karyotyping around 2000,9-

11 submicroscopic aberrations below 5 Mb and up to a resolution of several kb became 

stepwise detectable. Additionally, with the identification of single ID associated genes in the 

1990s,12 screening for point mutations with Sanger sequencing become more and more 

important. However, this allowed only analyses of single or a limited number of genes. Now, 

next generation sequencing (NGS) techniques are being established to identify point 

mutations by screening nearly the complete exome.13 Progress in technology has thus 

stepwise increased our knowledge on the (different types of) genetic causes of diseases in 

general, and of ID specifically. 

 

1.2.1. Chromosomal aberrations 

Cytogenetically visible chromosomal aberrations can be found in ca. 16% of ID patients, with 

trisomy 21 still being the most frequent one.14 With conventional karyotyping only numeric 

aberrations or structural aberrations larger than 5-10 Mb are detectable.  

For many years FISH-analysis and more recently MLPA-analysis were used to detect 

smaller chromosomal aberrations. With these, common microdeletions or subtelomeric 

rearrangements could be identified in ca. 5% and 1.3% of patients, respectively.14 However, 

FISH- and MLPA-probes are limited to specific chromosomal regions like subtelomeric 
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regions or previously known microdeletion regions. The development of molecular 

karyotyping by arrayCGH or SNP arrays allowed genome-wide screening and a resolution of 

currently 100 kb in a diagnostic setting.15 It therefore increased the diagnostic yield of 

chromosomal aberrations in patients with ID and previously normal karyotype to ca. 10-15%. 

The detection rates range between 5.5 - 35%, depending on the resolution of the used array 

and the pre-selection of patients.16  

Chromosomal aberrations can occur as deletions or duplications with variable 

breakpoints and sizes. This is observed in many rare, individual aberrations or in the more 

common 4p- or Wolf-Hirschhorn syndrome17 and the 1p36 microdeletion syndrome.18 

Furthermore, they can occur as common microdeletions with identical and recurrent sizes 

and breakpoints, usually mediated by low copy repeats resulting in non-allelic homologous 

recombination.19,20 This applies for example to DiGeorge syndrome, caused by a typical 

deletion in 22q11.221 or to Williams-Beuren syndrome, caused by a recurrent 1.55 (95%) or 

1.84 Mb (5% ) deletion in 7q11.23.22 

Molecular karyotyping not only increased the findings of individual small chromosomal 

aberrations but also resulted in the identification of novel, relatively common microaberration 

syndromes like the 17q21.31 microdeletion syndrome23-25 or the 16p11.2 

microdeletion/duplication syndrome,26 thus adding to the number of previously known 

common microaberration syndromes such as Di George syndrome, Williams-Beuren 

syndrome, and Smith-Magenis syndrome. 

Microdeletions or –duplications can act as contiguous gene syndromes with several 

deleted/duplicated genes contributing to the phenotype. This applies e.g. for Williams-Beuren 

syndrome or monosomy 1p36.18,27 For other microdeletion syndromes, responsibility of a 

single deleted, dosage sensitive gene, was identified. Regarding the phenotype of 

monosomy 22q11.2, TBX1 is considered as the most promising candidate gene,28 and for the 

9q23 subtelomeric microdeletion, EHMT1 was identified as the phenocritical gene.29 In both 

genes point mutations were shown to result in a similar phenotype as the deletions.29-31 

The vast majority of larger chromosomal aberrations and copy number variants 

(CNVs) occurs de novo as reproduction of (severely) affected patients is usually limited. 

However, microaberrations that are associated with mild forms of ID are often found 

segregating in families, e.g. monosomy 22q11.232 and deletions or duplications of 16p11.2.33 

 

1.2.2. Monogenic causes 

To date, about 518 genes are reliably implicated in ID. Ca. 59% harbor autosomal recessive 

and ca. 24% harbor autosomal dominant mutations. Further 20% are located on the X-

chromosome and 1.7% in the mitochondrial genome (status May 2013, see chapter 6 of this 
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thesis). Two years ago the total number was still estimated to run into the thousands.2 

However, as recent studies in patients with unspecific severe ID showed a mutation 

detection rate of 13-30% in previously known ID genes,34-36 the final number might be not as 

large as proposed.  

Fragile X syndrome is considered to be the first identified ID syndrome caused by a 

genetic defect in a single gene.37 It is also the most frequent cause for monogenic ID.38 With 

more than 90, a relatively large number of X-linked ID genes is known to date. Gene 

identification for X-linked recessive ID has been facilitated by the inheritance pattern. This is 

often characterized by several affected males and unaffected carrier women, thus allowing 

linkage analysis.39 Due to the limited number of genes on the X-chromosome, also large-

scale systematic re-sequencing of all coding exons could be performed.40 In total, genetic 

defects on the X-chromosome are supposed  to underlie ID in 8-12% of affected males.41 In 

addition, as for example regarding Rett syndrome, some X-linked dominant mutations are 

known. These are usually de novo, accompanied by a phenotype in females and assumed to 

be lethal in males.       

This leaves a large number of supposedly autosomal genetic defects. Gene 

identification for autosomal recessive disorders was until recently easier than for mostly 

sporadic, dominant disorders. Many recessive metabolic disorders show specific 

phenotypes, and gene identifying methods such as linkage analysis only work in inherited 

disorders. How many genetic defects underlying ID will in the end be autosomal recessively 

inherited or will be sporadic dominant de novo mutations, is therefore difficult to estimate. 

However, recent studies indicate that recessive mutations in outbred populations seem to be 

rather rare in contrast to de novo mutations.34,35,42 

In disorders with severe ID and therefore limited reproduction, the causative 

autosomal dominant or also X-linked dominant mutations are usually found to have occurred 

de novo. In contrast, dominant mutations that are associated with rather mild or low 

penetrant cognitive defects can be observed to be inherited in families. This applies for 

example to Noonan syndrome.43 

Mutations in mitochondrially encoded genes can also be associated with ID in the 

context of mitochondrial disorders, however, compared to X-linked and autosomal dominant 

causes of ID they are rare. Mutations in the mitochondrial genome either occur de novo or 

are transmitted by the mother.44  

 

1.2.3. Others 

In mild cases of ID or in autism spectrum disorders (ASD), which are usually accompanied 

by rather mild cognitive impairment, the underlying genetic defect might be more complex. 
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This means that a single mutation or CNV represents a risk factor which is only pathogenic in 

combination with one or more additional “hits”. This has been shown for the 16p12.1 

microdeletion,45,46 but is also discussed for defects in single genes such as SHANK346 or 

FOXP1.47 For some disorders such as Bardet-Biedl syndrome, a di- or even trigenic 

inheritance has been reported.48 In general, the understanding which combination of multiple 

hits underlie certain neuropsychiatric disorders and how they mutually interact is currently 

still at the beginning and significantly more difficult than for monogenic disorders. 

Some forms of mutation do not affect genes themselves, but their regulation. This is 

the case in imprinting disorders. Deregulation of imprinted genes can for example result in 

Angelman- or Prader-Willi syndromes, depending on, whether the maternal or paternal copy 

is lacking or inactive.49 

Very little has been known about mutations or other aberrations in regulatory 

elements of the genome so far. While CNVs in non-transcribed regions are reported in 

several limb malformation syndromes (reviewed by Klopocki and Mundlos50), their relevance 

for ID disorders is only known for single cases so far. For example, an intronic deletion in the 

PLP gene can lead to an abnormal presentation of Pelizaeus-Merzbacher disease,51 and a 

non-coding mutation regulates HCFC1 expression in non-syndromic ID.52 Aberrations in non-

coding elements and their pathomechanisms represent a level of complexity whose extent is 

currently difficult to foresee. 

 

Figure 1  Distribution of the inheritance pattern of 518 genes reliably implicated in ID.  

(status May 2013, see chapter 6 of this thesis). Percentages refer to the proportion of genes. Mito, 

mitochondrially encoded. 

 

1.3. Identification of novel ID genes 

Dependent on the occurrence of ID in several members of a family or sporadically due to a 

de novo event, different strategies for gene identification can be used. While methods such 

as linkage analysis or breakpoint mapping have in principle been available for more than two 

decades, they developed their real power only during the last decade. SNP arrays and the 
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evolution of sequencing technologies allowed high resolution homozygosity mapping and an 

increased screening throughput of candidate genes, respectively. As to familial ID, a 

combination of mapping methods with targeted re-sequencing of candidate regions by 

recently developed NGS technologies can be considered as the optimization of previously 

available strategies. Regarding sporadic ID, NGS can be considered as the big, revolutionary 

step forward. For the first time a systematic approach to unravel its underlying genetics can 

be undertaken.     

 

1.3.1. Linkage analysis 

Linkage analysis can be used when an ID disorder segregates within a family and when 

several affected and unaffected individuals are available for testing. Through positional 

cloning, genes following mendelian traits can be identified based only on the knowledge that 

the phenotype is inherited. Further information on the biology of the disease or its cause is 

not necessary.53 Linkage analysis uses Linkage Disequilibrium (LD) within families with a 

segregating phenotype to identify co-segregating haplotype blocks. To achieve this, DNA 

polymorphisms like previously microsatellite markers and now single nucleotide 

polymorphisms (SNPs) contained on microarrays53,54 are utilized. To obtain sufficient LOD 

scores, reflecting the likelihood of linkage between two genetic traits, large families or several 

smaller families with the same phenotype and overlapping candidate regions are required. 

Until recently, this was the bottleneck in disease gene identification as time and cost 

consuming Sanger sequencing allowed screening only of a limited number of candidate 

genes. With (targeted) NGS larger regions containing a higher number of genes can be 

screened.  

Linkage analysis has been successfully applied to autosomal dominant ID associated 

disorders such as Neurofibromatosis type I,55,56 to autosomal recessive ID syndromes like 

Cohen syndrome,57 and to X-linked recessive ID caused for example by mutations in the 

oligophrenin gene.39 

 

1.3.2. Homozygosity mapping 

Homozygosity mapping works only for recessive disorders in consanguineous families and is 

based on the assumption that the phenotype is caused by a true homozygous mutation. A 

single heterozygous variant for a recessive disease has a very high chance of becoming 

homozygous and therefore disease causing in the offspring of consanguineous parents.58 

Similar to linkage analysis, mutational screening in candidate genes within homozygous 

regions is performed. Systematic studies using homozygosity mapping require populations 

with a high degree of parental consanguinity and large family sizes accompanied by a high 
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frequency of ID and congenital anomalies. Such conditions are typically found in Arab 

countries, Turkey, Iran, Pakistan, and some parts of India.59,60 Large studies in families from 

Iran or Syria using DNA array-based SNP typing revealed various novel loci for non-

syndromic autosomal recessive ID.61,62 In the biggest study with 136 families this approach 

led to the identification of mutations in 23 genes previously implicated in ID or related 

neurological disorders. Probably disease-causing variants were additionally identified in 50 

novel candidate genes.63 These studies therefore emphasize the extreme heterogeneity of 

autosomal recessive ID. 

 

1.3.3. Chromosomal translocations 

De novo balanced chromosomal translocations can be identified by conventional karyotyping 

and occur with an incidence of 1 in 2000.64 Six percent of them are associated with ID with or 

without further anomalies.60 Exact breakpoint mapping of such translocations can therefore 

elucidate candidate genes for ID.65 Subsequent confirmation can be achieved by identifying 

mutations in the same gene in other patients with a similar phenotype. This approach has 

been successful for autosomal genes like ZEB2, mutations in which underlie Mowat-Wilson 

syndrome,66 or for GRIN2A and GRIN2B, mutations in which cause variable ID with or 

without epilepsy.67 Furthermore, this approach was also successful for the X-linked dominant 

CDKL5 gene.68,69 

Breakpoint mapping cannot be pursued systematically but depends on the finding of 

apparently balanced chromosomal translocations. 

 

1.3.4. Molecular karyotyping by arrayCGH and SNP arrays 

Apart from an increasing diagnostic outcome in patients with ID harboring individual small 

chromosomal aberrations70,71 or by identifying novel common microdeletions syndromes 

(reviewed by Slavotinek72), molecular karyotyping by arrayCGH or SNP arrays has been 

proven to be a suitable method to identify novel disease causing genes. After initial 

identification of small aberrations affecting only one or few genes, subsequently mutations in 

the respective candidate gene in further patients without copy number variants can be 

uncovered. This applied to well-known syndromic disorders such as autosomal-dominant 

CHARGE syndrome36 or autosomal recessive Peters Plus syndrome.73 Further examples are 

the identification of causative genes for an epileptic encephalopathy74 or for non-specific 

moderate to severe ID.75,76 
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1.3.5. Sequencing of functional candidate genes 

Targeted screening for mutations in a particular gene by conventional Sanger sequencing is 

often the method of choice if this gene is considered to be a good ID candidate gene. This 

can for example be due to its known function or due to an interaction with known disease 

causing genes/proteins. 

Selecting a functional convincing candidate gene can be done in combination with 

linkage analysis and homozygosity mapping (see above), where it can be picked from a 

larger but still limited number of genes. Furthermore, several studies proved the feasibility of 

selecting and screening a candidate gene purely on its function without additional genetic 

information. Within the framework of the Canadian Synapse to Disease consortium, Hamdan 

et al. found de novo protein-truncating mutations in SYNGAP177 in patients with non-

syndromic ID as well as in other synaptic genes associated with glutamatergic systems.78 

SYNGAP1 had been known to be involved in pathways regulated by NMDA receptors, and 

mice with heterozygous Syngap1 mutations had been found to have cognitive dysfunction.77 

Mutation screening for RPGRIP1L was performed because of its interaction with 

ciliary and basal body proteins involved in Joubert syndrome and indeed led to the 

identification of mutations in patients with a typical Joubert syndrome phenotype.79  

 

1.3.6. Next generation sequencing 

Sanger sequencing allows only screening of a limited number of genes, e.g. single genes or 

genes from linkage or homozygosity mapping regions or, in an exceptional large scale 

attempt, of all coding exons of the X-chromosome.40 During the last few years NGS 

technology has evolved as the key to overcome these limitations.80  

For the identification of the underlying mutations in monogenic disorders like many 

forms of ID, currently mainly whole exome sequencing is used. As only about 1% of the 

whole genome is protein coding, massive parallel sequencing of those regions has been 

become a relatively rapid and cost efficient method. Exome sequencing starts with enriching 

exonic sequences using different array-based or solution based capturing methods.26 This is 

followed by massive parallel sequencing and a bioinformatics pipeline that filters the 

identified changes to distinguish pathogenic mutations from common variants or technical 

errors.34 

Whole exome sequencing can be utilized for disease gene identification based on 

different hypotheses. In index patients of consanguineous families screening for recessive 

mutations in homozygous regions can be performed much more extensive than before with 

Sanger sequencing and resulted in the identification of several new ID related genes or 

candidate genes.63,81,82 This also applies to families with X-linked ID and targeted NGS for 
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genes on the X-chromosome (Kalscheuer et al., Next-generation sequencing in 248 families 

with X-linked intellectual disability; Abstract #84, Presented at the 12th International 

Congress of Human Genetics/61st Annual Meeting of The American Society of Human 

Genetics, October 13th, 2011, Montreal, Canada). 

The largest progress was made regarding sporadic de novo mutations. The first two 

ID syndromes solved by this method were Kabuki syndrome83 and Schinzel-Giedion 

syndrome.84 Several patients with a similar clinical phenotype were tested simultaneously 

and subsequently screened for mutations in the same gene. This approach relies on 

syndromic forms of ID where several patients with a recognizable similar phenotype are 

available. In non-syndromic ID the so called trio approach has been successfully used by 

testing patient and parents simultaneously and looking for de novo mutations in previously 

known or functionally convincing genes.34,35,42 

Table 1  Strategies for disease gene identification 

Strategy  Suitable for the indicated 
inheritance patterns  

Specifics 

linkage analysis familial x-linked, autosomal recessive 
and dominant 

currently NGS used for candidate gene 
screening in linkage regions  

homozygosity 
mapping 

autosomal recessive mainly for consanguineous families 

chromosomal 
translocations 

sporadic, dominant; (familial dominant) based on “incidental” findings, no 
systematic approach 

molecular 
karyotyping 

sporadic, dominant CNVs of one or few genes of which 
candidate gene has to be selected 

functional 
candidate genes 

independent from inheritance pattern based on function rather than on 
genetics 

NGS all systematic, can be used unbiased 

 

1.4. The clinical faces of ID  

ID comes in many facets. It is defined as a significant limitation in both intellectual functioning 

and adaptive behavior starting before the age of 18 years (see 1.1.). This definition includes 

primary cognitive impairment that is often initially noted by delay of developmental 

milestones as well as disorders that are accompanied by no development at all, by early 

neurodegeneration and regression, and sometimes even by lethality. 

Not only the cognitive and neurological performance in ID disorders can be highly 

variable, but also the accompanying phenotypes. Classically, ID is clinically distinguished 

into syndromic and non-syndromic forms. While non-syndromic ID disorders are not marked 

by any specific phenotypic aspect, characteristic features co-occurring with ID in syndromic 

disorders can be very variable.  

Cornelia-de Lange syndrome and lissencephaly, for example, are characterized by a 

whole spectrum of distinct dysmorphism and malformations of extremities and organs in case 
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of the first and specific brain malformations in case of the latter.85,86 Such structural 

malformations can be noted by external clinical examination of the patient, by ultrasound 

examination of the organs, and by MRI (magnetic resonance imaging) examination of the 

brain. Physical examinations are therefore an important first step in the diagnosis of 

syndromic ID as they can provide a clue on the disorder and prompt specific molecular 

testing. 

Other disorders like Down syndrome, Williams-Beuren syndrome87 or Mowat-Wilson 

syndrome88 are associated with a specific facial gestalt that alone is sufficient to allow clinical 

diagnosis in most of the patients. 

In some ID disorders the disease course over several months or years can be the 

main contributing factor for the clinical diagnosis. Typical Rett syndrome, for instance, is 

characterized by the sequence of normal development, stagnation, regression, and then 

long-term stability.89  

Many of the metabolic ID syndromes are not characterized by any physical anomalies 

but by specific enzymatic, metabolic or biochemical alterations in blood, urine or liquor. Some 

of them can also lead to specific non-malformation anomalies detected with brain MRIs like 

for example in lipid storage disorders such as X-linked adrenoleukodystrophy.90 Only few 

inherited metabolic diseases cause isolated stable ID. Additional neurological signs such as 

regression, ataxia, seizures, movement disorders or behavioral problems are more 

commonly found.91 

Furthermore, there are disorders that can be accompanied by ID but without ID being 

a major aspect. This applies for example to Neurofibromatosis Type I, which is mainly 

characterized by skin features such as Café-au-lait macules and neurofibromas. But it is also 

associated with learning disabilities in 50 to 75% of patients.92 

Some forms of ID were initially considered as non-syndromic and later re-classified to 

syndromic ID after the underlying cause was identified or after patients were analyzed in 

more detail. This happened for example with the AP4 syndrome. Specific features like shy 

personality and spasticity of the lower extremities were commonly recognized in several 

individuals carrying defects in the same gene or genes from the same complex.82  

For the past years the prevalence of diagnosed autism spectrum disorders (ASD) has 

rapidly increased.93 This is probably not only due to a real increase in co-morbidity but rather 

due to softening borders of terminology and by including ID patients into ASD studies, based 

on phenotypic overlap. The mixing of ID with neuropsychiatric disorders such as autism is 

reflected in the estimation that approximately 10% of children with ID have autistic symptoms 

and that 70% of individuals with autism also have ID.94,95 This clinical overlap is probably at 

least partly based on a molecular overlap of ID and autism related molecular pathways,96 but 

might also be influenced by changing diagnostic criteria and societal biases.93 
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1.5. The molecular faces of ID 

Genetic defects can be pathogenic due a variety of molecular consequences. In principle, a 

genetic alteration can by several mechanisms result in loss of function or gain of function of 

the encoded protein, respectively. 

 

1.5.1. Dosage sensitivity 

The phenotype of trisomy 21 (Down syndrome) is assumed to result from an increased 

dosage of one or more of the ~310 genes present on this chromosome.97 Several dosage 

sensitive genes have been identified that might play a role in the pathogenesis of Down 

syndrome, amongst them DYRK1A. Overexpression of DYRK1A results in severe learning 

deficits in mice,97 and deletions are reported in association with ID and primary 

microcephaly.98 

Also for TBX1, a gene contained in the 22q11.2 microdeletion and –duplication 

region, and in which point mutations were shown to cause the monosomy 22q11.2 

phenotype, a time and tissue dependent dosage effect is discussed.99 The RAI1 gene is 

assumed to be the dosage sensitive gene in clinically distinct Smith-Magenis and Potocki-

Lupski syndromes, caused by reciprocal microdeletions and –duplications in 17p11.2, 

respectively.100-102  

 

1.5.2. Loss of function 

Loss of function can be caused by different mechanisms that all result in inactivation of the 

affected gene/protein. Nonsense mutations, frameshift mutations, splice mutations and out-

of-frame intragenic deletions or duplications can lead to premature termination codons. This 

can result in truncation of the protein with loss of important C-terminal domains as for 

example assumed for KAT6B mutations in Genitopatellar syndrome103,104 and distinct Say-

Barber-Biesecker Variant of Ohdo Syndrome.105 It is suggested that loss-of-function, either 

by haploinsufficiency or loss of the c-terminal region, results in overlapping features between 

the two syndromes, whereas an additional dominant-negative or gain-of-function effect is 

responsible for the more specific symptoms.104,106 

More commonly, aberrant mRNAs are subject to nonsense mediated mRNA decay,107 

leading to a reduction of mRNA and subsequently protein. Heterozygous loss-of-function 

mutations often result in haploinsufficiency (see 1.5.3.), while biallelic loss of function often 

affects enzymes, whose complete or nearly complete loss is often found in metabolic 

diseases. 

Additionally, also missense mutations within important functional domains can cause 

loss of function as shown for example for MeCP2.108 
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1.5.3. Haploinsufficiency 

Haploinsufficiency occurs, when a single functional allele is not sufficient to produce a normal 

phenotype. This mechanism typically underlies dominant heterozygous loss-of-function 

defects or the loss of dosage-sensitive genes, both described above. 

Haploinsufficiency of a specific gene can be assumed, when larger deletions of a 

gene and point mutations within this particular gene are found to result in the same 

phenotype. This was, for instance, shown for Kleefstra syndrome that is either caused by a 

microdeletion of 9q34.3 containing the EHMT1 gene or by mutations in the EHMT1 gene 

itself.29 Also larger deletions in 5q as well as point mutations – both stop mutations and 

missense mutations- in the MEF2C gene cause an identical phenotype of severe ID with 

epilepsy.75 

 

1.5.4. Gain of function 

Gain-of-function mutations result in increased or abnormal function of the gene product. 

Therefore gain of function can lead to more specific consequences compared to loss of 

function.  

Noonan syndrome and related Rasopathies are caused by deregulation of the RAS-

MAPK signaling pathway. For many mutations that were identified in positive regulators of 

the pathway (SHP2, SOS1, KRAS, HRAS, BRAF, MEK1, MEK2), a gain-of-function effect 

could be experimentally shown.109 Most of these mutations are missense changes, and a few 

are deletions of single amino acids in particular functional domains of the respective 

protein.109  

Also missense mutations in SETBP1, causing Schinzel-Giedion syndrome, and 

clustering in a highly conserved 11 bp region, are supposed to act in a gain-of-function 

manner.84 Schinzel-Giedion syndrome is characterized by severe ID, distinctive facial 

features, multiple congenital malformations, and lethality within the first decade.84 The 

specific effect of the supposed gain-of-function mutations in SETBP1 in those patients is 

confirmed by the finding of SETBP1 haploinsufficiency in patients with a different phenotype 

of mild ID and expressive language impairment.110 

 

The heritability of intelligence: gain of function versus loss of function? 

Though the heritability of intelligence is high, only very few genetic factors have been 

identified so far. Due to their number, the effect of each single factor is probably low.111 It is 

suggested that genes associated with intelligence might also be of importance to ID. This 

means that variants in the same gene can contribute to both upper (normal or high 
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intelligence) and lower (ID) extremes of intelligence as a normally distributed trait.112,113 

One might hypothesize a rather high proportion of loss-of-function defects in ID compared to 

gain-of-function variants which might contribute to normal or high intelligence. This idea is 

supported by a larger number of ID associated recurrent chromosomal deletions than 

duplications (15 versus 8, Vissers et al.,114). However, strategies in the pre-NGS era have 

been biased towards loss-of-function defects due to a high fraction of metabolic diseases 

and due to genes identified by chromosomal aberrations which mostly are deletions or 

gene-disrupting translocations.   

Interestingly, for an increasing number of genes, gain-of-function as well as loss-of-function 

mutations have been implicated in ID. These can result in distinguishable phenotypes, 

respectively. This applies to SETBP1 as described above84 as well as to SCN2A. Missense 

mutations in this gene cause an early onset epileptic encephalopathy and were shown to 

have a gain-of–function effect.115 In contrast, truncating mutations were recently identified in 

individuals with unspecific ID and autism without epilepsy.34,35,116 It might therefore be 

suggested that gain-of-function mutations lead to a more complex and syndromic phenotype 

than loss-of-function mutations. The increasing findings of different phenotypes caused by 

mutations in the same gene might also implicate that at least ID associated with sporadic de 

novo mutations might be genetically less heterogeneous than proposed before. 

 

1.5.5. Dominant negative effects 

A dominant negative effect occurs when a mutant protein interferes with the function of the 

normal second allele in a heterozygous person. 

Such an effect is discussed for mutations identified in the SMARCA2 gene in patients 

with Nicolaides-Baraitser syndrome. All point mutations found so far have been missense 

mutations within the SNF2_N and HELICASE_C ATPase domains. Additionally, one deletion 

encompassing the C-terminal helicase domain was observed.117,118 These findings, together 

with data from yeast, support a dominant-negative model in which dysfunctional but 

structurally undamaged SMARCA2 generates a complex that is intact with respect to its 

composition and occupies its appropriate chromatin domains but is nonetheless functionally 

inactive.117  

 

1.5.6. Dynamic mutations 

Fragile X syndrome, the most common cause of monogenic ID, is caused by an expanded 

CGG repeat in the promoter of the FMR1 gene, leading to hypermethylation and therefore 

inactivation of the protein.37 
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Another example is the congenital form of myotonic dystrophy type I which is often 

accompanied by ID. This disorder is caused by a trinucleotide expansion in the non-coding 

region of the DM1 protein kinase gene, DMPK,119 resulting in accumulating and thus possibly 

toxic RNA molecules.120,121 

 

1.5.7. Imprinting defects 

Genomic imprinting describes the preferential or exclusive expression of a gene on either the 

maternal or paternal allele. The allele-specific expression of imprinted genes is mediated by 

allele-specific epigenetic modifications such as DNA-cytosine methylation, histone 

acetylation, and other modifications.49 Abnormalities in imprinted inheritance occur in several 

well-known developmental and neurobehavioral disorders, including Albright’s hereditary 

osteodystrophy or Beckwith-Wiedemann syndrome.122 Loss of a functional paternal or 

maternal allele in chromosomal region 15q11-q13 due to deletion, uniparental disomy, or 

mutations in imprinting centers, results in the clinically distinct phenotypes of Prader-Willi or 

Angelman syndromes, respectively.122  

 

1.6. Common themes among ID disorders 

Many of the genes and proteins implicated in ID can be assigned to different categories 

according to their function as enzymes, mediators of signal transduction, transcriptional 

regulators, etc. or according to their biological function in processes like nuclear organization, 

metabolic and signaling pathways, organization of cytosceleton.4 Defects are suggested, 

apart from potential functions outside the nervous system, to lead to two major common 

groups of phenotypic outcomes: 1. dysfunctional neurodevelopment and brain malformation 

and 2. alterations in molecular mechanisms underlying synaptic organization and plasticity.4 

However, a complete summary as well as a comprehensive overview on all ID-related genes 

is still lacking. Several examples of genotypic and/or phenotypic entities are given here. 

However, they often show considerable overlap between each other and are by far not 

complete. 

 

1.6.1. Inborn errors of metabolism 

For many inborn errors of metabolism the underlying biochemical defect, often integrated in 

larger pathways, is well known. However, the exact mechanisms of brain damage and 

dysfunction are still poorly understood.91,123 

Lysosomal storage disorders are characterized by deficient intracellular transport or 

metabolism resulting in progressive accumulation of un-degraded catabolites. This occurs 
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particularly in the reticuloendothelial system and the nervous system, thus often leading to 

progressive central nervous system damage by disturbance of myelin formation and 

function.123,124  

Also phenylketonuria seems to result in white matter anomalies and dysmyelination 

by direct neurotoxic effects. These are discussed to result from elevated phenylalanine levels 

leading to disturbed amino acid transport into the brain and alterations in neurotransmitter 

levels.123,125 Aberrant neurotransmission is also observed in glycine or serine disorders.123 

Furthermore, deficiencies in energy availability as seen in creatine deficiency as well 

as defects in energy production caused by mitochondrial disorders can underlie cognitive 

impairment.123 The respiratory (or electron transport) chain in mitochondria consists of 4 

complexes comprising ca. 90 subunits which are mainly encoded by nuclear genes. It is the 

core machinery for oxidative phosphorylation and a hub in the cellular metabolism network. 

Disruptions can lead to a broad spectrum of phenotypes ranging from highly tissue-specific 

to multisystemic symptoms.44 

 

1.6.2. Neurogenesis 

The first and critical step of cortex development is the generation and proliferation of 

neuronal precursor cells. Various neurological conditions are associated with alterations in 

mechanisms of cell proliferation, cell fate determination or programmed cell death, thus 

leading to an abnormal number of neurons.4 The resulting abnormalities in brain size are 

characteristic for primary microcephaly disorders. These are caused by mutations in genes 

like MCPH1,126 ASPM,127 or CENPJ,128 which are involved in centrosome function and DNA 

repair response pathways.4 

 

1.6.3. Neuronal migration 

Neuronal migration disorders involve disruptions of various stages of the migration process, 

including the onset of migration, migration movements, the penetration into the preplate, and 

the arrest of migration.4 Depending on the time, type and localization of migration defects, 

different brain malformation phenotypes can manifest. These comprise lissencephaly, 

heterotopias, polymicrogyria and schizencephaly.129 Examples are mutations in LIS1, DCX, 

and TUBA1A in classical lissencephaly, mutations in POMT1, POMT2, FKTN etc. in 

cobblestone lissencephaly, mutations in FLNA or ARFGEF2 in periventricular heterotopias, 

mutations in GPR56 in polymicrogyria, and mutations in EMX2 in schizencephaly 

(summarized and reviewed by Verrotti et al.129). 
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1.6.4. Synapse formation and plasticity  

The formation, maintenance and modification of synapses are fundamental to learning, 

memory, and other cognitive processes. Mutations in the “synaptome” can result in a broad 

spectrum of neurodevelopmental and cognitive disorders.130 However, despite being a major 

theme in ID the degree of its contribution is still debated.63 

Synaptic plasticity is reflected by experience- or activity-induced changes in molecular 

composition and morphology of synapses and dendritic spines, the main sites of excitatory 

synaptic input. It is assumed as a correlate for learning and memory.3 Various defects in 

presynaptic pathways, in postsynaptic protein complexes, or in the cytoskeleton can lead to 

impaired synaptic plasticity and therefore to cognitive dysfunction.3,4  

ID genes with a role in presynaptic vesicle recycling are for example STXBP1,74 

GDI1,131 and RAB39B.132 Presynaptic CASK has an important role in trans-synaptic protein 

interaction and is implicated in severe ID with brain malformations.133 

 

Figure 2  Schematic drawing of a synapse with some pre- and postsynaptic networks and 

pathways, involved in various processes.  

Shaded proteins are encoded by known ID genes. Adapted from Van Bokhoven, 20113. G., GTPase; 

Syntax.1, Syntaxin-1; Rabph.3A, Rabphilin 3A, RTK, receptor tyrosin kinase 
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ID associated genes involved in postsynaptic complexes are for instance GRIA1, encoding 

an AMPA receptor subunit,134 or GRIN2A and GRIN2B, coding for NMDA receptor subunits.67 

Other proteins involved in postsynaptic density complexes are SYNGAP77 and the scaffolding  

proteins SHANK1-3.135-137 Also local regulation of postsynaptic protein levels seems to be 

critical for normal learning and memory processes.3 This is demonstrated by mutations in the 

Fragile X syndrome gene FMR1, which encodes a regulator of local synaptic protein 

snythesis.138 Another example are mutations in the Angelman syndrome gene UBE3A, which 

is involved in ubiquitin-proteasome system-dependent protein degradation.139,140 

Members of RhoGTPase signaling pathways are important regulators of dendritic 

spine morphology and synaptic acitivity.49 Deficits in the regulation of the dendritic 

cytoskeleton affect both the structure and function of dendrites and synapses, common 

features in patients with ID.141 The RhoGTPase pathway includes ID genes such as 

OPHN1,39 PAK3,142 ARHGEF6,143 and FGD1.144 

Another well-known example for a cellular signaling cascade implicated in ID is the 

RAS-ERK signaling pathway with both presynaptic and postsynaptic roles.3,145 It is involved 

in Noonan syndrome and related disorders and comprises the Ras GTPases HRAS and 

KRAS146 as well as the downstream effectors RAF1, BRAF, MEK1, MEK2 and RSK2, and 

regulators of the Ras-MAPK pathway such as SHP2, SOS, NF1, SPRED1, and SHOC 

(reviewed  by Tartaglia et al.147), thus highlighting a nearly complete molecular pathway. The 

associated disorders of the Noonan/CFC/Costello syndrome spectrum are often 

accompanied by cognitive deficits of variable severity, which seems to be at least partially 

correlating with the affected gene and the type of mutation.148  

 

1.6.5. Transcriptional regulation 

Transcription is, amongst other processes, a molecular prerequisite for long-term synaptic 

plasticity and long-term memory function.149 It is controlled by transcription factors and co-

factors, by signal transduction cascades, and by chromatin-remodeling proteins.49 

Transcription factors bind to particular cognate sequences in promoter regions of their 

target genes and regulate their expression. Examples for transcription factors implicated in 

ID syndromes are ZEB2 in Mowat-Wilson syndrome,150,151 MEF2C in severe Rett-like ID,75,152 

or SOX3 in X-linked ID with growth hormone deficiency153 and SOX10 in the neurologic 

variant of Waardenburg-Shah syndrome.154 

Furthermore, transcription is regulated by epigenetic modulation of chromatin 

structure. This includes mechanisms like DNA methylation, modification of histone proteins, 

and ATP-dependent chromatin remodeling.155 The Rett syndrome gene MECP2 encodes the 

methyl-CpG binding protein 2. It binds to methylated CpG dimer pairs in DNA and recruits 
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certain transcriptional co-factors like histone deacetylases. This subsequently leads to 

chromatin condensation and repression of target gene expression.156,157 Mutations in MLL2 

and EHMT1, both encoding histone methyltransferases, were identified in Kabuki syndrome 

and Kleefstra syndrome, respectively.29,83 The histone acetyltransferases CREBBP and 

EP300 are implicated in Rubinstein-Taybi syndrome.158,159 CREBBP is regulated by the 

ERK/CREB pathway, which is connected to the above mentioned Ras-MAP kinase pathway 

by the ribosomal protein S6 serine/threonine kinase RPS6KA3. Mutations in this gene cause 

Coffin-Lowry syndrome.160 Only recently, mutations in several components of the SWI/SNF 

ATP-dependent chromatin remodeling complex were identified in Coffin-Siris syndrome, 

Nicolaides-Baraitser syndrome, and unspecific ID.76,117,161-164 This complex regulates gene 

expression by using energy of ATP hydrolysis to alter chromatin structure around its target 

genes in order to facilitate access of other transcription factors.165 Other chromatin 

remodeling ATPases/helicases are for example ATRX in X-linked mental retardation with 

alpha-thalassemia166 and CHD7 in CHARGE syndrome.36 

 

1.6.6. Cytoskeleton 

Proper regulation of the actin and microtubule cytoskeleton is important for dendritic spine 

morphology and synaptic activity.4 Recently, mutations in the cytoplasmic actin genes ACTB 

and ACTG1 were identified in patients with Baraitser-Winter syndrome.167 

 

1.6.7. Channelopathies 

Most of the so far known channelopathies are implicated in idiopathic epilepsy or epilepsy 

syndromes.168 Many of them are associated with developmental and cognitive anomalies. 

Mutations in sodium channel genes like SCN1A and SCN2A as well as in the potassium 

channel gene PCDH19 cause a broad range of epileptic and neurodevelopmental disorders 

ranging from familial febrile seizures169 to severe and early-onset epileptic encephalopathies 

including Dravet syndrome.170,171 

 

1.6.8. Ciliopathies 

Cilia are complex sensory organelles. They play a role in the regulation and control of 

various cellular signaling pathways. Ciliopathies are a heterogeneous group of disorders 

which are caused by mutations in genes/proteins that localize to the cilium-centrosome 

complex.172 Apart from renal disease and retinal blindness, ciliopathies comprise also 

Joubert and Bardet-Biedl syndromes. Both disorders are accompanied by brain 

malformations, neurological symptoms and cognitive impairment. Therefore, a role of the 
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primary cilium and of the many genes involved in its regulation is assumed for the modulation 

of neurogenesis, neuronal migration, cell polarity, axonal guidance, and possibly adult 

neuronal function.173,174 Both Joubert syndrome and Bardet-Biedl syndrome are genetically 

heterogeneous disorders with mutations in several ciliary genes resulting in an highly similar 

phenotype, respectively.175,176 

 

1.7. Modules and networks  

On one hand a distinct ID disorder can be caused by mutations in different genes, whereas 

on the other hand mutations in one particular gene can result in several clinically distinct 

phenotypes. This general complexity in disease genetics has for a long time being reflected 

in the so called “lumping” and “splitting” debate of phenotypes.177 Together with the growing 

number of identified ID related genes, the awareness of functional connection between those 

is increasing. It has been observed that similar phenotypes are often caused by defects in 

functionally related genes.178 The so far best studied “module” are the above already 

mentioned “Rasopathies”, comprising the Noonan/CFC/Costello syndrome spectrum and 

being caused by defects in several proteins of the Ras-MAPK pathway.179 Also other 

correlations between similar clinical phenotypes and their underlying molecular modules are 

reflected in comprehensive terms such as “ciliopathies”, including ID disorders like Joubert 

and Bardet-Biedl syndromes, “cohesinopathies”, comprising Cornelia-de-Lange syndrome 

and related disorders, and “channelopathies”.180  

These terms are based on the attempt to express molecular themes behind clinical 

phenotypes. This is accomplished on different levels, emphasizing organelles, processes, 

pathways or complexes. 

Establishing modules and networks is considered to be an important step to be able 

to cope with the large amount of data that will result from NGS, hence for evaluating and 

prioritizing variants found in a large number of candidate genes.96,180 It is also considered to 

be the starting point for the development of therapies in ID disorders as intervention into a 

central point of a larger complex or pathway is the only feasible approach compared to 

targeting every single rare genetic defect. Modules, networks and common themes in ID are 

subject of chapter 6 of this thesis. 

Large scale approaches to establish both clinical and functional networks are 

currently mainly based on bioinformatic analyses. These can link up information such as 

protein-protein interaction, known associations with pathways, and phenotype ontology 

databases.96,178,181 First approaches in this direction were recently undertaken for autism, 

autism spectrum disorders, and ID. They indeed showed common pathways of overlapping 

synaptic regulatory subnetworks, beta-catenin/chromatin remodeling networks, or enrichment 
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of neurophenotypes.47,96,182 However, these bioinformatic analyses are hypothetical and rely 

on the existence, extent and availability of molecular and functional data of the genes and 

proteins of interest. 

 

 

 

Figure 3 Schematic drawing of the RAS-MAPK signal transduction pathway, one of the best 

characterized disease-associated pathways.  

Dimerized cell surface receptors are activated by ligands, and signals are conducted via the pathway 

to the nucleus. Shaded ovals represent genes/proteins associated with disorders from the neuro-

cardio-facial-cutaneous syndrome family. Light grey boxes name the disorders linked to mutations in 

the particular gene. NS, Noonan syndrome; CS, Costello syndrome; LS, LEOPARD syndrome; CFCS, 

cardio-facio-cutaneous syndrome; NF1, neurofibromatosis type 1; NFLS, neurofibromatosis type 1-like 

syndrome (Legius syndrome); NFNS, neurofibromatosis-Noonan syndrome; NS/LAH, Noonan-like 

syndrome with loose anagen hair. The figure is adapted from Tartaglia et al..183 

 

1.8. Taking the next step: functional analyses 

1.8.5. Aims 

Functional analyses of ID related genes or proteins are done for different reasons and with 

different aims. These include: 1) To prove pathogenicity of a specific mutation. This might be 

either the first one in a newly identified candidate gene and therefore lacking affirmation 

through a larger number of patients. Or it might be found in a known disease gene but is in 
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its nature or localization different from previously known mutations. 2) To delineate genotype 

phenotype correlations. Understanding specific effects of specific genetic aberrations helps 

to appreciate the complex genetic and phenotypic interactions. 3) To find out more about the 

gene/protein of interest and its function, in order to confirm its role in disease-relevant 

phenotypes and to generate fundamental knowledge about it. 4) To establish the position 

and role of a particular gene or protein in a larger complex or pathway. This might help to 

identify new candidate genes for cognitive function and dysfunction due to their functional 

and interactive role. Furthermore, it is also an important prerequisite for the establishment of 

therapeutic approaches that can target a pathway or complex rather than each of its single 

components. 

 

1.8.6. Sources and approaches to investigate gene/protein function 

Depending on the nature of the investigated gene or protein, on the nature of the identified 

defect, and depending on available patient material, a large variety of functional analyses 

can be exploited to investigate the general function of a gene/protein and/or to test a more 

specific outcome of single mutations. Some examples are given below. 

a) Human samples 

Human samples are usually limited to easily accessible materials like cells from peripheral 

blood (lymphocytes or cells from EBV-transformed lymphoblastoid cell lines) or fibroblasts. 

Rarely, brain specimens are available from autopsies or after brain surgery of patients.184 

Usually, these allow only static biochemical or morphological examinations.185 

Analyses done on peripheral cells from blood or skin do not necessarily reflect the 

processes happening in brain, and they do not allow investigations on specific neuronal cell 

types. Therefore, scientists are trying to overcome these limitations by using stem cells that 

can be differentiated into various subsets of neurons. Utilizing human embryonic stem cells 

as done for example to model chromosomal disorders186 was in that case limited to the 

availability due to spontaneous abortion of aneuploid embryos. It is in general under ethical 

discussion and prohibited in many countries. However, the derivation of induced pluripotent 

stem cells (iPS cells) from somatic tissues such as fibroblasts can provide a good source of 

patient-specific stem cells. It is a very promising perspective for disease research that allows 

cellular modeling of disease processes,187 and has already been used successfully in 

research into Rett syndrome and related disorders.188,189 However, to what extent these cells 

mirror the state of (specific) brain neurons still has to be elucidated in more detail. 

b) Cell system based analyses 

If no suitable patient material is available or if more basic processes are to be investigated, 

standard cell lines such as HEK (human embryonic kidney) or HELA (cervical cancer) can be 
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exploited to investigate disease gene function. Overexpression or knockdown of a gene of 

interest can be induced, respectively. Also a large number of more specific assays are 

possible when transfecting cell lines with wild type or mutant constructs. Subsequently, 

intracellular changes of localization can be determined, or transcriptional activity and cellular 

processes can be measured by image-based approaches or in cell extracts. The latter is 

described below in more detail. 

c) Animal models 

Animal models can be used to model pathologies leading to ID and to investigate the role of 

specific alterations more detailed than usually possible in humans or in human samples. 

They allow phenotyping on many different levels, thus connecting molecular, morphological, 

and functional phenotypes with system properties such as changes in learning, memory, and 

behavior.  

Genetically modified mice are currently most commonly used. Mice are, among 

mammals, the most amenable to genetic manipulation. Furthermore, an extensive 

knowledge of the murine genome, physiology, and behavior facilitates interpretation of 

effects.190 Standardized procedures such as knocking out genes by homologous 

recombination or random insertion of wild-type or mutant transgenes are used. These may 

induce pathological events that mimic the human disorder and can therefore provide a basis 

to study the molecular basis of specific pathologies. Once validated, they can also be used to 

test potential therapeutic interventions.190    

Another powerful animal model for neurodevelopmental disorders is Drosophila 

melanogaster due to its rapid generation time, comparatively low cost, and vast arsenal of 

genetic and transgenic capabilities.191 Despite the evolutionary and neuro-anatomical 

divergence between flies and humans, a large number of genes known to be involved in ID 

have orthologs in Drosophila. This, and much other evidence indicate a conservation of 

molecular mechanisms underlying learning and memory.192-195  

In addition to generating information on specific gene function and associated 

pathologies for several ID disorders,191,192 Drosophila allowed a first pharmacological rescue 

of certain Fragile X- associated cognitive phenotypes in flies.196 This resulted in further 

studies in the Fragile X mouse model and triggered ongoing clinical trials in human 

patients.197,198 

While the generation of knockout mutants can be quite time consuming for Drosophila 

and even more for mice, the UAS-GAL4 system in Drosophila allows rapid and tissue 

specific knockdown or overexpression of any gene of interest and therefore provides a 

suitable foundation for many subsequent experiments.199,200 
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Figure 4  Schematic drawing of RNA interference201 via the UAS-Gal4 system.  

Female, non-mated flies carrying a promoter (prom)-GAL4 insert, are crossed with male flies carrying 

a UAS-RNAi transgene. In the progenies, GAL4, a transcriptional activator, is generated in specific 

tissues and binds to the upstream activating sequence (UAS). This activates the RNAi insert to 

express short hairpin RNAs. These are cleaved by the enzyme Dicer into short interference RNAs 

(siRNAs), which assemble with the target mRNA via the RNA-induced silencing complex (RISC). The 

subsequently cleaved mRNA cannot be translated anymore, and therefore a downregulation of the 

gene of interest is induced.  

 

1.8.7. Methods to investigate gene/protein function 

a) In silico analyses 

When trying to evaluate the pathogenic potential of an unknown variant, software tools that 

consider effects on splicing, conservation, or nature of the amino acid change are often used. 

These provide a first step of evaluation and can be of great assistance in prioritizing genetic 

variants. However, those in silico tools are limited to a theoretical assessment of the variant 
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based on several parameters. They lack biological evidence that can only be obtained by 

experimental analyses. 

b) RNA 

If a genetic defect is assumed to affect a dosage sensitive gene, the expression level of this 

gene in RNA from the patient can be tested. In order to confirm dosage loss due to a 

disruption of the gene, expression levels can be determined by quantitative real time-PCR 

approaches.202 Quantitative RT-PCR can also be used to investigate effects of a mutation on 

the expression level of a small number of suspected target genes.75 

Additionally, individual genetic defects can contribute to the understanding of gene 

and protein function on a more general level. With the evolving technologies of microarray 

analysis and transcriptome mRNA sequencing (RNA-Seq) it is now possible to reveal effects 

of mutations or gene dosage on the whole transcriptome. This facilitates the identification of 

pathways and networks that are connected with ID disorders or even with sub-phenotypes as 

shown for example for Rett- and Williams-Beuren syndromes.203,204 

While the availability of patient material is a prerequisite for such analyses, RNA 

interference using siRNA (small interfering RNA) or shRNA (short hairpin RNA) permits 

knockdown of gene expression in cellular systems with subsequent transcriptome profiling as 

done for example for MYST4 in HEK and HELA cells205 or for Sox2 and Chd7 in murine 

neuronal stem cells.206 

c) Protein 

Provided that a suitable antibody is available or can be generated, and depending on its 

binding sequence, protein truncation and reduction or lack of protein level can be detected by 

western blot analysis.207 Both wild type and mutant protein localization and co-localization as 

well as cellular morphology can be investigated by immunofluorescence on patient/control 

cells or after transfecting cell lines with expression constructs. For example, aberrant actin 

organization was shown for ACTB and ACTG1 mutations in cell lines of patients with 

Baraitser-Winter syndrome.167 

Effects of mutations in enzymes can be tested by specific activity assays as for 

example done for the serine/threonine kinase RPS6KA3, which is mutated in Coffin-Lowry 

syndrome.207 

The effect of mutations in ion channel encoding genes such as SCN1A or SCN2A can be 

tested by using patch clamp techniques in transfected cell lines or xenopus oocytes.208,209 

d) Protein-DNA binding 

Transcription factors regulate transcription of target genes by binding to specific sequences 

in promoter regions and by activating or repressing mechanisms.  
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Figure 5  Schematic illustration of an indirect dual luciferase assay.  

A cell line is co-transfected with: 1. An expression vector containing wild type or mutant cDNA of the 

transcription factor (TF) of interest, which is cloned behind an endogenously active promoter. 2. A 

reporter construct containing cDNA of firefly luciferase (FF luc) and a promoter with specific binding 

sites of the transcription factor of interest. 3. A construct containing renilla luciferase together with an 

endogenously active promoter. The transcription factor activates expression of firefly luciferase which 

is stimulated to produce luminescence by substrate 1. The luminescence is measured and normalized 

to luminescence intensity of an endogenously active renilla luciferase, in order to even out differences 

in transfection efficiciency. 

 

Indirect Luciferase assays provide the possibility to test transcriptional activity of a 

protein by co-transfecting it with a reporter construct. The latter contains the specific binding 

site of the transcription factor together with a promoter element that activates transcription of 

luciferase, whose activity can then be determined.210  

While Luciferase assays allow more complex determination of transcriptional activity, 

electro mobility shift assays (EMSA) are focusing rather strictly on the pure DNA-binding 

capacities of a transcription factor. They determine the shift caused by the binding of a 

protein to a DNA nucleotide during gel electrophoresis.211 Often both methods are used 

together in a complementary fashion.212 
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Also chromatin remodeling factors play a role in transcriptional regulation by different 

mechanisms which regulate chromatin structure and status.213 The methodology of chromatin 

immunoprecipitation (ChIP) involves shearing of protein-associated chromatin into smaller 

fragments followed by immunoprecipitation of the DNA-protein complex with a protein-

specific antibody. The isolated DNA-protein complexes can then be dissociated and the 

specifically enriched DNA segment can be analyzed using PCR amplification methods.211 

ChIP can be combined with subsequent microarrays (ChIP-ChIP) or DNA sequencing (ChIP-

Seq), thus allowing generation of genome-wide profiles of binding sites for transcription 

regulators. Such experiments were done for MYST4 in patient lymphoblastoid cell lines,205 for 

Ehmt1 in fly larvae,213 or for Sox2 and Chd7 in murine neural stem cells.206  

e) Protein-Protein binding 

Co-immunoprecipitation can be used to confirm interaction of a particular protein with the 

protein of interest by western blot214 but also to investigate the effect of a mutation on the 

interaction.215 

A large number of methods, including co-immunoprecipitation, co-purification, or 

affinity purification of protein complexes, can be used to identify new interaction partners of 

the protein of interest. This can be achieved by separating bound proteins on a 

polyacrylamide gel and by subsequently analyzing them with mass spectrometry.216 For 

example, FLAG- affinity based protocols and mass spectrometry were used to identify factors 

of the nucleosome remodeling and deacetylation (NuRD) complex as interaction partners of 

Sox 2206 or of PHF6.217 

While these methods require generation of homogenized protein extracts, the yeast two-

hybrid technique allows detection of interacting proteins in living yeast cells.216 The classical 

cDNA-library screen searches for pairwise interactions between the defined proteins of 

interest (bait) and their interaction partners (preys), present in cDNA libraries or sub-pools of 

libraries. Interaction between two proteins activates reporter genes that enable growth on 

specific media or a color reaction.216 Yeast two-hybrid approaches were for example used to 

identify or confirm interaction partners of Fragile X syndrome protein FMR1,218 of CASK, 

which is implicated in X-linked ID,219 or for Joubert syndrome related proteins within the 

ciliary network.220 

f) Phenotyping in animal models  

Over the last years, model organisms such as mouse and Drosophila have contributed to a 

broader understanding of the underlying molecular and functional mechanisms in a large 

number of ID disorders. Examples are Down syndrome, Angelman syndrome, Rett 

syndrome, and Fragile X syndrome.190-192 
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Basic investigation of expression patterns of a gene of interest during different stages 

of embryonic and adult development can be investigated with whole mount in situ 

hybridization in both mouse221 or Drosophila.222 

The nervous system of knockout or knockdown models allows various investigations 

such as detection of expression levels, investigation of morphology of neuronal and glial 

cells, or testing synaptic function. 

For example, the αPix/Arhgef6 mouse model for X-linked ID allowed to determine 

expression of the gene in certain areas of the brain and to detect altered expression of Rho 

GTPases in the hippocampus. Furthermore, changes in dendritic morphology and linear 

spine density as well as altered synaptic plasticity as measured by long-term potentiation and 

repression, were observed.223 Similarly, the Ehmt1 knockout fly allowed delineation of 

expression patterns in the brain and detection of altered dendrite development in 

multidendrite neurons.213  

Additionally, deficits in navigation, object exploration and complex positional learning 

were observed in the αPix/Arhgef6 knockout mouse.223 In the Ehmt1 knockout mouse model, 

reduced activity and exploration increased anxiety, diminished social playing, and a delayed 

or absent response to social novelty were demonstrated.224 The Ehmt1 mutant fly showed 

deficiencies in larval locomotor behavior, habituation and courtship memory.213  

Using the UAS-GAL4 system the consequences of a knockdown in specific tissues 

can be tested. This was done for climbing behavior in the Drosophila model of CHARGE 

syndrome after inducing knockdown of kismet/CHD7 in different subsets of neurons and 

muscle cells.225 Courtship memory defects in EHMT1 flies have been show to reside in 

mushroom bodies.213 

These examples illustrate that a vast number of behavioral tests in mice and 

Drosophila exist. Mouse models can mirror human disease symptoms like autistic traits quite 

well in behavioral assays, which test impaired social interaction, communication deficits, and 

repetitive behaviors.226 However, in general no one-to-one equivalency of human behavioral 

phenotypes to animal models can be expected. Modeling of human-like symptoms in animals 

should therefore not test if the animal would show a given cognitive impairment but rather, 

how a cognitive impairment would manifest in the animal.185  

 

1.9. Outline and aim of this thesis 

The aim of this thesis was to contribute to the genetic, clinical and functional characterization 

of ID disorders, with a particular focus on Pitt-Hopkins (PTHS) and Pitt-Hopkins-like 

syndromes. 
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Work described in this thesis covers the identification of TCF4 haploinsufficiency as 

the underlying genetic defect for Pitt-Hopkins syndrome, a distinct, but previously 

unrecognized syndrome that is characterized by severe ID, distinct facial features, and 

breathing anomalies. Consequences of TCF4 mutations on interaction with ASCL1 from the 

ASCL1-PHOX2B-Ret pathway were investigated with a transcriptional reporter assay as 

those might explain some of the characteristic PTHS symptoms (chapter 2). 

Following the identification of the underlying genetic defect, a larger number of 

patients with Pitt-Hopkins syndrome and TCF4 mutation were collected in order to further 

delineate the clinical and genetic characteristics of this syndrome (chapter 3).     

As in many patients with a relatively homogenous PTHS-like phenotype no TCF4 

mutation was identified, we performed molecular karyotyping in order to identify further 

defects responsible for PTHS or related disorders. We found a homozygous deletion in 

CNTNAP2 in a pair of siblings and a compound heterozygous deletion and splice site 

mutation in NRXN1 in a sporadic patient. Subsequently, Drosophila melanogaster was used 

as a model organism to investigate a possible interaction between Nrx-IV and Nrx-I that 

could provide an explanation for the similar phenotypes caused by the newly identified 

recessive defects in their human homologues CNTNAP2 and NRXN1 (chapter 4). 

To further characterize the phenotype associated with defects in CNTNAP2 and 

NRXN1 and to further confirm their role in severe ID, we identified a larger number of 

patients with CNVs or mutations in either gene and described their genotypic and phenotypic 

characteristics (chapter 5). 

Beyond these focused studies, this thesis also aimed at the contribution to a more 

global understanding of the molecular pathology of ID disorders. In order to pave the way to 

large-scale functional studies, a systematic inventory of all ID-related genes and their 

associated phenotypes was established. We also classified ID disorders according to their 

clinical phenotypes and attempted to establish correlations between clinical and 

molecular/functional aspects (chapter 6). 

A general discussion of the findings in this thesis and their implications in the broader 

field of ID genetics is provided in chapter 7. 
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Chapter 2 

 

Haploinsufficiency of TCF4 causes syndromal 

mental retardation with intermittent 

hyperventilation (Pitt-Hopkins syndrome). 

 

Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W, Saraiva J, 

Cabral A, Goehring I, Devriendt K, de Ravel T, Bijlsma EK, Hennekam RC, Orrico A, Cohen 

M, Dreweke A, Reis A, Nürnberg P, Rauch A.  

 

 

Am J Hum Genet. 2007 May;80(5):994-1001 
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Pitt-Hopkins syndrome is a rarely reported syndrome of so-far-unknown etiology 

characterized by mental retardation, wide mouth, and intermittent hyperventilation. By 

molecular karyotyping with GeneChip Human Mapping 100K SNP arrays, we detected 

a 1.2-Mb deletion on 18q21.2 in one patient. Sequencing of the TCF4 transcription 

factor gene, which is contained in the deletion region, in 30 patients with significant 

phenotypic overlap revealed heterozygous stop, splice, and missense mutations in 

five further patients with severe mental retardation and remarkable facial 

resemblance. Thus, we establish the Pitt-Hopkins syndrome as a distinct but probably 

heterogeneous entity caused by autosomal dominant de novo mutations in TCF4. 

Because of its phenotypic overlap, Pitt-Hopkins syndrome evolves as an important 

differential diagnosis to Angelman and Rett syndromes. Both null and missense 

mutations impaired the interaction of TCF4 with ASCL1 from the PHOX-RET pathway 

in transactivating an E box–containing reporter construct; therefore, hyperventilation 

and Hirschsprung disease in patients with Pitt-Hopkins syndrome might be explained 

by altered development of noradrenergic derivatives. 

 

In 1978, Pitt and Hopkins described two patients with sporadic “mental retardation, wide 

mouth and intermittent overbreathing”227 Since then, only four other sporadic cases with a 

similar phenotype and one sib pair with possible Pitt-Hopkins syndrome (PHS) have been 

published, but there is no MIM entry for this entity.228-231 Breathing abnormalities in these 

published patients with PHS appeared in midchildhood, were present only when they were 

awake, and consisted of abrupt paroxysms of tachypnea followed by breath holding and 

even overt cyanosis. Other common findings were epilepsy with severe grand mal seizures, 

short stature, microcephaly, severe motor and mental retardation, and minor brain 

abnormalities such as cerebellar and vermis hypoplasia, hypoplasia of the corpus callosum, 

small hippocampus, and bulging caudate nuclei. Facial features were characterized by heavy 

supraorbital regions, a broad and beaked nose with a high bridge and flaring nostrils, a wide 

mouth, broad palate, and a bowshaped upper lip.229  

Since extensive metabolic studies and conventional karyotyping did not reveal any 

clues regarding the etiology, we performed molecular karyotyping10 using GeneChip Human 

Mapping 100K SNP arrays (Affymetrix) in the two sporadic cases published by Peippo et 

al.229 This work was performed as part of our research study addressing the genetics of 

mental retardation, which was approved by the Research Ethics Committee of the Medical 

Faculty of the University of Erlangen-Nuremberg. For molecular karyotyping, DNA samples 

were hybridized to GeneChip Human Mapping 50K Xba240 and Hind240 arrays, and images 

were obtained using an Affymetrix GeneChip Scanner 3000. Raw data were analyzed with 

the Affymetrix copy-number analysis tool (CNAT 2.0.0.9), with 0.5-Mb sliding windows for the  
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Figure 1 Results of molecular karyotyping with Affymetrix GeneChip Human Mapping 100K 

SNP array in patient 2.  

A) Plot of ±log10 GSA P values for SNPs covering chromosome 18, with use of a Gnuplot program. 

The 1.2-Mb deletion in 18q21.2 is visible through a cluster of SNPs with GSA P values < -2.5. The 63 

SNPs indicating a deletion are flanked by SNP_A-1695165 (rs4800947; 50,552,638 Mb) and SNP_A-

1724163 (rs784395; 51,742,365 Mb). Genotypes of individual SNPs are indicated by colored bars at 

the bottom (magenta=homozygous; blue=heterozygous; brown=no call). Note the magenta stretch of 

homozygosity corresponding to the deleted region. B) Representative results of two-color FISH 

analyses, with the RP11-7L24 probe labeled with Cy3 (pink) in combination with a FluoroX-labeled 

(green) subtelomeric 18p control probe, for patient 2 and his parents. Whereas the RP11-7L24 probe 

is lacking on one chromosome 18 homologue in the patient, it is present on both homologues in the 

parents, demonstrating de novo origin of the deletion in patient 2. 

 

genomic smoothing algorithm (GSA). Copy-number values calculated by the CNAT were 

filtered for clusters of SNPs with high GSA P values with use of a self-programmed software 

tool that we named “CNVFinder” (J. Hoyer, A. Dreweke, C. Becker, I. Göhring, C. Thiel, M. 

M. Peippo, R. Rauch, M. Hofbeck, U. Trautmann, C. Zweier, M. Zenker, U. Hüffmeier, C. 

Kraus, A. Ekici, F. Rüschendorf, P. Nürnberg, A. Reis, and A. Rauch, unpublished material). 

In one of the two patients analyzed, molecular karyotyping revealed a 1.2-Mb deletion on 

18q21.2 (fig. 1A). The deletion was confirmed by FISH analysis with 18q21.2 BACs RP11-

99A1 (RAB27B; 50.5–50.7 Mb), RP11-839G9 (CCDC68; 50.7–50.9 Mb), and RP11-7L24 

(TCF4 [GenBank accession number NM_003199.1]; 51.1–51.24 Mb), all of which lacked the 
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specific signal on one chromosome 18 homologue (GenBank accession number 

NT_025028.13) (fig. 1B). All three BACs gave normal FISH results in both parents, thus 

confirming de novo origin of the deletion in the patient. This deletion contained three known 

genes: RAB27B (a member of the RAS oncogene family), CCDC68 (coiled-coil domain 

containing 68), and TCF4 (transcription factor 4). Since, according to the UCSC Genome 

Browser database, only TCF4 is highly expressed in fetal and adult brain, we considered it 

the most likely candidate gene for the PHS phenotype. Sequence analysis of coding exons 

2–19 and intronic flanking regions of TCF4 in the second patient published by Peippo et al.229 

revealed the missense mutation R576/580W within exon 18, which codes for the helix-loop-

helix (HLH) domain of TCF4. Sequencing was performed bidirectionally on an ABI 3730 

capillary sequencer (Applied Biosystems) (detailed conditions and primer sequences are 

available on request). De novo origin of the missense mutation was proven by its exclusion in 

both parents. Paternity was verified, and mistake of probes was excluded by genotyping 14 

polymorphic microsatellite markers in the child and both parents (PowerPlex 16 System 

[Promega]).  

Because of phenotypic overlap with the Mowat-Wilson syndrome (MIM 235730), both 

patients had been tested for mutations in the ZFHX1B gene before this study.229,232 We 

therefore screened 87 patients for TCF4 mutations in whom ZFHX1B testing had revealed 

normal results. None of these patients with mental retardation and variable features of the 

Mowat-Wilson syndrome spectrum, including constipation and Hirschsprung disease (HSCR 

[MIM 142623]), showed a TCF4 mutation.  

We then sequenced 29 further patients with a more specific phenotypic overlap with 

PHS—that is, with at least two of the following features: severe mental retardation, breathing 

anomalies, and PHS-like facial dysmorphism. These patients also included a sib pair and a 

sporadic case formerly published as having PHS or possible PHS.228,229,231 The original cases 

published by Pitt and Hopkins227 were not available, because one patient died and the other 

was lost to follow-up (D. Pitt, personal communication). The case published by Singh230 could 

not be tracked either. TCF4 mutational analysis revealed three heterozygous stop mutations 

and a splice-site mutation in four of the unpublished patients (fig. 2 and table 1). De novo 

origin was proven in two patients (3 and 4), whereas parents of patients 5 and 6 were not 

available for testing. We therefore excluded both the R385X and IVS9-1G>C mutations of the 

latter patients in a total of 180 healthy European control individuals. 

Since most of our patients have a deletion or stop or splice-site mutations, 

haploinsufficiency of TCF4 is likely to be causative of PHS. The only observed missense 

mutation affects an evolutionarily conserved amino acid and is located within the basic HLH 

(bHLH) domain of TCF4, thus likely impairing the binding capacity of the only functional 

domain known so far.  
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Figure 2  Schematic drawing of the 1.2-Mb deletion region in patient 2 and location and 

electropherograms of TCF4 mutations in patients 1, 3, 4, 5, and 6 within a schematic drawing of 

exon-intron structure of TCF4.  

Noncoding exons are light gray, and the exon coding for the functional domain is black. Blue bars 

representing BAC clones and blue squares representing SNPs indicate deletion of respective probes, 

whereas nondeleted SNPs are depicted as black squares. 

 

TCF4 (also called “ITF2,” “E2-2,” and “SEF2”) consists of 20 exons (exons 1 and 20 are 

noncoding), spans 360 kb, and encodes at least two isoforms of the transcription factor 4 

protein, differing in the presence of 4 aa (RSRS) 17 residues before the HLH domain. TCF4 

belongs to the class A subfamily of bHLH transcriptional regulators—also called “E proteins,” 

since their basic domain binds to the E-box motifs 5’-ACANNTGT-3’ or 5’-CCANNTGG-3’.233 

E proteins are characterized by a broad expression pattern and the ability to form both homo- 

and heterodimers with other classes of HLH proteins that are tissue specific or lack the basic 

DNA-binding domain.234,235  

Homozygous Tcf4 deletions in mice lead to early lethality of unknown reason and a 

slight decrease in pro-B cell numbers.235 In contrast to the apparently normal single 

heterozygous Tcf4-knockout mice, transheterozygous knockout combinations of any two of 

the E proteins Tcf4, E2a, and Heb generate significantly reduced numbers of pro-B cells, and 

mice conditionally mutated in Tcf4 show a partial block in both B and T lymphocyte 

development.234,235 Accordingly, none of our patients with heterozygous TCF4 mutations 

showed clinical evidence of immunodeficiency, and lymphocyte and Ig counts in patient 3 
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showed normal results. Nevertheless, patient 6 developed a Hodgkin lymphoma at age 29 

years, which might indicate some kind of regulatory influence of TCF4 on lymphocyte growth. 

The diversified phenotypes observed with E-protein deficiencies are consistent with the idea 

that E proteins are involved in dimeric interactions with many different tissue-specific HLH 

proteins.235 Ascl1, the mouse homologue of one of these tissue-specific proteins, is highly 

expressed in specific regions of the developing CNS and in sympathetic and enteric 

precursor cells, and Ascl1-null mice die at birth.236 ASCL1 was shown to form complexes with 

TCF4 that have the ability to bind an E-box.236 The interaction between TCF4 and ASCL1 is 

an interesting observation, since mutations in ASCL1 have been shown to impair the 

noradrenergic neuronal development in brain stem, causing some cases of congenital central 

hypoventilation syndrome (CCHS, or Ondine curse [MIM 209880]).237 In Ascl1-knockout 

mice, an impaired c-RET expression in brain-stem noradrenergic neurons and an increased 

baseline breathing frequency were reported.238 The major gene that causes CCHS, 

PHOX2B, also belongs to the RET-signaling pathway, which, in mice, involves the sequential 

expression of the Ascl1, Phox, Ret, and TH genes that are responsible for the development 

of all transient or permanent noradrenergic derivatives.237 

 

 

Figure 3  Transcriptional reporter assay showing impaired interaction of TCF4/TCF4+ mutants 

with ASCL1.  

JEG-3 cells were transiently transfected with a luciferase reporter construct with a herpes simplex 

thymidine kinase promoter either without binding sites (tkGL2) or with four E boxes (4xEtkGL2) located 

within the pTa enhancer. Co-transfection was performed with an empty CMV-expression vector (white) 
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or CMV-expression vectors containing the complete cDNA of either ASCL1 (red), TCF4 (pale yellow), 

its splice variant TCF4+ (including amino acid RSRS) (bright yellow), as well as wild-type or three 

different mutants of TCF4 and TCF4+, transfected in combination with ASCL1 (different shades of 

orange). Results were normalized for transfection efficiency to a cotransfected renilla luciferase vector 

and were expressed as mean values with SD of three independent transfections. Probably because of 

endogenous E proteins, cells transfected with the empty CMV vector alone already showed a slight 

transactivation of the luciferase vector containing the four E boxes (4xEtkGL2), in comparison with the 

reporter vector without E boxes (tkGL2). TCF4 and TCF4+ alone did not increase the activation of the 

reporter construct but enhanced the observed activation by ASCL1 when cotransfected with the latter. 

In contrast, TCF4 and TCF4+ mutants containing the mutation p.G232fsX256, R385X, or R576/580W 

did not enhance the activation by ASCL1. Differences in activation levels showed significant P values 

obtained by the Student t test. 

 

To investigate this interaction between TCF4 mutants and ASCL1, we established a 

transcriptional reporter assay using a luciferase reporter construct with a herpes simplex 

thymidine kinase promoter, either without binding sites (tkGL2) or with four E boxes 

(4xEtkGL2) located within the pTa enhancer, which interacts with several E proteins.239 JEG-

3 cells (derived from human choriocarcinoma, American-type culture collection cell line HTB-

36) were transiently cotransfected with a cytomegalovirus (CMV)–expression vector 

containing ASCL1, TCF4, its splice variant TCF4+ (including amino acid RSRS), either alone 

or in combination, and three different mutants of TCF4 and TCF4+ in combination with 

ASCL1 (fig. 3). Results were normalized, for transfection efficiency, to a cotransfected renilla 

luciferase vector. 

In accordance with the results observed by Persson et al.,236 who used a 

transcriptional reporter construct containing four E boxes from the muscle creatine kinase 

enhancer, in our assay, TCF4 and TCF4+ alone did not increase the activation of the 

reporter construct but enhanced the observed activation by ASCL1 when cotransfected with 

the latter. In contrast, TCF4 and TCF4+ mutants containing the mutations p.G232fsX256, 

R385X, or R576/580W did not enhance the activation by ASCL1 (fig. 3). Therefore, breathing 

anomalies in patients with PHS may also be caused by impaired noradrenergic neuronal 

development through defective TCF4 interaction with the ASCL1-PHOX-RET pathway. This 

interaction might also explain the occurrence of HSCR and constipation in patients 1, 2, and 

5, since RET is the major gene for isolated HSCR240 and since patients with CCHS show an 

increased incidence of HSCR (20%).241 However, no obvious defect in the sympathetic 

nervous system in Tcf4-knockout mice was observed that could be attributed to a functional 

interaction with Ascl1.236 In contrast to patients with CCHS, who are intellectually not 

impaired, patients with PHS are severely mentally retarded, which may indicate TCF4 
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involvement in other pathways important for brain development and function corresponding 

to its high expression in brain.242 

 

 

Figure 4  Facial phenotype of patients with TCF4 mutations. 

A–C) Patient 1 at ages 6 mo (A), 18 mo (B), and 14 years (C). D and H) Patient 6 at age 29 years. E–

G) Patient 2 at ages 6 mo (E and F) and 11 years (G). I–K) Patient 3 at ages 3 years (I), 6 years (J), 

and 8.75 years (K). L and M) Patient 4 at age 12.5 years. Note deep-set eyes; broad and beaked 

nasal bridge with down-turned, pointed nasal tip and flaring nostrils; wide mouth with widely spaced 

teeth, and Cupid-bowed upper lip and everted lower lip; mildly cupshaped, fleshy ears; as well as 

increased coarsening of facial features with age. 

 

All six patients with TCF4 mutations showed severe mental retardation and striking facial 

resemblance, at least to patient 1 initially reported by Pitt and Hopkins,227 consisting of deep-

set eyes; broad and beaked nasal bridge with down-turned, pointed nasal tip and flaring 

nostrils; wide mouth with widely spaced teeth, Cupid-bowed upper lip, and everted lower lip; 

and mildly cup-shaped, fleshy ears (fig. 4). Further findings were variable, including breathing 

abnormalities, which were not yet obvious in patient 3 at age 8 years (table 1). Other 

common signs were magnetic resonance imaging (MRI) anomalies such as hypoplastic 
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corpus callosum and bulging caudate nuclei, happy disposition or unmotivated laughter 

episodes, muscular hypotonia, severe constipation or HSCR, single palmar creases, and 

supernumerary digital flexion creases. The manifestation of a lymphoma in one of the oldest 

patients may be attributed to the role of TCF4 in lymphocyte development,234,235 but further 

observations and TCF4 studies in lymphoma tissues are necessary to address this question. 

Since most of the patients in whom TCF4 mutations were identified had previous 

testing for Angelman syndrome (MIM 105830) because of facial and behavioral resemblance 

and for Rett syndrome (MIM 312750) because of late-onset ventilation anomalies and severe 

mental retardation, PHS might be an important differential diagnosis for these disorders. 

Interestingly, one patient with severe mental retardation and attacks of deep sighing and 

hyperventilation who carries an interstitial deletion (18)-(q21.1q22.3) was reported as a case 

of “atypical Rett syndrome.”243 In contrast, Joubert syndrome (MIM 213300, 608091, 609583, 

608629, 610688, and 610188) was never considered in any of these patients, because its 

characteristic intermittent hyperventilation-apnea anomaly manifests in the newborn. 

Although most of the patients showed more or less overlapping features, we were unable to 

demonstrate a mutation in the remaining 24 patients, including the sporadic case published 

by Van Balkom et al.231 and the sib pair described by Orrico et al.228 Although larger gene 

deletions were excluded by the presence of heterozygous SNPs in all but 2 of the 24 

patients, we cannot exclude atypical intronic mutations or single-exon deletions in the 24 

mutation-negative patients. Nevertheless, the large number of mutation-negative patients 

with more or less similar phenotype might indicate the involvement of further genes that 

possibly interact with TCF4. 

Our study shows that molecular karyotyping10,244,245 (genomewide copy-number 

profiling) is able not only to disclose novel microdeletion syndromes23-25—as well as the 

underlying gene defect in well-known disorders, as recently shown for the autosomal 

dominant CHARGE (coloboma, heart anomaly, choanal atresia, retardation, genital and ear 

anomalies) syndrome (MIM 214800)36 and the autosomal recessive Peters-Plus syndrome 

(MIM 261540)73—but also to resolve the etiology in very rarely reported phenotypes. 

However, our findings suggest that PHS is widely underdiagnosed, just as the now clinically 

recognizable Mowat-Wilson syndrome was until the identification of the underlying gene 

defect, in 2001.150,232,246 Notably, PHS is, to our knowledge, the first constitutive phenotype in 

which the etiology was identified by molecular karyotyping with use of genomewide SNP 

arrays. 
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ABSTRACT 

Background: Haploinsufficiency of the gene encoding for transcription factor 4 (TCF4) was 

recently identified as the underlying cause of Pitt–Hopkins syndrome (PTHS), an 

underdiagnosed mental-retardation syndrome characterized by a distinct facial gestalt, 

breathing anomalies and severe mental retardation. 

Methods: TCF4 mutational analysis was performed in 117 patients with PTHS-like features. 

Results: In total, 16 novel mutations were identified. All of these proven patients were 

severely mentally retarded and showed a distinct facial gestalt. In addition, 56% had 

breathing anomalies, 56% had microcephaly, 38% had seizures and 44% had MRI 

anomalies. 

Conclusion: This study provides further evidence of the mutational and clinical spectrum of 

PTHS and confirms its important role in the differential diagnosis of severe mental 

retardation. 

 

INTRODUCTION 

In 1978, Pitt and Hopkins described two unrelated patients with sporadic ‘‘mental retardation, 

wide mouth and intermittent overbreathing’’.227 After this initial report, only four other sporadic 

cases and one sibling pair with a similar phenotype of severe mental retardation, wide mouth 

and breathing anomalies were reported as possible cases of Pitt–Hopkins syndrome (PTHS, 

OMIM 610954).228-231 Recently in two patients, two deletions, one of 1.2 Mb and one of 1.8 

Mb, in 18q21.1, detected by molecular karyotyping using 100 K single nucleotide 

polymorphism (SNP) arrays and bacterial artificial chromosome arrays, respectively, led to 

the identification of haploinsufficiency of TCF4, encoding a basic helix–loop–helix (bHLH) 

transcription factor, as the underlying cause of PTHS.247,248 A recurrent de novo missense 

mutation in the bHLH domain region of the TCF4 gene in three patients and one other 

missense mutation at the same position,247,248 as well as one splice-site mutation and three 

stop mutations248 in further patients were later identified. In the meantime, two other patients 

with the PTHS or overlapping phenotype and a deletion of TCF4 were reported.249,250 

The TCF4 gene on chromosome 18 encodes a member of the bHLH transcription 

factor family (also called ‘‘E-proteins’’ as their basic domain binds to the Ephrussi-box (E-

box) consensus binding site ‘‘CANNTG’’).233 These transcription factors are able to bind DNA 

as homodimers or heterodimers with other classes of HLH proteins and play an important 

role in many developmental processes, including the differentiation of the vertebrate nervous 

system and the development of the cortex.251,252 TCF4 encodes at least two isoforms, 

differing in the presence of 4 amino acid residues (RSRS) 17 residues upstream of the HLH 

domain.242 
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Both null mutations and missense mutations located within the bHLH domain of TCF4 

impaired its interaction in vitro with ASCL1, a tissue-specific HLH protein from the PHOX-

RET pathway. As this pathway is involved in Hirschsprung disease (HSCR; OMIM 142623) 

and the Ondine hypoventilation syndrome (OMIM 209880) through its role in the 

development of noradrenergic derivatives, the finding of HSCR or severe constipation and 

breathing anomalies in patients with PTHS might be explained by impaired interaction with 

ASCL1.248 Investigations of tcf4 expression in Danio rerio embryos showed early expression 

in the pallium of the telencephalon, the diencephalon, the midbrain tegmentum, the hindbrain 

and the branchial arches, thus correlating with the phenotypical spectrum in humans with 

PTHS.250  

Because of its phenotypical overlap with Angelman and Rett syndromes, we 

speculated that PTHS might become an important differential diagnosis with these 

conditions. 

To further delineate the genotypic and phenotypic spectrum of PTHS and to establish 

its frequency in patients with severe mental retardation, we analyzed 117 patients with 

overlapping clinical features. 

 

METHODS 

Ethics approval for this study was obtained from the ethics committee of the Medical Faculty, 

University of Erlangen-Nuremberg, and informed consent was obtained from the parents or 

guardians to study the patients. 

 

Patients 

Our study population contained 117 patients including two sibling pairs, who were referred to 

us with severe mental retardation and variable additional features reminiscent of the PTHS 

spectrum, such as microcephaly, dysmorphic facial gestalt or breathing anomalies. At least 

70 of these patients had tested negative for Angelman and/or Rett syndrome. 

 

Molecular testing 

DNA samples derived from peripheral blood were screened for TCF4 mutations by 

bidirectional direct sequencing of the coding exons 2–19 and the non-coding exon 20 and 

intronic flanking regions (ABI BigDye Terminator Sequencing Kit V.2.1; Applied Biosystems, 

Foster City, California, USA) using an automated capillary sequencer (ABI 3730; Applied 

Biosystems). Primer pairs and PCR conditions are available on request.  

Paternity was verified in samples taken from patients 7 and 12 and their parents. 

Probes were verified by genotyping with 14 polymorphic microsatellite markers (PowerPlex 

16 System, Promega, Madison, Wisconsin, USA) to exclude any possibility of mistakes. 
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Reverse transcriptase (RT)-PCR was performed for patients 12 and 14, using primers 

located in exons 13 and 17 and exons 5 and 11, respectively, on cDNA obtained from mRNA 

(Superscript II Reverse Trancriptase; Invitrogen, Carlsbad, California, USA). For patient 12, 

mRNA was extracted from lymphoblastoid cell lines (RNeasy Mini Kit; Qiagen, Valencia, 

California, USA) and peripheral blood (PAXgene system; Preanalytix, Franklin Lakes, New 

Jersey, USA), using commercial kits in accordance with the manufacturers’ instructions. 

Aberrant transcripts were extracted from agarose gel (QiaQuick gel extraction kit; Qiagen) 

and sequenced after reamplification. 

 

Bioinformatic analyses 

Disordered protein segments and linear protein interactions motifs were identified using the 

software programs DisEMBL253 and ELM,254 respectively. The effect of the G358V mutation 

on the aggregation tendency of TCF4 was assessed using AGGRESCAN,255 a web-based 

software program for the prediction of aggregation-prone segments in protein sequences and 

the analysis of the effect of mutations on aggregation propensities of proteins. 

 

Functional testing 

Functional consequences of the G358V mutation were tested with a transcriptional reporter 

assay as described previously.248 Immunofluorescence was performed with a primary 

antibody against TCF4 (ab2233-100; Abcam, Cambridge, Massachusetts, USA) and a CY3-

labelled secondary anti-goat antibody (C2821-1ML; Sigma-Aldrich, St Louis, Missouri, USA) 

on JEG3 cells previously transfected with either wild-type TCF4 or mutant TCF4. 

 

RESULTS 

Clinical findings 

All 16 patients with proven TCF4 mutations in this study had severe mental retardation with 

very little speech (2 patients had < 5 words) or no speech (14 patients) and with limited 

walking abilities. They resembled each other with a specific facial phenotype characterized 

by deep-set eyes, broad and often beaked nasal bridge with down-turned, pointed nasal tip 

and flaring nostrils, wide mouth with widely spaced teeth, cupid’s bow upper lip, a protruding 

lower face, and mildly cup-shaped and fleshy ears (fig. 1). Microcephaly was observed in 

56% of the patients and breathing anomalies in 56%. Seizures occurred in 38% of the 

patients between the age of 0 and 5 years. MRI anomalies such as bulging of caudate nuclei, 

ventricular asymmetry, agenesis or hypoplasia of the corpus callosum and atrophy of the 

frontal and parietal cortex were observed in 44% of the patients. Hypotonia and constipation 

were common findings in 13 and 11 of the patients, respectively. Personality was described 

as happy in 15 of the patients. Single palmar creases were reported in 11 patients and 
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scoliosis in 4 patients. Other less common anomalies were myopia and fetal pads in four and 

six patients, respectively (table 1). 

 

Molecular testing 

Sequencing of TCF4 in 117 patients with severe mental retardation and clinical findings 

overlapping with PTHS revealed novel mutations in 16 patients. Large deletions of TCF4 

could be excluded by the identification of at least one heterozygous SNP in all but five of the 

remaining patients. Owing to their facial phenotype, there is a strong suspicion that two of the 

patients with normal TCF4 sequencing and exclusion of large deletions of the TCF4 gene do 

have PHTS. Single exon deletions or mutations in regulatory elements of TCF4 and locus 

heterogeneity may explain these patients and are also possibilities in the other, less 

characteristic patients. 

We identified 12 novel stop mutations, including two splice-site mutations, distributed 

over the gene, one novel frameshift mutation located towards the C-terminus and resulting in 

an elongation of the putative protein, two novel missense mutations in exon 18 coding for the 

HLH domain, and one novel missense mutation in exon 14 (table 2, fig. 2). De novo 

occurrence was proven in all but three stop mutations, for whom parental samples were not 

available. Assumed probe relationships were confirmed in the patients and both parents in 

the exceptional missense mutation in exon 14 and the unusual splice-site mutation 

IVS14+3ARG. The exceptional missense mutation in exon 14 was also excluded in 192 

healthy control chromosomes. RT-PCR performed on mRNA from a lymphoblastoid cell line 

of patient 12 with the IVS14+3ARG mutation revealed an aberrant transcript with skipping of 

exon 14, which leads to a frameshift that results in a premature stop after three amino acids 

(fig. 3B). RT-PCR in patient 14, who had the splice-site mutation IVS9+2insGT, also revealed 

an aberrant transcript, skipping exon 9, which leads to a frameshift resulting in a premature 

stop after 14 amino acids (fig. 3C). 

 

Bioinformatic analyses 

Computational analyses indicated that the N-terminal 550 amino acids of TCF4 are 

predominantly disordered and do not adopt a globular (domain-like) tertiary structure. There 

was also no evidence that position 358 is part of a specific linear protein interaction motif that 

might be destroyed by the mutation G358V (data not shown). 

An analysis of the TCF4 aggregation properties revealed that the G358V mutation 

leads to an increase in aggregation tendency as indicated by the larger hotspot area at the 

site of the mutation (fig. 3A). Compared with the size of adjacent hotspots, the hotspot 

emerging at the site of the G358V mutation is more than twice as large. 
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Functional testing 

Functional testing of the missense mutation G358V with a transcriptional reporter assay 

showed only inconsistently a mild reduction in transcriptional activity compared with the wild 

type (data not shown). Immunofluorescence with antibodies against TCF4 revealed no visible 

aggregates (data not shown). 

 

 

Figure 1  Clinical appearance of a selection of the patients.  

Note the characteristic facial phenotype with coarse face, high cheekbones, a beaked nasal tip, a 

protruding lower face, a wide mouth with cupid’s-bow shaped upper lip and wide-spaced teeth. A) 

Patient 3, aged 22 months; B) patient 12, aged 35 months; C) patient 15, aged 35 months; D) patient 

4, aged 3 years; E) patient 10, aged 10 years; F) patient 9, aged 14 years (right) and 16 years (left); 

G) patient 6, aged 17 years; H) patient 2, aged 17 years; I) patient 14, aged 18 years; J) patient 7, 

aged 20 years; K) patient 5, aged 20 years; L) MRI of patient 12 (note the bulging of the caudate 

nuclei); M) hand of patient 12. 
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DISCUSSION 

Clinical spectrum 

Including our 16 novel patients, 27 patients with molecularly confirmed PTHS are currently 

known.247,248,250 All of these patients are severely mentally retarded with no or only very 

limited speech and limited mobility. The earliest reported walking age was 2 years in patient 

8, whereas some of the older patients cannot walk without support (e.g. patient 2) or not at 

all (e.g. patient 1). Gait is often unstable and ataxic. Furthermore, muscular hypotonia seems 

to be a common feature particularly at younger ages. 

Breathing anomalies occurred in 18 of 27 (67%) patients, with age of onset varying 

from a few months to teenage years. These episodes were characterized by daytime periods 

of hyperventilation followed by apnoea. Milder anomalies may also occur such as ‘‘playing 

with breath’’ without apnoea in patient 9 or a singular occurrence of hyperventilation after 

narcosis in patient 16. The oldest patients without breathing anomalies were 18 years old. 

Microcephaly, both congenital and acquired, occurred in about 63% of all known patients. 

While birth weight was in the lower normal range in the patients in our first study,248 in this 

cohort birth weight was normal or high normal in all cases for whom this information was 

available. 

Further common symptoms were seizures with onset from birth up to 9 years of age 

(44%), constipation (67%) and minor anomalies such as single palmar creases and 

supernumerary phalangeal flexion creases (63%). Hirschsprung disease, which had occurred 

in one of the first patients,248 was not noticed in any of the present cohort. 

In 14 of 22 (64%) patients who had MRI studies performed, anomalies such as 

bulging of caudate nuclei, ventricular asymmetry, agenesis or hypoplasia of the corpus 

callosum, and atrophy of the frontal and parietal cortex or arachnoidal cysts were reported. 

Patients with early-onset seizures had mild broadening of the ventricular system (P4), mild 

atrophy of frontal and parietal cortex (P7) and a retrocerebellar arachnoidal cyst or mega 

cisterna magna (P16). Additional less common clinical findings were scoliosis (26%), myopia 

(19%), strabismus (30%), hypogenitalism (19%) and accessory nipples (19%). Hands and 

feet were often described as slender and small, with single palmar creases in many and fetal 

pads in some patients. The lack of gross malformations is in accordance with the embryonic 

tcf4 expression in D rerio, which is restricted to the brain and branchial arches.250 

Most of the patients showed a happy and placid personality; violent or autoaggressive 

behavior was only reported in three patients. Stereotypic movements were observed in 30% 

of patients and in patient 13, the loss of hand use was reported. These features, in addition 

to microcephaly, breathing anomalies, severe mental retardation and seizures, resemble the 

features seen in both Rett and Angelman syndromes. Accordingly, most of the patients 

referred to us with suspected PTHS had already been tested for these diseases previously. 
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As we found mutations in about 14% of the patients in this study, the important role of PTHS 

as a differential diagnosis of Rett and Angelman syndromes is further confirmed. The most 

consistent aspect distinguishing PTHS from the other two syndromes is the characteristic 

facial gestalt including a coarse face, high cheekbones, a beaked nasal tip, a protruding 

lower face, a wide mouth with cupid’s-bow shaped upper lip and wide-spaced teeth. 

However, the facial phenotype can be subtle as that seen in patient 5, who does not have the 

characteristic beaked nose and resembles the other patients mostly through the shape of her 

face, with high cheekbones. 

 

Mutational spectrum 

In this study, we could identify 16 novel mutations in TCF4, distributed over the gene. (table 

2, fig. 2); 13 of these are frameshift, nonsense or splice-site mutations, therefore further 

confirming TCF4 haploinsufficiency as the disease causing mechanism. One of these splice-

site mutations is an A>G exchange at position IVS14+3, where both A and G are possible.256 

Nevertheless, because this mutation occurred de novo, we assumed abnormal splicing. We 

found an aberrant transcript by RT-PCR using cDNA from the patient, even though this was 

weaker than the wild-type allele, and confirmed skipping of exon 14 by sequencing the 

aberrant transcript (fig. 3B). One proven de novo frameshift mutation is located in the C-

terminal exon 19 and results in an elongation of the putative protein by 37 amino acids. 

Owing to its location near to the C-terminus, nonsense-mediated mRNA decay, as assumed 

for stop mutations, might not occur, but impairment of protein function due to changes in 

protein structure is likely, particularly as the functional HLH domain is located in the C-

terminal part of the protein. 

 

 

Figure 2  Scheme of the TCF4 gene with localization of novel and previously published 

mutations.  

Exons 2–19 contain coding sequence (dark-grey boxes), exons 1 and 20 are non-coding (light-grey 

boxes) and exon 18 encodes the helix–loop–helix domain (HLH, black box). fs, frameshift mutation 

leading to an elongated protein; M, missense mutation; S, splice-site mutation; X, stop mutation 

(nonsense or frameshift). 
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Amiel et al247 had identified three missense mutations at the same amino acid position (576 

or 580, depending on the isoform) within the bHLH domain in four patients, thus indicating a 

mutational hot spot at this position. Surprisingly, in 22 patients with defects in TCF4 (7 and 

this study) we found this particular missense mutation only once (table 2). However, we 

found two further missense mutations in the bHLH domain located only two amino acid 

positions upstream of the reported recurrent mutation site, which lead to a change from 

arginine to proline or histidine at position 574 or 578, respectively. Both mutations at position  

576/580 and 574/578 affect evolutionarily highly conserved glutamic and arginine residues 

constituting the E-box recognition motif.247 We showed previously that such an impairment of 

the functional bHLH domain reduces interaction with ASCL1 in transactivating an E-box-

containing reporter construct, to a similar degree as haploinsufficient stop mutations.248 

 

 

Figure 3  A) Calculated aggregation tendency of wild-type (black) and G358V (red) TCF4. The 

‘‘hotspot area’’, which gives a measure of the aggregation tendency, was calculated using 

AGGRESCAN.255 Compared with the size of adjacent hotspots, the hotspot emerging at the site of the 

G358V mutation is more than twice as large, suggesting an important effect of this amino acid 

exchange, probably leading to an increased formation of aggregates and therefore impaired function 

of TCF4. B) RT-PCR of patient 12 with the splice-site mutation IVS14+3ARG, showing the aberrant 

transcript in comparison with two normal control persons (C1, C2) and sequence of the aberrant 

transcript. C) Reverse transcriptase PCR of patient 14 with splice-site mutation IVS9+2insGT, showing 

the aberrant transcript in comparison to two normal control persons (C1, C2) and sequence of the 

aberrant transcript. Neg, negative control. 

 

Interestingly, we also found the first missense mutation outside the bHLH domain. This 

G358V mutation in exon 14 affects an evolutionarily highly conserved position. The mutation 

was excluded in both parents and 192 healthy control chromosomes, and sampling errors 
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were excluded by short tandem repeat marker analysis. Nevertheless, as this mutation is not 

located within a known functional domain, the pathogenic mechanism remains unclear. 

Reporter-assay testing of interaction with ASCL1 showed a mild but not significant decrease 

in transcriptional activity (data not shown), which is not surprising as the mutation is not 

located within the DNA or protein-binding domain. Computational analyses indicated that the 

N-terminal 550 amino acids of TCF4 are predominantly disordered and do not adopt a 

globular (domain-like) tertiary structure. Such regions were reported previously to mediate  

 

Table 2  Overview of novel and published TCF4 defects 
 
Exon Genomic alteration Protein alteration Type Frequency Reference This 

study 

all Deletion 1.2Mb  de novo 1 Zweier248  
all Deletion 1.8Mb  de novo 1 Amiel247  
all Deletion 0.5Mb  de novo 1 Brocksch.250  
7 c.469C>T p.R157X de novo 1  P5 
IVS9 IVS9+2insGT splice de novo 1  P14 
IVS9 IVS9-1G>C splice not tested 1 Zweier248  
10 c.692-694insT p.G232fsX256 de novo 1 Zweier248  
11 c.791delG p.S264fsX306 not tested 1  P11 
11 c.908delC p.T303fsX306 de novo 1  P2 
12 c.937-940delG p.314QfsX390 not tested 1  P15 
12 c.949delA p.S317fsX390 de novo 1  P6 
12 c.965-969delATGCT p.D322fsX336 de novo 1 Zweier248  
14 c.1073G>T p.G358V de novo 1  P7 
IVS14 IVS14+3A>G splice de novo 1  P12 
15 c.1153C>T p.R385X not tested 1 Zweier248  
16 c.1413-1414delG p.V472fsX487 de novo 1  P4 
16 c.1468-1471delC p.Q491fsX534 de novo 1  P3 
17 c.1512insA p.S505fsX512 de novo 1  P10 
17 c.1518delC p.S507fsX534 de novo 1  P9 
18 c.1687/1699A>T  p.K563/567X not tested 1  P1 
18 c.1721/1733G>C p.R574/578P de novo 1  P13 
18 c.1721/1733G>A p.R574/578H ex. in moth 1  P16 
18 c.1726/1738C>T p.R576/580W de novo 3 Zweier,248 

Amiel247 
 

18 c.1727/1739 p.R576/580Q de novo 1 Amiel247  
19 c.1952-1957delCT p.S661fs de novo 1  P8 

 

either specific interactions via short linear sequence motifs254 or nonspecific interactions that 

might lead to aggregation.255 However, computerized investigation of whether position 358 is 

part of a specific linear protein interaction motif gave no evidence for such a role of this 

sequence region (data not shown). In contrast, an analysis of the TCF4 aggregation 

properties revealed that the G358V mutation leads to an increase of the aggregation 

tendency, thus offering an explanation for the slightly reduced transcriptional activity 

observed. The small overall effect, however, suggests that only small-sized or 

transient/reversible aggregates are formed. This is also consistent with the 

immunofluorescence data that did not reveal visible TCF4 aggregates in cells transfected 

with the mutant protein compared with the wild type. 
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In conclusion, we have further delineated the mutational and clinical spectrum of 

PTHS and confirmed its important role in the differential diagnosis of severe mental 

retardation. 
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Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly 

related members of the neurexin superfamily, have been repeatedly associated with a 

wide spectrum of neuropsychiatric disorders, such as developmental language 

disorders, autism spectrum disorders, epilepsy, and schizophrenia. We now identified 

homozygous and compound-heterozygous deletions and mutations via molecular 

karyotyping and mutational screening in CNTNAP2 and NRXN1 in four patients with 

severe mental retardation (MR) and variable features, such as autistic behavior, 

epilepsy, and breathing anomalies, phenotypically overlapping with Pitt-Hopkins 

syndrome. With a frequency of at least 1% in our cohort of 179 patients, recessive 

defects in CNTNAP2 appear to significantly contribute to severe MR. Whereas the 

established synaptic role of NRXN1 suggests that synaptic defects contribute to the 

associated neuropsychiatric disorders and to severe MR as reported here, evidence 

for a synaptic role of the CNTNAP2-encoded protein CASPR2 has so far been lacking. 

Using Drosophila as a model, we now show that, as known for fly Nrx-I, the CASPR2 

ortholog Nrx-IV might also localize to synapses. Overexpression of either protein can 

reorganize synaptic morphology and induce increased density of active zones, the 

synaptic domains of neurotransmitter release. Moreover, both Nrx-I and Nrx-IV 

determine the level of the presynaptic active-zone protein bruchpilot, indicating a 

possible common molecular mechanism in Nrx-I and Nrx-IV mutant conditions. We 

therefore propose that an analogous shared synaptic mechanism contributes to the 

similar clinical phenotypes resulting from defects in human NRXN1 and CNTNAP2. 

 

INTRODUCTION 

The etiology of severe mental retardation (MR) is heterogeneous, and, despite a significant 

number of identified disease genes,257 the majority of cases, especially non-syndromic 

cases, remain unsolved.14 Many of the currently known MR-related genes are involved in 

neurogenesis and neuronal migration, and awareness of the implication of synaptic 

organization and plasticity in MR has only recently begun to rise.4,258 In 2007, 

haploinsufficiency of the basic helix-loop-helix (bHLH) transcription factor 4 (TCF4) was 

identified as causative for Pitt-Hopkins syndrome (PTHS [MIM 610954]), a severe MR 

disorder with variable additional anomalies, such as breathing anomalies, epilepsy, and facial 

dysmorphism including a beaked nose and a wide mouth with a cupid’s-bow shaped upper 

lip.247,248 TCF4 belongs to the E-protein family of bHLH transcription factors, which bind as 

homo- and heterodimers to E-box consensus sequences in promoters of target genes.259 

Like other E-proteins, TCF4 shows a broad expression pattern and a high expression in the 

CNS.250,260 After the identification of the underlying gene in 2007, approximately 50 patients 

have been reported,247,248,250,260-262 demonstrating the importance of a diagnostic test for the 



                         CNTNAP2 and NRXN1 are mutated in autosomal recessive PTHS‐like mental retardation 
 

67 
 

increased recognition and appreciation of a previously clinically underdiagnosed condition. 

Because of a similar severe degree of MR, commonly associated seizures, and 

microcephaly, PTHS has evolved as an important differential diagnosis to the two most 

common syndromic disorders in severe MR, Rett (MIM 312750) and Angelman (MIM 

105830) syndromes.262 Because only 12% of patients referred to us with suspected PTHS 

showed mutations in TCF4 (Zweier et al.262 and unpublished data), the clinically relatively 

homogenous group of 179 TCF4-mutation-negative patients, including two sibling pairs, 

represented a suitable study cohort for searching for additional candidate genes for 

overlapping disorders. 

Through molecular karyotyping and mutational analysis, we indeed identified 

recessive defects in two genes, CNTNAP2 and Neurexin I (NRXN1), in patients with a very 

similar severe MR disorder and variable additional symptoms, such as seizures and 

breathing anomalies, resembling Pitt-Hopkins syndrome. In light of the shared phenotype 

that characterizes our patients with recessive CNTNAP2 and NRXN1 defects, and on the 

basis of the theme of overlapping phenotypes being caused by genes that are linked with 

each other in molecular networks,178 we further aimed to address the hypothesis of a 

common molecular pathogenesis. We therefore utilized the fruit fly Drosophila melanogaster 

as a model and collected data that point to a common synaptic link between these two 

genes. 

 

SUBJECTS AND METHODS 

Patients 

Our study group consisted of 179 patients, including two sibling pairs, who were referred for 

TCF4 testing because of severe MR and variable additional features reminiscent of the 

PTHS spectrum, such as microcephaly, dysmorphic facial gestalt, or breathing anomalies. 

TCF4 mutational testing revealed normal results in all of these patients. Ethics approval for 

this study was obtained from the ethics committee of the Medical Faculty, University of 

Erlangen-Nuremberg, and informed consent was obtained from parents or guardians of the 

patients. 

 

Molecular Karyotyping 

Molecular karyotyping was performed in 48 patients with the Affymetrix 500 K SNPArray and 

in 12 patients with the Affymetrix 6.0 SNP Array, in accordance with the supplier’s 

instructions. In the index patient of family 1, hybridization was performed with an Affymetrix 

GeneChip Mapping 500K SNP array, and the second affected patient and both parents were 

analyzed with the Affymetrix GeneChip Mapping 250K Nsp SNP array. Copy-number data 
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were analyzed with the Nexus software (Biodiscovery) and the Affymetrix Genotyping 

Console 3.0.2 software. Molecular karyotyping in patients 2 and 3 was performed with the 

Affymetrix GeneChip Mapping 6.0 array platform, and copy-number data were analyzed with 

the Affymetrix software Genotyping Console 3.0.2. The identified copy-number variants 

(CNVs) were submitted to the Decipher database (patient 1a, 250902; patient 2, 250903; 

patient 3, 250904). 

 

Mutational screening 

DNA samples from 177 patients, derived from peripheral-blood or lymphoblastoid cell lines, 

were screened for CNTNAP2 (NM_014141) and NRXN1 (NM004801) mutations by 

unidirectional direct sequencing of the coding exons 1–24 of CNTNAP2 and the coding 

exons 2–22 of NRXN1, including intronic flanking regions (ABI BigDye Terminator 

Sequencing Kit v.3; Applied Biosystems), with the use of an automated capillary sequencer 

(ABI 3730; Applied Biosystems). Mutations were confirmed with an independent PCR and 

bidirectional sequencing. Primer pairs can be found in Table S1, available online. For splice-

site prediction, the online tools NNSPLICE 0.9 and HSF V2.3 were used. 

 

FISH and MLPA 

Fluorescence in situ hybridization (FISH) analysis was performed in family 1 with the directly 

Cy3-labeled bacterial artificial chromosome (BAC) clone RP4-558L10 on metaphase 

spreads, in accordance with standard protocols. 

Probes for all coding exons of CNTNAP2 were designed and MLPA reaction was 

performed in accordance with the guidelines of MRC-Holland. The deletion in patient 3 was 

confirmed with MLPA with the use of a probe within exon 2 and a control probe within exon 

12 of NRXN1. Probe sequences are listed in Table S2. 

 

Analysis of relationship 

The relationship of individuals within family 1 was analyzed, with a four-generation family 

with known relationships used as background, with the Graphical Representation of 

Relationships (GRR) software.263 For GRR, we selected, from Affymetrix 250K arrays, 

10,000 randomly distributed autosomal SNPs with a minimal minor allele frequency of 0.2 in 

Europeans. For each pair of individuals, GRR calculates over the 10,000 markers the 

identical by-state (IBS) mean and standard deviation. The graphical plot of IBS mean versus 

IBS standard deviation facilitates distinguishing between relationships such as parents and 

offspring, siblings, half siblings, and cousins, as well as identical or unrelated individuals. 

Additionally, SNP genotypes around CNTNAP2 were analyzed in the family members. 
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Drosophila genes and lines 

Drosophila orthologs of TCF4, NRXN1, and CASPR2 (daughterless [CG5102], Nrx-1 

[CG7050], and Nrx-IV [CG6827]) were identified by the ENSEMBLE genome browser or by 

the reciprocal BLAST best-hit approach. Two RNAi lines, to Nrx-IV and daughterless, 

respectively, were obtained from the Vienna Drosophila Research Center (VDRC) and gave 

consistent phenotypes. VDRC lines no. 9039 (Nrx-IV) and no. 51297 (daughterless) were 

utilized for further analysis. RNA interference was induced with the UASGal4 system. The 

w1118 line (VDRC no. 60000) was used as a control, representing the same genetic 

background as the RNAi lines. Flies were raised at 28°C for maximum efficiency of 

knockdown. The Nrx-I overexpression line pUAST-Nrx-I was obtained from Wei Xie from 

Nanjing, China. Gal4 driver lines and the inducible Nrx-IV overexpression line P(EP)Nrx-

IVEP604 were obtained from the Bloomington stock center. 

 

Quantitative Real-Time PCR 

RNA extraction from 333 L3 larvae of each genotype was performed with the RNeasy Lipid 

Tissue Kit (QIAGEN) in accordance with the supplier’s protocols. cDNA synthesis was 

performed with iScript (Biorad). Quantitative real-time PCR was performed with the Power 

SYBR Green PCR Master Mix on a 7500 Fast Real-Time PCR System (Applied Biosystems), 

and results were normalized to the endogenous control actin. Primer sequences can be 

found in Table S3. 

 

Immunostaining and data acquisition 

We harvested 10–18 hr embryos and fixed them with 3.7% PFA for 20–25 min. All primary 

antibodies—anti-elav (labels nuclei of all neurons), antibody 22c10 (sensory nervous 

system), antibody BP102 (axon tracts, central neuropile region), anti-fas II (motor and central 

pioneer axons), and antibody nc82 (anti-bruchpilot, synaptic active zones) (all from the 

Developmental Studies Hybridoma Bank [DHSB])—were used in a 1:100 dilution. Late stage 

(16/17), nc-82-labeled embryos were assigned to one of three phenotypic categories: strong 

peripheral staining, moderate staining, and weak or residual staining, respectively. We 

performed statistical analysis of 69 wild-type (WT) embryos (w1118) and 73 Nrx-IV 

knockdown embryos from three independent experiments with a chi-square test and a 

Fisher’s-exact test to obtain p values. The images for peripheral synaptic staining were 

obtained with a Zeiss Apotome. 

Brains were dissected from L3 larvae and fixed for 30 min in 3.7% PFA. Pictures of 

WT and mutant brains were acquired with the use of the same microscope settings. 

Intensities of nc82 immunostainings were measured with Image J within two fields at two 

standardized positions in each CNS, one in the upper third and one in the lower third of the 
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ventral nerve cord. The average of these two values was normalized to the average of 

controls for comparison of results from independent experiments. A total of 45 w1118 brains 

from six independent experiments, 11 elav-Gal4::Nrx-I brains from two independent 

experiments, 19 double elav-Gal4::Nrx-I brains from three independent experiments, 12 elav-

Gal4::Nrx-IV brains from two independent experiments, and 21 double-elav-Gal4::Nrx-IV 

brains from four independent experiments were measured. p values were obtained with a 

Wilcoxon test for two samples for comparison to the WT. 

Type 1b neuromuscular junctions (NMJs) of muscle 4 were analyzed after dissection 

of L3 larvae and fixation in 3.7% PFA for 30 min. Costaining was performed with nc82 and 

DLG (both from DHSB) or HRP (Jackson Immuno Research) antibodies in a dilution of 

1:500. NMJ pictures were stacked in ImageJ and processed in Adobe Photoshop. Numbers 

of active zones and branches were manually counted in an animated stack, and total 

synaptic area was determined by ImageJ. A total of 21 WT NMJs, 19 overexpression Nrx-I 

NMJs, and 20 overexpression Nrx-IV NMJs from at least two independent experiments were 

counted. For the evaluation of branches, 27 WT NMJs, 25 overexpression Nrx-I NMJs, and 

20 overexpression Nrx-IV NMJs from three experiments were counted. We performed 

statistical evaluation with the Wilcoxon test for two samples, comparing each of the 

genotypes to the WT. The antibody against NrxIV was obtained from Christian Klämbt, 

Münster, Germany.264 Secondary antibodies for all stainings were either Alexa 568- or Alexa 

488-labeled antibodies against mouse or rabbit (Molecular Probes). All data were acquired 

blind to the evaluated phenotype. 

 

RESULTS 

Identification of recessive deletions and mutations in CNTNAP2 and NRXN1 

Molecular karyotyping led to the identification of a homozygous deletion of exons 2–9 within 

the CNTNAP2 gene on chromosome 7q35-q36.1 in a sibling pair of European origin (P1a 

and P1b), formerly published as possible clinical cases of Pitt-Hopkins syndrome.228 This 

deletion was confirmed by FISH analysis (Figure S2) and MLPA (data not shown) and is 

predicted to be in frame but result in the loss of several functional domains (fig. 1A, fig. 2A, 

and fig. S1). Consanguinity of the parents had been denied,228 and no indication for 

consanguinity was found by analysis of relationship with the use of the information of 10.000 

SNPs. However, when the SNPs within and around CNTNAP2 were analyzed, they showed 

homozygosity in both children, indicating an allele of common ancestry. By subsequent 

mutational screening of CNTNAP2 in a larger cohort of 177 additional TCF4- mutation-

negative patients, we identified a third patient of European origin (P2) with compound 

heterozygosity for the splice mutation IVS10-1G>T and a partial in-frame deletion of exons  
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Figure 1  Pedigrees and results of molecular karyotyping. 

A) Pedigree of family 1, with two affected children and homozygous deletion of CNTNAP2 affecting 

exons 2–9. Both parents are heterozygous carriers of the deletion. Results are from molecular 

karyotyping with Affymetrix 250K SNP arrays and analysis with the Genotyping Console 3.0.2 

software (Affymetrix). The deletion-flanking SNPs in the 500K array of P1a are SNP_A-1991616 

(145,562,641 Mb; UCSC Human Genome Browser version 18 [hg18]) and SNP_A-1991672 

(146,730,410 Mb; hg18), with a maximal deletion size of 1,167,269 bp and a minimal size of 1,146,016 

bp (Nexus software). B) Pedigree of P2, with one affected child. The patient harbors an in-frame 180 

kb deletion affecting CNTNAP2 exons 5–8 and a splice-site mutation in the splice donor site of exon 

11. Results of molecular karyotyping data from the Affymetrix 6.0 SNP array were analyzed with the 
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Genotyping Console 3.0.2 software, showing a deletion from CN_1217185 (146,387,354 Mb; hg18) to 

SNP_A-4269862 (146,566,863 Mb; hg18). See Figure S1 for SNP copy-number profiles. 

 

5–8, identified by molecular karyotyping (fig. 1B and fig. 2A) and confirmed with MLPA. The 

splice-site mutation resulted in lack of recognition of the splice acceptor site by two splice-

site-prediction programs and is therefore predicted to result in loss of exon 10, leading to a 

frameshift, and the deletion is predicted to result in the loss of two laminin G domains. The 

splice-site mutation was not found in 384 control chromosomes, and no CNTNAP2 deletion 

was found in 667 molecularly karyotyped control individuals. In both families, the parents 

were heterozygous carriers of one of the respective defects. 

 

 

 

Figure 2  Structure of CNTNAP2 and NRXN1. 

A) Schematic drawing of the genomic structure of CNTNAP2 with color coding for domain-coding 

exons and localization of mutations and deletions. Black bars represent deletions. Abbreviations are 

as follows: SP, signal peptide; DISC, discoidin-like domain; LamG, laminin-G domain; EGF, epidermal 

growth factor-like domain; FIB, fibrinogen-like domain; TM, transmembrane region; PDZPB, 

PDZdomain-binding site ; F1, family 1; P2, patient 2; Amish, homozygous mutation in the Amish 
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population, published by Strauss et al.184 B) Schematic drawing of the genomic structure of a-NRXN1 

and b-NRXN1 with color coding for domain-coding exons and localization of the mutation and deletion 

in patient 3, the deletion being represented by a black bar. Abbreviations are as follows: SP, signal 

peptide; LamG, laminin-G domain; EGF, epidermal growth factor-like domain; TM, transmembrane 

region; PDZPB, PDZ-domain-binding site. C) Schematic drawing of the domain structure of neurexins, 

CASPR2, and CASPR in humans and Drosophila. In contrast to CASPR, CASPR2 contains a PDZ-

domain-binding site but lacks a PGY repeat region, rich in proline, glycine, and tyrosine residues. Both 

neurexin I and CASPR2/Nrx-IV contain PDZ-domain-binding sites at their intracellular C terminus but 

differ in the presence of discoidin-like and fibrinogen-like domains and in the order of laminin-G 

domains. 

 

In another European patient of our cohort who had a very similar phenotype (P3), we 

identified a heterozygous 180 kb deletion within the NRXN1 gene on chromosome 2p16.3, 

spanning exons 1–4, including the start codon. This deletion was inherited from the healthy 

mother, but no deletions affecting the coding region of NRXN1 were found in 667 molecularly 

karyotyped healthy controls. Subsequent sequencing of NRXN1 in this patient revealed a 

stop mutation in exon 15 on the second allele, which was inherited from the healthy father 

(fig. 1C and fig. 2B). Both mutations are predicted to result in loss of the so-called alpha-

isoform of NRXN1, one of two NRXN1 isoforms that are transcribed from alternative 

promoters. The presumably remaining shorter beta isoform (fig. 2B and 2C) appears not to 

be sufficient to ensure normal function, which is in accordance with findings in alpha-

neurexin knockout mice.265 Mutational screening of NRXN1 in our study cohort did not reveal 

any additional defects. 

 

Clinical characterization 

As far as data are available, birth measurements of all patients (P1a, P1b, P2, and P3) were 

normal. Further growth development was also normal, apart from short stature in the siblings 

from family 1 and additional microcephaly in one of them. All four patients with recessive 

defects in CNTNAP2 or NRXN1 showed severe MR with lack of speech or with speech 

limited to single words (P1b), whereas motor milestones were normal or only mildly delayed, 

with a walking age of 2 years in P3. Episodes of hyperbreathing occurred in all patients, and 

seizures with an age at onset between 4 months and 30 months were observed in P1a, P1b, 

and P2. Additional variable anomalies were cerebellar hypoplasia, autistic behavior, and 

stereotypic movements. Apart from a wide mouth with thick lips in P1a and P1b and a wide 

mouth in P3, no specific facial dysmorphism were noted (Figure 1D). Parents of all patients 

were healthy, and the deceased sister of the father of P3 was said to have had epilepsy and 

mild MR. P1a and P1b have been described in detail by Orrico et al.,228 and an overview of 

clinical details of all patients is shown in Table 1. Lack of NRXN1 and CNTNAP2 expression 
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in blood or fibroblasts (Bakkaloglu et al.266 and data not shown) precluded functional studies 

on human material. 

 

Table 1  Phenotype in patients with CNTNAP2 and NRXN1 mutations 
 
 Siblings    
Patients P1a P1b P2 Amish184 (N=9) P3 

Mutations CNTNAP2 
deletion exons 2-
9, homozygous 

CNTNAP2 
deletion exons 2-
9, homozygous 

CNTNAP2 
deletion exons 5-
8 + IVS10-1G>T 

CNTNAP2 
c.3709delG, 
homozygous 

NRXN1deletion 
exons 1-4 + 
p.S979X 

Age 20y 15y 11y 1-10y 18y 
Sex F M F not reported F 
Parents Healthy healthy healthy not reported healthy 
Birth weight 
Length 
OFC 

3700 g 
51 cm 
34,5 cm 

not known 3700 g 
at term 

not reported 3450 g 
normal 
normal 

Height <P3 <P3 normal P4-P57 P50-75 
Weight P10 P5-10 P50 not reported P50-75 
OFC <P3 P75 P75 P18-P99  P25 
MR Severe severe severe all severe 
Age of walking Normal normal not known 16-30m 2y 
Speech  None single words none yes, but 

regression 
none 

Seizures, age 
of onset 

22mo 25-30mo 4-8mo 14-20mo  none 

MRI cerebellar 
hypoplasia 

normal not known dysplasia in 43% normal 

Hyperbreathing Yes yes yes not reported yes 
Stereotypies None not noted tooth grind., rep. 

hand movements
 yes 

Autistic 
behaviour 

not noted not noted yes 67%  yes 

Developmental 
regression 

not noted  not noted considered 
normal until 8 
months 

yes, with onset of 
seizures 

 normal the first 
years 

Constipation not noted not noted No not reported yes 
Decreased 
deep tendon 
reflexes 

not known not known not known 89%  UE: decreased 
LE: normal  

Others broad mouth, 
thick lips 

broad mouth, 
thick lips 

dry skin  broad mouth, 
strabismus, 
protruding 
tongue,  
excessive 
drooling , 
abnormal sleep-
wake cycles, 
hypermotoric 
behavior 

Normal testinga FRAXA, UBE3A, 
MECP2, TCF4 

FRAXA, UBE3A, 
MECP2 

UBE3A, CDKL5, 
MECP2, TCF4 

 array CGHb, 
UBE3A, MECP2, 
ZEB2, TCF4 

Patients P1a and P1b are siblings from family 1, clinically described by Orrico et al.;228 f, female; m, male; mo, 
months; y, years; MR, mental retardation; OFC, occipito-frontal-circumference; rep. hand movements, repetitive 
hand movements; tooth grind., tooth grinding; UE, upper extremities; LE, lower extremities; a, Previous genetic 
testing with reported normal results; b, Array-based comparative-genome hybridization via an Agilent 244K 
oligonucleotide array (Agilent) 
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Analysis of CNTNAP2 and NRXN1 orthologs Nrx-IV and Nrx-I in Drosophila 

Although a synaptic role for NRXN1 is known, this has not yet been established for 

CNTNAP2. However, the high similarity of clinical phenotypes caused by defects in the two 

genes suggested a potential common molecular contribution. To address this, as well as a 

further possible connection with TCF4, we utilized Drosophila as a model organism. All three 

genes, TCF4, NRXN1, and CNTNAP2, are highly conserved in evolution and have orthologs 

in Drosophila. 

We initially hypothesized that the TCF4 ortholog daughterless might regulate Nrx-I 

and Nrx-IV as transcriptional targets. Knockdown of daughterless to 60% of WT levels by the 

use of two different ubiquitous driver lines (promoter-Gal4 lines that regulate inducible RNAi 

alleles; see Subjects and Methods) resulted in pupal lethality, confirming the importance of 

daughterless for fly development and viability.267 However, expression of Nrx-I and Nrx-IV in 

L3 larvae of these genotypes was not significantly changed (fig. S3). 

 

Drosophila Nrx-IV and Nrx-1 both determine the level of the synaptic protein 

bruchpilot 

Knockdown of Nrx-IV, either ubiquitously with the use of actin-Gal4 drivers or specifically in 

neurons with the use of an elav-Gal4 driver, resulted in late embryonic lethality, with animals 

completing embryogenesis but failing to hatch. Together with an only recently reported 

expression of Nrx-IV in neurons,264,268 this suggests a crucial role in this cell type. To 

evaluate the cause for lethality upon neuronal 

knockdown, we performed immunostainings on embryos with a series of neuronal 

markers, labeling all neuronal nuclei, the sensory nervous system, main central axon tracts, 

and motor- and central pioneer axons, respectively. None of these showed abnormal position 

or morphology (fig. S4 and data not shown). However, we noted an overall diminished 

staining intensity of the presynaptic protein bruchpilot (nc82) in Nrx-IV knockdown embryos 

(fig. 3A). Quantification revealed that the fraction of embryos with weak or residual staining 

on peripheral motor synapses was significantly increased to 33% in Nrx-IV knockdown 

embryos, compared to 9% in WT embryos, whereas the fraction of strongly stained embryos 

was decreased to 25% in Nrx-IV knockdown embryos, compared to 55% in the WT (fig. 3B). 

Interestingly, bruchpilot is known to colocalize with Nrx-I at presynaptic active zones, the 

domains of neurotransmitter release,269 and reduced levels of bruchpilot immunoreactivity 

have been reported in larval brains of Nrx-I mutants.270 We studied bruchpilot levels after 

neuronal overexpression of either Nrx-I or Nrx-IV and found a significant dosage-dependent 

increase of bruchpilot-staining intensity in larval brains. Upon overexpression with one copy 

of a panneuronal elav-Gal4 driver, bruchpilot intensity was increased 1.2- and 1.3-fold, and 
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introduction of a second copy (dbElav) resulted in a 1.6- and 1.8-fold increase (fig. 3C and 

3D). 

 

Figure 3  The presynaptic protein bruchpilot is misregulated in Nrx-IV knockdown embryos and 

larval brains with neuronal overexpression of Nrx-I and Nrx-IV. 

A and B) For quantitative evaluation, embryos have been assigned to one of three categories of 

bruchpilot (nc82) intensities: strong, moderate, and weak peripheral staining. A) Images of strong and 

moderate central (ventral nerve cord, left panel) and peripheral (middle panel) presynaptic bruchpilot 

staining, representing the major fraction in WT and Nrx-IV knockdown embryos, respectively (UAS-

Nrx-IVRNAi/þ; elav-Gal4/þ [Elav::RNAi Nrx-IV]). Note that peripheral and central synaptic staining of 

bruchpilot in the Nrx-IV knockdown embryos is diminished. Costaining with an anti-HRP marker, 

staining neuronal membranes, ensured the same focal plane in mutant and WT embryos. Arrowheads 

point to a specific identifiable synapse (the muscle 6/7 synapse). Bruchpilot staining of this synapse is 

depicted in insets in the middle panels. B) Quantitative analysis of nc82 (anti-bruchpilot, synaptic 

active zones) labeling. Diagram shows mean with standard deviation. C) Representative pictures of 

bruchpilot staining in brains with neuronal overexpression of Nrx-I or Nrx-IV as a result of the following 

genotypes: WT, UAS-Nrx-I/ elav-Gal4; elav-Gal4/þ (dbElav:: Nrx-I) and elav-Gal4/þ; UAS-Nrx-IV/ elav-

Gal4 (dbElav:: Nrx-IV). Bruchpilot immunoreactivity is increased in both mutant conditions. D) 

Quantitative assessment of bruchpilot immunoreactivity in brains of genotypes shown in C). The 

diagram shows the mean of normalized intensity with the standard error of the mean. p values in (B) 

and (D) are related to the WT, respectively. Single asterisk, p < 0.05; double asterisk, p < 0.01; triple 

asterisk, p < 0.0001. 
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Drosophila Nrx-IV is present at synapses and can, like Nrx-I, reorganize them 

For further analyses at the subsynaptic level, we utilized Drosophila larval NMJs, giant 

synapses that share a series of features with central excitatory synapses in the mammalian 

brain and represent an established model for the study of synaptic development and 

plasticity.271 Staining of these synapses with a recently characterized specific antibody264 for 

Nrx-IV detected the presence of Nrx-IV at synaptic terminals. Nrx-IV localizes in a pattern of 

subsynaptic foci that overlap active zones (fig. 4A), resembling the pattern previously 

reported for Nrx-I.20 

 

 

Figure 4 Nrx-IV localizes to synapses and its overexpression reorganizes synapse architecture. 

A) Presence of endogenous Nrx-IV at type 1b neuromuscular junctions (NMJs) of muscle 4, 

overlapping with active zones stained with nc82. White arrowheads point to Nrx-IV, labeling 

overlapping active zones. B) Synaptic terminal with increased bouton number and increased number 

of synaptic branches upon Nrx-I or Nrx-IV overexpression, stained with an anti-HRP marker and the 

nc82 antibody. The enlarged section depicts the increased density of active zones. C) Increased 

bouton number per mm2 NMJ area in UAS-Nrx-I/ elav-Gal4; elav-Gal4/þ (dbElav:: Nrx-I) and elav-

Gal4/þ; UAS-Nrx-IV/elav-Gal4 (dbElav:: Nrx-IV) versus control w1118 animals (contr1) and dbElav 

control animals (contr2). D) Quantitative analysis of increased active-zone density (number per mm2 

NMJ area) in neuronal Nrx-I and Nrx-IV overexpression. E) Increased number of synaptic branches in 

Nrx-I and Nrx-IV overexpression. Error bars indicate standard error of the mean. p values are related 

to the WT (contr1). Single asterisk, p < 0.008; double asterisk, p < 0.0003; triple asterisk, p < 0.0001. 
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Previous studies in Nrx-I null mutants revealed a decreased number of synaptic boutons in 

NMJs, whereas overexpression of Nrx-I resulted in an increased bouton number.26920 Our 

results, measuring total synaptic area in Nrx-I-overexpression animals, show that this goes 

along with a morphological reorganization into smaller boutons, as illustrated by an increased 

number of boutons per mm2 NMJ area (fig. 4B and 4C). Strikingly, overexpression of Nrx-IV 

is capable of inducing the same morphological changes (fig. 4B and 4C). Furthermore, 

overexpression of either Nrx-I or Nrx-IV resulted in a highly significant increase in density of 

active zones (fig. 4B and 4D) and in a significant increase in branching of synaptic terminals 

(fig. 4B and 4E). 

 

DISCUSSION  

Recessive defects in CNTNAP2 and NRXN1 cause severe MR 

We report here on homozygous and compound-heterozygous deletions and mutations in 

NRXN1 and CNTNAP2 that cause severe MR with additional features such as epilepsy, 

autistic behavior, and breathing anomalies. Heterozygous CNVs or SNPs in both genes have 

recently been extensively reported in association with autism-spectrum disorder (ASD) 

(AUTS15, [MIM 612100]), epilepsy, or schizophrenia.266,272-282 Additionally, for CNTNAP2, an 

association with Gilles de la Tourette syndrome and obsessive compulsive disorder2834 was 

reported to be due to a disruption of the gene but was not confirmed in another family.284 

Furthermore, a homozygous stop mutation in CNTNAP2 in Old Order Amish children was 

implicated in a distinct disorder, CDFE syndrome (MIM 610042), which is characterized by 

cortical dysplasia and early onset, intractable focal epilepsy leading to language regression, 

and behavioral and mental deterioration;184 as well as periventricular leukomalacia and 

hepatomegaly in an additional patient.285 Histological examination of temporal-lobe 

specimens of these patients showed evidence of abnormal neuronal migration and structure, 

as well as a possibly altered expression of Kv1.1 and Nav1.2 channels, therefore providing a 

possible explanation for the cortical dysplasia and epilepsy phenotypes.184 

Taken together, published data and the present study indicate that heterozygous 

defects or variants in both NRXN1 and CNTNAP2 can represent susceptibility factors for 

variable cognitive, neurological, and psychiatric disorders, whereas biallelic defects result in 

a fully penetrant, severe neurodevelopmental disease such as that observed in our patients, 

thus representing different ends of the clinical spectrum caused by either monoallelic or 

biallelic defects in these two genes. This is in accordance with a report by Zahir et al.,286 who 

described a patient with a heterozygous de novo NRXN1 deletion affecting the same exons 

as those in our patient 3 but without detectable mutation on the second allele. This 

heterozygous deletion was associated with vertebral anomalies, behavioral problems, and 

only mild cognitive abnormalities. Of note, in our families, none of the heterozygous parents 
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had a history of autism, epilepsy, or schizophrenia, and none of other family members are 

known to have these disorders. However, the deceased sister of the father of patient 3 was 

said to have had epilepsy and mild MR. Whether or not this relates to the mutation in the 

father’s family remains elusive. 

A common feature in the Amish patients with a homozygous stop mutation and in our 

patients with homozygous deletions or compound-heterozygous deletion and mutation in 

CNTNAP2 is the early onset of seizures. In contrast, none of our patients showed regression 

of speech development. Another difference is episodic hyperbreathing, present in our 

patients but not reported in the Amish patients. Cortical dysplasia, occurring in some of the 

Amish patients, was not observed in our patients; however, the number of patients examined 

with MRI is too low to allow any definite conclusions to be drawn. The phenotypic differences 

between our patients and the reported Amish patients may be explained by the loss of C-

terminal transmembrane and cytoplasmic domains in the Amish mutation184 and by the loss 

of N-terminal extracellular domains in our patients (fig. 2 and table 1). However, clinical bias 

cannot be excluded. 

Resemblance among the patients in this study who have recessive defects in 

CNTNAP2 or NRXN1 is high, with the exception of patient 3, who has NRXN1 defects but no 

seizures. It might even be speculated that the epilepsy, observed in patients with recessive 

CNTNAP2 defects but not in our patient with the compound-heterozygous NRXN1 defect, 

might be associated to the previously observed neuronal-migration anomalies,184 whereas 

the remaining common symptoms such as severe MR and autistic behavior might be caused 

by overlapping synaptic anomalies. All of the reported patients were originally referred for 

TCF4 analysis as a result of phenotypic resemblance to Pitt-Hopkins syndrome with regard 

to facial aspects, the severity of MR, and breathing anomalies. Nevertheless, phenotypical 

differences were noticeable. In contrast to patients with Pitt-Hopkins syndrome, who present 

an equally severe delay or lack of both motor and speech development, patients with 

CNTNAP2 or NRXN1 defects, also severely impaired in speech development, present with 

normal or only mildly to moderately delayed motor milestones. These findings are in line with 

the previously reported specific involvement of CNTNAP2 in language development.281 

Because of the similar phenotypes caused by defects in both NRXN1 and CNTNAP2 

and the resemblance to Pitt-Hopkins syndrome, caused by haploinsufficiency of TCF4, we 

investigated an as-yet-unappreciated common molecular basis contributing to these 

disorders, using the fruitfly Drosophila as a model. The Drosophila TCF4 ortholog 

daughterless belongs to the achaete-scute complex, which encodes members of the bHLH 

class of transcriptional factors with a well-established proneural function.267 Our initial 

hypothesis, that daughterless might regulate Nrx-I and Nrx-IV as transcriptional targets, 

could not be confirmed by our analysis of their expression levels in the daughterless 
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knockdown condition (fig. S3). However, given that the data were obtained from knockdown 

animals, not null animals, this excludes neither transcriptional regulation that is undetectable 

by our assay nor other nontranscriptional interactions. 

 

CNTNAP2 and NRXN1 Drosophila orthologs Nrx-IV and Nrx-I might be involved in a 

common synaptic mechanism 

Our identification of a fully penetrant and severe MR phenotype due to recessive defects in 

NRXN1 is in agreement with NRXN1’s important role in synaptic function, as previously 

suggested on the basis of its heterozygous alterations that are associated with 

neuropsychiatric disorders and work with animal models.287 NRXN1 belongs to the 

evolutionarily conserved family of neurexins, presynaptic transmembrane proteins. Each of 

the three vertebrate neurexins has two promoters, generating longer alpha-neurexins and 

shorter beta-neurexins. In addition, extensive alternative splicing occurs, generating a large 

number of variants, which may mediate target recognition and synaptic specificity.288 Alpha-

neurexins also play a role in neurotransmitter release by coupling Ca2þ channels to synaptic-

vesicle exocytosis.289 In contrast to the three neurexins in mammals, there is only one 

Drosophila neurexin, termed Nrx-I or DNRX.269,270 Previously, defects in several genes 

involved in synaptic pathways and complexes have been reported to be causative for or 

associated with MR or ASD, among them neurexin interactors. The extracellular region of 

neurexins binds to postsynaptic neuroligins, a family of proteins associated with autism and 

MR,290 which in turn interact with the postsynaptic protein SHANK3, also associated with 

ASD.291 The binding of neurexins to neuroligins connects pre- and postsynaptic neurons and 

mediates signaling across the synapse,287 and the NRXN-NLGN-SHANK pathway is 

supposed to be crucial during synaptogenesis, given that mutations within this pathway lead 

to abnormal synaptogenesis and excess of inhibitory currents.292 The intracellular domains of 

neurexins interact with the synaptic vesicle protein synaptotagmin and with PDZ-domain 

proteins such as CASK,288 in which X-linked recessive mutations were only recently identified 

to be causative for MR and brain malformations.133 

In contrast, a synaptic role of CNTNAP2 has not yet been established. CNTNAP2 

encodes CASPR2, a protein related to neurexins. However, on the basis of its additional 

motifs, different domain organization,288 and phylogenetic analyses, 269 only a distant 

relationship was assumed.293 Caspr2 regulates neuron-glia contact in vertebrates and has 

been shown to colocalize with Shaker-like K+ channels in the juxtaparanodal areas of 

Ranvier nodes in myelinated axons of both the central and peripheral nervous system.294,295 

Until recently, its fly ortholog Nrx-IV was reported to be almost exclusively expressed in glial 

cells296 and to regulate glia-glia contact in insects via septate junctions that are important for 

maintaining an intact blood-brain barrier.293 A detected decrease in evoked neurotransmitter 
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release and an occasional failure to form synapses in Nrx-IV null mutants was interpreted as 

a consequence secondary to glial dysfunction.296 However, recently, a neuronal Nrx-IV 

isoform was also identified.264,268 Despite the knowledge of neuronal expression of vertebrate 

Caspr2,297 so far only a report on detection of the protein in fractionated rat synaptic plasma 

membranes pointed to a possible synaptic presence.266 Our findings now support a synaptic 

localization of Nrx-IV (Figure 4). 

Previous studies at Drosophila neuromuscular junctions had reported a decreased 

number of synaptic boutons in Nrx-I null mutants and an increase upon overexpression of 

Nrx-I.269 Our observation that the latter goes in hand with an increased active-zone density 

and the finding that Nrx-IV overexpression is causing the very same phenotypes (Figure 4) 

suggest a crucial and possibly common role for both proteins in the morphological 

organization of synapses. Moreover, published data for Nrx-I mutants270 and our analysis of 

Nrx-IV knockdown and overexpression conditions of Nrx-I and Nrx-IV suggest an important 

role of both proteins in bidirectional regulation of bruchpilot levels. Bruchpilot is a presynaptic 

protein crucial for the structure of active zones, the subsynaptic domains of neurotransmitter 

release, and is present at most if not all synapses of Drosophila. It shows high sequence and 

functional homology to the vertebrate family of ELKS/CAST proteins,298 corresponding to 

ERC1 and ERC2 in humans with similar reported functions. The mechanism by which Nrx-I 

and Nrx-IV determine bruchpilot levels remains the subject of future study. Given that all 

three contain C-terminal PDZ-domain binding sites, which are necessary for the formation of 

large complexes with active-zone proteins,298 one reasonable hypothesis is that the three 

proteins might assemble into a synaptic complex or macromolecular network. 

In conclusion, we have identified here autosomal-recessive defects in CNTNAP2 and 

NRXN1 in patients with severe MR and variable additional features overlapping with Pitt-

Hopkins syndrome. With a frequency of at least 1% in this cohort, mutations in CNTNAP2 in 

particular appear to significantly contribute to severe MR. Using the fruitfly as a model 

organism, we observed that not only Nrx-I but also Nrx-IV, previously unrecognized as a 

synaptic protein in vertebrates and in Drosophila, is present at synapses and regulates levels 

of the active-zone protein bruchpilot. It is therefore tempting to hypothesize that 

misregulation of the human bruchpilot ortholog might underlie a common synaptic 

pathomechanism contributing to the similar phenotypes observed in patients with defects in 

CNTNAP2 and NRXN1. 
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SUPPLEMENTAL DATA 

 

Figure S1  SNP copy number profile in family 1 

SNP copy number profile (Log2 ratio) of the Affymetrix 250 K array, analyzed with the Genotyping 

Console 3.0.2 software (Affymetrix) in all members of family 1, showing a homozygous deletion within 

the CNTNAP2 gene in both affected children and a heterozygous deletion in both healthy parents. 

 

Figure S2  FISH analysis in family 1 

FISH analysis with the directly Cy3-labeled BAC clone RP4-558L10 on metaphase spreads. White 

arrowheads indicate chromosomes 7. In the patients (P1a, P1b) a homozygous deletion of the BAC 

clone can be seen, in both parents a heterozygous deletion each. 
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Figure S3. Expression of daughterless, Nrx-IV and Nrx-I in daughterless knockdown larvae  

A) Normalized expression of daughterless after a knockdown with two different ubiquitous drivers on 

the second (II, Actin-Gal4 17bFO1) and third (III, Actin-Gal4 25FO1) chromosome, respectively. In 

both cases the knockdown is down to 60% compared to the wt (w1118) B,C) Normalized expression 

of Nrx-IV and Nrx-I upon knockdown of daughterless, respectively. No significant changes were 

detected. 

 

 

Figure S4  Immunostaining of the embryonic nervous system 

Examples of immunofluorescence analysis of the nervous system in wild type and Nrx-IV panneuronal 

knockdown embryos. Anti-fas II stains motor- and central pioneer axons. Antibody BP102 stains axon 

tracts/the central neuropile region. No apparent morphological or structural alterations were observed 

in the Nrx-IV knockdown embryos compared to the wild type. 

 

Table S1  Primer sequences for amplification and sequencing of all coding exons of CNTNAP2 and 

NRXN1 

Exon primer sequence amplicon length (bp) 
CNTNAP2_e1F CCTCGCGTATTTGAGGACAG 345 
CNTNAP2_e1R AGTGGCTGCAAGTGTGTGAC  
CNTNAP2_e2F GAATTGCCTAAATTCCTTTGC 363 
CNTNAP2_e2R TGGTGTCTGCCAACATCTG  
CNTNAP2_e3F GCACTGCCAAGACCAATTAAG 427 
CNTNAP2_e3R TGATGAATAAATAGTTTCCCAATG  
CNTNAP2_e4F Catggatgaaaagacccaca 481 
CNTNAP2_e4R Aaggtagtttattgtcagagaaagca  
CNTNAP2_e5F Tctttgcagacacctgttgg 452 
CNTNAP2_e5R Tttttgaatgactaggtgtttcatt   
CNTNAP2_e6F Tcccaggttaactcgaatgg 477 
CNTNAP2_e6R Tgaaacgaattaatcaggttttt  
CNTNAP2_e7F GCCATAGATTTTGGAGGCAG 413 
CNTNAP2_e7R ACATCATTTTGCCCAAACAC  
CNTNAP2_e8F TCACTGAATCCATGCTCTGC 524 
CNTNAP2_e8R AAAACCTAATCCTGAGCGTGTAAC  
CNTNAP2_e9F Ttgtaagcagcactgtattttcc 497 



                         CNTNAP2 and NRXN1 are mutated in autosomal recessive PTHS‐like mental retardation 
 

85 
 

CNTNAP2_e9R Ggccagaagaatatggtgaca  
CNTNAP2_e10F GAAACAGTAGTTGGATGTGATGG 408 
CNTNAP2_e10R GAATGGTAATTTCCACCTTACCTG  
CNTNAP2_e11F CCTTGGTAAGGCAACCTGG 365 
CNTNAP2_e11R GAAATGACAATTGGAATCTTGG  
CNTNAP2_e12F CTCTTTCCAGGAAGAACTACTCC 369 
CNTNAP2_e12R GCAATATGTTGCTGATTAGATGTTG  
CNTNAP2_e13F GCTCTCCTTAACACTGTTCTACACC 460 
CNTNAP2_e13R CTTATTTACAGCTTCCTTCCTACTG  
CNTNAP2_e14F Agagtattcctggggaagtgg 440 
CNTNAP2_e14R Ttgtcgcactgacctctttct  
CNTNAP2_e15F CCAAACGATTACTGAAATGTCATC 373 
CNTNAP2_e15R ATCTCTGCTTGGGTTGTGTG  
CNTNAP2_e16F Tgtgaggatttggtccaatg 469 
CNTNAP2_e16R Aggcttgtgtgtccacctct  
CNTNAP2_e17F TCGACCTTTGTAGGACGTGAC 479 
CNTNAP2_e17R GGCCAACACCTTTACTTTTGG  
CNTNAP2_e18F GCCTTATAGCCTGCAGGGAG 587 
CNTNAP2_e18R GATTAGGAAATGATTTTGGTTGG  
CNTNAP2_e19F TACTCAGATGCCCTTCCTGG 462 
CNTNAP2_e19R GCCTATGGGGAATAAATAACAAAC  
CNTNAP2_e20F Agcaggaattgaggggatgt 350 
CNTNAP2_e20R Ttatgcacttgtaggagaaagtgt  
CNTNAP2_e21F GAAAACCAGGGTTCAAAGAGTG 314 
CNTNAP2_e21R AAGATATTCGTGACTGGCCC  
CNTNAP2_e22F Gctttggacacaagcattca 462 
CNTNAP2_e22R Acgttcctttgccctttctt  
CNTNAP2_e23F Gttgtgattcttgtgggagaca 366 
CNTNAP2_e23R Cagcaaaatgaataatgtaaaaacc  
CNTNAP2_e24F GAGAGGGCTGTGTCTGACG 437 
CNTNAP2_e24R ATATTCCATTGCCTGCCTCC  
  
NRXN1_ex2aF CCCTTACCTTTCTGTCTCTCG 499 
NRXN1_ex2aR GTCGATGAAGAGCGTGGTGT  
NRXN1_ex2bF CGACTTCCTGGAGCTGATTC 696 
NRXN1_ex2bR Gagtcccccagaaacaaggt  
NRXN1_ex3F Tgattttgttttcccccttg 344 
NRXN1_ex3R Gatggcagggttgagaatgt  
NRXN1_ex4F Gtgcagcatatgccagtgtt 446 
NRXN1_ex4R Agccacaggaacaaaccaaa  
NRXN1_ex5F Aagccaggctgtctctgcta 386 
NRXN1_ex5R Tctggattggtctcgaggtt  
NRXN1_ex6F Ctgtttgactgagacagagttca 596 
NRXN1_ex6R Tggcaggaagattcatctcag  
NRXN1_ex7F Ctctgtgggaggcctacttg 418 
NRXN1_ex7R Cagatgaaaagaaggaggtcaaa  
NRXN1_ex8F Caggcatatcccaggattaca 341 
NRXN1_ex8R Gtgccgtttgactctggaac  
NRXN1_ex9F Tcgttgaaagttacatgagctg 595 
NRXN1_ex9R Tcacttttaggaatggcatgg  
NRXN1_ex10F Ttgtctgcctccaaggagtt 573 
NRXN1_ex10R Caatggtcagtgcaggtttg  
NRXN1_ex11F Tgaagaagatgaattgattttgtagt 493 
NRXN1_ex11R Cccccgaaaacctcaaatta  
NRXN1_ex12F Ttggccatttttaaaaccttc 432 
NRXN1_ex12R Gcagtgggaaagtcttcagc  
NRXN1_ex13F Ctctgtgaggttcatttgcttg 380 
NRXN1_ex13R Tgtcatttttgaggaaaaacacc  
NRXN1_ex14F Tgtgatattgttatgaaagcctaaa 599 
NRXN1_ex14R Tgccttcttatttgtcctcca  
NRXN1_ex15F Ggatggaaccacctgaaaaa 450 
NRXN1_ex15R Cagaggcttgtgtgttgtattg  
NRXN1_ex16F Tttagcactttggggaaaaca 433 
NRXN1_ex16R Ccaaattgggtatttgaccag  
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NRXN1_ex17F Cagcctctcagttcctaattca 429 
NRXN1_ex17R Cctttccgtagaaacaactgc  
NRXN1_ex18F Gccatagttttgtgtgtagagttga 416 
NRXN1_ex18R Tttcctataacaaagtactggtttctg  
NRXN1_ex19F Gaagtaaaattggaggaaagca 450 
NRXN1_ex19R Ggacagcattacattcacatgac  
NRXN1_ex20F Tgctctcattattcaccccata 541 
NRXN1_ex20R Ggaagctgtagtgcctaagatca  
NRXN1_ex21F Aaagggaaatagtgaatttggtttc 449 
NRXN1_ex21R Aagccctgtgtgctataccc  
NRXN1_ex22F Aggcaaagggatggctacat 550 
NRXN1_ex22R TGTGCTTCATAAAAAGGAAAGTAAA  

 

Table S2  Probe sequences for MLPA analysis of all coding exons of CNTNAP2 and exon 2 of NRXN1 

exon probe sequence probe 
length 

CNTNAP2_ex1_F 
GGGTTCCCTAAGGGTTGGATGCTGTGGATTGTCAGCAGCTGCCTC
T 96 

CNTNAP2_ex1_R 
GCAGAGCCTGGACGGCTCCCTCCACGTTCTAGATTGGATCTTGCT
GGCAC  

CNTNAP2_ex2_F 
GGGTTCCCTAAGGGTTGGAGTGATGAGCCACTTGTCTCTGGACTC
CCCCA 104 

CNTNAP2_ex2_R 
TGTGGCTTTCAGCAGCTCCTCCTCCATCTCTTCTAGATTGGATCTT
GCTGGCAC  

CNTNAP2_ex3_F 
GGGTTCCCTAAGGGTTGGAGTCTCCATCAGACAGCGACCATTATC
AATGGCT 

108 

CNTNAP2_ex3_R 
TCAGGTTGACTTTGGCAATCGGAAGCAGATCAGTCTAGATTGGATC
TTGCTGGCAC 

 

CNTNAP2_ex4_F 
GGGTTCCCTAAGGGTTGGAGAAACATTAACTCTGACGGTGTGGTC
CGGCACGAA 

112 

CNTNAP2_ex4_R 
TTACAGCATCCGATTATTGCCCGCTATGTGCGCATTCTAGATTGGA
TCTTGCTGGCAC 

 

CNTNAP2_ex5_F 
GGGTTCCCTAAGGGTTGGAGATGGCCATGTTGTATTACCATATAGA
TTCAGAAACAA 

116 

CNTNAP2_ex5_R 
GAAGATGAAAACACTGAAAGATGTCATTGCCTTGAATCTAGATTGG
ATCTTGCTGGCAC 

 

CNTNAP2_ex6_F 
GGGTTCCCTAAGGGTTGGAGCATTAACCTCACTCTGGACAGGAGC
ATGCAGCACTTCC 

120 

CNTNAP2_ex6_R 
GTACCAATGGAGAGTTTGACTACCTGGACTTGGACTATGTCTAGAT
TGGATCTTGCTGGCAC 

 

CNTNAP2_ex7_F 
GGGTTCCCTAAGGGTTGGAGAGGCATCCCTTTCTCTGGCAAGCCC
AGCTC 

104 

CNTNAP2_ex7_R 
CAGCAGTAGAAAGAATTTCAAAGGCTGCATGTCTAGATTGGATCTT
GCTGGCAC 

 

CNTNAP2_ex8_F 
GGGTTCCCTAAGGGTTGGAGGACGGCTTAACCAGGACCTGTTCTC
AGTCAGTTTCCAGTT 

124 

CNTNAP2_ex8_R 
TAGGACATGGAACCCCAATGGTCTCCTGGTCTTCAGTCACTTCTAG
ATTGGATCTTGCTGGCAC 

 

CNTNAP2_ex9_F 
GGGTTCCCTAAGGGTTGGAGAATGATGGACAGTGGCACGAGGTTC
GCTTCCT 

108 

CNTNAP2_ex9_R 
AGCCAAGGAAAATTTTGCTATTCTCACCATCGATCTAGATTGGATC
TTGCTGGCAC 

 

CNTNAP2_ex10_F 
GGGTTCCCTAAGGGTTGGACATTCCAAGGATGCATGCAGCTCATT
CAAGTGGA 

112 

CNTNAP2_ex10_R 
CGATCAACTTGTAAATTTATACGAAGTGGCACAAAGTCTAGATTGG
ATCTTGCTGGCAC 

 

CNTNAP2_ex11_F 
GGGTTCCCTAAGGGTTGGAGACAGCTTCAAATGCACTTGTGATGA
GAC 

100 

CNTNAP2_ex11_R 
AGGATACAGTGGGGCCACCTGCCACAACTTCTAGATTGGATCTTG
CTGGCAC 

 

CNTNAP2_ex12_F 
GGGTTCCCTAAGGGTTGGATATCTACGAGCCTTCCTGTGAAGCCT
ACAAA 

104 
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CNTNAP2_ex12_R 
CACCTAGGACAGACATCAAATTATTACTGGATCTAGATTGGATCTT
GCTGGCAC 

 

CNTNAP2_ex13_F 
GGGTTCCCTAAGGGTTGGAGCAGATGCAGACGCCTGTGGTCGGC
TACAACCCAGAA 

116 

CNTNAP2_ex13_R 
AAATACTCAGTGACACAGCTCGTTTACAGCGCCTCCATCTAGATTG
GATCTTGCTGGCAC 

 

CNTNAP2_ex14_F 
GGGTTCCCTAAGGGTTGGAGCCCTTACACTTGGTGGGTTGGCAAA
GCCAACG 

108 

CNTNAP2_ex14_R 
AGAAGCACTACTACTGGGGAGGCTCTGGGCCTGTCTAGATTGGAT
CTTGCTGGCAC 

 

CNTNAP2_ex15_F 
GGGTTCCCTAAGGGTTGGATTGGAGATACTGACCGTCAAGGCTCA
G 

96 

CNTNAP2_ex15_R 
AAGCCAAATTGAGCGTAGGTCCTCTGCTCTAGATTGGATCTTGCTG
GCAC 

 

CNTNAP2_ex16_F 
GGGTTCCCTAAGGGTTGGAGAAACTAGCGCTGACATTTCTTTCTAC
TTCAAAAC 

112 

CNTNAP2_ex16_R 
ATTAACCCCCTGGGGAGTGTTTCTTGAAAATATGGTCTAGATTGGA
TCTTGCTGGCAC 

 

CNTNAP2_ex17_F 
GGGTTCCCTAAGGGTTGGAGTGTCCTTTTCATTTGATGTGGGAAAT
GGGCCAGTAGAG 

120 

CNTNAP2_ex17_R 
ATTGTAGTGAGGTCACCAACCCCTCTCAACGATGACCAGTCTAGAT
TGGATCTTGCTGGCAC 

 

CNTNAP2_ex18_F 
GGGTTCCCTAAGGGTTGGACAAAGGTCACATCTGGGTTCATATCC
GGATGCTCGGGCCAT 

124 

CNTNAP2_ex18_R 
TGCACCAGCTATGGAACAAACTGTGAAAATGGAGGCAAATGTCTA
GATTGGATCTTGCTGGCAC 

 

CNTNAP2_ex19_F 
GGGTTCCCTAAGGGTTGGACCTGGCACAGGAGGAGATCCGCTTC
AGCTTCAGCACCACCA 

124 

CNTNAP2_ex19_R 
AGGCGCCCTGCATTCTCCTCTACATCAGCTCCTTCACCACATCTAG
ATTGGATCTTGCTGGCAC 

 

CNTNAP2_ex20_F 
GGGTTCCCTAAGGGTTGGATGGGTGGCACCCGAGAGCCATACAAT
ATT 

100 

CNTNAP2_ex20_R 
GACGTAGACCACAGGAACATGGCCAATGGTCTAGATTGGATCTTG
CTGGCAC 

 

CNTNAP2_ex21_F 
GGGTTCCCTAAGGGTTGGATCCTTCTGTGAGTTACCATCTGCCAA
GTT 

100 

CNTNAP2_ex21_R 
CATCCGACACCCTCTTCAATTCTCCCAAGTCTAGATTGGATCTTGC
TGGCAC 

 

CNTNAP2_ex22_F 
GGGTTCCCTAAGGGTTGGACAGGATTCACTGGTTGCCTCTCCAGA
GTCCAGTTCAACC 

120 

CNTNAP2_ex22_R 
AGATCGCCCCTCTCAAGGCCGCCTTGAGGCAGACAAACGTCTAGA
TTGGATCTTGCTGGCAC 

 

CNTNAP2_ex23_F 
GGGTTCCCTAAGGGTTGGAGACAAGGCCAAGCTATAAGAAATGGA
G 

96 

CNTNAP2_ex23_R 
TCAACAGAAACTCGGCTATCATTGGAGTCTAGATTGGATCTTGCTG
GCAC 

 

CNTNAP2_ex24_F 
GGGTTCCCTAAGGGTTGGACTGTGGTGATTTTCACCATCCTGTGC
ACCCTGGTCTT 

116 

CNTNAP2_ex24_R 
CCTGATCCGGTACATGTTCCGCCACAAGGGCACCTACTCTAGATT
GGATCTTGCTGGCAC 

 

   
NRXN1_ex2_F GGGTTCCCTAAGGGTTGGACGTGAGGGTCAACTCCTCGCAGG 88 

NRXN1_ex2_R 
TCCTGCCCGTGGACAGCGGCGAGTCTAGATTGGATCTTGCTGGCA
C 

 

 
Table S3  Primer sequences for quantitative real‐time PCR 

Gene primer sequence product length (bp) 
Daughterless_F CTCGCTGCAACAAAAGGAAT 120 
Daughterless_R AAGCAGTTCTGGAACACCTCA  
Neurexin-I_F AATCTGCGGCTGCAAGTC 105 
Neurexin-I_R GAAGAGACCACCCAGGTGAA  
Neurexin-IV_F TGCCATACATCAAACAATCCA 111 
Neurexin-IV_F AGGTTCTAGGGGACCACTGC  
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ABSTRACT 

Background 

Heterozygous copy-number and missense variants in CNTNAP2 and NRXN1 have 

repeatedly been associated with a wide spectrum of neuropsychiatric disorders such as 

developmental language and autism spectrum disorders, epilepsy and schizophrenia. 

Recently, homozygous or compound heterozygous defects in either gene were reported as 

causative for severe intellectual disability.  

Methods 

99 patients with severe intellectual disability and resemblance to Pitt-Hopkins syndrome 

and/or suspected recessive inheritance were screened for mutations in CNTNAP2 and 

NRXN1. Molecular karyotyping was performed in 45 patients. In 8 further patients with 

variable intellectual disability and heterozygous deletions in either CNTNAP2 or NRXN1, the 

remaining allele was sequenced. 

Results 

By molecular karyotyping and mutational screening of CNTNAP2 and NRXN1 in a group of 

severely intellectually disabled patients we identified a heterozygous deletion in NRXN1 in 

one patient and heterozygous splice-site, frameshift and stop mutations in CNTNAP2 in four 

patients, respectively. Neither in these patients nor in eight further patients with heterozygous 

deletions within NRXN1 or CNTNAP2 we could identify a defect on the second allele. One 

deletion in NRXN1 and one deletion in CNTNAP2 occurred de novo, in another family the 

deletion was also identified in the mother who had learning difficulties, and in all other tested 

families one parent was shown to be healthy carrier of the respective deletion or mutation. 

Conclusions 

We report on patients with heterozygous defects in CNTNAP2 or NRXN1 associated with 

severe intellectual disability, which has only been reported for recessive defects before. 

These results expand the spectrum of phenotypic severity in patients with heterozygous 

defects in either gene. The large variability between severely affected patients and mildly 

affected or asymptomatic carrier parents might suggest the presence of a second hit, not 

necessarily located in the same gene.  

 

BACKGROUND 

Recent data suggested that heterozygous variants or defects in NRXN1 (Neurexin 1) or 

CNTNAP2 (contactin associated protein 2), both genes encoding neuronal cell adhesion 

molecules, represent susceptibility factors for a broad spectrum of neuropsychiatric disorders 

such as epilepsy, schizophrenia or autism spectrum disorder (ASD) with reduced penetrance 

and no or rather mild intellectual impairment.266,272-283,286,299-307 In contrast, biallelic defects in 

either gene were reported to result in fully penetrant, severe neurodevelopmental disorders. 
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Strauss et al. reported on a homozygous stop mutation in CNTNAP2 in Old Order Amish 

children causing CDFE (Cortical Dysplasia – Focal Epilepsy) syndrome (MIM #610042), 

characterized by cortical dysplasia and early onset, intractable focal epilepsy leading to 

language regression, and behavioral and mental deterioration.184,285 In a former study we 

reported on homozygous or compound heterozygous defects in CNTNAP2 or NRXN1 in four 

patients with intellectual disability and epilepsy,308 resembling Pitt-Hopkins syndrome (PTHS, 

MIM #610954). A possible shared synaptic mechanism that was observed in Drosophila 

might contribute to the similar clinical phenotypes resulting from both heterozygous and 

recessive defects in human CNTNAP2 or NRXN1.308 

To further delineate the clinical phenotype associated with potentially recessive 

defects in any of the two genes, we screened a group of patients with either severe 

intellectual disability resembling Pitt-Hopkins syndrome or the phenotypes caused by 

recessive CNTNAP2 or NRXN1 defects. Additionally, we performed mutational testing in 

patients found to harbor heterozygous deletions in either gene. 

 

MATERIALS AND METHODS 

Patients 

Our total cohort of patients comprised four different subsets: 1. our new Pitt-Hopkins 

syndrome-like (PTHSL) screening group, 2. parts of our old PTHSL screening group308, 3. a 

group of patients with suspected recessive inheritance, and 4. patients with known 

heterozygous deletions in one of the two genes. 1. The new PTHSL screening group 

consisted of 90 patients who were initially referred with suspected Pitt-Hopkins syndrome for 

diagnostic testing of the underlying gene, TCF4, which encodes transcription factor 4. They 

all had severe intellectual disability and variable additional features reminiscent of the PTHS 

spectrum such as dysmorphic facial gestalt or breathing anomalies. Mutational testing of 

TCF4 revealed normal results. In all of these 90 patients mutational screening of NRXN1 and 

CNTNAP2 was performed in the current study. Molecular karyotyping was performed in 22 of 

them. This cohort does not overlap with the second subset, our old PTHSL screening group, 

which is a similar group of 179 patients, reported in a former study.308 No published 

information on mutational screening of that group was included in the current study, but 

previously unpublished information on molecular karyotyping of 23 patients.  3. Nine patients 

with severe intellectual disability were referred to us specifically for CNTNAP2/NRXN1 

testing because of suspected autosomal-recessive inheritance and/or phenotypic overlap 

with the previously published patients.308 4. In eight patients copy number changes in either 

NRXN1 or CNTNAP2 were identified in other genetic clinics. These were referred to us for 

mutational screening of the second allele. These patients had variable degrees of intellectual 
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disability and various other anomalies. An overview on tested patients is given in Table 1. 

This study was approved by the ethics committee of the Medical Faculty, University of 

Erlangen-Nuremberg, and written consent was obtained from parents or guardians of the 

patients. 

 

Table 1  Overview on screened patients 
 
Patient samples used in 

this 
Study 

 Sequencing of NRXN1 
number of patients 

Sequencing of CNTNAP2 
number of patients 

Molecular karyotyping 
number of patients  

1. new screening sample, 
n=90 

90 90, including C1-C4 22, including N1 

2. old screening 
sample,308 n=179 

published308, results not 
used in this study 

published308, results not 
used in this study 

23, not published before 

3. specific testing 
sample* 

9 9  

4. NRXN1/CNTNAP2 
deletion group** 

5, N2-N6 3, C5-C7 
8, (details on arrays see 

Table 3) 

*, Patients were referred to us specifically for NRXN1/CNTNAP2 testing due to suspected autosomal recessive 
inheritance and/or phenotypic overlap with the previously published cases. **, Patients were referred to us 
because of copy number changes in either NRXN1 or CNTNAP2 for screening of the respective second allele. 

 

Molecular karyotyping 

Molecular karyotyping was performed in 45 patients without TCF4 mutation with an 

Affymetrix 6.0 SNP Array (Affymetrix, Santa Clara, CA), in accordance with the supplier’s 

instructions. Copy-number data were analyzed with the Affymetrix Genotyping Console 3.0.2 

software. In patient C3 molecular karyotyping was performed with an Affymetrix 500K array 

and data analysis was performed using the Affymetrix Genotyping Console 3.0.2 software. 

The patients with heterozygous copy number variants (CNVs) referred for sequencing of the 

second allele, had been tested on different platforms. An overview on the array platforms, 

validation methods and segregation in the families is given in Tables 2 and 3.  

 

Mutational screening and MLPA  

DNA samples of 107 patients were derived from peripheral blood, and if sample material was 

limited, whole genome amplification was performed using the Illustra GenomiPhi V2 DNA 

Amplification Kit (GE Healthcare, Little Chalfont, Buckinghamshire, United Kingdom) 

according to the manufacturer’s instructions. All coding exons with exon-intron boundaries of 

CNTNAP2 (NM_014141) and of isoforms alpha1, alpha2 and beta of NRXN1 (NM_004801; 

NM_001135659; NM_138735) were screened for mutations by unidirectional direct 

sequencing (ABI BigDye Terminator Sequencing Kit v.3; AppliedBiosystems, Foster City, 

CA) with the use of an automated capillary sequencer (ABI 3730; Applied Biosystems). 

Mutations were confirmed with an independent PCR and bidirectional sequencing from 
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Table 3  Molecular findings in CNTNAP2 
 

 

CNTNAP2 Defect NRXN1/CNTNAP2 deletion Validation of Array 
data  

 

C1 CNTNAP2 
c.1175_1176dup; 
p.D393RfsX51 

Affymetrix 6.0 SNP Array, 
normal results for CNTNAP2 
and NRXN1 

  

C2 CNTNAP2 c.2153G>A, 
p.W718X 

Affymetrix 6.0 SNP Array, 
normal results for CNTNAP2 
and NRXN1 

  

C3 CNTNAP2 c.1083G>A, 
splice site (p.V361V) 

Affymetrix 500K SNP Array, 
normal results for CNTNAP2 
and NRXN1 

  

C4 CNTNAP2 c.1083G>A, 
splice site (p.V361V) 
 

Illumina 317 K SNP Array,  
normal results for CNTNAP2 
and NRXN1 

  

C5 CNTNAP2 deletion of exons 
2-3 

Affymetrix 6.0 SNP Array 
chr7:146.079.333-146.194.785 
115kb (69 array marker) 

Affymetrix 6.0 
SNP Array of the 
parents 

 

C6 CNTNAP2 deletion of exons 
3-4 

Illumina Human 660W-Quad 
chr7:146.144.267-146.374.539 
230kb (53 array marker) 

qPCR as reported 
previously 310 

 

C7 CNTNAP2 
deletion of exons 21-24 
 

Agilent 2X400K 
chr7:147.702.165-148.378.711  
677kb 
 
 
 
 

customized 
Oligonucleotide 
array 

 

published 
biallelic defects 
n=13184,285 

2x CNTNAP2 deletion of 
exons 2-9, homozygous,308 
1x CNTNAP2 deletion of 
exons 5-8 + IVS10-1G>T,308 
10x CNTNAP2 c.3709delG, 
homozygous184,285  

2x Affymetrix 500K / 250K Nsp 
SNP Array; 1x Affymetrix 6.0 
SNP Array,308 10x no 

  

published 
heterozygous defects 
n=12266,272,276,283,284,305 
 

2x translocation disrupting 
CNTNAP2,283,284 1x 
inversion disrupting 
CNTNAP2,266 5x CNTNAP2 
deletion,272,276,305 4x 
missense variant in 
CNTNAP2266 

3x BAC array,276 
1x NimbleGen custom array,305  
220kb-11Mb 

  

mat, maternal; pat, paternal; dup, duplication; del, deletion; ass., associated; qPCR, quantitative Real-Time-
PCR; non-polymorphic CNVs: CNVs that have not been reported in the Toronto Database of Genome Variants 
or have not been identified in one of our molecularly karyotyped healthy control indivuals 

 

 

original DNA. Primer pairs and conditions were used as previously described 308. For splice 

site prediction, eight different online tools were used as indicated in Table 4. Multiplex 

Ligation Dependent Probe Amplification (MLPA) for all coding exons of CNTNAP2 was 

performed for patients C1-C4 as described previously.308 

 

RESULTS 

Molecular Testing 

Mutational screening of NRXN1 in 90 TCF4 mutation negative patients and nine families with 

suspected recessive inheritance of severe intellectual disability did not reveal any point 

mutation, while in CNTNAP2 the heterozygous mutation c.1083G>A in the splice donor site 

of exon 7 was found in two patients (C3, C4). Eight prediction programs (table 4) showed  
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 Inheritance Carrier 
parent 

Other non-polymorphic CNVs NRXN1 
seq 

CNTNAP2 
seq 

 paternal healthy chr9:9.337.920-10.207.671 mat dup 
chr13:19.104.340-19.477.398 mat dup 

normal 
 

no 2nd 
mutation;  

MLPA normal 
 not known not known none normal 

 
no 2nd 

mutation;  
MLPA normal 

 paternal healthy none normal 
 

no 2nd 
mutation;  

MLPA normal 
 maternal 

 
healthy pathogenic frameshift mutation in 

MEF2C (P7)75 
normal 

 
no 2nd 

mutation;  
MLPA normal

 maternal healthy none normal, 
one silent 

variant 

no 2nd 
mutation 

 
 maternal healthy none normal 

 
no 2nd 

mutation 
 

 de novo 
 

healthy 
 

chr7:92.394.428-92.530.356 del 
chr7:93.464.449-94.430.690 del, both 

de novo, conventional karyotyping:  
46,XX,der(4)t(4;10)(q25;q24), 

der(7)t(4;7)(q25;q32),  
der(10)inv(10)(p13q24)(7;10)(q32;p13), 

de novo 

normal 
 

no 2nd 
mutation 

 

 parents 
heterozygous 

carriers 
 
 
 

    

 2x not reported 276, 
4x inherited 266, 2x 
paternal 272,305, 2x 
de novo 266,276 2x 

balanced in parent 
(translocation) 283,284 

 

    

 
 
 

diminished splice site recognition for this mutation, which is therefore predicted to result in an 

in-frame loss of exon 7. This possible splice site mutation was found in one of 384 control 

chromosomes. Furthermore, in patient C1 the heterozygous frameshift mutation 

p.D393RfsX51 in exon 8 and in patient C2 the heterozygous stop mutation p.W718X in exon 

14 were identified. Due to their nature and location both truncating mutations are predicted to 

result in mRNA decay and loss of the affected allele. For patient C2 parents were not 

available, but all other mutations were shown to be inherited from a healthy parent. No defect 

on the second allele was identified in any of these patients by sequencing and subsequent 

MLPA-analysis of all coding exons. In 942 controls sequenced by Bakkaloglu et al.,266 no 

truncating mutation in CNTNAP2 was found. No CNTNAP2 deletion was found in 667 control 

individuals molecularly karyotyped.308  
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Molecular karyotyping with an Affymetrix 6.0 SNP Array in 45 TCF4 mutation negative 

patients revealed a heterozygous deletion within the NRXN1 gene in one patient (N1). The 

father was shown to be healthy carrier, and no mutation on the second allele was found in 

this patient by sequencing of all coding exons.  

In three patients with CNTNAP2 deletions (C5-C7) and in five patients with NRXN1 

deletions (N2-N6) we could not identify any pathogenic mutation on the second allele by 

sequencing all coding exons. In patient N6 and in patient C7 the deletion within NRXN1 or 

CNTNAP2 was shown to be de novo. In all other families the deletion in CNTNAP2 or 

NRXN1 was also identified in one of the parents.  

In all patients with a heterozygous defect in CNTNAP2 we also screened NRXN1 and 

vice versa, without observing any anomalies. An overview of localization of novel and 

published mutations and deletions is shown in Figure 1 and 2. Mutation and array data of 

novel patients are shown in Tables 2 and 3. 

 

Table 4  Splice site prediction for splice donor variant c.1083G>A 

Program wild type score mutant score 

NNSplice 0.9311 0.99 0.6 
HSF V2.4312 91.56 80.98 
MaxEntScan313 
Maximum Entropy Model 
Maximum Dependence Decomposition Model 
First-order Markov Model 
Weight Matrix Model 

 
8.37 
11.88 
7.5 
8.9 

 
3.38 
9.78 
3.88 
5.73 

Splice Site Score Calculation275 8.1 5.2 
Splice Site Analyzer-Tool314 83.27  

∆G -7.1 
71.36 
∆G -4 

Splice Predictor315 0.967 splice site not recognized 
NetGene2316 0.95 0.55 
SplicePort276 1.06619 0.26169 

 

Clinical Findings 

Four of six patients with heterozygous CNVs in NRXN1 were severely intellectually disabled 

(N1-N4). Three had epilepsy and one episodic hyperbreathing. Patients N5 and N6 were only 

mildly intellectually disabled and N5 additionally had various malformations like choanal 

atresia, anal atresia, and skeletal anomalies. All patients had absent or impaired language 

abilities, while motor development was normal or only mildly delayed in four of them. The 

deletion in patient N6 was shown to be de novo, in all other families one parent was shown to 

be carrier of the deletion. The mother of N2 was reported to have had learning difficulties, all 

others were reported to be healthy and of normal intelligence. However, detailed 

neuropsychiatric testing was not performed. Summarized clinical details of the patients are 

shown in Table 5. 
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Figure 1  Schematic drawing of NRXN1 with localization of novel and published mutations and 

deletions.  

Schematic drawing of genomic structure of alpha 1 isoform of NRXN1 showing domain-coding exons 

and localization of mutations and deletions. Deletions found in our study are represented by black 

bars. Published biallelic aberrations are shown with black dotted lines, whereas heterozygous losses 

and gains are marked by grey solid and dashed lines, respectively. 

Abbreviations are as follows: SP, signal peptide; LamG, laminin-G domain; EGF, epidermal growth 

factor like domain; TM, transmembrane region; PDZBD, PDZ-domain binding site. 

  

All seven patients with heterozygous defects in CNTNAP2 in this study showed severe to 

profound intellectual disability. Speech was lacking in four patients (C1, C4-C6) and reported 

to be simple in C7. Patient C3 lost her speech ability at age 2.5 years. Motor impairment was 

also severe with no walking abilities in three patients (C4-C6), patient C7 started to walk at 

the age of 15 months, and patients C1 and C3 lost this function at age 2.5 – 3 years. Five 

patients had seizures. As far as data were available, epilepsy was of early onset and difficult 

to treat. At least in two of the patients episodes of hyperbreathing were reported. Congenital 

anomalies and malformations such as tetralogy of Fallot, pyloric stenosis, and variable other 

anomalies or septo-optical dysplasia were reported in patients C1 and C5, respectively. In 

the parents shown to be carriers, no neuropsychiatric anomalies were reported. However, 

NRXN1 (isoform alpha1)

1   2 3 4 6 7 8 9   10  12 16 17 18 19 20 21 22exons

LamG
EGF LamG

LamG
LamGEGF EGF

LamG
LamG

5 13 1415

TMSP PDZB

published heterozygous

Schizophrenia

Zahir et al. 2008 (Friedman et al. 2006)

Rujescu et al. 2009 Szatmari et al. 2007

Wisniowiecka-Kowalnik et al. 2010

Ching et al. 2010 

Kim et al. 2008 
(Insertion)

N1

N5
N4

N2
N3

N6

our study

c.2936C>G, p.S979X P3 Zweier et al. 2009

Kirov et al. 2008

Vrijenhoek et al. 2009

Rujescu et al. 2009

Walsh et al. 2008

Rujescu et al 2009. 

Awadalla et al. 2010: 
p.G1402DfsX29

Magri et al. 2010

published biallelic

ASD
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detailed neuropsychiatric testing was not performed. Summarized clinical details of the 

patients are shown in Table 6.  

 

Figure 2  Schematic drawing of CNTNAP2 with localization of novel and published mutations 

and deletions.  

Schematic drawing of genomic structure of CNTNAP2 showing domain-coding exons and localization 

of mutations and deletions. Mutations and deletions found in our study are represented by black 

arrows and bars. Published biallelic aberrations are shown with black dotted lines, whereas 

heterozygous defects are shown in grey. Abbreviations are as follows: SP, signal peptide; DISC, 

discoidin-like domain; LamG, laminin-G domain; EGF, epidermal growth factor like domain; FIB, 

fibrinogen-like domain; TM, transmembrane region; PDZBD, PDZ-domain binding site.  

 

DISCUSSION 

NRXN1. While the majority of the novel patients had severe intellectual disability, only two of 

the patients, N5 and N6, with heterozygous deletions in NRXN1 had mild intellectual 

disability as reported before for this kind of defects.278,280,286,299,300 Additionally, patient N5 had 

various congenital malformations and anomalies. Interestingly, one recently published patient 

with a NRXN1 defect and no significant intellectual impairment was reported with similar 

malformations resembling the VACTERL spectrum.299 Mild skeletal anomalies were also 

reported in the patient published by Zahir et al..286 A larger number of patients and therefore 

further delineation of the phenotype will probably clarify a possible relation of such 

malformations to NRXN1 defects.  

  

1 2 3 4 5 6 9 10 11 12 137 8 14 15 16     18    20
17      19   21

22 24
23 

CNTNAP2

exons

LamG LamG LamG LamGFIB
EGF

EGFDISC
TM

SP PDZB

C1: c.1175_1176dup; 
p.D393RfsX51

C2: c.2153G>A;
p.W718X

Strauss et al. 2006:
c.3709delG homozygous

C3 & C4: 
c.1083G>A; 
splice site

C5
C6 C7

our study

P2 IVS10-1G>T
Zweier et al. 2009

F1 homozygous
P2

Mefford et al. 2010 
Epilepsy

Belloso et al. 2007                
no Tourette (Translocation)

Friedman et al. 2008 
Schizophrenia and Epilepsy

Bakkaloglu et al. 2008 
ASD (Inversion)

Alarcón et al. 2008 
ASD

Verkerk et al. 2003 
Tourette (Translocation)

Bakkaloglu et al. 2008: 
ASD, p.I869T

published biallelic

published heterozygous
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All other four patients with heterozygous NRXN1 deletions were severely intellectually 

disabled without specific further anomalies. Their phenotype resembled the patient reported 

with a compound heterozygous defect in this gene.308 Except for patient N4, speech 

impairment was severe compared to a rather mild motor delay. Because of the severe 

phenotype in the patients in contrast to the normal or only mildly impaired intellectual function 

in the respective carrier parent, a defect of the second allele was suspected in the patients, 

but not found. 

CNTNAP2. Most of the clinical aspects and the severity of intellectual disability in the 

herewith reported patients with heterozygous CNTNAP2 defects resembled those observed 

in patients with biallelic defects in CNTNAP2 reported before (Table 6). Two of the patients 

(C1, C3) showed language and motor regression correlating with onset of epilepsy. All others 

showed lacking or severely impaired speech development. However, in contrast to the 

published patients with recessive defects and normal or only mildly delayed motor 

development,184,308 all but one patients in this study also showed severe motor retardation. 

We could not identify a defect on the second allele in any of the novel patients.  In most of 

the families the defect was inherited from a healthy parent. Despite a significantly higher 

frequency (p<0.01, Fisher’s exact test) of two truncating mutations in our cohort of 99 

severely to profoundly intellectually disabled patients compared to no truncating mutation in 

942 normal controls266 definite proof that the respective mutation is fully responsible for the 

phenotype is so far lacking. This also applies to the other identified defects in CNTNAP2 or 

NRXN1.  

Congenital malformations as described in patients C1 or C5 (Table 6) have not yet 

been reported in any other patient with a CNTNAP2 defect. Furthermore, the fact that the 

expression of the gene is restricted to the nervous system297 does not explain these 

anomalies. Therefore, another genetic cause for these malformations might exist. Thus it is 

difficult to define if the intellectual disability is associated with the CNTNAP2 mutation at all in 

these patients. Other factors like premature complicated birth in patient C6 might contribute 

to impaired intellectual function. C3 and C4 carried the same splice site mutation and both 

showed a similar phenotype with severe intellectual disability and seizures, C3 also with 

breathing anomalies. In a parallel research project, a mutation in the MEF2C gene was 

identified in patient C4 and shown to be capable of causing all of her symptoms.75 Therefore, 

it remains unclear if this splice mutation has a pathogenic effect at all, or only a mild effect 

that is masked by the severe consequences of the MEF2C mutation. The fact that this 

variant is supposed to lead to an in-frame loss of a single exon with a possibly milder effect 

than more deleterious defects supports the idea of no or only minor relevance of this splice 

mutation. Regarding the relatively high frequency of the splice site mutation in two families 
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and one control, a founder effect might be considered, however, common regional 

background in these persons is not obvious. 

Expanding the observations from previous studies we now found that heterozygous defects 

in CNTNAP2 or NRXN1 can also be seen in association with severe intellectual disability. 

Possible explanations might be: 1. No pathogenic relevance of the identified defect. This 

might indeed be the case for those patients with a “mild mutation” such as the splice-site 

mutation in CNTNAP2, or for patients with an atypical phenotype or congenital 

malformations. In those, the true causative defect might not be detected yet. However, 

published data and our data together still support a pathogenic role for both genes in 

neurodevelopmental disorders. 2. Inability to identify a defect on the second allele in spite of 

extensive screening for mutations and/or deletions. However, mutations in regulatory 

elements or in additional alternative isoforms cannot be excluded in any case. 3. A larger 

phenotypic variability associated with heterozygous defects in each gene. The finding of 

homozygous or compound heterozygous defects in previous patients with severe 

phenotypes184,285,308 indicates the existence of second hits or additional major contributors. 

These might not necessarily be affecting the same gene. Only recently, a two-hit model for 

severe developmental delay in patients with a recurrent 16p12.1 microdeletion was 

postulated.45 This might also be the case for microdeletions or even point mutations within a 

single gene as already reported for digenic inheritance in specific ciliopathies like Bardet-

Biedl syndrome.48 In four of our patients additional de novo or parentally inherited CNVs were 

identified (see Tables 2 and 3), however, the significance of these CNVs is unclear. The 

possible functional synaptic link between CNTNAP2 and NRXN1184,285,308 prompted us to 

screen CNTNAP2 in patients with NRXN1 defects and vice versa, however, without any 

mutation detected. 

 

CONCLUSION 

We found heterozygous defects in CNTNAP2 and NRXN1 in patients with severe intellectual 

disability, therefore expanding the clinical spectrum associated with monoallelic defects in 

either gene. This large variability implicates difficulties for genetic counseling in such families. 

To explain the larger phenotypic variability and severity in some patients we suggest a 

contribution of major additional genetic factors. To identify these possible contributors and 

modifiers will be a great challenge for the near future.  

 

AUTHORS’ CONTRIBUTIONS 

BA, IB, EKB, DH, JH, JKl, IM, EP, ST, EW, and GW acquired and provided clinical data and 

samples of their patients. AG, ABE, HE, KH, JKo, SN, RU, ARe, and CZ created and 



Chapter 5 
 

104 
 

analyzed the molecular data. ARe and ARa revised the manuscript critically for important 

intellectual content. CZ designed and supervised the project, and together with AG drafted 

the manuscript. All authors read and approved the manuscript. 

 

ACKNOWLEDGEMENTS 

We thank the contributing clinicians, the patients and their families for participating. We thank 

Christine Zeck-Papp for excellent technical assistance and Dr. D. Müller and Dr. A. Kobelt for 

providing clinical details. This study was funded by a grant from the DFG (ZW184/1-1) and 

by the German MR-NET funded by the BMBF. 

  



   
 

105 
 

 



 

106 
 



     

107 
 

 

 

Chapter 6 

 

Genetics of ID – an inventory 

Christiane Zweier, Korinna Kochinke, Shivakumar Keerthikumar, Bonnie Nijhof, Misa 

Fenckova, Martin Oti, Tjitske Kleefstra, Martijn Huynen, Annette Schenck 

part of a larger project – in preparation 

 



Chapter 6 
 

108 
 

SUMMARY 

Intellectual disability (ID) is clinically and genetically highly heterogeneous, and the 

underlying genes are only incompletely identified so far. Understanding individual ID gene 

function and connecting genes and proteins in common functional networks and complexes 

will be a prerequisite to better understand the mechanisms of cognitive function and 

dysfunction and to possibly develop future therapeutic interventions. 

To facilitate both disease gene prediction as well as functional prediction, we now 

established a curated list of all known, highly reliable ID genes and introduced them into a 

database that is supplemented with many other datasets. We furthermore established a 

classification of ID genes based on the clinical manifestation of the associated disorders and 

analyzed whether and how the genes in the ID classes related to clinical and biologic 

features such as inheritance, expression, synaptic localization or haploinsufficiency.  

 

INTRODUCTION 

Intellectual disability (ID) affects 2%-3% of the population in western countries and is 

characterized by significant limitations in both intellectual functioning and adaptive behavior 

that begins before the age of 18 years and is reflected in an IQ below 70.1,2 ID is clinically 

and genetically extremely heterogeneous. It can occur isolated in non-syndromic ID or in the 

context of syndromes with additional specific features such as malformations or other 

anomalies, specific biochemical findings, or a distinct facial phenotype. Though an increasing 

number of underlying genetic alterations for ID has been identified, the etiology still remains 

unsolved in many patients.4,14 

Next to chromosomal aberrations and to some complex causes, that are yet poorly 

understood, a large fraction of ID disorders is supposed to be based on monogenic 

defects.317 These are assumed to be highly heterogeneous. In contrast to chromosomal 

aberrations, that can now reliably be detected with molecular karyotyping,10,15,70 the 

systematic and large-scale detection and identification of disease associated genes and of 

point mutations remains still challenging and probably contributes to the still high proportion 

of patients with unclear cause of ID. Due to the advances in disease gene identification over 

the past decade, more than 400 genes involved in ID have been identified.3 Estimations, 

based on the number of known X-chromosomal ID genes, assume a total of 1500 to 2000 ID-

genes.2,3 

Since recently, next-generation-sequencing (NGS) technologies provide for the first 

time a possibility to systematically screen for the underlying mutations, both in X-linked 

recessive (Kalscheuer et al., Next-generation sequencing in 248 families with X-linked 

intellectual disability; Abstract #84, Presented at the 12th International Congress of Human 
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Genetics/61st Annual Meeting of The American Society of Human Genetics, October 13th, 

2011, Montreal, Canada) and autosomal recessive ID63 as well as in sporadic ID by 

identifying de novo mutations.34,35,42 NGS can be utilized for the diagnostic detection of 

mutations in known ID genes as well as for the identification of novel ID genes. 

However, the technical advance is accompanied by several challenges. Mutations in 

novel candidate genes have to be confirmed, either by finding more patients, or by proving a 

pathogenic relevance of the mutation or the candidate gene functionally. In order to be able 

to predict ID genes, we first have to understand the specifics of an ID gene. This we can best 

deduce from the features of the currently known ID genes. Furthermore, molecular networks 

have to be established to provide the basis for the long-term creation of therapeutic 

intervention which will rather target central points in pathways than single genes.  

Linking ID genes in common molecular or functional pathways indicates a general 

regulatory role of these networks in cognitive function and dysfunction2,318‐321 and supports the 

idea that similar phenotypes are caused be defects in functionally related genes.178 

Examples for such networks are “rasopathies”,179 “ciliopathies”, “cohesinopathies” or 

“channelopathies”180, all comprising a group of identical or overlapping clinical phenotypes 

caused by defects in genes belonging to the same pathway or biological process.  

To cope with the arising challenges and to further identify and delineate the complex 

networks of cognitive function and dysfunction, a systematic, large-scale and collaborative 

interdisciplinary approach is required. 

Here we present a comprehensive inventory of all known ID associated genes 

compiled into a database together with available datasets on functional, molecular and 

clinical properties. These highly reliable disease genes are classified according to their 

phenotypic outcome when mutated. By investigating correlations among molecular, 

functional, and clinical datasets, patterns for future disease gene prediction and delineation 

of networks and pathways are established. 

 

METHODS 

Gene list 

A list of genes in which mutations are sufficient to cause ID (ID genes) was compiled from 

primary and secondary257 literature and public databases like OMIM 

(http://www.ncbi.nlm.nih.gov/omim/), using text-mining and search terms such as “mental 

retardation”, “intellectual disability”, “cognitive disability”, or “developmental delay”. 

This list has been subsequently manually curated in order to comprise only genes 

with reliable association to ID. Reasons to exclude genes were: 1. Low evidence, indicated 

by only a single patient with a mutation in a particular gene, by gene-disrupting translocations 
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or deletions but no mutational confirmation of the candidate gene in other patients, or by 

clinical description of the disorder without genetic testing or confirmation. 2. Pure 

neurodegenerative manifestation, indicated by secondary onset of intellectual disability with 

regression of initial normal abilities, or by a progressive disease course with deterioration of 

cognitive abilities. 3. Very early lethality, thus precluding proper assessment of psychomotor 

development. 4. Treatability, indicated by avoidance of decline in cognitive ability by 

substitution of certain factors, e.g. consequences of hypothyroidism which can be avoided by 

thyroid hormone substitution. 5. Neurologic phenotype without clear indication of cognitive 

impairment. 

 

Phenotypic Classification  

All high confident ID genes and their ID associated disease phenotypes were classified into 

nine main classes, according to the occurrence of non-syndromic or syndromic ID with or 

without congenital malformations (syndromic and non-syndromic groups, x-axis) and 

according to character, severity, and penetrance of ID (classic severe, mild, and non-classic 

groups, y-axis) (figure 1). 

For the phenotypic classification clinical information from the respective entries in 

Gene reviews (http://www.ncbi.nlm.nih.gov/sites/GeneTests/review?db=GeneTests) and/or 

OMIM (http://www.ncbi.nlm.nih.gov/omim) were used. Where necessary, information from 

primary literature was consulted. In case of genetically heterogeneous disorders only gene-

specific clinical information was used for the respective phenotype classification.  

The group of “classic” ID (classes 1-6) comprises ID disorders characterized by 

primary ID that is stable and without obvious signs of regression or degeneration. They are 

further distinguished into the classic severe group (CS) (classes 1-3), characterized by 

moderate to profound ID with full penetrance and in the classic-mild-to-moderate-group (CM) 

(classes 4-6) with either very variable ID or ID in the mild/borderline range. The “non-classic” 

ID  group (NC) (classes 7-9) comprises ID disorders which are predominantly characterized 

by non-ID clinical features and in which ID occurs only in a low frequency or disorders in 

which ID is atypical in its manifestation, for example progressive. Regarding class 8 this 

resulted in a splitting into 8a for rare ID and 8b for atypical course of ID. 

The syndromic classes (1, 2, 4, 5, 7, 8) contain disorders that show recognizable or 

specific phenotypes such as malformations, facial dysmorphism or specific 

biochemical/metabolic anomalies. In syndromic classes 1, 4, and 7, structural anomalies of 

limbs, brain or other organs are reported (SWSM, syndromic with structural malformations), 

in syndromic classes 2, 5, and 8 ID is accompanied by a specific syndromic feature but not 

by structural malformations (SWOSM, syndromic without structural malformation). The non-
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syndromic group (NS) comprises classes 3, 6, and 9 and includes ID disorders without any 

additional recognizable phenotype.  

The phenotypic classification was done by the same clinical expert and the main 

classes were revised independently by a second clinician. Discrepancies were discussed 

and jointly agreed on. 

 

 
                                      SWSM                                          SWOSM                                              NS 

 

 

CS 

 

 

 

 

 

CM 

 

 

 

 

 

 

 

NC 

1 

classic ID, moderate to 
severe, fully penetrant 
 
 syndromic with 

organic/brain/limb 
anomalies or 
malformations 

2

classic ID, moderate to 
severe, fully penetrant 
 
 syndromic without 

structural malformations 

3 

classic ID, moderate to 
severe, fully penetrant 
 
 non-syndromic 
 
 

4 

classic ID, either 
mild/borderline to moderate 
or very variable 

 
 syndromic with 

organic/brain/limb 
anomalies or 
malformations 

5

classic ID, either 
mild/borderline to moderate 
or very variable 

 
 syndromic without 

structural malformations 
 
 

6 

classic ID, either 
mild/borderline to moderate 
or very variable 

 
 non-syndromic 

7 

non-classic ID, (either 
atypical or) only rare or 
minor aspect 

 
 syndromic with 

organic/brain/limb 
anomalies or 
malformations 

 
 

8a

non-classic ID, only rare or 
minor aspect  
 syndromic without 

structural malformations 
 

9 

non-classic ID, (either 
atypical or) only rare or 
minor aspect 
 
 non-syndromic 

 
 

 

8b

non-classic ID, atypical 
manifestation 
(degenerative/progressive) 
 syndromic without 

structural malformations 
 

 

Figure 1  Definition of a novel ID classification scheme: Nine individual clinical classes 

organized in six groups.  

The SWSM group contains disorders that are syndromic with structural malformations and comprises 

classes 1, 4, and 7; the SWOSM group contains disorders that are syndromic without structural 

malformations and are included in classes 2, 5, and 8; the NS group contains non-syndromic 

disorders, that are included in classes 3, 6, and 9. The CS group contains disorders with classic 

severe manifestation of ID and comprises classes 1, 2, and 3; the CM group includes disorders with 

classic mild to moderate or variable manifestation of ID and comprises classes 4, 5, and 6; the NC 

group contains disorders with a rare or atypical manifestation of ID and includes classes 7, 8, and 9.  
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In addition to the classification system with nine main classes we established an additional 

classification system for ID-accompanying phenotypes. These comprise 25 additional 

features describing further symptoms and anomalies of various organ systems (table 1). 

Letters A-X indicate the presence of specific clinical features and were added when the 

(estimated) reported frequency of the respective symptom was around 20 to 30%. Letter Z 

indicates limited clinical data, usually due to a small number of affected patients.  

 

Table 1  Summary of additional phenotypic information 

Letter feature(s) or organ systems 

A 
short stature/growth failure; AA, short stature syndrome, Aa (acquired), Ac 
(congenital) 

B Microcephaly; BB, microcephaly syndrome; Ba (acquired), Bc (congenital) 
C early lethality or shortened life span 
E epilepsy/seizures 
F overgrowth/tall stature and/or macrocephaly 
G developmental regression and/or disease progression 
H neurological symptoms, e.g. spasticity, ataxia, severe hypotonia, etc. 
I cancer, tumors 
J immunological anomalies (for example susceptibility to infections) 
K endocrine anomalies 

L 
brain malformations or (specific) brain anomalies; structural malformations (in groups 
1,4,7) as well as non-structural MRI anomalies (e.g. white matter anomalies, 
myelination anomalies in groups 2,5,8) 

M metabolic, mitochondrial 
N obesity 
O vegetative symptoms (breathing anomalies, obstipation, sweating, sleeping, etc.) 
P behavioral anomalies, autism, autistic behavior, stereotypies, aggression 
Q muscular anomalies, including cardiomyopathies 
R blood anomalies, e.g. anemia or coagulation defects 
S skin, hair, nails 
T eye anomalies (structural malformations, but also minor anomalies like myopia) 

U 
bone/skeletal anomalies; Ua: limb malformations/anomalies (syndactyly, polydactyly, 
split hand/foot, etc.); Ub: skeletal/skull malformation/anomalies (fused vertebras, 
craniosynostosis, etc.); Uc: cleft palate, midline clefts 

V congenital heart defects, cardiac malformations 
W urogenital anomalies and/or renal malformations/disease 
X other malformations 
Z only few single patients (<5) or only 1 family, limited clinical data 

 

SysID database 

All manually curated ID genes and their classification were implemented into a MYSQL 

database and supplemented with a variety of additional information and details on different 

levels. Gene related details include a short gene description, the official gene number, 

synonyms, and chromosomal location. Gene related disease information is given by the 

associated diseases, both ID- and non-ID-related ones, if applicable, by MIM numbers of 
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those (http://www.ncbi.nlm.nih.gov/omim/), and by mode of inheritance. Further clinical 

information is provided either by a non-standardized summary of characteristic symptoms or 

by referring to PMIDs from GeneTest review entries 

(http://www.ncbi.nlm.nih.gov/sites/GeneTests/review?db=GeneTests) or to a reference from 

primary literature. 

 

Datasets for enrichment analyses 

Datasets used for enrichment analyses were: 1) A dataset of 1458 human postsynaptic 

density (hPSD) proteins that were identified from human neocortex by mass spectrometry322 

and that constitute 7% of the human genome. 2) A dataset of 299 haploinsufficiency genes 

(HI) that were identified by text-searching and database-mining strategies323 and which 

constitute 1,5% of the human genome. 3) A microarray dataset of human gene expression 

data (GNF atlas) containing expression profiles from 84 different human tissues and cell 

types.324 The significance of the gene expression was statistically tested using a Wilcoxon 

two sample test (p-value >0.05).  

 

Enrichment analyses 

All analyses were done on an initial set of 388 ID genes that were reported and classified in 

2010. Enrichment analyses were performed for the above mentioned hPSD and HI datasets 

as well as for inheritance patterns. Two different backgrounds were used: 1) The human 

genome, containing ~20500 genes, and 2) the background of all 388 listed ID genes. The 

human genome background was used to determine the characteristic features of ID genes in 

general. The 388 ID gene background was used to determine features of specific ID gene 

classes among all ID genes. To determine enrichment of inheritance patterns, only the 388 

gene background was used. 

The genes from each of the six groups (CS, CM, NC, SWSM, SWOSM, NS) or each 

of the nine individual classes (class 1-9) were mapped to the respective dataset, and the 

mapping frequency was determined (number of mapped genes/number of genes in group or 

class). After establishing the frequency of genes from the respective dataset to the 

background data (either: all genes from the dataset/human genome background of ~20500 

genes, or: mapped genes from the dataset/background of 388 genes from the list), the fold 

enrichment was calculated (frequency of mapped genes in groups or classes/frequency of 

mapped genes in the background). Uncorrected P-values were determined with a chi-square 

test. 
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Expression analyses 

Expression levels for various tissues from the GNF atlas324 (Genomics Institute of the 

Novartis Research Foundation) were mapped to the genes from the gene list. Subsequently, 

the average expression level for each tissue was determined for each of the six groups and 

the nine individual classes and compared to the mean expression level of either the human 

genome background or the background of the 388 gene list. The significance of gene 

expression was statistically tested using the Wilcoxon two sample test (p-value < 0.05). 

 

RESULTS 

Classes 

In May 2013 the list contained 518 genes (data not shown) that were distributed over nine 

main classes according to their phenotypes (table 2). Table 3 shows the distribution for the 

earlier 388 gene set (supplement) that was used for the enrichment analyses.  

 

Table 2  current set of 518 genes 

 SWSM - 150 - 28% SWOSM - 333 - 62% NS - 56 - 10% 
CS - 150 - 27% class 1 - 55 - 10% class 2 - 89 - 15% class 3 - 10 - 2% 
CM - 266 - 46% class 4 - 80 - 14%  class 5 - 147 - 25% class 6 - 46 - 8% 
NC - 150 - 27% class 7 - 26 - 5% class 8 - 123 - 21% 

subclass 8a - 50 
subclass 8b - 79 

class 9 - 1 - 0.2% 

 

Of the 518 genes from current gene list, 459 belonged to only one clinical ID class, while 55 

genes belonged to two different classes, and two genes to three or four classes, respectively. 

Additional to the classified ID phenotype, mutations in 93 of the 518 genes (18%) also cause 

non-ID disorders with a different OMIM disease number, e.g. a muscular or skeletal disorder 

without ID. 

 

Table 3  earlier set of 388 genes  

 SWSM - 106 - 26% SWOSM - 256 - 63% NS - 45 - 11% 

CS - 102 - 24% class 1 - 36 - 8% class 2 - 60 - 14% class 3 - 10 - 2% 
CM - 200 - 47% class 4 - 59 - 13% class 5 - 112 - 26% class 6 - 35 - 8% 
NC - 126 - 29% class 7 - 21 - 5% class 8 - 104 - 24% 

class 8a - 46 
class 8b - 64 

class 9 - 1 - 0.2% 

 

Inheritance 

The 388 ID gene set (2010) comprises 227 genes (59%) with autosomal recessive 

mutations, 89 X-linked genes (23%), 80 genes with autosomal dominant mutations (21%), 

and nine mitochondrially encoded ID genes (2.3%).  
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The 518 ID gene set from 2013 included 306 genes (59%) with autosomal recessive 

mutations, 102 X-linked genes (20%), 125 genes with autosomal dominant mutations (24%), 

and nine mitochondrially encoded ID genes (1.7%). 

 

Enrichment analyses 

Enrichment and distribution of post-synaptic density localization within ID genes 

ID gene enrichment analysis for a set of 1458 post-synaptic density genes322 was performed 

against the background of the human genome, containing ~20500 genes. When comparing 

the CS, CM, and NC groups, they were significantly, but similarly enriched for hPSD genes. 

Differential enrichment was found among the syndromic versus non-syndromic groups. Non-

syndromic (NS) genes showed 4.1 fold enrichment compared to only 2.4 fold enrichment of 

the syndromic genes. Interestingly, among the syndromic genes, the SWSM genes did not 

show enrichment for hPSD genes at all. Accordingly, among the individual classes, class 3 

and class 6 showed highest enrichment, 5.6 fold and 3.6 fold, respectively. Classes 1, 2, 5, 

and 8 were lower, but still significantly enriched for hPSD genes, too (table 4). 

Performing the enrichment analysis against the background of 388 ID genes did, due 

to less statistic power, not result in significant differences of hPSD enrichments between 

groups or classes of ID genes (data not shown). 

 

Enrichment and distribution of haploinsufficiency within ID genes 

ID gene enrichment analysis for a set of 299 haploinsufficiency genes323 was performed 

against the background of the human genome, containing ~20500 genes. Both classic (CS, 

CM) and non-classic (NC) groups showed significant enrichment for HI genes. Regarding 

syndromic (SWSM, SWOSM) and non-syndromic groups (NS), significant enrichment was 

found among all groups, too. However, with a very high 12.3 fold enrichment for HI genes in 

the SWSM group, and a 7.6 fold enrichment among syndromic groups as a whole, 

haploinsufficiency is less enriched among non-syndromic groups (4.6 fold). Accordingly, 

class 1 (11.4 fold), class 4 (11.6 fold), and class 7 (13.1 fold) showed highest enrichment for 

HI ID genes. Also class 5 (8 fold) and class 8a (11.9 fold) showed significant enrichment 

(table 4). 

Performing the enrichment analyses against the background of all ID genes did not 

result in significant enrichment for HI genes in any of the groups or classes.  

 

Enrichment for inheritance patterns within ID genes 

ID gene enrichment analysis was performed with three major inheritances modes (autosomal 

recessive, autosomal dominant, X-linked (excluding X-linked dominant)) against the 

background of the 388 ID gene set.  
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Table 4  Enrichment analyses for hPSD, HI, and inheritance 

 classic and non-classic groups 

 
hPSD 

HI 
aut dom 
aut rec 
x-linked 

CS – 102
21, 2.9 fold, p = 4.04e-07 
7, 4.7 fold, p = 4.30e-05 

21, 1 fold, p = 1 
60, 1 fold, p = 1 

25, 1.2 fold, p = 0.4 
 

hPSD 
HI 

aut dom 
aut rec 
x-linked 

CM – 200
37, 2.6 fold, p = 1.412e-09 
25, 8.6 fold, p = 2.08e-34 

42, 1 fold, p = 1 
114, 1 fold, p = 0.8 
50, 1.2 fold, p = 0.2 

 
hPSD 

HI 
aut dom 
aut rec 
x-linked 

NC – 126
20, 2.23 fold, p = 0.0003 
14, 7.6 fold, p = 2.44e-17 

25, 1 fold, p = 1 
75, 1 fold, p = 0.9 

16, 0.6 fold, p = 0.7 

 syndromic and non-syndromic groups 

 
hPSD 

HI 
aut dom 
aut rec 
x-linked 

SWSM – 106 
12, 1.6 fold, p = 0.14 

19, 12.3 fold, p = 1.7e-40 
41, 1.9 fold, p = 0.0002 
46, 0.7 fold, p = 0.008 

17, 0.8fold, p = 0.4 

SWOSM – 256
50, 2.8 fold, p = 7.06e-14 
21, 5.6 fold, p = 2.93e-17 

36, 0.7 fold, p = 0.044 
177, 1.2 fold, p = 0.008 

43, 0.8 fold, p = 0.3 

NS – 45 
13, 4.1 fold, p = 7.9e-08 

3, 4.6 fold, p = 0.023 
8, 0.9 fold, p = 0.8 

9, 0.3 fold, p = 2e-06 
30, 3.3 fold, p = 4.3e-11 

 individual classes 

 
hPSD 

HI 
aut dom 
aut rec 
x-linked 

C1 – 36 
8, 3.1 fold, p = 0.001 

6, 11.4 fold, p = 7.5e-12 
11, 1.5 fold, p = 0.23 
16, 0.8 fold, p = 0.15 
9, 1.2 fold, p = 0.66 

C2 – 60
10, 2.3 fold, p = 0.009 

1, 1.1 fold, p = 1 
9, 0.7 fold, p = 0.4 

42, 1.2 fold, p = 0.12 
13, 1.1 fold, p = 0.95 

C3 – 10 
4, 5.6 fold, p = 0.0006 

0, 0 fold, p = 1 
1, 0.5 fold, p = 0.67 

2, 0.3 fold, p = 0.035 
7, 3.4 fold, p = 0.0007 

 
hPSD 

HI 
aut dom 
aut rec 
x-linked 

C4 - 59 
6, 1.4 fold, p = 0.51 

10, 11.6 fold, p = 2.7e-20 
19, 1.6 fold, p = 0.07 
30, 0.9 fold, p = 0.33 
10, 0.8 fold, p = 0.66 

C5 - 112
23, 2.9 fold, p = 1.14e-07 

13, 8 fold, p = 5.1e-17 
18, 0.8 fold, p = 0.4 

77, 1.2 fold, p = 0.06 
21, 0.9 fold, p = 0.81 

C6 - 35 
9, 3.6 fold, p = 8.12e-05 
3, 5.9 fold, p = 0.0052 

7, 1 fold, p = 1 
7, 0.3 fold, p = 2.5e-05 

23, 3.2 fold, p = 6.6e-09 
 

hPSD 
HI 

aut dom 
aut rec 
x-linked 

C7 - 21 
1, 0.7fold, p = 1 

4, 13.1fold, p = 7.7e-09 
21, 3.2fold, p = 3.9e-06 
4, 0.3fold, p = 0.0009 

1, 0.2fold, p = 0.14 

C8 - 104
19, 2.6fold, p = 2.57e-05 
9, 5.9fold, p = 1.8e-08 
11, 0.5fold, p = 0.03 
71, 1.2fold, p = 0.09 
14, 0.7fold, p = 0.15 

C9 - 1 
0, 0fold, p = 1 

1, 68.5fold, p = 5.3e-05 
0, 0fold, p = 1 

0, 0fold, p = 0. 9 
1, 4.9fold, p = 0.5 

Result of enrichment analyses for the six major groups and the nine individual classes of ID genes 
against the human genome (~20500 genes). Additional to inheritance modes from the ID catalogue 
database (in green), a dataset of 1458 hPSD genes322 (in blue), and a dataset of 299 HI genes323 (in 
red) were used; behind the group or class the number of ID genes within the group or class in given; 
order of results: number of mapped genes, fold enrichment, uncorrected p-value with chi-square test; 
bold letters indicate results with significant p-values. 
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No significant enrichment of inheritance patterns was found in the CS, CM, and NC groups. 

The SWSM group showed significant enrichment for autosomal dominant inheritance 

(1.9 fold), while it was depleted for autosomal recessive inheritance (0.7 fold). The SWOSM 

group was significantly enriched for autosomal recessive inheritance (1.2 fold), while it was 

significantly depleted for autosomal dominant inheritance (0.7 fold). The non-syndromic 

group was highly enriched for X-linked inheritance (3.3 fold), while it was significantly 

depleted for autosomal recessive inheritance (0.3 fold) (table 4). 

Regarding individual classes, classes 3 and 6 were significantly enriched for X-linked 

inheritance (3.5 fold and 3.2 fold respectively), and class 7 was significantly enriched for 

autosomal dominant inheritance (3.2 fold). Classes 3, 6, and 7 were significantly depleted for 

autosomal recessive inheritance, and class 8, in particular its subclass 8b, was significantly 

depleted for autosomal dominant inheritance (table 4). 

 

Expression patterns 

When analyzing expression levels of ID genes against the whole genome background, the 

classic severe group showed significantly enriched expression patterns for different brain 

regions. The genes from the classic mild to moderate group did not show significantly 

enriched expression levels, and the non-classic group showed significantly increased 

expression in several abdominal organs as well as in various blood and immune cells (table 

5).   

While the SWSM group did not show significantly increased expression levels, genes 

from the SWOSM group were significantly enriched in blood and immune cells, abdominal 

organs, and brain regions. The NS group showed significantly increased expression 

exclusively in several brain regions. 

Regarding individual classes, class 2 and class 6 showed significantly enriched 

expression in various brain regions, while class 1 showed a wide and heterogeneous 

expression pattern in brain and organs and class 8b in brain regions, organs and blood and 

immune cells. Class 5 showed significantly increased expression in liver and CD34+ cells. 

When comparing the classes against the background of all 388 ID genes, the CS 

group showed significantly increased expression in fetal brain, whereas CM and NC groups 

showed no significant expression enrichment. SWSM, SWOSM, and NS groups showed no 

significant expression pattern, either.  

Regarding individual classes, class 1 genes showed significantly higher expression in 

various brain regions and tissues (fetal brain, dorsal root ganglion, trigeminal ganglion, 

prefrontal cortex, ciliary ganglion, globus pallidus, skin, cerebellum, atrio ventricular node, 

cerebellum peduncles, retina, adrenal cortex, superior cervical ganglion, medulla oblongata, 

colorectal carcinoma, subthalamic nucleus, occipital lobe, cingulate cortex, temporal lobe, 
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ovary, spinal cord, caudate nucleus, appendix, and olfactory bulb). Class 4 genes showed 

significantly lower expression in several blood cell lines (BDCA4+ dendritic cells, CD105+ 

endothelial, X721_B lymphoblasts, CD34+, CD56+ NK cells, CD33+ myeloid, and CD14+ 

monocytes). Class 8b genes showed significant increased expression in X721_B 

lymphoblasts, CD33+ myeloid, BDCA4+ dendritic cells, CD14+ monocytes, CD56+ NK cells, 

CD34+, CD105+ endothelial, CD8+ T-cells, CD4+ T-cells, Cd19+ B-cells (neg. sel.), 

leukemia promyelocytic HL-60, colon, small intestine, thyroid, lymph node, adrenal gland, 

heart, lymphoma burkitts (Daudi), and thymus). 

 

Table 5  Significant enrichment of expression in 84 different human tissues and cell 

types against the background of the human genome (13100 genes) 

classic and non-classic groups 

CS – 102 (92)
fetal brain, amygdala, whole brain, prefrontal cortex, occipital lobe, globus pallidus, medulla oblongata, parietal 
lobe, temporal lobe, cingulate cortex, subthalamic nucleus, pineal gland (night), cerebellum, caudate nucleus, 

pineal gland (day), cerebellum peduncles, hypothalamus, thalamus, pons, retina 
CM – 200 (175)

no significant enrichment of expression in specific tissues 

NC – 126 (111)
liver, CD33+ myeloid, X721_B lymphoblasts, colon, CD105+ endothelial, CD34+, thyroid, CD14+ monocytes, 
kidney, pineal gland (night), BDCA4+ dendritic cells, small intestine, CD56+ NK cells, bronchial epithelial cells, 

pineal gland (day), fetal liver, CD8+ T cells and leukemia promyelocytic-HL-60 
syndromic and non-syndromic groups

SWSM – 106 (92) 
no significant expression 

SWOSM – 256 (225)
liver, CD34+, X721_B lymphoblasts, pineal gland 
(night), leukemia promyelocytic-HL-60, CD105+ 

endothelial, leukemia chronic myelogenous K-562, 
kidney, pineal gland (day), BDCA4+ dendritic cells, 

whole brain, thyroid, lymphoma burkitts (Daudi), 
amygdala, fetal liver, leukemia, lymphoblastic 

(MOLT-4), CD56+ NK cells, hypothalamus, CD33+ 
myeloid, adipocyte, prefrontal cortex, occipital 

lobe, bronchial epithelial cells, CD19+ B cells (neg. 
sel.), caudate nucleus, small intestine, thalamus, 

CD14+ monocytes, colon, spinal cord 

NS – 45 (38)
fetal brain, prefrontal 

cortex, amygdala, 
occipital lobe, 

cingulate cortex 

individual classes 

C1 – 36 (35)
fetal brain, prefrontal cortex, cerebellum, 
occipital lobe, globus pallidus, amygdala, 

cerebellum peduncles, dorsal root 
ganglion, medulla oblongata, whole brain, 

subthalamic nucleus, retina, caudate 
nucleus, temporal lobe, trigeminal 

ganglion, spinal cord, cingulate cortex, 
olfactory bulb, hypothalamus, colorectal 

adenocarcinoma, ciliary ganglion, parietal 
lobe, colon, pineal gland (night), pineal 
gland (day), thalamus, atrio-ventricular 
node, pons, skin, ovary, adrenal cortex, 

superior cervical ganglion, uterus, adrenal 
gland, skeletal muscle, adipocyte, uterus 

corpus, prostate, trachea, appendix, 

C2 – 60 (51)
amygdala, whole brain, occipital lobe 

C3 – 10 (8)
no significant 
expression 
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kidney, small intestine, testis leydig cell, 
pituary  

C4 – 59 (47)
no significant expression 

C5 – 112 (103)
liver, CD34+ 

C6 – 35 (30)
prefrontal cortex, fetal 

brain, cingulate 
cortex, amygdala, 

occipital lobe, 
subthalamic nucleus, 
medulla oblongata,  

temporal lobe 
 

C7 – 21 (20)
no significant expression 

 

C8 - 104
8a (42): no significant expression 

8b (53): X721_B-lymphoblasts, CD34+, CD33+ 
myeloid, BDCA4+ dendritic cells, CD105+ 

endothelial, leukemia promyelocytic-HL-60, CD56+ 
K cells, CD14+ monocytes, thyroid, colon, kidney, 

CD8+ T-cells, liver, lymphoma burkitts (Daudi), 
adrenal gland, small intestine, CD4+ T-cells, 

CD19+ B-cells (neg. sel.), fetal liver, pancreatic 
islet, pineal gland (night), leukemia lymphoblastic 

(MOLT-4), bronchial epithelial cells, lymphoma 
burkitts (Raji), heart, adipocyte, pineal gland (day), 

fetal thyroid, lymph node, leukemia-chronic 
myelogenous K-562, thymus, whole blood, tongue, 

prostate, CD71+ early erythroid, hypothalamus, 
salivary gland, colorectal adenocarcinoma, whole 

brain, adrenal cortex 

C9 – 1 (0)
 

numbers in brackets show number of genes with available expression data; tissues are given in the 

order of increasing p-values (all given with a p-value <0.05) 

 

DISCUSSION 

The need for an ID gene catalogue and a database 

To cope with the arising challenges resulting from NGS technologies and to identify and 

characterize the complex networks of cognitive function and dysfunction, a systematic, large-

scale and collaborative interdisciplinary approach is required. 

In the past, several attempts have been undertaken to create comprehensive lists of 

ID genes. In 2003, Inlow and Restifo257 collected 282 ID associated genes from the OMIM 

database and through literature search. They also developed a biological functions 

classification scheme including information on metabolic pathways, signaling pathways, 

transcription and other aspects of neuronal and glial function. Furthermore, they investigated 

the conservation of human ID genes in Drosophila melanogaster.257 Betancur325 and Kou et 

al.96 developed curated lists of 114 genes for autism spectrum disorders (ASD) and 223 ID 

genes, respectively. The ASD gene list is reported to be exhaustive, the overlapping ID gene 

list to be diverse but not exhaustive. These lists were used to prioritize genes and pathways 

for ASD and ID.96  
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All of these lists do either contain an incomplete inventory of ID genes or did not fulfill 

our requirements for reliability of data e.g. via independent evidence. We therefore aimed at 

an own, systematic catalog containing all genes reliably underlying ID, thus not including 

genes and disorders with clinically or genetically low evidence, treatable metabolic 

conditions, clearly neurodegenerative disorders or disorders with early lethality.   

This list is integrated into a database, supplemented with various information on 

associated disorders and inheritance patterns, and connected to various datasets from both 

human and animal models. After publication the database will be public. 

The list and the database are supposed to meet different aims: 1) To provide a 

repository of genes, mutations in which are sufficient to cause ID. The catalog is supposed to 

be regularly updated, manually curated, and accessible to others. 2) This gene catalog 

provides the basis for large-scale functional screens of ID genes in Drosophila melanogaster 

in order to gain more insight into neuronal function and dysfunction. A first approach has 

examined visual behavior, photoreceptor physiology and multiparametric morphological 

characteristics, resulting in a high number of novel eye phenotypes and the identification of 

highly connected functional modules.326 3) Data from these screens is supposed to allow 

mapping of novel functional networks. This might be contributing to recognition of common 

themes underlying ID and to the prediction of disease genes in short-term, and to the 

establishment of therapeutic interventions in long-term. 4) The list can be used for 

diagnostics. Whole exome sequencing usually results in a large number of potential variants. 

These can be compared to the ID gene catalog in order to facilitate interpretation of results. 

As the main list does only contain highly reliable ID genes fulfilling certain criteria, for this 

purpose the secondary list with a larger number of less reliable, but potential ID genes, can 

be used additionally. 

The periodically updated catalog might also be a nice tool to reflect the changes in ID 

genetics. So far, the majority of ID genes follow an autosomal-recessive inheritance pattern, 

and also the proportion of X-linked genes is quite high. This is probably due to the fact that 

gene identification for autosomal-recessive and X-linked ID genes was facilitated by many 

recessive genes being involved in recognizable metabolic disorders and that familial ID 

allowed the usage of linkage analyses for quite some time. Autosomal-dominant genes are 

underrepresented as sporadic ID is usually caused by de novo mutations. These could not 

be systematically searched for until recently. With NGS technologies large-scale screens for 

de novo mutations have now become possible.34,35,42 It will be interesting to see if these 

advancing changes in technologies will be reflected in the proportion of inheritance modes of 

ID genes over time. When comparing the set of 388 ID genes from 2010 with the set of 518 

ID genes from May 2013, only mild changes can be seen. The fraction of autosomal 

recessive genes is unaltered (59%), probably due to the successful combination of linkage 
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analysis or homozygosity mapping with NGS technologies in consanguineous ID families. 

The number of mitochondrial genes is unaltered, and the fraction of X-linked genes slightly 

decreased from 23% to 20%. Related to their small genomic proportion there are probably 

only few X-linked and mitochondrially encoded genes remaining to be still identified. The 

impact of NGS on increasing identification of genes with de novo mutations in relation to 

other inheritance modes is not yet very obvious but potentially reflected in a mild increase 

from 21% to 24% autosomal dominant ID genes. In this regard a continuously increasing 

proportion is to be expected for the future. 

 

The rationale for a classification 

Though a definition of ID exists, there is no clear definition of what constitutes an ID disorder. 

ID disorders are not only genetically but also clinically extremely heterogeneous. During the 

last years many examples were found to support the idea of similar phenotypes being 

caused by defects in functionally related genes.178-180 We therefore aimed at a phenotypic 

classification of ID disorders using a manageable and comprehensive amount of phenotype 

classes based on clinical manifestation and severity. The idea was that these groups, 

classified according to specific phenotypic features, might mirror disruptions of certain 

molecular functions or processes.  

So far, similar attempts are limited to a description of frequency and nature of 

symptoms in ID disorders. An example is the Human Phenotype Ontology (HPO)327,328 which 

aims to establish a standardized, controlled vocabulary for phenotypic information in order to 

exploit semantic similarities for database searches for clinical diagnostics or for large-scale 

computational analysis of gene expression patterns.327 HPO uses clinical information from 

OMIM and considers frequencies but is not manually curated. Also OMIM provides an 

overview of clinical symptoms via the “clinical synopsis” function, but no data on frequencies 

is available there.   

 Our approach is the first to use manually curated data and a newly introduced 

classification system comprising nine individual classes and six higher-order overlapping 

groups according to severity and nature of ID on one hand and according to syndromic or 

non-syndromic occurrence on the other hand (figure 1). From this sorting we expect more 

reliable computational analyses compared to using a large amount of more detailed, but not 

manually curated, error-prone data.  

Of course, the classification is highly subjective and depending on the respective 

clinician. To minimize this “human” effect and to provide consistency, all genes were 

classified by the same clinician, the author of this thesis, and all entries were revised by a 

second, independent clinician. In addition, we also used information on symptoms with 

frequencies being taken into account (table 1). Also here, highly reliable, manually curated 



Chapter 6 
 

122 
 

data is used. Another possible objection, which however would apply to all kind of such 

classifications, is the availability and detailedness of the data underlying the classification. 

Depending on the background of the authors and the aim of the respective reports in 

literature and databases, biases might exist, and clinical information can extremely vary in 

amount and quality. To take into account limitations in clinical data for later enrichment 

analyses, we marked those entries accordingly (letter Z in additional phenotype information 

(table 1)). 

 

First enrichment patterns 

Regarding the first analyzed datasets, several patterns could already be deduced.  

In general, ID genes are enriched for hPSD genes and HI genes when compared to 

the whole genome background. Both observations were to be expected as it has been shown 

previously that a high number of brain diseases involves hPSD genes322 and as many of the 

phenotypes associated with haploinsufficiency include ID and developmental disorders.323 

Of note, patterns for haploinsufficiency, localization in the postsynaptic density, and 

inheritance could rather be found for the syndromic versus non-syndromic ID groups than for 

the the classic versus non-classic groups. Interesting patterns regarding expression data 

could be found for both classic/non-classic groups as well as for syndromic/non-syndromic 

groups. These first observations of patterns between the six higher- order groups confirm the 

rationale for the classification.  

Some major patterns were identified in the current dataset: 

1) hPSD genes are highly significantly enriched in the non-syndromic group (NS), 

while they are not enriched in the SWSM group. This is in accordance with 

significantly increased expression levels for NS genes in fetal brain and several brain 

regions. The brain specific localization and function of NS genes goes in hand with rather 

brain specific, non-syndromic manifestation of ID. In contrast, SWSM genes did not show 

significantly enriched expression patterns, and the SWOSM genes rather show a 

heterogeneous expression pattern. 

Of note, X-linked inheritance is enriched in the NS group, whereas autosomal 

recessive inheritance is significantly depleted. This might indicate a high proportion of 

synaptic genes on the X-chromosome. This was indeed discussed in a previous study 

that found 28% of X-linked ID genes to encode postsynaptic genes and 49% of X-

chromosomal PSD genes to be involved in human psychiatric disorders.329 Our data with 

20% of X-linked genes in the NS group being hPSD genes and with 46% of hPSD genes 

in the NS group being X-linked genes, confirms this observation and additionally points to 

non-syndromic ID as the associated clinical manifestation. 
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Whereas also numerous other reports noted an increasing role of genes with synaptic 

function in ID,3,4,49,77,78,317 the significance of this observation has remained 

controversial.63 Here we show that the frequency of synaptic genes amongst ID genes 

might correlate with the associated clinical phenotype and/or the inheritance mode. 

Diversity of clinical phenotypes and inheritance modes between different studies due to 

specific selection criteria for the patient cohorts might therefore explain discrepancies in 

their observations and further confirms the value of our classification system. 

2) The highest enrichment of HI genes is found in the SWSM group. This is in 

accordance with the significant enrichment of autosomal dominant inheritance (in terms 

of de novo mutations) in the SWSM group, while it is underrepresented or not enriched in 

the SWOSM and NS groups. This observation emphasizes the role of HI genes in 

disorders that affect brain and organ development.  

Of note, the SWSM group does not show any significant expression pattern, though 

specific organ or other tissue expression might have been expected due to the broad 

syndromic phenotypic spectrum. However, when looking at the individual classes, class 1 

(SWSM) indeed shows significantly high expression for a large number of brain and other 

tissues, while class 2 (SWOSM) and class 6 (NS), that are not associated with structural 

malformations, rather show brain specific expression.  

3) Autosomal-recessive inheritance is significantly enriched in the SWOSM group 

while it is significantly depleted in the SWSM and the NS groups. This indicates that 

mutations in autosomal recessive genes predominantly cause syndromic ID but without 

structural malformations. This is true for most metabolic disorders, which are indeed 

predominantly in the SWOSM group (data not shown). The expression pattern of 

SWOSM genes is very heterogeneous. Significant expression of genes in class 8b which 

contains many mitochondrial disorders (data not shown) includes several blood or tumor 

cells as well as organs that are typically affected in mitochondrial disorders: liver, heart, 

and brain.  

4) Expression in brain correlates with severity of ID. CS genes show increased 

expression in various brain regions, while CM genes show no significant expression 

pattern, and NC genes are heterogeneously expressed in organs, brain tissues, and 

blood or immune cells. Thus, the high and specific expression of CS genes in brain is 

correlating with the severity of ID.  

 

Conclusion and outlook 

The above described analyses and observations are only one part and the first step to 

predict disease genes and molecular networks in a systems biology-like approach. While it is 
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not the first attempt to systematically pool and use data on ID genes, it is the first approach 

using highly reliable, manually curated data, a novel clinical classification system and 

merging it with both publically available datasets and with systematic functional data from 

model organism screens (e.g. Oortveld et al.,326). 

First enrichment analyses in this study already show patterns that might be of help to achieve 

these goals in the near future. 
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Supplementary table 

gene inheritance inheritance 
main 
class 

additional 
phenotypes disorder 

ABCD1 Mendelian X-linked not sure 8a, 8b L, G, K, H, M, P ADRENOLEUKODYSTROPHY 
ABHD5 Mendelian autosomal recessive 8a M, Q, S CHANARIN-DORFMAN SYNDROME 
ACOX1 Mendelian autosomal recessive 8b M, H, E, G, C, L Peroxisomal acyl-CoA oxidase deficiency 
ACSL4 Mendelian X-linked recessive 6 MENTAL RETARDATION, X-LINKED  

ACVR1 Mendelian autosomal dominant 7 A, Ub 
FIBRODYSPLASIA OSSIFICANS 
PROGRESSIVA 

ADCK3 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q Primary coenzyme Q10 deficiency 

ADSL Mendelian autosomal recessive 5 M, P, E Adenylosuccinase deficiency 
AFF2 Mendelian X-linked not sure 6 P MENTAL RETARDATION, X-LINKED 
AGA Mendelian autosomal recessive 8b M, G, H, (S), (C) ASPARTYLGLUCOSAMINURIA 

AGPAT2 Mendelian autosomal recessive 8a M, Q, K 
LIPODYSTROPHY, CONGENITAL 
GENERALIZED 

AGTR2 Mendelian X-linked recessive 3 E, (P) Mental retardation, X-linked 

AHCY Mendelian autosomal recessive 5 M, H, (Q), (L) 

HYPERMETHIONINEMIA WITH S-
ADENOSYLHOMOCYSTEINE 
HYDROLASE DEFICIENCY 

AHI1 Mendelian autosomal recessive 4 H, L, O, T, W Joubert syndrome 

AK1 Mendelian autosomal recessive 8a M, R 
Hemolytic anemia due to adenylate 
kinase deficiency 

ALDH18A1 Mendelian autosomal recessive 5 A, H, S, T, (M) CUTIS LAXA 
ALDH3A2 Mendelian autosomal recessive 2 H, S, T, M, A, E SJOGREN-LARSSON SYNDROME 

ALDH5A1 Mendelian autosomal recessive 5 M, E, H, L, P 
SUCCINIC SEMIALDEHYDE 
DEHYDROGENASE DEFICIENCY 

ALG1 Mendelian autosomal recessive 2 
M, E, B, R, L, J, 
C, W, (Q) Congenital disorder of glycosylation 

ALG12 Mendelian autosomal recessive 2 
M, H, B, R, J, E, 
V Congenital disorder of glycosylation 

ALG2 Mendelian autosomal recessive 2 M, E, T Congenital disorder of glycosylation 
ALG3 Mendelian autosomal recessive 2 M, E, B, T, L Congenital disorder of glycosylation 
ALG6 Mendelian autosomal recessive 5 M, E, H, T, K Congenital disorder of glycosylation 
ALG9 Mendelian autosomal recessive 5 M, H, E, B Congenital disorder of glycosylation 
AMT Mendelian autosomal recessive 8b M, H, E, C, (G) GLYCINE ENCEPHALOPATHY 

ANO10 Mendelian autosomal recessive 8a G, L, N, Q 
SPINOCEREBELLAR ATAXIA, 
AUTOSOMAL RECESSIVE 

AP1S1 Mendelian autosomal recessive 2 (M), H, C, S, O 

MENTAL RETARDATION, 
ENTEROPATHY, DEAFNESS, 
PERIPHERAL NEUROPATHY, 
ICHTHYOSIS, AND KERATODERMA 

AP1S2 Mendelian X-linked recessive 6 P, (L) 
MENTAL RETARDATION, X-LINKED, 
SYNDROMIC 

AP3B1 Mendelian autosomal recessive 8a T, R, J Hermansky-Pudlak syndrome 

APTX Mendelian autosomal recessive 5 H, G, L 

ATAXIA, EARLY-ONSET, WITH 
OCULOMOTOR APRAXIA AND 
HYPOALBUMINEMIA 

ARFGEF2 Mendelian autosomal recessive 2 B, L, (H), (E), (J) Periventricular heterotopia  
ARHGEF6 Mendelian X-linked recessive 6 MENTAL RETARDATION, X-LINKED  
ARL13B Mendelian autosomal recessive 4 L, (T), (O) JOUBERT SYNDROME  
ARL6 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 

ARX Mendelian X-linked recessive 
1, 2, 3, 
5 E, H, L MENTAL RETARDATION, X-LINKED 

ARX Mendelian X-linked recessive 
1, 2, 3, 
5 E, H, L 

EPILEPTIC ENCEPHALOPATHY, 
EARLY INFANTILE 

ARX Mendelian X-linked recessive 
1, 2, 3, 
5 E, H, L 

PARTINGTON X-LINKED MENTAL 
RETARDATION SYNDROME 

ARX Mendelian X-linked recessive 
1, 2, 3, 
5 E, H, L 

CORPUS CALLOSUM, AGENESIS OF, 
WITH ABNORMAL GENITALIA 

ARX Mendelian X-linked recessive 
1, 2, 3, 
5 E, H, L, C Lissencephaly 

ASL Mendelian autosomal recessive 8a M, H, P, E, S 
Urea Cycle Disorders, 
ARGININOSUCCINIC ACIDURIA 

ASPA Mendelian autosomal recessive 2, 5 M, F, H, G, C, L CANAVAN DISEASE 

ASPM Mendelian autosomal recessive 5 BBc, (L) 
MICROCEPHALY, PRIMARY, 
AUTOSMAL RECESSIVE 

ATP1A2 Mendelian autosomal dominant 5 H, E, G 
ALTERNATING HEMIPLEGIA OF 
CHILDHOOD  

ATP2A2 Mendelian autosomal dominant 8a S DARIER-WHITE DISEASE 

ATP6AP2 Mendelian X-linked recessive 6 E, (H) 
MENTAL RETARDATION, X-LINKED, 
SYNDROMIC 
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ATP6V0A2 Mendelian autosomal recessive 1 E, G, H, L, S, T 
CUTIS LAXA, AUTOSOMAL 
RECESSIVE 

ATP6V0A2 Mendelian autosomal recessive 5 E, G, H, L, S, T WRINKLY SKIN SYNDROME 
ATP7A Mendelian X-linked recessive 8b M, E, H, G, C, S Menkes disease 
ATP7A Mendelian X-linked recessive 5 S OCCIPITAL HORN SYNDROME 
ATR Mendelian autosomal recessive 5 AA, BB Seckel syndrome 

ATRX Mendelian X-linked recessive 2 H, U, W, K 
MENTAL RETARDATION-HYPOTONIC 
FACIES SYNDROME, X-LINKED 

ATRX Mendelian X-linked recessive 2 A, B, W, R, (E) 
ALPHA-THALASSEMIA/MENTAL 
RETARDATION SYNDROME, X-LINKED 

AUH Mendelian autosomal recessive 5 M, H, G 3-METHYLGLUTACONIC ACIDURIA 
B3GALTL Mendelian autosomal recessive 4 A, T, Uc, V PETERS-PLUS SYNDROME 
B4GALT1 Mendelian autosomal recessive 4 M, L, R Congenital disorder of glycosylation 

B4GALT7 Mendelian autosomal recessive 5 A, S 
EHLERS-DANLOS SYNDROME, 
PROGEROID FORM 

BBS1 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS10 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS12 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS2 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS4 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS5 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS7 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
BBS9 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 

BCKDHA Mendelian autosomal recessive 8a 

M, (H) 
(untreated), (C) 
(untreated) MAPLE SYRUP URINE DISEASE 

BCKDHB Mendelian autosomal recessive 8a 

M, (H) 
(untreated), (C) 
(untreated) MAPLE SYRUP URINE DISEASE 

BCOR Mendelian X-linked recessive 4 T, Uab, W, B MICROPHTHALMIA, SYNDROMIC  

BCS1L Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q mitochondrial complex III deficiency 

BCS1L Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

BLM Mendelian autosomal recessive 5 A, S, I, J, K, C BLOOM SYNDROME 

BRAF Mendelian autosomal dominant 4 A, S, V, E, Q, (I) 
CARDIOFACIOCUTANEOUS 
SYNDROME 

BRAF Mendelian autosomal dominant 4 A, S, V, E, Q, (I) Leopard syndrome 
BRAF Mendelian autosomal dominant 4 A, S, V, E, Q, (I) Noonan syndrome  
BRWD3 Mendelian X-linked recessive 5 F head MENTAL RETARDATION, X-LINKED 

BSCL2 Mendelian autosomal recessive 5 M, K, Q 
LIPODYSTROPHY, CONGENITAL 
GENERALIZED  

BUB1B Mendelian autosomal recessive 4 A, B, I, U, V, W, X
MOSAIC VARIEGATED ANEUPLOIDY 
SYNDROME  

CA2 Mendelian autosomal recessive 5 M, A, W, U 
OSTEOPETROSIS, AUTOSOMAL 
RECESSIVE 

CACNA1C Mendelian autosomal dominant 4 H, C, V, Ua, J, P TIMOTHY SYNDROME 

CASK Mendelian X-linked not sure 1 B, L, H, (A) 

MENTAL RETARDATION AND 
MICROCEPHALY WITH PONTINE AND 
CEREBELLAR HYPOPLASIA 

CASK Mendelian X-linked recessive 2 P FG syndrome 

CBS Mendelian autosomal recessive 5 M, T, R, F, Ub, E 

HOMOCYSTINURIA DUE TO 
CYSTATHIONINE BETA-SYNTHASE 
DEFICIENCY 

CC2D1A Mendelian autosomal recessive 3 
MENTAL RETARDATION, AUTOSOMAL 
RECESSIVE  

CC2D2A Mendelian autosomal recessive 4 T, L, O Joubert syndrome 
CC2D2A Mendelian autosomal recessive 4 T, L, O COACH SYNDROME 

CDK5RAP2 Mendelian autosomal recessive 5 BBc 
MICROCEPHALY, PRIMARY, 
AUTOSOMAL RECESSIVE 

CDKL5 Mendelian X-linked not sure 2 E, B, H ANGELMAN SYNDROME 

CDKL5 Mendelian X-linked not sure 2 E, H, Ba, O, P 
EPILEPTIC ENCEPHALOPATHY, 
EARLY INFANTILE 

CENPJ Mendelian autosomal recessive 8a AAc, BBc, Z  Seckel syndrome 

CENPJ Mendelian autosomal recessive 2 BBc, (E ) 
MICROCEPHALY, PRIMARY, 
AUTOSOMAL RECESSIVE 

CEP290 Mendelian autosomal recessive 4 
L, H, O, T, W, 
(H), (Ua) Joubert syndrome 

CEP290 Mendelian autosomal recessive 4 
L, H, O, T, W, 
(H), (Ua) Bardet-Biedl syndrome 

CHD7 Mendelian autosomal dominant 4 A, V, T, W, X, Uc CHARGE SYNDROME 

CNTNAP2 Mendelian autosomal recessive 2 E, O, G, P 
CORTICAL DYSPLASIA-FOCAL 
EPILEPSY SYNDROME 
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CNTNAP2 Mendelian autosomal dominant 6 AUTISM, SUSCEPTIBILITY TO  
COG1 Mendelian autosomal recessive 5 M, A, B, L, V Congenital disorder of glycosylation 
COG7 Mendelian autosomal recessive 8b M, H, C, E, S, U Congenital disorder of glycosylation 
COG8 Mendelian autosomal recessive 2 B, E, H, M Congenital disorder of glycosylation 
COL4A1 Mendelian autosomal dominant 7 H, E, L, T PORENCEPHALY 

COQ2 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

COENZYME Q10 DEFICIENCY, 
PRIMARY 

COX10 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

Encephalopathy, progressive 
mitochondrial, with proximal renal 
tubulopathy due to cytochrome c oxidase 
deficiency 

COX15 Mendelian autosomal recessive 8b M, L, H, G, Q LEIGH SYNDROME 

COX15 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

CARDIOENCEPHALOMYOPATHY, 
FATAL INFANTILE, DUE TO 
CYTOCHROME c OXIDASE 
DEFICIENCY 

CRBN Mendelian autosomal recessive 6 
MENTAL RETARDATION, AUTOSOMAL 
RECESSIVE 

CREBBP Mendelian autosomal dominant 1 A, T, V, W, Ua RUBINSTEIN-TAYBI SYNDROME 

CTDP1 Mendelian autosomal recessive 5 
A, H, T, K, Q, L, 
U, G 

CONGENITAL CATARACTS, FACIAL 
DYSMORPHISM, AND NEUROPATHY 

CUL4B Mendelian X-linked recessive 5 A, H, K, N, P 

MENTAL RETARDATION, X-LINKED, 
WITH SHORT STATURE, 
HYPOGONADISM, AND ABNORMAL 
GAIT 

CYB5R3 Mendelian autosomal recessive 2 
M, A, B, G, H, C, 
E 

METHEMOGLOBINEMIA DUE TO 
DEFICIENCY OF METHEMOGLOBIN 
REDUCTASE 

D2HGDH Mendelian autosomal recessive 5 M, E, H, (L), (Q) D-2-HYDROXYGLUTARIC ACIDURIA  

DARS2 Mendelian autosomal recessive 8a L, M, H, G 

LEUKOENCEPHALOPATHY WITH 
BRAINSTEM AND SPINAL CORD 
INVOLVEMENT AND LACTATE 
ELEVATION 

DBT Mendelian autosomal recessive 8a 
M, H, (C) (if 
untreated) MAPLE SYRUP URINE DISEASE 

DCX Mendelian X-linked not sure 1, 4 B, E, L, P, C LISSENCEPHALY 
DHCR24 Mendelian autosomal recessive 1 M, V, Uc, A DESMOSTEROLOSIS 

DHCR7 Mendelian autosomal recessive 1 
M, A, B, Ua, Uc, 
V, W, P SMITH-LEMLI-OPITZ SYNDROME 

DIP2B Mendelian autosomal dominant 5, 6 MENTAL RETARDATION 

DKC1 Mendelian X-linked recessive 4 
A, B, I, J, R, H, L, 
S 

HOYERAAL-HREIDARSSON 
SYNDROME 

DKC1 Mendelian X-linked recessive 8a  I, J, R, H, S DYSKERATOSIS CONGENITA  

DLD Mendelian autosomal recessive 5 
M, H, (C) (if 
untreated) 

DIHYDROLIPOAMIDE 
DEHYDROGENASE DEFICIENCY 

DLG3 Mendelian X-linked recessive 3 MENTAL RETARDATION, X-LINKED  
DMD Mendelian X-linked recessive 8a C, Q MUSCULAR DYSTROPHY  
DMPK Mendelian autosomal dominant 8a Q, T, (C) MYOTONIC DYSTROPHY  
DNAJC19 Mendelian autosomal recessive 5 A, M, H, Q, W, R 3-METHYLGLUTACONIC ACIDURIA 

DNMT3B Mendelian autosomal recessive 5 J 

IMMUNODEFICIENCY-CENTROMERIC 
INSTABILITY-FACIAL ANOMALIES 
SYNDROME 

DPAGT1 Mendelian autosomal recessive 5 M, H, E, B Congenital disorder of glycosylation 
DPM1 Mendelian autosomal recessive 5 M, B, E, H Congenital disorder of glycosylation 

DPYD Mendelian autosomal recessive 5 M, E, H 
DIHYDROPYRIMIDINE 
DEHYDROGENASE DEFICIENCY 

DYM Mendelian autosomal recessive 5 AA, B, U 
DYGGVE-MELCHIOR-CLAUSEN 
DISEASE 

EHMT1 Mendelian autosomal dominant 1 
H, V, W, J, E, P, 
N, B KLEEFSTRA SYNDROME 

EIF2AK3 Mendelian autosomal recessive 8a AA, C, K, U 

EPIPHYSEAL DYSPLASIA, MULTIPLE, 
WITH EARLY-ONSET DIABETES 
MELLITUS 

EMX2 Mendelian autosomal dominant 4 L, H, E SCHIZENCEPHALY 

EP300 Mendelian autosomal dominant 1 
A, (N), (Ua), (T), 
(V), (W) RUBINSTEIN-TAYBI SYNDROME  

ERCC2 Mendelian autosomal recessive 8b B, H, G, S, T, I XERODERMA PIGMENTOSUM  

ERCC2 Mendelian autosomal recessive 2 
A, B, T, W, U, S, 
C 

CEREBROOCULOFACIOSKELETAL 
SYNDROME  

ERCC2 Mendelian autosomal recessive 5 B, H, G, S, T, I TRICHOTHIODYSTROPHY 
ERCC3 Mendelian autosomal recessive 8a B, H, G, S, T, I XERODERMA PIGMENTOSUM 
ERCC3 Mendelian autosomal recessive 5 B, H, G, S, T, I TRICHOTHIODYSTROPHY 
ERCC5 Mendelian autosomal recessive 8b B, H, G, S, T, I XERODERMA PIGMENTOSUM 
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ERCC6 Mendelian autosomal recessive 5 
Aa, L, H, G, S, T, 
C COCKAYNE SYNDROME 

ERCC6 Mendelian autosomal recessive 5 
Aa, L, H, G, S, T, 
C DE SANCTIS-CACCHIONE SYNDROME 

ERCC6 Mendelian autosomal recessive 8b 
Aa, L, H, G, S, T, 
C 

CEREBROOCULOFACIOSKELETAL 
SYNDROME 

ERCC8 Mendelian autosomal recessive 5 
Aa, L, H, G, S, T, 
C COCKAYNE SYNDROME 

ESCO2 Mendelian autosomal recessive 4 Ac, C, Ua, Uc ROBERTS SYNDROME 
ESCO2 Mendelian autosomal recessive 4 Ac, C, Ua, Uc SC PHOCOMELIA SYNDROME 

ETHE1 Mendelian autosomal recessive 2, 8b 
M, C, G, H, (S), 
(O) ENCEPHALOPATHY, ETHYLMALONIC 

FANCD2 Mendelian autosomal recessive 8a R, A, Ua, I, C, P FANCONI ANEMIA 
FGD1 Mendelian X-linked not sure 4 A, W, P AARSKOG-SCOTT SYNDROME 
FGFR2 Mendelian autosomal dominant 4 Ua, Ub APERT SYNDROME 

FGFR2 Mendelian autosomal dominant 4 Ua, Ub, S, W 
BEARE-STEVENSON CUTIS GYRATA 
SYNDROME 

FGFR2 Mendelian autosomal dominant 7 Ua, Ub, X, (E, C) PFEIFFER SYNDROME 
FGFR2 Mendelian autosomal dominant 7 Ua, Ub, T SAETHRE-CHOTZEN SYNDROME 

FGFR2 Mendelian autosomal dominant 4 Ua 

SCAPHOCEPHALY, MAXILLARY 
RETRUSION, AND MENTAL 
RETARDATION 

FGFR3 Mendelian autosomal dominant 7 Ua, Ub MUENKE SYNDROME 

FH Mendelian autosomal recessive 2 
M, H, G, C, L, P, 
E, B FUMARASE DEFICIENCY 

FKRP Mendelian autosomal recessive 1 Q, L, T, (C) 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH OR WITHOUT 
MENTAL RETARDATION) 

FKRP Mendelian autosomal recessive 1 Q, L, T, (C) 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH BRAIN AND EYE 
ANOMALIES) 

FKTN Mendelian autosomal recessive 4 Q, L, H, C, T 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH BRAIN AND EYE 
ANOMALIES) 

FLNA Mendelian X-linked dominant 5 L, E HETEROTOPIA, PERIVENTRICULAR 
FLNA Mendelian X-linked recessive 5 L, E FG SYNDROME 

FLNA Mendelian X-linked not sure 1 
Ua, Ub, X, W, V, 
C, (L) OTOPALATODIGITAL SYNDROME 

FMR1 Mendelian X-linked not sure 2, 3 P 
FRAGILE X MENTAL RETARDATION 
SYNDROME 

FOXG1 Mendelian autosomal dominant 2 Ba, E, P, L 
RETT SYNDROME, CONGENITAL 
VARIANT 

FOXP1 Mendelian autosomal dominant 6 P 

MENTAL RETARDATION WITH 
LANGUAGE IMPAIRMENT AND 
AUTISTIC FEATURES 

FRAS1 Mendelian autosomal recessive 7 T, Ua, W, X FRASER SYNDROME 

FTO Mendelian autosomal recessive 1 
AAc, B, C, L, E, 
V, W 

GROWTH RETARDATION, 
DEVELOPMENTAL DELAY, COARSE 
FACIES, AND EARLY DEATH 

FTSJ1 Mendelian X-linked recessive 3 P MENTAL RETARDATION, X-LINKED 

FUCA1 Mendelian autosomal recessive 8b 
M, A, J, H, U, S, 
E, G, (C) FUCOSIDOSIS 

GAD1 Mendelian autosomal recessive 2 H 
CEREBRAL PALSY, SPASTIC 
QUADRIPLEGIC 

GALE Mendelian autosomal recessive 8a M GALACTOSE EPIMERASE DEFICIENCY

GALT Mendelian autosomal recessive 8b 
M, H, (G) without 
treatment GALACTOSEMIA 

GAMT Mendelian autosomal recessive 5 M, E, P, H 
GUANIDINOACETATE 
METHYLTRANSFERASE DEFICIENCY 

GATM Mendelian autosomal recessive 5 M, P, (E) 
ARGININE:GLYCINE 
AMIDINOTRANSFERASE DEFICIENCY 

GCH1 Mendelian autosomal recessive 8b M, E, H, G HYPERPHENYLALANINEMIA  
GCSH Mendelian autosomal recessive 2 M, H, E, C, (G) GLYCINE ENCEPHALOPATHY 
GDI1 Mendelian X-linked recessive 6 MENTAL RETARDATION, X-LINKED  
GFAP Mendelian autosomal dominant 5 L, C, H, E, G, F ALEXANDER DISEASE 
GJC2 Mendelian autosomal recessive 5 H, L, G LEUKODYSTROPHY 

GJC2 Mendelian autosomal recessive 5 H, L, G 
SPASTIC PARAPLEGIA, AUTOSOMAL 
RECESSIVE 

GK Mendelian X-linked recessive 5 M HYPERGLYCEROLEMIA 
GLDC Mendelian autosomal recessive 2 M, H, E, C, (G) GLYCINE ENCEPHALOPATHY 
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GLI2 Mendelian autosomal dominant 7 L, Ua, Uc, K, (C) HOLOPROSENCEPHALY 

GLI3 Mendelian autosomal dominant 7 F, Ua 
GREIG CEPHALOPOLYSYNDACTYLY 
SYNDROME 

GLI3 Mendelian autosomal dominant 7 C, K, Ua, L PALLISTER-HALL SYNDROME 
GNAS Mendelian autosomal dominant 5 A, K PSEUDOHYPOPARATHYROIDISM 
GNAS Mendelian autosomal dominant 8a A, K PSEUDOHYPOPARATHYROIDISM 

GNAS Mendelian autosomal dominant 8a A, K, N 
PSEUDOPSEUDOHYPOPARATHYROID
ISM 

GNPAT Mendelian autosomal recessive 5 A, M, U, (T) 
RHIZOMELIC CHONDRODYSPLASIA 
PUNCTATA 

GNS Mendelian autosomal recessive 5, 8b M, G, P, H MUCOPOLYSACCHARIDOSIS  

GPC3 Mendelian X-linked not sure 4 
F, I, Uabc, V, W, 
X 

SIMPSON-GOLABI-BEHMEL 
SYNDROME 

GPHN Mendelian autosomal recessive 8b E, G, C 
MOLYBDENUM COFACTOR 
DEFICIENCY 

GPR56 Mendelian autosomal recessive 2 E, H, L POLYMICROGYRIA 
GRIA3 Mendelian X-linked recessive 6 H MENTAL RETARDATION, X-LINKED 

GRIK2 Mendelian autosomal recessive 6 
MENTAL RETARDATION, AUTOSOMAL 
RECESSIVE  

GSS Mendelian autosomal recessive 5 M, R, H 
GLUTATHIONE SYNTHETASE 
DEFICIENCY 

GTF2H5 Mendelian autosomal recessive 5 A, S, (H) TRICHOTHIODYSTROPHY 
GUSB Mendelian autosomal recessive 5 M, A, U MUCOPOLYSACCHARIDOSIS  
HCCS Mendelian X-linked dominant 7 S, T MICROPHTHALMIA, SYNDROMIC 
HESX1 Mendelian autosomal recessive 7 K, L SEPTOOPTIC DYSPLASIA 

HLCS Mendelian autosomal recessive 8b M, C 
HOLOCARBOXYLASE SYNTHETASE 
DEFICIENCY 

HOXA1 Mendelian autosomal recessive 5 H, O, V 
ATHABASKAN BRAINSTEM 
DYSGENESIS SYNDROME 

HPD Mendelian autosomal recessive 5 M, H TYROSINEMIA 
HPRT1 Mendelian X-linked recessive 2 M, H, P LESCH-NYHAN SYNDROME 
HRAS Mendelian autosomal dominant 1 A, I, S, V COSTELLO SYNDROME 

HRAS somatic N/A 7 T, L, U, S 
SCHIMMELPENNING-FEUERSTEIN-
MIMS SYNDROME 

HSD17B10 Mendelian X-linked recessive 5 H, P, M MENTAL RETARDATION, X-LINKED 

HSD17B10 Mendelian X-linked not sure 8b M, G, H, C 
17-BETA-HYDROXYSTEROID 
DEHYDROGENASE X DEFICIENCY 

HSD17B10 Mendelian X-linked not sure MENTAL RETARDATION, X-LINKED  

IDS Mendelian X-linked recessive 8b 
M, A, G, C, Ub, F, 
V, P MUCOPOLYSACCHARIDOSIS  

IDUA Mendelian autosomal recessive 5, 8b 
M, A, G, C, Ub, T, 
V MUCOPOLYSACCHARIDOSIS  

IDUA Mendelian autosomal recessive 5, 8b 
M, A, G, C, Ub, T, 
V MUCOPOLYSACCHARIDOSIS  

IDUA Mendelian autosomal recessive 
5, 8a, 
8b 

M, A, G, C, Ub, T, 
V MUCOPOLYSACCHARIDOSIS  

IGF1 Mendelian autosomal recessive 5 AA, K 
INSULIN-LIKE GROWTH FACTOR I 
DEFICIENCY 

IKBKG Mendelian X-linked dominant 8a S, T INCONTINENTIA PIGMENTI 
IL1RAPL1 Mendelian X-linked not sure 6 (P) MENTAL RETARDATION, X-LINKED  

INPP5E Mendelian autosomal recessive 5 N, T, W 

MORM, MENTAL RETARDATION, 
TRUNCAL OBESITY, RETINAL 
DYSTROPHY, AND MICROPENIS 

INPP5E Mendelian autosomal recessive 5 T, H, L, (W) JOUBERT SYNDROME 
IQSEQ2 Mendelian X-linked not sure 3 (P), (E ) MENTAL RETARDATION, X-LINKED 

KCNJ11 Mendelian autosomal dominant 5 M, H, E 
DIABETES MELLITUS, PERMANENT 
NEONATAL 

KCNK9 Mendelian autosomal dominant 2 P, H, Q 
BIRK-BAREL MENTAL RETARDATION 
DYSMORPHISM SYNDROME 

KDM5C Mendelian X-linked recessive 5, 6 A, H, E, P, (B) MENTAL RETARDATION, X-LINKED 

KIAA1279 Mendelian autosomal recessive 1 B, X, L 
GOLDBERG-SHPRINTZEN 
MEGACOLON SYNDROME 

KRAS Mendelian autosomal dominant 4 A, V, R, T, S, Q NOONAN SYNDROME 

KRAS Mendelian autosomal dominant 4 A, V, R, T, S, Q 
CARDIOFACIOCUTANEOUS 
SYNDROME 

KRBOX4 Mendelian X-linked recessive 6 
CHROMOSOME Xp11.3 DELETION 
SYNDROME 

L1CAM Mendelian X-linked recessive 1 L, H 

HYDROCEPHALUS DUE TO 
CONGENITAL STENOSIS OF 
AQUEDUCT OF SYLVIUS 

L1CAM Mendelian X-linked recessive 4 L, H MASA SYNDROME 

L1CAM Mendelian X-linked recessive 4 L, H 
CORPUS CALLOSUM, PARTIAL 
AGENESIS OF, X-LINKED 
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L2HGDH Mendelian autosomal recessive 8b M, H, P, E, L, F L-2-HYDROXYGLUTARIC ACIDURIA 

LAMA2 Mendelian autosomal recessive 8a Q, (E, L) 
MUSCULAR DYSTROPHY, 
CONGENITAL 

LAMP2 Mendelian X-linked not sure 5 M, Q, G, C DANON DISEASE 

LARGE Mendelian autosomal recessive 1 Q, L, M, T, C 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH MENTAL 
RETARDATION) 

LARGE Mendelian autosomal recessive 1 Q, L, M, T, C 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH BRAIN AND EYE 
ANOMALIES) 

LIG4 Mendelian autosomal recessive 5 A, B, J, I, S LIG4 SYNDROME 

LRPPRC Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

MAGT1 Mendelian X-linked not sure 6 MENTAL RETARDATION, X-LINKED 
MAGT1 Mendelian X-linked not sure 5 M Congenital Disorders of Glycosylation 

MAN2B1 Mendelian autosomal recessive 5 
M, G, Q, H, J, L, 
Ub, C MANNOSIDOSIS, ALPHA  

MANBA Mendelian autosomal recessive 5 M MANNOSIDASE, BETA  
MAOA Mendelian X-linked recessive 5 P, M BRUNNER SYNDROME 

MAP2K1 Mendelian autosomal dominant 4 A, S, V 
CARDIOFACIOCUTANEOUS 
SYNDROME 

MAP2K2 Mendelian autosomal dominant 4 A, S, V 
CARDIOFACIOCUTANEOUS 
SYNDROME 

MAT1A Mendelian autosomal recessive 8a M 

METHIONINE 
ADENOSYLTRANSFERASE 
DEFICIENCY 

MBD5 Mendelian autosomal dominant 6 P, (E) 
MENTAL RETARDATION, AUTOSOMAL 
DOMINANT 

MCCC1 Mendelian autosomal recessive 5 M, H, G, E 
3-METHYLCROTONYL-CoA 
CARBOXYLASE DEFICIENCY 

MCCC2 Mendelian autosomal recessive 5, 8b M, (G) 
3-METHYLCROTONYL-CoA 
CARBOXYLASE DEFICIENCY 

MCOLN1 Mendelian autosomal recessive 2 M, H, T, L, (G) MUCOLIPIDOSIS 

MCPH1 Mendelian autosomal recessive 5 B, A 
MICROCEPHALY, PRIMARY, 
AUTOSOMAL RECESSIVE 

MECP2 Mendelian X-linked dominant 2, 8b 
B, E, G, P, H, A, 
O, U RETT SYNDROME 

MECP2 Mendelian X-linked not sure 2, 8b 
B, E, G, P, H, A, 
O, U 

ENCEPHALOPATHY, NEONATAL 
SEVERE 

MECP2 Mendelian X-linked recessive 2, 8b 
B, E, G, P, H, A, 
O, U 

LUBS X-LINKED MENTAL 
RETARDATION SYNDROME 

MECP2 Mendelian X-linked recessive 5, 6 H, P MENTAL RETARDATION, X-LINKED 
MECP2 Mendelian X-linked recessive 2 B, E, H ANGELMAN SYNDROME 
MED12 Mendelian X-linked recessive 4 H, L, E, P, V OPITZ-KAVEGGIA SYNDROME 
MED12 Mendelian X-linked recessive 5 H, P LUJAN-FRYNS SYNDROME 

MEF2C Mendelian autosomal dominant 2 E 
MENTAL RETARDATION, AUTOSOMAL 
DOMINANT 

MGAT2 Mendelian autosomal recessive 5 M, E, R, P 
CONGENITAL DISORDER OF 
GLYCOSYLATION 

MID1 Mendelian X-linked recessive 4 L, W, Uc, V, X OPITZ GBBB SYNDROME 
MKKS Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
MKKS Mendelian autosomal recessive 7 Ua, W, X, C MCKUSICK-KAUFMAN SYNDROME 

MLL2 Mendelian autosomal dominant 4 
A, H, Uc, V, W, J, 
(E), (K) KABUKI SYNDROME  

MLYCD Mendelian autosomal recessive 5 M, E, H 
MALONYL-CoA DECARBOXYLASE 
DEFICIENCY 

MMAA Mendelian autosomal recessive 8a, 8b M, H, W, A METHYLMALONIC ACIDURIA  

MMACHC Mendelian autosomal recessive 8a, 8b M, H, R, (C) 
METHYLMALONIC ACIDURIA AND 
HOMOCYSTINURIA 

MMADHC Mendelian autosomal recessive 5 M, H, R, E 
METHYLMALONIC ACIDURIA AND 
HOMOCYSTINURIA 

MOCS1 Mendelian autosomal recessive 2 M, H, G, C, E 
MOLYBDENUM COFACTOR 
DEFICIENCY 

MOCS2 Mendelian autosomal recessive 2 M, H, G, C, E 
MOLYBDENUM COFACTOR 
DEFICIENCY 

MPDU1 Mendelian autosomal recessive 2 M, O, S 
CONGENITAL DISORDER OF 
GLYCOSYLATION 

MPLKIP Mendelian autosomal recessive 5 A, S, H, K TRICHOTHIODYSTROPHY 

MT-ATP6 Mitochondrial N/A 8b M, H, T, Q, G 
NEUROPATHY, ATAXIA, AND 
RETINITIS PIGMENTOSA 

MT-CO2 Mitochondrial N/A 8b M, H, G, C, Q CYTOCHROME c OXIDASE 
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DEFICIENCY 

MT-CO3 Mitochondrial N/A 8b M, H, G,Q 
MITOCHONDRIAL COMPLEX IV 
DEFICIENCY 

MT-COI Mitochondrial N/A 8b M, H, E 
CYTOCHROME c OXIDASE I 
DEFICIENCY 

MT-ND5 Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q Leigh syndrome 

MT-ND5 Mitochondrial N/A 8b M, L, E, H, G, Q MELAS 
MTR Mendelian autosomal N/A 8b M, H METHYLCOBALAMIN DEFICIENCY 

MTRR Mendelian autosomal recessive 8b M, H 

HOMOCYSTINURIA-MEGALOBLASTIC 
ANEMIA DUE TO DEFECT IN 
COBALAMIN METABOLISM 

MT-TK Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q Leigh syndrome 

MT-TK Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q MELAS syndrome 

MT-TK Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q MERFF syndrome 

MT-TL1 Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q, A MELAS syndrome 

MT-TL1 Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q, A Leigh syndrome 

MT-TS1 Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q mitochondrial complex IV deficiency 

MT-TV Mitochondrial N/A 8b 
M, L, E, H, G, C, 
Q Leigh syndrome 

MUT Mendelian autosomal recessive 8a, 8b M, H, W, A METHYLMALONIC ACIDURIA  
MVK Mendelian autosomal recessive 5 M, R, H, J, E, (C) MEVALONIC ACIDURIA 
MYCN Mendelian autosomal dominant 4 B, X, Ua, V FEINGOLD SYNDROME 
MYO5A Mendelian autosomal recessive 5 H, S GRISCELLI SYNDROME 
NAGA Mendelian autosomal recessive 5 M, H, G, S SCHINDLER DISEASE 
NAGA Mendelian autosomal recessive 5 M, H, G, S KANZAKI DISEASE 
NAGLU Mendelian autosomal recessive 8b M, G, P, C MUCOPOLYSACCHARIDOSIS  
NBN Mendelian autosomal recessive 5 A, B, I, J, K NIJMEGEN BREAKAGE SYNDROME 
NDP Mendelian X-linked recessive 8a T, P NORRIE DISEASE 

NDUFA1 Mendelian X-linked not sure 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NDUFA11 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NDUFS1 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NDUFS2 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NDUFS3 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NDUFS3 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

NDUFS4 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

NDUFS4 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NDUFS7 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

NDUFS8 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

NDUFV1 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX I 
DEFICIENCY 

NEU1 Mendelian autosomal recessive 5 M, H, G, U NEURAMINIDASE DEFICIENCY 
NF1 Mendelian autosomal dominant 8a I, S, T NEUROFIBROMATOSIS 

NF1 Mendelian autosomal dominant 8a I, S, T 
NEUROFIBROMATOSIS-NOONAN 
SYNDROME 

NF1 Mendelian autosomal dominant 5 I, S, T WATSON SYNDROME 
NHS Mendelian X-linked not sure 7 T, X NANCE-HORAN SYNDROME 
NIPBL Mendelian autosomal dominant 1 A, B, Ua, V, P, W CORNELIA DE LANGE SYNDROME 

NKX2-1 Mendelian autosomal dominant 8a K, H 

CHOREOATHETOSIS, 
HYPOTHYROIDISM, AND NEONATAL 
RESPIRATORY DISTRESS 

NLGN3 Mendelian X-linked not sure 6 P, (E) 
ASPERGER SYNDROME, X-LINKED, 
SUSCEPTIBILITY TO 

NLGN3 Mendelian X-linked not sure 6 P AUTISM, SUSCEPTIBILITY TO  
NLGN4X Mendelian X-linked not sure 6 P AUTISM, SUSCEPTIBILITY TO 
NLRP3 Mendelian autosomal dominant 8a J, H, S, G, (A) CINCA SYNDROME 
NPHP1 Mendelian autosomal recessive 4 H, L, O, W JOUBERT SYNDROME 
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NRXN1 Mendelian autosomal recessive 2 O, E, P PITT-HOPKINS-LIKE SYNDROME  
NRXN1 Mendelian autosomal dominant 6 P ASD/autism 

NSD1 Mendelian autosomal dominant 4, 5 
F, P, V, W, E, L, 
Ub SOTOS SYNDROME 

NSD1 Mendelian autosomal dominant 4, 5 
F, P, V, W, E, L, 
Ub WEAVER SYNDROME  

NTRK1 Mendelian autosomal recessive 5 H, O, S, P 
INSENSITIVITY TO PAIN, 
CONGENITAL, WITH ANHIDROSIS 

OCRL Mendelian X-linked not sure 5 
M, H, E, A, T, W, 
P 

LOWE OCULOCEREBRORENAL 
SYNDROME 

OCRL Mendelian X-linked not sure 5 M, A, W DENT DISEASE  
OFD1 Mendelian X-linked dominant 4 L, Ua, Uc, W OROFACIODIGITAL SYNDROME  

OFD1 Mendelian X-linked recessive 4 
L, Ua, T, W, (H, 
O) JOUBERT SYNDROME  

OFD1 Mendelian X-linked recessive 1 
W, F, Ua, Uc, S, 
V, X, H 

SIMPSON-GOLABI-BEHMEL 
SYNDROME 

OPHN1 Mendelian X-linked recessive 1 L, H, E MENTAL RETARDATION, X-LINKED 
PAFAH1B1 Mendelian autosomal dominant 1 Ba, E, L, C, H LISSENCEPHALY 
PAK3 Mendelian X-linked recessive 6 (B), P MENTAL RETARDATION, X-LINKED  

PANK2 Mendelian autosomal recessive 8b H, G, L, T, C, P 
NEURODEGENERATION WITH BRAIN 
IRON ACCUMULATION  

PANK2 Mendelian autosomal recessive 8b H, G, L, T, M 

HYPOPREBETALIPOPROTEINEMIA, 
ACANTHOCYTOSIS, RETINITIS 
PIGMENTOSA, AND PALLIDAL 
DEGENERATION 

PAX6 Mendelian autosomal dominant 4 T, H, (L) 
ANIRIDIA, CEREBELLAR ATAXIA, AND 
MENTAL RETARDATION 

PAX6 Mendelian autosomal dominant 7 T, (A) COLOBOMA OF OPTIC NERVE 
PAX6 Mendelian autosomal dominant 7 T, (L) ANIRIDIA 

PC Mendelian autosomal recessive 5 M, C, E, H, G, L 
PYRUVATE CARBOXYLASE 
DEFICIENCY 

PCNT Mendelian autosomal recessive 8a AA, B, U 
MICROCEPHALIC OSTEODYSPLASTIC 
PRIMORDIAL DWARFISM 

PDHA1 Mendelian X-linked not sure 8b M, H, G, E, C, L 
PYRUVATE DEHYDROGENASE E1-
ALPHA DEFICIENCY 

PDHA1 Mendelian X-linked not sure 8b M, H, G, E, C, L LEIGH SYNDROME 

PDSS1 Mendelian autosomal recessive 8b M, H, T, O, V 
COENZYME Q10 DEFICIENCY, 
PRIMARY 

PDSS2 Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
W 

COENZYME Q10 DEFICIENCY, 
PRIMARY 

PEPD Mendelian autosomal recessive 5 M, J, S PROLIDASE DEFICIENCY 

PEX1 Mendelian autosomal recessive 2 M, E, H, T, C, L 
PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX1 Mendelian autosomal recessive 5 M, H, T, G 
PEROXISOME BIOGENESIS 
DISORDER  

PEX10 Mendelian autosomal recessive 2 
M, E, H, T, G, C, 
L 

PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX10 Mendelian autosomal recessive 5 M, E, H, T, G, C 
PEROXISOME BIOGENESIS 
DISORDER  

PEX12 Mendelian autosomal recessive 2 
M, E, H, T, G, C, 
L 

PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX12 Mendelian autosomal recessive 2 
M, E, H, T, G, C, 
L 

PEROXISOME BIOGENESIS 
DISORDER  

PEX13 Mendelian autosomal recessive 2 
M, E, H, T, G, C, 
L 

PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX13 Mendelian autosomal recessive 2 M, E, H, T, G, C 
PEROXISOME BIOGENESIS 
DISORDER  

PEX26 Mendelian autosomal recessive 8b M, E, H, L, C, (G) 
PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX26 Mendelian autosomal recessive 8b M, E, H, L, C, (G) 
PEROXISOME BIOGENESIS 
DISORDER  

PEX5 Mendelian autosomal recessive 2 
M, E, H, T, G, C, 
L 

PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX5 Mendelian autosomal recessive 2 M, E, H, T, G, C 
PEROXISOME BIOGENESIS 
DISORDER 

PEX6 Mendelian autosomal recessive 2 M, E, H, T, G, C 
PEROXISOME BIOGENESIS 
DISORDER (ZELLWEGER) 

PEX6 Mendelian autosomal recessive 2 M, T, H, C, G 
PEROXISOME BIOGENESIS 
DISORDER 

PEX7 Mendelian autosomal recessive 1 
AAa, M, E, T, C, 
Ub 

RHIZOMELIC CHONDRODYSPLASIA 
PUNCTATA 

PEX7 Mendelian autosomal recessive 5 M, H, T, G 
PEROXISOME BIOGENESIS 
DISORDER  
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PGK1 Mendelian X-linked recessive 8a H, Q, R, M 
PHOSPHOGLYCERATE KINASE 1 
DEFICIENCY 

PHF6 Mendelian X-linked recessive 5 O, A, K 
BORJESON-FORSSMAN-LEHMANN 
SYNDROME 

PHF8 Mendelian X-linked recessive 4 Uc 
SIDERIUS X-LINKED MENTAL 
RETARDATION SYNDROME 

PHGDH Mendelian autosomal recessive 5 M, Bc, E 
PHOSPHOGLYCERATE 
DEHYDROGENASE DEFICIENCY 

PLP1 Mendelian X-linked recessive 2 H, L, E, (C) PELIZAEUS-MERZBACHER DISEASE 

PMM2 Mendelian autosomal recessive 5 
M, H, L, T, A, C, 
R 

CONGENITAL DISORDER OF 
GLYCOSYLATION 

PNP Mendelian autosomal recessive 8a M, J, H 
PURINE NUCLEOSIDE 
PHOSPHORYLASE DEFICIENCY 

POMGNT1 Mendelian autosomal recessive 1 
Q, L, T, C, E, P, 
G 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH BRAIN AND EYE 
ANOMALIES) 

POMGNT1 Mendelian autosomal recessive 4 Q, L, T 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH MENTAL 
RETARDATION) 

POMT1 Mendelian autosomal recessive 1 Q, L, T, B, C 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH BRAIN AND EYE 
ANOMALIES) 

POMT1 Mendelian autosomal recessive 4 Q, L, T, C 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH MENTAL 
RETARDATION) 

POMT2 Mendelian autosomal recessive 1 Q, L, C, T, B 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH BRAIN AND EYE 
ANOMALIES) 

POMT2 Mendelian autosomal recessive 1 Q, L, C, B, T 

MUSCULAR DYSTROPHY-
DYSTROGLYCANOPATHY 
(CONGENITAL WITH MENTAL 
RETARDATION) 

PORCN Mendelian X-linked dominant 7 S, T, Ua, Uc, X FOCAL DERMAL HYPOPLASIA 
PPOX Mendelian autosomal not sure 8a M, H, S, E PORPHYRIA VARIEGATA 
PQBP1 Mendelian X-linked recessive 1 A, B, W, X RENPENNING SYNDROME 
PRPS1 Mendelian X-linked recessive 5 H, J, C, M ARTS SYNDROME 

PRSS12 Mendelian autosomal recessive 6 
MENTAL RETARDATION, AUTOSOMAL 
RECESSIVE  

PTCH1 Mendelian autosomal dominant 4 L, Uc HOLOPROSENCEPHALY  
PTEN Mendelian autosomal dominant 8a F, P, (I) MACROCEPHALY/AUTISM SYNDROME
PTPN11 Mendelian autosomal dominant 7 A, V, R, T, S, Q NOONAN SYNDROME  
PTPN11 Mendelian autosomal dominant 7 A, V, R, T, S, Q LEOPARD SYNDROME 

PUS1 Mendelian autosomal recessive 8a M, Q, R 
MYOPATHY, LACTIC ACIDOSIS, AND 
SIDEROBLASTIC ANEMIA  

PVRL1 Mendelian autosomal recessive 7 Uac, S 
CLEFT LIP/PALATE-ECTODERMAL 
DYSPLASIA SYNDROME 

PYCR1 Mendelian autosomal recessive 5 A, S, (L), (B), U 
CUTIS LAXA, AUTOSOMAL 
RECESSIVE 

PYCR1 Mendelian autosomal recessive 5 A, S, T, U 
CUTIS LAXA, AUTOSOMAL 
RECESSIVE 

PIGV Mendelian autosomal recessive 1 M, Ua, (E ) 
HYPERPHOSPHATASIA WITH MENTAL 
RETARDATION SYNDROME 

RAB27A Mendelian autosomal recessive 8a H, R, J, S, C GRISCELLI SYNDROME 
RAB3GAP1 Mendelian autosomal recessive 1 B, T, L, H WARBURG MICRO SYNDROME  
RAB3GAP2 Mendelian autosomal recessive 4 B, T, W, H MARTSOLF SYNDROME 
RAB3GAP2 Mendelian autosomal recessive 1 T, H, B, L, X WARBURG MICRO SYNDROME  
RAB39B Mendelian X-linked not sure 6 (E), (P), (F) MENTAL RETARDATION, X-LINKED 
RAF1 Mendelian autosomal dominant 7 A, V, R, T, Q NOONAN SYNDROME 
RAF1 Mendelian autosomal dominant 7 A, V, R, T, Q LEOPARD SYNDROME 
RAI1 Mendelian autosomal dominant 5 P, H, J SMITH-MAGENIS SYNDROME 

RBM28 Mendelian autosomal recessive 2 K, S, H, G 
ALOPECIA, NEUROLOGIC DEFECTS, 
AND ENDOCRINOPATHY SYNDROME 

RELN Mendelian autosomal recessive 1 L, E, H LISSENCEPHALY 

RFT1 Mendelian autosomal recessive 2 H, E, B, M 
CONGENITAL DISORDER OF 
GLYCOSYLATION 

RMRP Mendelian autosomal recessive 8a AA, B, U ANAUXETIC DYSPLASIA 

RNASEH2A Mendelian autosomal recessive 2 
H, E, L, S, G, C, 
B AICARDI-GOUTIERES SYNDROME 
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RNASEH2B Mendelian autosomal recessive 2 H, E, L, S, G, B AICARDI-GOUTIERES SYNDROME  
RNASEH2
C Mendelian autosomal recessive 2 

H, E, L, S, G, C, 
B AICARDI-GOUTIERES SYNDROME 

RPGRIP1L Mendelian autosomal recessive 4 H, L, O, W, T, Ua JOUBERT SYNDROME  
RPGRIP1L Mendelian autosomal recessive 4 H, L, O, W, T COACH SYNDROME 
RPL10 Mendelian X-linked not sure 6 P AUTISM, SUSCEPTIBILITY TO  
RPS6KA3 Mendelian X-linked not sure 2 A, B, Ub, (H), (C) COFFIN-LOWRY SYNDROME 
RPS6KA3 Mendelian X-linked not sure 6 MENTAL RETARDATION, X-LINKED 
SALL1 Mendelian autosomal dominant 7 X, Ua, V, W TOWNES-BROCKS SYNDROME 
SATB2 Mendelian autosomal dominant 1 E, Uc CLEFT PALATE, ISOLATED 
SC5DL Mendelian autosomal recessive 4 M, B, Ua, L LATHOSTEROLOSIS 

SCO2 Mendelian autosomal recessive 8b M, L, H, G, C, Q 

CARDIOENCEPHALOMYOPATHY, 
FATAL INFANTILE, DUE TO 
CYTOCHROME c OXIDASE 
DEFICIENCY 

SDHA Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q LEIGH SYNDROME 

SDHA Mendelian autosomal recessive 8b 
M, L, E, H, G, C, 
Q 

MITOCHONDRIAL COMPLEX II 
DEFICIENCY 

SETBP1 Mendelian autosomal dominant 1 U, V, W, I, X, C 
SCHINZEL-GIEDION MIDFACE 
RETRACTION SYNDROME 

SETBP1 Mendelian autosomal dominant 5 (P) unspecific moderate ID 
SHANK2 Mendelian autosomal dominant 6 P AUTISM, SUSCEPTIBILITY TO 

SHANK3 Mendelian autosomal dominant 6 P 
CHROMOSOME 22q13.3 DELETION 
SYNDROME 

SHH Mendelian autosomal dominant 4 L, Uc, C HOLOPROSENCEPHALY  
SHH Mendelian autosomal dominant 4 L SCHIZENCEPHALY 

SHOC2 Mendelian autosomal dominant 4 A, S, V, (Q) 
NOONAN SYNDROME-LIKE DISORDER 
WITH LOOSE ANAGEN HAIR 

SHROOM4 Mendelian X-linked recessive 2 A, U 
STOCCO DOS SANTOS X-LINKED 
MENTAL RETARDATION SYNDROME 

SIL1 Mendelian autosomal recessive 5 H, L, Q, T, A, Ub MARINESCO-SJOGREN SYNDROME 
SIX3 Mendelian autosomal dominant 4 L, C HOLOPROSENCEPHALY  
SIX3 Mendelian autosomal dominant 4 L, C SCHIZENCEPHALY 

SLC12A6 Mendelian autosomal recessive 4 L, G, H, Ub, P 

AGENESIS OF THE CORPUS 
CALLOSUM WITH PERIPHERAL 
NEUROPATHY 

SLC16A2 Mendelian X-linked not sure 2 
K, H, Q, P, E, L, 
(A), (B) 

ALLAN-HERNDON-DUDLEY 
SYNDROME 

SLC17A5 Mendelian autosomal recessive 8b M, H, G, E, C, L 
INFANTILE SIALIC ACID STORAGE 
DISORDER 

SLC17A5 Mendelian autosomal recessive 8b M, H, G, E, L SIALURIA 

SLC25A15 Mendelian autosomal recessive 5 M, H, E 

HYPERORNITHINEMIA-
HYPERAMMONEMIA-
HOMOCITRULLINURIA SYNDROME 

SLC25A22 Mendelian autosomal recessive 2 E, B, H, L 
EPILEPTIC ENCEPHALOPATHY, 
EARLY INFANTILE 

SLC2A1 Mendelian autosomal dominant 5 M, E, H GLUT1 DEFICIENCY SYNDROME 
SLC2A1 Mendelian autosomal dominant 5 M, E, H, B GLUT1 DEFICIENCY SYNDROME 
SLC2A1 Mendelian autosomal dominant 5 M, E, H DYSTONIA  

SLC35C1 Mendelian autosomal recessive 2 M, A, B, H, J 
CONGENITAL DISORDER OF 
GLYCOSYLATION 

SLC4A4 Mendelian autosomal recessive 5 A, T, W 

RENAL TUBULAR ACIDOSIS, 
PROXIMAL, WITH OCULAR 
ABNORMALITIES AND MENTAL 
RETARDATION 

SLC6A8 Mendelian X-linked not sure 5 M, H, E, P CREATINE DEFICIENCY SYNDROME 
SMC1A Mendelian X-linked not sure 1 A, B, V, E, X CORNELIA DE LANGE SYNDROME  
SMC3 Mendelian autosomal dominant 5 ORNELIA DE LANGE SYNDROME  
SMPD1 Mendelian autosomal recessive 8b M, C, G, H, J, T NIEMANN-PICK DISEASE 
SMPD1 Mendelian autosomal recessive 5 M, A, C, H, J, T NIEMANN-PICK DISEASE 

SMS Mendelian X-linked recessive 5 Ub, H, E 
MENTAL RETARDATION, X-LINKED, 
SYNDROMIC 

SNAP29 Mendelian autosomal recessive 2 B, H, L, S 

CEREBRAL DYSGENESIS, 
NEUROPATHY, ICHTHYOSIS, AND 
PALMOPLANTAR KERATODERMA 
SYNDROME 

SOS1 Mendelian autosomal dominant 7 V, T NOONAN SYNDROME 
SOX10 Mendelian autosomal dominant 5 S, X, (L), H WAARDENBURG SYNDROME 

SOX10 Mendelian autosomal dominant 5 S, X, L, H 

PERIPHERAL DEMYELINATING 
NEUROPATHY, CENTRAL 
DYSMYELINATION, WAARDENBURG 
SYNDROME, AND HIRSCHSPRUNG 
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DISEASE 
SOX2 Mendelian autosomal dominant 4 L, T, A, W, X MICROPHTHALMIA, SYNDROMIC 

SOX3 Mendelian X-linked not sure 5 A, K 
MENTAL RETARDATION, X-LINKED, 
WITH PANHYPOPITUITARISM 

SPRED1 Mendelian autosomal dominant 8a S, (P) LEGIUS SYNDROME 

SRPX2 Mendelian X-linked not sure 5 E, H 

ROLANDIC EPILEPSY, MENTAL 
RETARDATION, AND SPEECH 
DYSPRAXIA, X-LINKED 

ST3GAL3 Mendelian autosomal recessive 6  
MENTAL RETARDATION, AUTOSOMAL 
RECESSIVE 

ST3GAL3 Mendelian autosomal recessive 2 E, H 
EPILEPTIC ENCEPHALOPATHY, 
EARLY INFANTILE 

STIL Mendelian autosomal recessive 5 B 
MICROCEPHALY, PRIMARY, 
AUTOSOMAL RECESSIVE 

STRA6 Mendelian autosomal recessive 1 C, T, V, X MICROPHTHALMIA, SYNDROMIC 
SUOX Mendelian autosomal recessive 5 T, H, M, (G), (C) SULFOCYSTEINURIA 
SURF1 Mendelian autosomal recessive 8b M, L, E, H, G, Q LEIGH SYNDROME 

SYN1 Mendelian X-linked recessive 8a E, P 

EPILEPSY, X-LINKED, WITH VARIABLE 
LEARNING DISABILITIES AND 
BEHAVIOR DISORDERS 

SYNGAP1 Mendelian autosomal dominant 3 E 
MENTAL RETARDATION, AUTOSOMAL 
DOMINANT  

SYP Mendelian X-linked not sure 6 (E ) MENTAL RETARDATION, X-LINKED 
TAT Mendelian autosomal recessive 8a M, S, T TYROSINEMIA 

TBCE Mendelian autosomal recessive 5 A, K, U 

HYPOPARATHYROIDISM-
RETARDATION-DYSMORPHISM 
SYNDROME 

TBCE Mendelian autosomal recessive 5 A, K, U, J KENNY-CAFFEY SYNDROME 
TCF4 Mendelian autosomal dominant 2 E, O, T, B PITT-HOPKINS SYNDROME 
TGFBR1 Mendelian autosomal dominant 7 Ub, Uc, (S) LOEYS-DIETZ SYNDROME 
TGFBR2 Mendelian autosomal dominant 7 Ub, Uc, (S) LOEYS-DIETZ SYNDROME 
TGIF1 Mendelian autosomal dominant 4 L, Uc, C, X HOLOPROSENCEPHALY 

THRB Mendelian autosomal dominant 8a K, (A) 

THYROID HORMONE RESISTANCE, 
GENERALIZED, AUTOSOMAL 
DOMINANT 

TIMM8A Mendelian X-linked recessive 8b H, G, T, P MOHR-TRANEBJAERG SYNDROME 
TMEM67 Mendelian autosomal recessive 4 H, L, W, T JOUBERT SYNDROME  
TMEM67 Mendelian autosomal recessive 4 H, L, W, T COACH SYNDROME 
TPI1 Mendelian autosomal recessive 8a M, R, H, C "TPI deficiency" 

TREX1 Mendelian autosomal recessive 2 
H, E, L, S, G, C, 
B AICARDI-GOUTIERES SYNDROME 

TRIM32 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
TSC1 Mendelian autosomal dominant 5 E, I, L, S, W TUBEROUS SCLEROSIS  

TSC1 Mendelian autosomal dominant 5 E, L 
FOCAL CORTICAL DYSPLASIA OF 
TAYLOR 

TSC2 Mendelian autosomal dominant 5 E, I, L, S, W TUBEROUS SCLEROSIS 
TSPAN7 Mendelian X-linked recessive 6 MENTAL RETARDATION, X-LINKED  
TTC8 Mendelian autosomal recessive 4 N, T, Ua, W, K, P Bardet-Biedl syndrome 
TUBA1A Mendelian autosomal dominant 1 L, B, H, E LISSENCEPHALY  
TUBB2B Mendelian autosomal dominant 1 L, E, H POLYMICROGYRIA 

TUSC3 Mendelian autosomal recessive 3 
MENTAL RETARDATION, AUTOSOMAL 
RECESSIVE 

UBE2A Mendelian X-linked recessive 2 F, W, E 
MENTAL RETARDATION, X-LINKED, 
SYNDROMIC 

UBE3A Mendelian autosomal dominant 2 E, B, H, P ANGELMAN SYNDROME 

UBR1 Mendelian autosomal recessive 4 
X, K, S, (W), (A), 
(B) JOHANSON-BLIZZARD SYNDROME 

UPB1 Mendelian autosomal recessive 5 M, H 
BETA-UREIDOPROPIONASE 
DEFICIENCY 

UPF3B Mendelian X-linked recessive 5 P, Q 
MENTAL RETARDATION, X-LINKED, 
SYNDROMIC  

VLDLR Mendelian autosomal recessive 2 E, H, L, (T), (A) 

CEREBELLAR ATAXIA, MENTAL 
RETARDATION, AND 
DYSEQUILIBRIUM SYNDROME  

VPS13B Mendelian autosomal recessive 2 B, N, T, I, R, A, K COHEN SYNDROME 

XPA Mendelian autosomal recessive 8a, 8b 
B, H, G, S, T, I, 
(C) XERODERMA PIGMENTOSUM 

ZC3H14 Mendelian autosomal recessive 6  non syndromic autosomal recessive ID 

ZDHHC9 Mendelian X-linked recessive 2 (U) 
MENTAL RETARDATION, X-LINKED, 
SYNDROMIC 

ZEB2 Mendelian autosomal dominant 1 
B, E, V, W, X, A, 
L MOWAT-WILSON SYNDROME 

ZFYVE26 Mendelian autosomal recessive 5 H, G, (L) SPASTIC PARAPLEGIA, AUTOSOMAL 
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RECESSIVE 
ZIC2 Mendelian autosomal dominant 4 L, B HOLOPROSENCEPHALY  
ZNF41 Mendelian X-linked not sure 6 P MENTAL RETARDATION, X-LINKED  
ZNF674 Mendelian X-linked recessive 3 MENTAL RETARDATION, X-LINKED 
ZNF711 Mendelian X-linked not sure 6 MENTAL RETARDATION, X-LINKED  
ZNF81 Mendelian X-linked not sure 6 (A) MENTAL RETARDATION, X-LINKED  

List of 388 ID genes (status 2010) that was used for the enrichment analyses. This short 

version of the original catalog contains data on inheritance mode, associated ID-disorders, 

main class and additional phenotypes. 
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In this thesis haploinsufficiency of TCF4 as the underlying cause for Pitt-Hopkins syndrome 

was identified (chapter 2). Subsequently, recessive defects in NRXN1 and CNTNAP2 were 

detected in patients with a similar clinical phenotype (chapter 3). These findings and the 

associated molecular and functional studies helped to delineate the clinical phenotype on the 

one hand (chapters 2-5) and to provide inside into the (interconnected) molecular 

mechanisms on the other hand (chapters 2 and 4). Furthermore, with the comprehensive 

catalogue of all currently known ID genes and their associated phenotypes (chapter 6), a 

resource for future systematic studies in this field was generated, and first global insights 

were obtained. 

 

7.1. From phenotype to genotype and back 

For decades genetic diagnosis and assignment to particular syndromes was based on 

evaluation and description of the clinical phenotype. Only when the underlying genetic 

defects were identified, these clinical groups could be confirmed or not. The increasing 

molecular possibilities resulted in a fusion of phenotypic analysis with molecular biology and 

a new lumping and splitting strategy, taking full advantage of  both disciplines.330 This study 

is an example how close phenotypic and molecular findings can interact and complement 

each other.  

Pitt-Hopkins syndrome (PTHS) was initially described in 1978 in two unrelated 

patients with a supposedly distinct phenotype of severe ID, hyperbreathing and recognizable 

facial gestalt with a beaked nose.227 However, in the following nearly 30 years only a few 

single case reports described patients with a possibly identical disorder.228-231 Only after the 

identification of TCF4 haploinsufficiency by us and others as the underlying cause of Pitt-

Hopkins syndrome (chapter 2),247,250 the number of clinically identified and subsequently 

molecularly confirmed patients increased rapidly (chapter 3).260,261,331-333 Now the diagnosis 

could be confirmed or disproved in some of the previously described patients. This helped to 

delineate the clinical hallmarks of a distinct and recognizable clinical phenotype that 

apparently had been under-recognized for decades (chapter 2). The improved phenotypic 

delineation and the opportunity to perform confirmative molecular testing extensively raised 

the awareness for this syndrome amongst clinical geneticists and established it as a 

differential diagnosis in the field of severe ID together with Angelman- and Rett syndromes 

(chapter 3). To facilitate diagnosis even for less experienced clinicians, several groups 

recently attempted to establish clinical scores for Pitt-Hopkins syndrome.331,333 

For a long time, gene identification in ID was mainly limited to familial cases, allowing 

linkage analysis or homozygosity mapping.39,55,57 Identifying genes for sporadic ID disorders 

mostly relied on the random detection of chromosomal aberrations.68,150 With the 
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development of molecular karyotyping by arrayCGH or SNP array a new tool to identify more 

and smaller of such chromosomal aberrations became available. By detecting small 

deletions in one patient and by subsequently identifying mutations in one of the deleted 

genes in other patients with the same disorder but without chromosomal anomalies, the 

underlying cause for several disorders could be identified.36,73 Also in this study, molecular 

karyotyping confirmed its usefulness in disease gene identification by contributing to the 

identification of three underlying genetic causes for ID. De novo defects in TCF4 were 

identified in Pitt-Hopkins syndrome, and recessive defects in NRXN1 or CNTNAP2 were 

identified in patients with clinically overlapping disorders and no history of parental 

consanguinity (chapter 2 and 4). However, it also demonstrated, how valuable accurate 

clinical characterization is, as only identification of a de novo mutation in a second patient 

proved the deletion of TCF4 being the specific underlying cause in the first patient (chapter 

2). Both patients had previously been described with a clinical diagnosis of Pitt-Hopkins 

syndrome.229 In contrast, screening the gene in a larger group of patients with idiopathic ID 

but only mild phenotypic overlap did not lead to the identification of a second confirmatory 

patient.250  

The approach to systematically perform molecular karyotyping in a larger group of 

clinically homogenous patients - all referred with suspected Pitt-Hopkins syndrome but 

without TCF4 defect - lead to the identification of homozygous or compound heterozygous 

defects in CNTNAP2 in a pair of siblings and a sporadic patient and in NRXN1 in a sporadic 

patient. Their phenotype has been described as Pitt-Hopkins-like ID (chapter 4). 

Interestingly, a homozygous stop mutation in CNTNAP2 had previously been reported in 

patients with a cortical dysplasia focal epilepsy syndrome (CDFE), characterized by early 

onset of epilepsy and severe ID, following an initially normal development and subsequent 

regression.184 The patients with recessive defects in CNTNAP2 in our study also had early 

onset of epilepsy and normal or only mildly delayed early motor development. However, 

speech development was lacking from the beginning (chapter 4). While our patients had 

initially been diagnosed with Pitt-Hopkins syndrome due to severe ID with accompanying 

epilepsy, the patients published by Strauss et al.184 had been diagnosed with an epilepsy 

syndrome. Common genotypes can therefore bring together phenotypes that were previously 

considered as distinct disorders, probably rather due to clinical bias than due to a reliable 

genotype-phenotype correlation. 

Of note, all patients with recessive defects in CNTNAP2 showed severe speech 

impairment. Interestingly, a molecular link between CNTNAP2 and FOXP2, a member of the 

forkhead transcription factor family had previously been shown.281 Mutations in FOXP2 are 

known to cause speech and language disorders.334,335 
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Identification of further patients with Pitt-Hopkins syndrome did not only result in a better 

delineation of the phenotype but also of the genotype (chapter 2 and 3). The spectrum of 

aberrations in TCF4 comprises deletions, truncating mutations, and missense mutations 

which are located in exons coding for the bHLH domain of TCF4. The fact that all of these 

defects resulted in a similar and recognizable phenotype indicated haploinsufficiency as the 

underlying mechanism. With an in vitro transcriptional reporter assay after co-transfection of 

wild type or mutant TCF4 with an ASCL1 expression construct it could be shown that the 

missense mutations in the DNA- and protein-binding bHLH domain of TCF4 resulted in loss 

of the transactivating capacities, thus validating TCF4 haploinsufficiency as the underlying 

mechanism (chapter 2).  

ASCL1 is a tissue specific HLH transcription factor, knowing to interact with TCF4236 

and being part of the RET-signaling pathway. This additionally includes the PHOX2, RET 

and TH genes that are responsible for the development of transient or permanent 

noradrenergic derivatives.237 Mutations in ASCL1 and PHOX2 can cause the congenital 

central hypoventilation syndrome (CCHS)237,336 and mutations in RET are implicated in 

Hirschsprung disease.337,338 Therefore, interaction of TCF4 with ASCL1 and the reduced 

transactivation capacities upon TCF4 mutations might explain some of the PTHS specific 

phenotypic aspects such as the breathing anomalies and severe constipation. The findings 

from the cell-based luciferase assay were confirmed later by a similar experiment in a 

neuronal cell line.260 

Two recent studies investigated the consequences of different TCF4 missense 

mutations in various in vitro assays, finding evidence for a range of effects from hypomorphic 

to dominant-negative, thus contributing to the understanding of clinical variability in 

PTHS.316,339 However, these effects are based on single assays, thus possibly explaining 

some of the clinical variability but not contradicting TCF4 haploinsufficiency as the general 

underlying mechanism. 

 

7.2. From human to fly and back 

During the screening of Pitt-Hopkins syndrome-like patients without TCF4 mutation, 

recessive defects in CNTNAP2 in a pair of siblings and an isolated patient as well as 

recessive defects in NRXN1 in an isolated patient were detected (chapter 4). This was quite 

exciting as NRXN1 and CNTNAP2 belong to the same superfamily of neurexins, though no 

common molecular functions were known so far (see below). A potential common molecular 

basis and maybe even a link to TCF4 could therefore provide an explanation for the similar 

phenotype in the patients. However, neither NRXN1 nor CNTNAP2 is expressed in 

appreciable levels in blood, and other tissues are difficult to obtain from living patients. 
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Therefore Drosophila melanogaster was utilized as a model organism for further functional 

studies as all three genes do have orthologs in the fly: daughterless (TCF4), Nrx-I (NRXN1), 

and Nrx-IV (CNTNP2). 

Our first straightforward hypothesis was that TCF4 as a transcription factor could 

regulate the expression levels of NRXN1 and/or CNTNAP2. Ubiquitous knockdown of the 

TCF4 ortholog daughterless in the fly did not reveal conclusive data on altered expression 

levels of Nrx-I or Nrx-IV, the NRXN1 and CNTNAP2 orthologs, respectively, in the used 

system (chapter 4). However, recently another group reported a possible regulation of 

NRXN1 and CNTNAP2 through TCF4 in terms of a possible transactivation effect in cell 

system based promoter studies.316  

NRXN1/Nrx-I has been known to be one of the key synapse organizing molecules by 

forming bridges over the synaptic cleft with its postsynaptic binding partners, the 

neuroligins.287 Vertebrate CNTNAP2, also termed CASPR2 has been mainly known for its 

role in regulating neuron-glia contact and for colocalizing with K+- channels in the 

juxtaparanodal areas of Ranvier nodes in myelinated axons of both the central and 

peripheral nervous system.294,295 When this study was initiated, fly Nrx-IV was reported to be 

almost exclusively expressed in glia-cells and to regulate glia-glia contact.293,296 

The executed Drosophila experiments in this study brought several new insights 

(chapter 4) regarding NRXN1/Nrx-I and CNTNAP2/Nrx-IV and their possible interaction. 

 1) Nrx-IV was shown to play a role in neurons as neuronal knockdown lead to 

embryonic lethality. Previously, Nrx-IV was only considered to be expressed in glia cells in 

the fly.296 In parallel, two groups reported on neuronal Nrx-IV isoforms,264,268 thus supporting 

our conclusion that Nrx-IV plays a crucial role in neurons. 

2) Nrx-IV is present at synapses. Previously, only a report on detection of Caspr2 in 

fractionated rat synaptic plasma had pointed to a possible synaptic presence.266 

3) Nrx-I and Nrx-IV converge on synaptic active zone protein bruchpilot (brp) as a 

common target. Adding to the observation of decreased brp levels in Nrx-I mutants,270 our 

work showed that both Nrx-I or Nrx-IV levels determine brp levels bidirectionally and that 

either Nrx-I or Nrx-IV overexpression induces identical changes in synaptic morphology.  

Bruchpilot is a peripheral membrane protein being located at the presynaptic active 

zones, the location of neurotransmitter release into the synaptic cleft. Through its PDZ 

domain binding site it is involved in a large complex with other active zone proteins.298 Of 

note, also Nrx-I and Nrx-IV contain C-terminal PDZ-domain binding sites, therefore raising 

the possibilty that all three proteins are assembled into one synaptic complex or 

macromolecular network. Brp shows high sequence and functional homology to the 

vertebrate family of ELKS/CAST proteins,298 corresponding to the human synaptic proteins 

ERC1 and ERC2. 
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Summarizing, these findings in Drosophila helped to gain more insight into function of 

Nrx-I and Nrx-IV in the nervous system and particularly implicated Nrx-IV in synapse biology. 

It also helped to establish a functional link between Nrx-I and Nrx-IV as a possible 

explanation for the similar human phenotypes. Furthermore, with brp orthologs ERC1 and 

ERC2 it produced promising candidate genes to go back to humans and screen these genes 

for mutations in patients with a PTHS-like phenotype. 

Therefore, in this study Drosophila proved to be a valuable model organism for 

functional testing in ID. However, it is important to know what to expect from an animal model 

like Drosophila. It is no equivalent to human patients, but the same is applicable for all other 

animal models or in vitro assays. It cannot provide final evidence for the pathogenicity of 

particular mutations, but it can provide functional support for the role of particular genes in 

cognitive and behavioral function and dysfunction. As successfully demonstrated in this 

thesis, it can help to establish molecular networks. This is in particularly interesting as the 

theme of overlapping phenotypes being caused by genes that are linked to each other in 

molecular networks178 gets more and more evident and attractive. 

Drosophila is not the answer to all our questions but it is an extremely suitable and 

valuable tool to efficiently add pieces to the puzzle that has been keeping and will keep 

scientists with an interest in ID - geneticists, and neurobiologists - busy for a long time. 

 

7.3. From mono- to oligogenic and back? 

A common synaptic link between NRXN1 and CNTNAP2 and possibly TCF4 might result in 

the implication of all three encoding genes in disorders across diagnostic boundaries, severe 

intellectual disability at one end of the spectrum184,247,248,285,308,340,341 and neuropsychiatric 

disorders with no or only mild cognitive impairment at the other end.266,272-278,280-283,299-307,342,343  

Biallelic defects in NRXN1 or CNTNAP2 were observed in patients with severe 

cognitive disorders (chapter 4).184,285,340 Heterozygous copy number variants (CNVs) and 

single nucleotide changes in either gene at that time had been found in patients with 

neuropsychiatric disorders and no or only mild cognitive impairment.266,272-283,286,299-307 The 

apparent influence of gene-dosage on the phenotypic severity has been also perfectly 

mirrored in a published family. The index patient harboring a compound heterozygous 

deletion and splice site mutation in NRXN1 has severe ID with epilepsy and little social 

interaction, while some of his family members carrying only one of the NRXN1 aberrations 

have schizophrenia, psychotic disorders or sub-diagnostic autistic traits.344 

The observation of heterozygous variants as risk factors for low penetrant 

neuropsychiatric disorders and of biallelic defects in the same gene as causative for fully 

penetrant severe ID has not been reported for other genes so far. Only recently, a 
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homozygous mutation in the ANK3 gene was reported in a consanguineous family with 

moderate ID and severe behavioral anomalies.345 De novo, heterozygous mutations in ANK3 

had previously been implicated in ASD, and polymorphisms had been implicated as 

susceptibility factors for psychiatric disorders. However, in this study a correlation between 

severity and degree of inactivation due to the mutation was discussed rather than dosage 

sensitivity.345 

We continued to screen NRXN1 and CNTNAP2 in a larger cohort of patients with Pitt-

Hopkins like syndrome with severe ID and accepted samples from external patients with 

severe ID and a heterozygous CNV in NRXN1 or CNTNAP2 for mutational screening of the 

second allele. In this group we expected to identify more patients with biallelic defects in 

either gene and therefore to further delineate the associated clinical phenotype (chapter 5). 

However, surprisingly, in none of seven patients with severe ID and a heterozygous 

CNTNAP2 defect and in none of four patients with severe ID and a heterozygous NRXN1 

defect we could identify a mutation on the respective second allele. In most of the patients, 

the heterozygous defect was inherited from a healthy parent, therefore a second defect on 

the other allele would have been expected in order to explain the severe phenotype. 

Prompted by the molecular link between NRXN1 and CNTNAP2/CASPR2 fly orthologs 

(chapter 4) and considering a possible digenic pathomechanism, screening of the respective 

other gene was performed in these patients but without resulting in the detection of 

mutations.  

Of course the second mutation in either gene might have remained undetected due to 

localization in a non-coding regulatory element or in a non-tested alternative isoform, or the 

finding of the NRXN1 or CNTNAP2 defect might have been just coincidence without 

pathogenic relevance to the severe phenotype of these patients. This might be true for the 

patient with a splice site variant in CNTNAP2 and additionally a clearly pathogenic mutation 

in MEF2C.346 However, the large number of such severely affected patients, further raised by 

recent reports at least for NRXN1,347-349 might indicate the presence of a second and maybe 

third contributing factor somewhere else in the genome in terms of a digenic or oligogenic 

cause.  

While mild forms of ID are assumed to represent the lower end of normal IQ 

distribution and to result from the interaction of various genetic and other factors, for severe 

ID mainly a single genetic cause is assumed.2 This is confirmed by recent exome sequencing 

studies identifying de novo mutations in a large proportion of patients with unspecific severe 

ID.34,35,42 For a small subset of developmental disorders that are frequently associated with 

mild cognitive impairment, such as autism or dyslexia, polygenic effects are discussed.314,350 

However, in contrast to the multifactorial “common disease, common variant” model, 

suggesting many genetic and non-genetic factors (epigenetic and environmental) with small 
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effect in individual patients,351 the picture now rather points to single events of large effect. 

Recent studies on common neurodevelopmental disorders like autism spectrum 

disorders47,116,350,352,353 or schizophrenia354,355 revealed a large number of de novo mutations. 

One study on autism spectrum disorders estimated a 5- to 20-fold increased risk by 

spontaneous coding mutations in any of a large number of genes.350 The concurrent finding 

of de novo defects in SHANK2 with other inherited CNVs known to be risk factors for 

neuropsychiatric disorders would be in line with a multiple hit model for autism spectrum 

disorders.46 This is also supported by the finding of a de novo frameshift mutation in FOXP1 

in combination with an inherited mutation in CNTNAP2 in a patient with severe language 

delay, moderate ID and regression.352 Before, FOXP1 defects were found in patients with 

mild to moderate ID and language defects.356,357 Therefore, a combination of FOXP1 

haploinsufficiency with increased CNTNAP2 expression might contribute to the more severe 

phenotype in this patient.352 Interestingly, for FOXP2, another member of the forkhead 

transcription factor family and implicated in language disorders, a molecular link to 

CNTNAP2 had previously been shown.281 

While monogenic or single chromosomal defects might still be responsible for the 

majority of severe ID, there are already a few examples for disorders with digenic inheritance 

or a two hit model. For some cases of Bardet-Biedl syndrome, a di- or even trigenic 

inheritance has been reported.48 Regarding a recurrent 16p12.1 microdeletion, second hits 

were shown to be necessary to evoke the full, severe phenotype.45  

Only recently, two patients with heterozygous NRXN1 deletions and additionally a 

NRXN3 or a 16p11.2 deletion, respectively, were reported.349 As defects in NRXN3 as well 

the common 16p11.2 deletion have already been implicated in autism spectrum 

disorders,342,358,359 these findings support the presence and absence of additional genetic 

lesions as contributory to the variable expressivity and incomplete penetrance in carriers of a 

NRXN1 heterozygous exonic deletion.349 By comparing the de novo rate of mutations and the 

burden of “second hits” in individuals with NRXN1 deletions and carriers of known recurrent 

“susceptibility CNVs” the authors place NRXN1 exonic deletions somewhere in the spectrum 

between 15q13.3 and 16p12.1 deletions.349 In some of our patients with heterozygous 

CNTNAP2 or NRXN1 aberrations (chapter 5) additional unknown CNVs were observed by 

molecular karyotyping. However, an interpretation regarding a possible contributory effect of 

these CNVs is currently not yet possible.  

The advances in NGS during the next years will hopefully help to understand how 

many cases of ID can indeed be explained by monogenic causes and how many will be due 

to a combination of multiple de novo and/or inherited defects. 
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7.4. From single genes to functional modules and back 

Intellectual disability is clinically and genetically highly heterogeneous. The underlying genes 

are only incompletely identified so far, and even for the majority of known ID genes their 

individual function as well as their role in larger networks and pathways is only poorly 

understood.  

Linking ID genes in common molecular or functional pathways indicates a general 

regulatory role of these networks in cognitive function and dysfunction2,318‐321 and supports the 

idea that similar phenotypes are caused by defects in functionally related genes.178 By linking 

CNTNAP2 and NRXN1 via a common synaptic target, this thesis (chapter 4) contributed to 

this theme. To cope with the arising challenges resulting from NGS technologies and to 

further identify and delineate the complex networks of cognitive function and dysfunction, a 

systematic, large-scale and collaborative interdisciplinary approach is required.  

Though several attempts were undertaken to create catalogs of ID genes, none of 

them was either highly reliable or complete.96,257,325 We therefore established such an ID 

gene collection and introduced it into a database that is supplemented with many other 

datasets (chapter 6). We furthermore established a classification system of ID genes, based 

on the clinical manifestation and severity of the associated disorders. This resulted in nine 

individual classes that could be summarized in six overlapping higher-order groups (SWSM: 

syndromic with structural malformations, SWOSM, syndromic without structural 

malformations, NS: non-syndromic; CS: classic severe, CM: classic mild to moderate or 

variable, NC: non-classic). First analyses showed several interesting enrichment and 

expression patterns (chapter 6):  

1) Genes from the postsynaptic density of the human neocortex322 are significantly 

enriched in the non-syndromic group (NS). This goes in hand with significantly increased 

expression levels for NS genes in fetal brain and several brain regions. Enrichment of X-

linked inheritance in the NS group might indicate a high proportion of ID genes with synaptic 

function on the X-chromosome, as was also discussed previously.329  

2) The highest enrichment of haploinsufficiency (HI) genes is found in the SWSM 

group. This goes in hand with significant enrichment of autosomal dominant inheritance (in 

terms of de novo mutations) in the SWSM group. These observations indicate the role of HI 

genes in disorders that affect the development of the brain and many other organs and 

systems.  

3) Autosomal-recessive inheritance is significantly enriched in the SWOSM group 

while it is significantly depleted in the SWSM and the NS groups. This indicates that 

mutations in autosomal recessive genes cause syndromic ID but without structural 

malformations which might be true for most of the metabolic genes.  
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4) CS genes show increased expression in various brain regions, while CM genes 

show no significant expression pattern, and NC genes shows a heterogeneous pattern for 

organs, brain tissues and blood and immune cells. Thus, the high and specific expression of 

CS genes in brain is correlating with the severity of ID.  

These analyses are only our first steps towards a comprehensive systems biology-

like approach. They already demonstrated that both molecular as well as phenotypic 

“grouping” can be used to detect patterns. These might be helpful both for ID disease gene 

prediction as well as for prediction of protein function and modularity. 

 

7.5. Back to the future 

The growing impact and progression in NGS technology and data interpretation will rapidly 

increase the identification of new disease genes and of disease causing mutations in known 

genes in the next few years. This might reduce the importance of good clinical 

characterization prior to molecular testing, but it will raise the need for good clinical 

phenotyping afterwards. As NGS will result in the detection of various mutations in various 

genes, a good interaction between clinical and molecular findings will be the prerequisite to 

accurately delineate genotype-phenotype correlations.   

Only recently, approaches like multiplex targeting sequences (MIB) were developed 

for cost-efficient resequencing of candidate genes in large cohorts of patients with ID or 

epilepsy.360,361 Nevertheless, due to the extreme heterogeneity in ID, it has to be assumed 

that not for all patients or families with a mutation in a convincing candidate gene 

confirmation for its pathogenicity can be obtained by detecting other patients or families with 

mutations in the same gene easily. This will be particularly relevant for missense variants, for 

which a deleterious effect is less obvious than for truncating mutations. For some cases, 

functional analyses will be and remain necessary to support a pathogenic relevance of 

particular genetic defects. 

It can also be safely assumed that not all ID disorders will be due to single defects in 

a single gene, but that there will be certain proportion of oligogenic or even multifactorial 

causes of ID, particularly in the milder spectrum. Large clinical variability in some monogenic 

ID disorders - sometimes even resulting from an identical mutation - is assumed to result 

from additional, modifying genetic, epigenetic and environmental factors. To delineate at 

least the former will require large bioinformatics and statistical approaches on a massive 

amount of data. It will also require a thorough functional characterization of genes and 

variants in order to map them to common pathways and complexes and to explain their 

influence on each other. 
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Understanding the molecular and functional basis of ID and to connect single genes 

and proteins in functional networks and pathways is the prerequisite to get back to clinics 

and establish therapeutic approaches. This is one of the big challenges for the years and 

decades to come.  

Taken together, bringing together clinics, molecular diagnostics, basic research, 

bioinformatics and pharmacology for the ultimate goal of unraveling and treating ID is both a 

challenge and a promise for the future of human genetics and medical genomics. 
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Summary 

Intellectual disability (ID) affects 2-3% of the population and therefore has a major social and 

economic impact on both families and society. The genetic causes for ID are very 

heterogeneous and so far, the underlying cause can only be identified in about half of the 

affected individuals. During the last years the development of first molecular karyotyping in 

order to detect small chromosomal aberrations and then Next-Generation-Sequencing to 

detect sequence variants provided potent new technologies to identify known and novel 

genetic causes of ID. Diagnosing the underlying genetic defect in a particular family helps to 

provide proper counseling regarding prognosis, potential complications, comorbidities, and 

recurrence risks on one hand. On the other hand, identification of novel genes and 

connecting them in functional networks provides the basis for the long-term development of 

therapeutic approaches. For this, a detailed understanding of the molecular and functional 

basis of ID is necessary as well as connecting single genes and proteins in functional 

networks and pathways. This requires a tight collaboration of different disciplines such as 

clinics, molecular diagnostics, basic research, and bioinformatics. 

The aim of this thesis was to contribute to the genetic, clinical and functional 

characterization of ID disorders, with a particular focus on Pitt-Hopkins (PTHS) and Pitt-

Hopkins-like syndromes. 

 

Chapter 1 provides an introduction on intellectual disability. It discusses the genetic 

and clinical heterogeneity, the underlying molecular defects, methods for disease gene 

identification, and functional testing with different approaches. 

Chapter 2 describes the detection of a TCF4 deletion by molecular karyotyping in a 

patient with Pitt-Hopkins syndrome. This disorder is characterized by severe ID, breathing 

anomalies and typical facial dysmorphism. Subsequent identification of mutations in this 

gene in further patients with a similar clinical phenotype identified TCF4 haploinsufficiency as 

the underlying cause for PTHS and contributed to the delineation of the distinct, but until then 

under-recognized, phenotype. Impaired transcriptional interaction with ASCL1 from the 

ASCL1-PHOX2B-Ret pathway upon TCF4 mutations was demonstrated with a transcriptional 

reporter assay and might explain some of the characteristic PTHS symptoms. 

In chapter 3, a larger number of patients with PTHS and TCF4 mutations were 

collected in order to further delineate the clinical and genetic characteristics of this syndrome. 

This helped to increase the awareness of clinicians towards this disorder and to establish it 

as an important differential diagnosis to Rett- and Angelman syndromes, widely known and 

intensely studied severe ID disorders. 
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As only in a subset of patients referred with suspected PTHS mutations in TCF4 could be 

identified, chapter 4 describes the continuing screening for small aberrations with molecular 

karyotyping in the remaining patients. This revealed a homozygous deletion within CNTNAP2 

in a pair of siblings, and a further sporadic patient with a compound heterozygous deletion 

and mutation in this gene. Additionally, a compound heterozygous deletion and mutation in 

the NRXN1 gene was identified in a sporadic patient with a similar phenotype. Drosophila 

melanogaster as a model organism allowed to demonstrate a possible interaction between 

Nrx-IV (CNTNAP2) and Nrx-I (NRXN1) by converging on a common target, the presynaptic 

protein bruchpilot. 

Chapter 5 describes how heterozygous defects in CTNAP2 and NRXN1 but no 

second mutation were found in patients with severe ID and one of their healthy parents, 

respectively. This expanded the clinical spectrum associated with heterozygous defects in 

any of the two genes to the severe end by including severe ID. This observation suggested 

the existence of additionally contributing genetic factors, thus pointing to a possible di- or 

oligogenic cause for the severe ID in these patients 

The work described in chapter 6 aims at a more global understanding of the 

molecular pathology of ID disorders by establishing a systematic inventory of all ID-related 

genes and their associated phenotypes. By creating a clinical classification system based on 

the manifestation of ID as well as on accompanying phenotypic features this study attempted 

to establish correlations between clinical and molecular/functional aspects. 

A general discussion of the findings in this thesis and their implications in the broader 

field of ID genetics as well as future perspectives are provided in chapter 7. Understanding 

the molecular and functional basis of ID by connecting single genes and proteins in 

functional networks and pathways is the prerequisite to begin to unravel and treat ID in the 

coming years. 
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List of abbreviations 

AD autosomal dominant 
AR 
ASD 
ATP 

autosomal recessive 
autism spectrum disorder 
Adenosine-5'-triphosphate 

BAC bacterial artificial chromosome 
Bp 
ca. 
ChIP 

base pair 
circa 
chromatin immunoprecipitation 

arrayCGH microarray-based comparative genomic hybridization 
CM classic mild to severe or variable  
CNV copy number variant 
Ct threshold cycles 
CS classic severe 
dbSNP database of single nucleotide polymorphisms 
DECIPHER database of chromosomal imbalance and phenotype in humans 

using ensemble resources 
DNA deoxyribonucleic acid 
EBV Epstein-Barr virus 
EEG electroencephalogram 
e.g. 
etc. 

for example 
et cetera 

FISH fluorescence in situ hybridisation 
GNF Genomics Institute of the Novartis Research Foundation 
HI haploinsufficiency 
hPSD post-synaptic density from human neocortex 
i.e. 
iPS cells 

that is 
induced pluripotent stem cells 

ID intellectual disability 
IQ Intelligence quotient 
kb kilobase (thousand base pairs) 
LD linkage disequilibrium 
LOD logarithm of odds 
Mb megabase (million base pairs) 
MLPA multiplex ligation dependent probe amplification 
MR mental retardation 
MRI magnetic resonance imaging 
mRNA messenger ribonucleic acid 
NC non-classic 
NCBI national center for biotechnology information 
NGS next generation sequencing 
NMD nonsense-mediated mRNA decay 
NMJ neuromuscular junction 
NS non-syndromic 
OFC occipitofrontal head circumference 
OMIM online mendelian inheritance in man database 
ORF open reading frame 
PCR polymerase chain reaction 
qPCR quantitative polymerase chain reaction 
RNA ribonucleic acid 
RNAi inducible RNA interference 
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RT-PCR real time polymerase chain reaction or reverse transcriptase 
polymerase chain reaction 

SD 
shRNA 
siRNA 

standard deviation 
short hairpin RNA 
short interference RNA 

SNP single nucleotide polymorphism 
SWSM syndromic with structural malformations 
SWOSM syndromic without structural malformations 
UAS upstream activating sequence 
UCSC University of California, Santa Cruz 
UTR untranslated region 
WT wild type 
  

 


